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Goals

Returns variations
Dynamics of risk
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Part I

Features of variation in returns
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Returns

Returns are calculated as log price differences and
expressed in %:

r = 100 ∗ diff (log(Pt))

Mapping from prices to returns (or vice-versa) should be
trivial.

r1 = 100 ∗ log(P1/P0)

P1 = P0er1/100

Standard assumption: returns come from a known
unconditional distribution, f (r).
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Non-normal distribution

We see that in the tails, the normal distribution lies below
the data histogram.
There is (slight) asymmetry in the right and left side of the
data histogram.
Reasons?

1 Real distribution is non-normal with fatter tails?
2 Data comes from a mix of distributions: normal with low risk

+ normal with high risk?
3 Real distribution is non-stationary?
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Different distribution?

One candidate: Student’s t-distribution with low degrees of
freedom.
The possibility of seeing large deviations are:

Tail prob. Fraction days in a year
Deviation Normal t(df = 4) Normal t(df = 4)
-5% 0.0000 0.0038 0.00 0.94
-4% 0.0000 0.0081 0.01 2.02
-3% 0.0014 0.0200 0.34 4.99
-2% 0.0228 0.0581 5.69 14.51
-1% 0.1587 0.1870 39.66 46.74
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Alternative distribution comparisons

Our data: Sample size = 4977

-5 -4 -3 -2 -1
Normal 0.0000 0.0000 0.0014 0.0228 0.1587
t(df=4) 0.0038 0.0081 0.0200 0.0581 0.1871
Data 4e-04 0.0014 0.0078 0.0247 0.1039
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Time varying variances

An alternative explanation is that volatility changes every
day: heteroskedasticity.
This implies that the observed data comes out of a mixture
of distributions.
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Summary stats for I.T.C. Ltd.

Mean = 0.11%
Std. Dev. = 2.57%
AR model order on returns = 0
AR model order on volatility (squared returns) = 25
There is a strong case to believe that returns come from a
mixture of distributions: normal with different σ.
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Choices in modelling variations in σ

Homoskedasticity: Constant unconditional variance
Key idea: conditional heteroskedasticity that is
autoregressive

rt = arma(p,q) + εt

εt ∼ N(µ,ht)

ht = γ0 + γ1ε
2
t−1 + . . .+ γkε

2
t−k

Joint model of returns and volatility dynamics; source of
information is returns itself.
Concise version: GARCH(k,m)

ht = γ0 + γ1ε
2
t−1 + γkε

2
t−k + β1ht−1 + . . .+ βmht−m

Simplest version: GARCH(1,1)

ht = γ0 + γ1ε
2
t−1 + β1ht−1
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ARCH implications on VaR

Unconditional variance:

arch : h = γ0/(1−
i=k∑
i=1

γi)

garch : h = γ0/(1−
i=k∑
i=1

γi −
j=m∑
j=1

βi)

Example: GARCH(1,1) h = γ0/(1− γ1 − β1)

Inference: estimated historical σ is an underestimate of
actual σ.
Note: Since σ1 = f (σ0), variance of data aggregated over
K periods no longer follows the

√
K rule.

Note: When γ1 + β1 = 1, h→∞ which is a non-stationary
process.
Note: γ1 + β1 measures the persistence of variance.
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Comparing popularly used ARCH models

EWMA: Equally Weighted Moving Average

ht = λht−1 + (1− λ)ε2t−1

= λ2ht−2 + (1− λ)2ε2t−2 ++(1− λ)ε2t−1

= λ3ht−3 + (1− λ)2ε3t−3 + (1− λ)2ε2t−2 + (1− λ)ε2t−1

=
∞∑
j=1

(1− λ)jε2t−j

Most famous EWMA: RiskMetrics, λ = 0.94
GARCH with γ0 = 0 and γ1 + β1 = 1.
On short time horizons, the forecasts of the two models
tend to be the same.
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Garch for I.T.C Ltd.

Estimate Std. Error t value Pr(> |t |)
µ 0.1169 0.0293 3.992 6.55e-05∗∗∗

φ1 0.0252 0.0155 1.625 0.104
γ0 0.1895 0.0309 6.131 8.74e-10∗∗∗

γ1 0.0976 0.0099 9.869 < 2e − 16∗∗∗

β1 0.8748 0.0127 69.178 < 2e − 16∗∗∗
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