Normal linear VaR for stock portfolios

Susan Thomas

April 19, 2011

Examples of systematic vs. specific VaR: linear normal VaR

- If the investment universe is n stocks that have a annual covariance matrix V, and
- the investment amount is P split up in \vec{w} over the n stocks, then
- Portfolio volatility is $\sigma=\sqrt{w^{\prime} V w}$ and
- Portfolio VaR at α level is $P \Phi^{-1}(1-\alpha) \sigma$.
- Over h days, if the portfolio has a mean daily return of $E\left(r_{p}\right)=w^{\prime} E\left(r_{h}\right)$ and V_{h} is the h-day covariance matrix, then

$$
\operatorname{VaR}_{h, \alpha}=\Phi^{-1}(1-\alpha) \sqrt{w^{\prime} V_{h} w}-w^{\prime} E\left(r_{h}\right)
$$

Example of a stock portfolio

A linear model with two risk factors says that a stock portfolio has net betas of 0.8 and 1.2 wrt these factors. The factor volatilities are 15% and 20%, and they have a correlation of -0.5.
If the portfolio is expected to return the risk free rate over the next month, what is the $5 \% 1$-month systematic VaR on an investment of 20 million in the portfolio?

Example, contd.

- The monthly covariance matrix for the risk factors Ω is:

$$
\Omega=\left(\begin{array}{rr}
0.00188 & -0.00130 \\
-0.00130 & 0.00333
\end{array}\right)
$$

- The portfolio variance due to the risk factors is:

$$
\begin{aligned}
\beta^{\prime} \Omega \beta & =\left(\begin{array}{ll}
0.8 & 1.2
\end{array}\right)\left(\begin{array}{rr}
0.00188 & -0.00130 \\
-0.00130 & 0.00333
\end{array}\right)\binom{0.8}{1.2} \\
& =0.0036
\end{aligned}
$$

- Monthly $\sigma=0.06$
- Systematic VaR is $1.64485 * 0.06 * 20$ million $=1,973,824$
- How much specific VaR?
- We know that a factor model gives us:

$$
r_{t}=\alpha+\beta F_{t}+\epsilon_{t}
$$

where r_{t} is the return on the portfolio and F_{t} is the return on the market (the factor in the SIMM).

- Then, $V\left(r_{t}\right)=\beta^{2} V\left(F_{t}\right)+V\left(\epsilon_{t}\right)+2 \beta \operatorname{cov}\left(F_{t}, \epsilon_{t}\right)$
- Total volatility ${ }^{2}=$

$$
(\text { market volatility }+ \text { residual volatility })^{2}-2(1-\rho) \beta \sigma_{F_{t}} \sigma \epsilon_{t}
$$

- Only for parametric linear VaR, VaR behaves like volatility, and

$$
\begin{aligned}
\text { Total } \mathrm{VaR}^{2}= & (\text { systematic } \operatorname{VaR}+\text { specific } \operatorname{VaR})^{2} \\
& -2(1-\rho)[\text { systematic VaR }][\text { specific VaR }]
\end{aligned}
$$

- Ideally, $\rho=0$ (when the model explains the portfolio return well), when:

$$
\text { Total VaR }=(\text { systematic VaR })+(\text { specific VaR })
$$

- But generally, $\rho \neq 0, \rho<1$, then

$$
\text { Total VaR }<\text { (systematic VaR + specific VaR })
$$

The subadditivity property of coherent risk measures.

- le, risk of the portfolio is no greater than the risk of the investment in any single constituent.

Example of a stock portfolio

The above linear model with two risk factors had portfolio factor betas of 0.8 and 1.2 wrt these factors. The factor volatilities are 15% and 20%, and they have a correlation of -0.5 as before. Now you are told that the portfolio returns has a volatility of 25\%.
What is the 1% 1-month total VaR and systematic VaR on the 20 million investment?

Example of a stock portfolio

- Portfolio volatility is 25%. Then, total VaR is

$$
1.64485 *(0.25 / \sqrt{12}) * 20 \text { million }=2,374,142
$$

- Systematic VaR was calculated as $1,973,824$
- Specific VaR is

$$
\sqrt{2,374,142^{2}-1,973,824^{2}}=1,319,305
$$

Examples of stand-alone and marginal VaR: linear normal VaR

Currency risk in equity portfolios

- To purchase global equity portfolios, first step: purchase currency.
Source of currency risk.
- In parametric linear VaR, systematic risk is sub-additive.
- Rs. value of dollar portfolio = dollar value * INR/USD rate.
- Change in Rs. value of dollar portfolio $=\exp ^{\left(r_{t} f_{t}\right)}$
- Convenient fact: prices are log-linear - convert into logs, and returns are additive

$$
r_{p, t}=r_{t}+f x_{t}
$$

- $r_{t}=\beta r_{m, t}$

Currency risk in equity portfolios

- Portfolio variance then becomes:

$$
\sigma=\sqrt{\beta^{2} \sigma_{m}^{2}+\sigma_{f x}^{2}+2 \beta \sigma_{m} \sigma_{f x}}=\sqrt{\left(\begin{array}{ll}
\beta & 1
\end{array}\right) \Omega\binom{\beta}{1}}
$$

- Where

$$
\Omega=\left(\begin{array}{cc}
\sigma_{m}^{2} & \rho \sigma_{m} \sigma_{f x} \\
\rho \sigma_{m} \sigma_{f x} & \sigma_{f x}^{2}
\end{array}\right)
$$

Systematic and stand-alone

- Systematic $\operatorname{VaR}=\Phi^{-1}(1-\alpha) \sigma$ Value
- Equity $\operatorname{VaR}=\beta \Phi^{-1}(1-\alpha) \sigma_{m}$ Value
- $\operatorname{FXVaR}=\Phi^{-1}(1-\alpha) \sigma_{f x}$ Value
- Then given that $\sigma^{2}=\left(\beta \sigma_{m}+\sigma_{f x}\right)^{2}-2 \beta \sigma_{m} \sigma_{f x}$ and the linear VaR model, we get:
- Total systematic $\mathrm{VaR}^{2}=$

$$
(\text { Equity-VaR }+ \text { FX-VaR })^{2}-2\left(1-\rho_{m, f x}\right) \text { Equity-VaR FX-VaR }
$$

which is the breakup of systematic VaR into standalone VaR components.

Systematic and marginal

- Marginal VaR is

$$
F^{\prime} g(F)=\Phi^{-1}(1-\alpha) \sqrt{F^{\prime} \Omega F}
$$

- Where

$$
g(F)=\frac{\Phi^{-1}(1-\alpha) \Omega F}{\sqrt{F^{\prime} \Omega F}}
$$

Example of a cross-currency stock portfolio

U.S. investor buys 2 million USD of a UK stock portfolio, with $\beta_{p}=1.5$. If the FTSE-100 and USD/GBP volatilities are 15% and 20% each, and their correlation is 0.3 , what is the 1% 10-day systematic USD VaR?
What are the stand-alone and marginal equity and FX VaR components?

Example of a cross-currency stock portfolio

- 10-day FTSE100 variance $=0.0225 / 25=0.0009$
- 10-day USD/GBP variance $=0.04 / 25=0.0016$
- Covariance is $0.3 * 0.15 * 0.2 / 25=0.00036$
- Total 10-day variance =

$$
\left(\begin{array}{ll}
1.5 & 1
\end{array}\right)\left(\begin{array}{cc}
9 & 3.6 \\
3.6 & 16
\end{array}\right)\binom{1.5}{1} 10^{-4}=0.004705
$$

- 10-day 1% systematic VaR is 319,142 .

Example of a cross-currency stock portfolio

- Stand-alone equity VaR:
$2.32635 *(0.15 / 5) * 3,000,000=209,371$
- Stand-alone FX VaR:
$2.32635 *(0.20 / 5) * 2,000,000=186,108$
- Sum of stand-alone VaR components: 395,479 which is greater than the total systematic VaR.

Example of a cross-currency stock portfolio

- For the marginal VaR components, we need:
- $\Omega F=$

$$
\left(\begin{array}{cc}
9 & 3.6 \\
3.6 & 16
\end{array}\right)\binom{1.5}{1} 10^{-4}=\binom{17.1}{21.4} 10^{-4}
$$

- Gradient vector is:

$$
\frac{\Phi^{-1}(0.99) \Omega F}{\sqrt{F^{\prime} \Omega F}}=\frac{2,32635}{\sqrt{0.004705}}\binom{17.1}{21.4} 10^{-4}=\binom{0.05800}{0.07258}
$$

- Marginal equity VaR: $0.05800 * 3,000,000=173,985$
- Marginal FX VaR: $0.07258 * 2000,000=145,157$
- Sum of stand-alone VaR components: 319, 142 which is the same as the total systematic VaR.

