Varying volatility in parameteric linear VaR

Susan Thomas

April 26, 2011

Susan Thomas Varying volatility in parameteric linear VaR

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

Recap

 So far, if the portfolio has a mean daily return of *E*(*r_p*) = *w*'*E*(*r_h*) and *V_h* is the h-day covariance matrix over a *h*-day horizon, then

$$\operatorname{VaR}_{h,\alpha} = \Phi^{-1}(1-\alpha)\sqrt{w'V_hw} - w'E(r_h)$$

• So far, volatility estimates have been historical:

$$\hat{\sigma}_t^2 = T^{-1} \sum_{k=1}^T r_{t-k}^2$$

- Similarly, covariances are historically equally weighted estimates.
- What if the variance-covariances input could be improved over the historical estimate of V_h?
 Ie, short-term returns are more representative of short-term volatility compared to long-run historical averages.

Conditional volatility in estimating portfolio VaR

Susan Thomas Varying volatility in parameteric linear VaR

프 > 프

Exponentially weighted moving averages (EWMA)

• EWMA for the variance estimate is summarised as:

$$\hat{\sigma}_t^2 = (1 - \lambda)r_{t-1}^2 + \lambda \hat{\sigma}_{t-1}^2$$

Assume r_t are independent.

- λ is called a *smoothing constant* and follows $0 < \lambda < 1$.
- The latter condition is because the alternative representation of EWMA volatility is:

$$\hat{\sigma}_t^2 = (1 - \lambda)(r_{t-1}^2 + \lambda r_{t-2}^2 + \lambda^2 r_{t-3}^2 + \lambda^3 r_{t-4}^2 + \dots)$$

As $k \to \infty, \lambda^k \to 0$

• This captures the decaying impact of old information well.

個人 くほん くほん

EWMA covariances

 A similar approach to calculate the covariance between i, j securities:

$$\hat{\sigma}_{ij,t}^{2} = (1-\lambda)(r_{i,t-1}r_{j,t-1}+\lambda r_{i,t-2}r_{j,t-2}+\lambda^{2}r_{i,t-3}r_{j,t-3}+\lambda^{3}r_{i,t-4}r_{j,t-4}+\ldots)$$

Or it is written as:

$$\hat{\sigma}_{ij,t}^2 = (1-\lambda)\mathbf{r}_{i,t-1}\mathbf{r}_{j,t-1} + \lambda \hat{\sigma}_{ij,t-1}^2$$

- The EWMA correlation, ρ_{ij} is calculated using the EWMA covariance and the two EWMA variances.
- Covariances based on EWMA must have the same λ for the variance and covariance estimates, to *ensure* a positive semi-definite covariance matrix.

Operationalising EWMA covariances

- Given a time series of returns and covariances,
 ²
 ^j_{ij,t+1} is a weighted average of r_{i,t}, r_{j,t} and σ²
 _{ii,t}.
- If you don't have the time series of covariances, use the historical covariance *ô_{ij}* as the initial value.

$$\sigma_{ij,1}^2 = (1 - \lambda)r_{i,0}r_{j,0} + \lambda\hat{\sigma}_{ij}^2$$

This is part of the input to Ω̂_{t+1} used for the VaR calculation of the portfolio from constituents as:

EWMA VAR_{$$\alpha,t$$} = $\Phi^{-1}(1-\alpha)\sqrt{w'\hat{\Omega}_{t+1}w}$

• Same approach applies to calculating VaR using *risk* factors, where $\hat{\Omega}_{t+t}$ is the variance-covariance matrix for the time series of risk factors.

・ 戸 ・ ・ ヨ ・ ・ 日 ・ ・

Example of EWMA variances and different λ

- EWMA VaR estimes for mid-June 2008, FTSE-100.
- Calculated for different $\lambda = 0.9, 0.95, 0.99$

α	λ					
	0.90	0.95	0.99			
5%	7.42%	8.08%	7.81%			
1%	10.49%	11.43%	11.05%			
0.1%	13.93%	15.19%	14.86%			

- Higher the α , higher the volatility estimates.
- However, higher λ does not automatically generate higher values of σ .

 λ only captures how much weight is given to the recent observations.

個人 くほん くほん

EWMA in regulation: RiskMetrics VaR

- Several regulators adopted RiskMetrics as a easy-to-operationalise model for covariance matrix forecasts.
- The approach can be applied to a large set of underlying securities. This framework includes:
 - Regulatory matrix: Matrix calculated as equally weighted averages based on the last 250 observations.
 - 2 Daily matrix: EWMA with $\lambda = 0.94$ for all elements.
 - Monthly matrix: EWMA with $\lambda = 0.97$ for all elements, multiplied by 25 to shift from daily to monthly.

Example of RiskMetrics vs. EWMA VaR

- Problem: Portfolio of two sets of U.S. stocks with
 - **1** Set 1: $\beta = 1.1$ with S&P500
 - 2 Set 2: $\beta = 0.85$ with NASDAQ-100
- 3 million invested in Set 1
- 1 million invested in Set 2
- Want to calculate the 1% 10-day linear normal VaR based on the RiskMetrics and disaggregate the VaR into standalone S&P 500 VaR and NASDAQ-100 VaR.

Example of RiskMetrics vs. EWMA VaR

 RiskMetrics and *regulatory* volatilities of S&P500 and NASDAQ-100 are as follows:

	\ \		
	S&P	Correlation	
EWMA	22.81%	28.03%	94.91%
Regulatory	19.63%	22.89%	89.88%

Annualised covariances:

	S&P500	NASDAQ-100
EWMA		
S&P500	0.052	0.061
NASDAQ-100	0.061	0.079
Regulatory		
S&P500	0.039	0.040
NASDAQ-100	0.040	0.052

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Example of using RiskMetrics for portfolio VaR

- The answer depends upon calculating (a) stand-alone VaR (using Ω̂ above, β wrt the two indexes and the amount invested in each Set and (b) summing it to get the Systematic VaR.
- This works out to be:

			(In USD)
	Stand	dalone VaR	Systematic VaR
	S&P500	NASDAQ-100	Total
EWMA	350,284	110,852	456,833
Regulatory	301,377	90,522	384,789

同 とくほ とくほ とう

- λ measures the *persistence* of shocks to the volatility of returns.
- Persistence changes.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

Structural changes in Indian index volatility

Structural changes in equity index volatility

	Weekly realised vol		
	10-year average	Latest	
Sensex	21.27	18	
Japan Nikkei	20.22	16	
US S and P	15.48	11	
UK FTSE	15.36	11	
S.Korea Kospi	28.43	18	
Singapore STI	17.45	12	

Susan Thomas Varying volatility in parameteric linear VaR

э

Structural changes in persistence of equity volatility

- Data daily frequency
- GARCH(1,1) model estimates

	Full period, 1998-2007			Present, 2001-2007				
	γ_1	γ_2	Sum	Half-life	γ_1	γ_2	Sum	Half-life
Sensex	0.04	0.95	0.99	62.20	0.17	0.75	0.92	8.68
Nifty	0.03	0.95	0.98	35.68	0.17	0.75	0.92	8.68

→ Ξ → < Ξ →</p>

A ►

Structural changes in persistence of equity volatility

- Global phenomenon.
- GARCH(1,1) model estimates

	Full period, 1998-2007			Present, 2001-2007				
	γ_1	γ_2	Sum	Half-life	γ_1	γ_2	Sum	Half-life
Sensex	0.04	0.95	0.99	62.20	0.17	0.75	0.91	8.68
S&P	0.04	0.95	1.00	139.77	0.03	0.70	0.73	3.19
FTSE	0.14	0.82	0.96	18.62	0.16	0.56	0.72	3.11
Nikkei	0.01	0.97	0.99	62.95	0.10	0.68	0.78	3.81
Kospi	0.11	0.89	0.99	127.96	0.16	0.78	0.94	11.57
STI	0.10	0.90	1.00	-4167.23	0.14	0.74	0.88	6.55

.⊒...>

Structural changes in persistence of equity correlation, OECD

- Correlations change.
- Correlation of Sensex with S&P500

Structural changes in persistence of equity correlations, S. Asia

Correlation of Sensex with S. Korea KOSPI index

Structural changes in persistence of equity correlations

I

Correlation of	Correlation in	Date of	Correlation in
Sensex with:	first period	last change	recent period
	(%)		(%)
S&P	0.22	23/09/2005	0.44
FTSE	0.17	16/09/2005	0.52
Nikkei	-0.03	17/06/2005	0.42
Kospi	0.08	16/04/2004	0.46
STI	0.24	30/04/2004	0.53

御 とくほとくほとう

ъ

- Persistence changes. Why?
- Multiple reasons:
 - Macro (international) : Cross-country fund flows, changes in captail account convertibility, changes in differential risk factors across countries.
 - Macro (domestic) : Institutional changes improvements in trading, clearing, settlement systems; introduction of new products; changes in interest rate environment – monetary policy.
 - Micro : changes in firm level features maturing firms; changes in operations/management of firms.
- Constant λ models don't fit.

ヘロト 人間 ト ヘヨト ヘヨト

Multivariate GARCH

- Alternative is to constantly re-estimate covariances and variances for all constituents/factors.
- y_{1t} and y_{2t} can be modelled as:

$$y_{1t} = \mu_{1t} + \epsilon_{1t}$$
$$y_{2t} = \mu_{2t} + \epsilon_{2t}$$

• ϵ_{1t} and ϵ_{2t} have unconditional distributions

$$\left(\begin{array}{c} \epsilon_{1t} \\ \epsilon_{2t} \end{array}\right) ~\sim~ N\left[\begin{array}{c} \left(\begin{array}{c} 0 \\ 0 \end{array}\right), ~ \left(\begin{array}{c} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array}\right) \end{array}\right]$$

and conditional distributions:

$$\left(\begin{array}{c} \epsilon_{1t} \\ \epsilon_{2t} \end{array}\right) \mid \mathcal{I}_{t-1} \quad \sim \quad N\left[\begin{array}{c} \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \quad \left(\begin{array}{c} h_{1t} & h_{12t} \\ h_{12t} & h_{2} \end{array}\right) \end{array}\right]$$

 Parameterisation of the above matrices are the heart of the MVGARCH models. MV-GARCH(p,q) model for a set of N time series vectors is:

$$\textit{vech}(\textit{H}_t) = \textit{vech}(\Sigma) + \sum_{i=1}^{q} \textit{A}_i \; \textit{vech}(\epsilon_{t-i}\epsilon'_{t-i}) + \sum_{j=1}^{p} \textit{G}_j \; \textit{vech}(\textit{H}_{t-j})$$

where Σ is an $(N \times N)$ matrix and A_i and G_i are $(N(N+1)/2 \times N(N+1)/2)$ matrices.

・ロト ・ 理 ト ・ ヨ ト ・

∃ <2 <</p>

General MV-GARCH

• When N = 2 and $p, q = 1, H_t$ is:

$$\begin{bmatrix} h_{1t} \\ h_{12t} \\ h_{2t} \end{bmatrix} = \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{22} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} \epsilon_{1,t-1}^2 \\ \epsilon_{1,t-1} \epsilon_{2,t-1} \\ \epsilon_{2,t-1}^2 \end{bmatrix} + \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} h_{1,t-1} \\ h_{12,t-1} \\ h_{2,t-1} \end{bmatrix}$$

- There are 21 parameters to be estimated.
- This makes $\frac{5N^2}{2} + \frac{N}{2}$ parameters to be estimated for a model with
 - N time series and
 - GARCH(1,1) for the terms of the variance covariance matrix.

ヘロン 人間 とくほ とくほ とう

- Research involves imposing meaningful economic restrictions on the *A_i* and *G_i* while simultaneously reducing the parameter space.
- Engle, Granger, Kraft (1986):
 - bivariate GARCH, normal errors.
 - Restrictions on diagonal matrix of A, G.
- Baba, Engle, Kraft, Kroner (1988) modified the above to include a quadratic restriction on *A*, *G* which further reduced the parameters to be estimated. This is the BEKK model.
- Bollerslev (1990): Constant correlations matrix.
- Most popularly used today: DCC (Dyanmic Conditional Correlations) MVGARCH.
- Key objective of this alphabet soup: attain positive definite variances and covariances, minimise estimation costs.

- Out of all these choices, choose one.
- Focus on creating a framework that
 - Can be operationalised, to
 - Constantly evaluate risk as accurately as possible.
 - Ensure that the risk management strategies are in line with the current risk position.