Understanding variations in financial returns

Susan Thomas

10 March, 2011

Susan Thomas Understanding variations in financial returns

- Returns variations
- Dynamics of risk

イロン 不同 とくほ とくほ とう

Part I

Features of variation in returns

Susan Thomas Understanding variations in financial returns

ъ

ъ

 Returns are calculated as log price differences and expressed in %:

 $r = 100 * diff(log(P_t))$

 Mapping from prices to returns (or vice-versa) should be trivial.

$$r_1 = 100 * log(P_1/P_0)$$

 $P_1 = P_0 e^{r_1/100}$

• Standard assumption: returns come from a known unconditional distribution, *f*(*r*).

・ 同 ト ・ ヨ ト ・ ヨ ト

 Returns are calculated as log price differences and expressed in %:

$$r = 100 * diff(log(P_t))$$

 Mapping from prices to returns (or vice-versa) should be trivial.

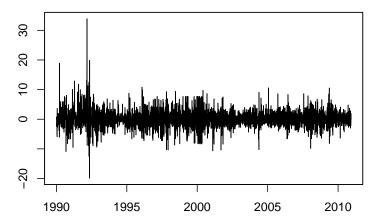
$$r_1 = 100 * log(P_1/P_0)$$

 $P_1 = P_0 e^{r_1/100}$

 Standard assumption: returns come from a known unconditional distribution, *f*(*r*).

・ 同 ト ・ ヨ ト ・ ヨ ト

returns



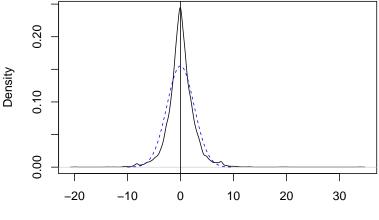
Susan Thomas Understanding variations in financial returns

ъ

æ

<u>ــ</u>

density.default(x = r, lwd = 2, main = "ITC kernel density")



N = 4977 Bandwidth = 0.2949

< ∃→

3

- We see that in the tails, the normal distribution lies below the data histogram.
- There is (slight) asymmetry in the right and left side of the data histogram.
- Reasons?
 - Real distribution is non-normal with fatter tails?
 - 2 Data comes from a mix of distributions: normal with low risk + normal with high risk?
 - 8 Real distribution is non-stationary?

< 回 > < 回 > < 回 >

- We see that in the tails, the normal distribution lies below the data histogram.
- There is (slight) asymmetry in the right and left side of the data histogram.
- Reasons?
 - Real distribution is non-normal with fatter tails?
 - 2 Data comes from a mix of distributions: normal with low risk + normal with high risk?
 - Is a lostribution is non-stationary?

- One candidate: Student's t-distribution with low degrees of freedom.
- The possibility of seeing large deviations are:

	Tail prob.		Fraction days in a year	
Deviation	Normal	t(df = 4)	Normal	t(df = 4)
-5%	0.0000	0.0038	0.00	0.94
-4%	0.0000	0.0081	0.01	2.02
-3%	0.0014	0.0200	0.34	4.99
-2%	0.0228	0.0581	5.69	14.51
-1%	0.1587	0.1870	39.66	46.74

Our data: Sample size = 4977

	-5	-4	-3	-2	-1
	0.0000				
t(df=4)	0.0038	0.0081	0.0200	0.0581	0.1871
Data	4e-04	0.0014	0.0078	0.0247	0.1039

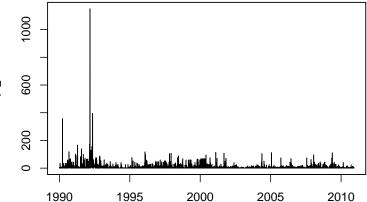
э

B

- An alternative explanation is that volatility changes every day: heteroskedasticity.
- This implies that the observed data comes out of a mixture of distributions.

· < 프 > < 프 >

Squared returns

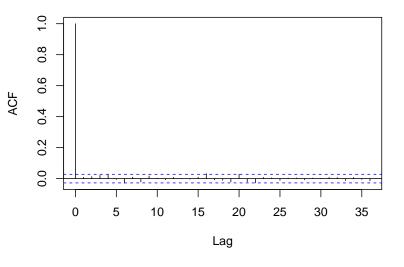


Susan Thomas Understanding variations in financial returns

ヨトーヨ

ş

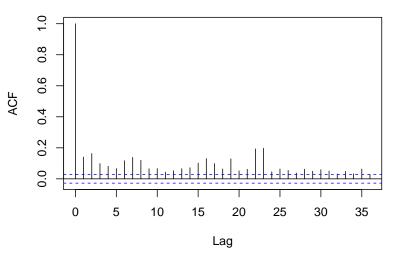
ITC returns acf



⇒ < ⇒ >

₹ 990

ITC returns-sq acf



æ

ъ

- Mean = 0.11%
- Std. Dev. = 2.57%
- AR model order on returns = 0
- AR model order on volatility (squared returns) = 25
- There is a strong case to believe that returns come from a mixture of distributions: normal with different *σ*.

Choices in modelling variations in σ

- Homoskedasticity: Constant unconditional variance
- Key idea: conditional heteroskedasticity that is autoregressive

$$r_t = \operatorname{arma}(\mathbf{p},\mathbf{q}) + \epsilon_t$$

$$\epsilon_t \sim N(\mu, h_t)$$

$$h_t = \gamma_0 + \gamma_1 \epsilon_{t-1}^2 + \ldots + \gamma_k \epsilon_{t-k}^2$$

- Joint model of returns and volatility dynamics; source of information is returns itself.
- Concise version: GARCH(k,m)

$$h_t = \gamma_0 + \gamma_1 \epsilon_{t-1}^2 + \gamma_k \epsilon_{t-k}^2 + \beta_1 h_{t-1} + \ldots + \beta_m h_{t-m}$$

• Simplest version: GARCH(1,1)

$$h_t = \gamma_0 + \gamma_1 \epsilon_{t-1}^2 + \beta_1 h_{t-1}$$

ARCH implications on VaR

Unconditional variance:

arch :
$$h = \gamma_0 / (1 - \sum_{i=1}^{i=k} \gamma_i)$$

garch : $h = \gamma_0 / (1 - \sum_{i=1}^{i=k} \gamma_i - \sum_{j=1}^{j=m} \beta_j)$

Example: GARCH(1,1) $h = \gamma_0/(1 - \gamma_1 - \beta_1)$

- Inference: estimated historical *σ* is an underestimate of actual *σ*.
- Note: Since $\sigma_1 = f(\sigma_0)$, variance of data aggregated over K periods no longer follows the \sqrt{K} rule.
- Note: When $\gamma_1 + \beta_1 = 1$, $h \to \infty$ which is a non-stationary process.
- Note: $\gamma_1 + \beta_1$ measures the *persistence* of variance.

ARCH implications on VaR

Unconditional variance:

arch :
$$h = \gamma_0 / (1 - \sum_{i=1}^{i=k} \gamma_i)$$

garch : $h = \gamma_0 / (1 - \sum_{i=1}^{i=k} \gamma_i - \sum_{j=1}^{j=m} \beta_j)$

Example: GARCH(1,1) $h = \gamma_0 / (1 - \gamma_1 - \beta_1)$

- Inference: estimated historical *σ* is an underestimate of actual *σ*.
- Note: Since $\sigma_1 = f(\sigma_0)$, variance of data aggregated over K periods no longer follows the \sqrt{K} rule.
- Note: When $\gamma_1 + \beta_1 = 1$, $h \to \infty$ which is a non-stationary process.
- Note: $\gamma_1 + \beta_1$ measures the *persistence* of variance.

ARCH implications on VaR

Unconditional variance:

arch :
$$h = \gamma_0 / (1 - \sum_{i=1}^{i=k} \gamma_i)$$

garch : $h = \gamma_0 / (1 - \sum_{i=1}^{i=k} \gamma_i - \sum_{j=1}^{j=m} \beta_j)$

Example: GARCH(1,1) $h = \gamma_0/(1 - \gamma_1 - \beta_1)$

- Inference: estimated historical *σ* is an underestimate of actual *σ*.
- Note: Since $\sigma_1 = f(\sigma_0)$, variance of data aggregated over K periods no longer follows the \sqrt{K} rule.
- Note: When $\gamma_1 + \beta_1 = 1$, $h \to \infty$ which is a non-stationary process.
- Note: $\gamma_1 + \beta_1$ measures the *persistence* of variance.

Comparing popularly used ARCH models

EWMA: Equally Weighted Moving Average

ł

$$\begin{split} h_t &= \lambda h_{t-1} + (1-\lambda)\epsilon_{t-1}^2 \\ &= \lambda^2 h_{t-2} + (1-\lambda)^2 \epsilon_{t-2}^2 + + (1-\lambda)\epsilon_{t-1}^2 \\ &= \lambda^3 h_{t-3} + (1-\lambda)^2 \epsilon_{t-3}^3 + (1-\lambda)^2 \epsilon_{t-2}^2 + (1-\lambda)\epsilon_{t-1}^2 \\ &= \sum_{j=1}^{\infty} (1-\lambda)^j \epsilon_{t-j}^2 \end{split}$$

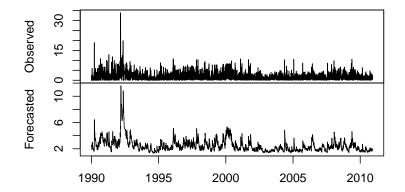
- Most famous EWMA: *RiskMetrics*, $\lambda = 0.94$
- GARCH with $\gamma_0 = 0$ and $\gamma_1 + \beta_1 = 1$.
- On short time horizons, the forecasts of the two models tend to be the same.

通 と く ヨ と く ヨ と

	Estimate	Std. Error	t value	Pr(> t)
μ	0.1169	0.0293	3.992	6.55e-05***
ϕ_1	0.0252	0.0155	1.625	0.104
γ_0	0.1895	0.0309	6.131	8.74e-10***
γ_1	0.0976	0.0099	9.869	< 2 <i>e</i> – 16***
β_1	0.8748	0.0127	69.178	$< 2e - 16^{***}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Testing



tt

ヨトーヨ