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Recap

So far, if the portfolio has a mean daily return of
E(rp) = w ′E(rh) and Vh is the h-day covariance matrix over
a h-day horizon, then

VaRh,α = Φ−1(1− α)
√

w ′Vhw − w ′E(rh)

So far, volatility estimates have been historical:

σ̂2
t = T−1

T∑
k=1

r2
t−k

Similarly, covariances are historically equally weighted
estimates.
What if the variance-covariances input could be improved
over the historical estimate of Vh?
Ie, short-term returns are more representative of
short-term volatility compared to long-run historical
averages.
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Conditional volatility in estimating portfolio
VaR
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Exponentially weighted moving averages (EWMA)

EWMA for the variance estimate is summarised as:

σ̂2
t = (1− λ)r2

t−1 + λσ̂2
t−1

Assume rt are independent.
λ is called a smoothing constant and follows 0 < λ < 1.
The latter condition is because the alternative
representation of EWMA volatility is:

σ̂2
t = (1− λ)(r2

t−1 + λr2
t−2 + λ2r2

t−3 + λ3r2
t−4 + . . .)

As k →∞, λk → 0
This captures the decaying impact of old information well.
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EWMA covariances

A similar approach to calculate the covariance between i , j
securities:

σ̂2
ij,t = (1−λ)(ri,t−1rj,t−1+λri,t−2rj,t−2+λ2ri,t−3rj,t−3+λ3ri,t−4rj,t−4+. . .)

Or it is written as:

σ̂2
ij,t = (1− λ)ri,t−1rj,t−1 + λσ̂2

ij,t−1

The EWMA correlation, ρ̂ij is calculated using the EWMA
covariance and the two EWMA variances.
Covariances based on EWMA must have the same λ for
the variance and covariance estimates, to ensure a
positive semi-definite covariance matrix.
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Operationalising EWMA covariances

Given a time series of returns and covariances, σ̂2
ij,t+1 is a

weighted average of ri,t , rj,t and σ2
ij,t .

If you don’t have the time series of covariances, use the
historical covariance σ̂ij as the initial value.

σ2
ij,1 = (1− λ)ri,0rj,0 + λσ̂2

ij

This is part of the input to Ω̂t+1 used for the VaR
calculation of the portfolio from constituents as:

EWMA VARα,t = Φ−1(1− α)

√
w ′Ω̂t+1w

Same approach applies to calculating VaR using risk
factors, where Ω̂t+t is the variance-covariance matrix for
the time series of risk factors.
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Example of EWMA variances and different λ

EWMA VaR estimes for mid-June 2008, FTSE-100.
Calculated for different λ = 0.9,0.95,0.99

α λ
0.90 0.95 0.99

5% 7.42% 8.08% 7.81%
1% 10.49% 11.43% 11.05%

0.1% 13.93% 15.19% 14.86%
Higher the α, higher the volatility estimates.
However, higher λ does not automatically generate higher
values of σ.
λ only captures how much weight is given to the recent
observations.

Susan Thomas Varying volatility in parameteric linear VaR



EWMA in regulation: RiskMetrics VaR

Several regulators adopted RiskMetrics as a
easy-to-operationalise model for covariance matrix
forecasts.
The approach can be applied to a large set of underlying
securities. This framework includes:

1 Regulatory matrix: Matrix calculated as equally weighted
averages based on the last 250 observations.

2 Daily matrix : EWMA with λ = 0.94 for all elements.
3 Monthly matrix : EWMA with λ = 0.97 for all elements,

multiplied by 25 to shift from daily to monthly.
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Example of RiskMetrics vs. EWMA VaR

Problem: Portfolio of two sets of U.S. stocks with
1 Set 1: β = 1.1 with S&P500
2 Set 2: β = 0.85 with NASDAQ-100

3 million invested in Set 1
1 million invested in Set 2
Want to calculate the 1% 10-day linear normal VaR based
on the RiskMetrics and disaggregate the VaR into
standalone S&P 500 VaR and NASDAQ-100 VaR.
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Example of RiskMetrics vs. EWMA VaR

RiskMetrics and regulatory volatilities of S&P500 and
NASDAQ-100 are as follows:

Volatility
S&P NASDAQ-100 Correlation

EWMA 22.81% 28.03% 94.91%
Regulatory 19.63% 22.89% 89.88%

Annualised covariances:
S&P500 NASDAQ-100

EWMA
S&P500 0.052 0.061
NASDAQ-100 0.061 0.079
Regulatory
S&P500 0.039 0.040
NASDAQ-100 0.040 0.052
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Example of using RiskMetrics for portfolio VaR

The answer depends upon calculating (a) stand-alone VaR
(using Ω̂ above, β wrt the two indexes and the amount
invested in each Set and (b) summing it to get the
Systematic VaR.
This works out to be:

(In USD)
Standalone VaR Systematic VaR

S&P500 NASDAQ-100 Total
EWMA 350,284 110,852 456,833
Regulatory 301,377 90,522 384,789
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Evidence against constant λ

λ measures the persistence of shocks to the volatility of
returns.
Persistence changes.
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Structural changes in Indian index volatility
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Structural changes in equity index volatility

Weekly realised vol
10-year average Latest

Sensex 21.27 18
Japan Nikkei 20.22 16
US S and P 15.48 11

UK FTSE 15.36 11
S.Korea Kospi 28.43 18
Singapore STI 17.45 12
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Structural changes in persistence of equity volatility

Data – daily frequency
GARCH(1,1) model estimates

Full period, 1998-2007 Present, 2001-2007
γ1 γ2 Sum Half-life γ1 γ2 Sum Half-life

Sensex 0.04 0.95 0.99 62.20 0.17 0.75 0.92 8.68
Nifty 0.03 0.95 0.98 35.68 0.17 0.75 0.92 8.68
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Structural changes in persistence of equity volatility

Global phenomenon.
GARCH(1,1) model estimates

Full period, 1998-2007 Present, 2001-2007
γ1 γ2 Sum Half-life γ1 γ2 Sum Half-life

Sensex 0.04 0.95 0.99 62.20 0.17 0.75 0.91 8.68
S&P 0.04 0.95 1.00 139.77 0.03 0.70 0.73 3.19

FTSE 0.14 0.82 0.96 18.62 0.16 0.56 0.72 3.11
Nikkei 0.01 0.97 0.99 62.95 0.10 0.68 0.78 3.81
Kospi 0.11 0.89 0.99 127.96 0.16 0.78 0.94 11.57

STI 0.10 0.90 1.00 −4167.23 0.14 0.74 0.88 6.55
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Structural changes in persistence of equity correlation,
OECD

Correlations change.
Correlation of Sensex with S&P500
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Structural changes in persistence of equity
correlations, S. Asia

Correlation of Sensex with S. Korea KOSPI index
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Structural changes in persistence of equity
correlations

Correlation of Correlation in Date of Correlation in
Sensex with: first period last change recent period

(%) (%)
S&P 0.22 23/09/2005 0.44
FTSE 0.17 16/09/2005 0.52
Nikkei -0.03 17/06/2005 0.42
Kospi 0.08 16/04/2004 0.46
STI 0.24 30/04/2004 0.53
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Varying λ in covariance-variance

Persistence changes. Why?
Multiple reasons:

Macro (international) : Cross-country fund flows, changes
in captail account convertibility, changes in differential risk
factors across countries.
Macro (domestic) : Institutional changes – improvements in
trading, clearing, settlement systems; introduction of new
products; changes in interest rate environment – monetary
policy.
Micro : changes in firm level features – maturing firms;
changes in operations/management of firms.

Constant λ models don’t fit.
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Multivariate GARCH

Alternative is to constantly re-estimate covariances and
variances for all constituents/factors.
y1t and y2t can be modelled as:

y1t = µ1t + ε1t

y2t = µ2t + ε2t

ε1t and ε2t have unconditional distributions(
ε1t
ε2t

)
∼ N

[ (
0
0

)
,

(
σ2

1 σ12
σ12 σ2

2

) ]
and conditional distributions:(

ε1t
ε2t

)
| It−1 ∼ N

[ (
0
0

)
,

(
h1t h12t
h12t h2

) ]
Parameterisation of the above matrices are the heart of the
MVGARCH models.

Susan Thomas Varying volatility in parameteric linear VaR



General MV-GARCH

MV-GARCH(p,q) model for a set of N time series vectors
is:

vech(Ht ) = vech(Σ) +

q∑
i=1

Ai vech(εt−iε
′
t−i ) +

p∑
j=1

Gj vech(Ht−j )

where Σ is an (N × N) matrix and Ai and Gi are
(N(N + 1)/2× N(N + 1)/2) matrices.
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General MV-GARCH

When N = 2 and p,q = 1, Ht is: h1t

h12t

h2t

 =

 σ11

σ12

σ22

+

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ε2
1,t−1

ε1,t−1ε2,t−1

ε2
2,t−1

+

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 h1,t−1

h12,t−1

h2,t−1


There are 21 parameters to be estimated.

This makes 5N2

2 + N
2 parameters to be estimated for a

model with
N time series and
GARCH(1,1) for the terms of the variance covariance
matrix.
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Choices in MV-GARCH

Research involves imposing meaningful economic
restrictions on the Ai and Gi while simultaneously reducing
the parameter space.
Engle, Granger, Kraft (1986):

bivariate GARCH, normal errors.
Restrictions on diagonal matrix of A,G.

Baba, Engle, Kraft, Kroner (1988) modified the above to
include a quadratic restriction on A,G which further
reduced the parameters to be estimated. This is the BEKK
model.
Bollerslev (1990): Constant correlations matrix.
Most popularly used today: DCC (Dyanmic Conditional
Correlations) MVGARCH.
Key objective of this alphabet soup: attain positive definite
variances and covariances, minimise estimation costs.
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Task for a risk manager

Out of all these choices, choose one.
Focus on creating a framework that

Can be operationalised, to
Constantly evaluate risk as accurately as possible.
Ensure that the risk management strategies are in line with
the current risk position.
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