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The core problem of modelling a time series

1 To model and forecast a univariate time series.
2 To establish the relation between a set of univariate time

series.

The first involves
1 finding out how much of the past information matters and

how much comes from the latest innovation.
2 finding out the distribution and behaviour of the innovation.
3 finding out how much of the behaviour is “permanent” and

how much is “temporary”.
Once this is established for the univariate time series, the
multivariate modelling can begin.
In this course, we focus on the univariate time series
modelling and forecasting problem.
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The core problem of modelling a time series

The biggest worry: whether the innovations are “stable”
through time or not.
If the innovation series (εt ) are not stable – ie, the
variance/covariances are a function of time – then it
becomes difficult to understand what drives the DGP.
This question of stationarity or non–stationarity of the time
series is the first and important aspect of understanding a
time series, xt .
The OLS perspective of estimation: need to explicitly deal
with multicollinearity in time series.
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Part I

Stochastic time series processes
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What is a deterministic time series process?

Deterministic time series processes: when the effect of
time on the next observation in the time series is
deterministic.

yt = a + bt + ηt

yt−1 = a + b(t − 1) + ηt−1

∆yt = (1− L)yt = yt − yt−1 = b + (ηt − ηt−1)

E∆yt = b ∀t

Here, the expected change in yt is independent of what
the value of “t” really is.
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What is a stochastic time series process?

Stochastic time series processes: when the effect on the
next observation depends upon what happened before.

yt = a + byt−1 + εt

yt−1 = a + byt−2 + εt−1

∆yt = (1− L)yt = yt − yt−1 = b(1− L)yt−1 + (εt − εt−1)

E∆yt = b∆yt−1

The expected change in yt is “dynamic” – changes in
value every time period.
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Classification of models used for univariate time series

1 Linear models for the conditional expectation of the time
series. For example,

xt = a + bxt−1 + εt

εt ∼ D(0, σ2)

Stationary : −1 < b < 1
Nonstationary : b ≥ 1; b ≤ −1

2 Linear models for the conditional variance. For example,

xt = a + bxt−1 + εt

εt ∼ D(0, σ2
t )

σ2
t = g0 + g1σ

2
t−1
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Univariate time series models, contd.

1 Nonlinear models for the conditional mean – smooth
transition models which can be thought of as a linear
model with time-varying parameters. Example: regime
switching models.

2 More general non-inear models: where parameters of both
the conditional expectation and variance of the time series
variable is time-varying.
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Part II

Time series in samples.rda
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Stock market prices (daily): Nifty
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Stock market prices (daily): SNP500

Date

Le
ve

l o
f S

&
P

50
0,

 d
ai

ly

200

400

600

800

1000

1200

1400

1969 1974 1979 1984 1989 1994 1999 2004 2009

Susan Thomas Stochastic processes



Stock market prices (daily): Infosys Technologies
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Stock market prices (daily): Reliance Industries Ltd.
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Stock market prices (daily): Nifty
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Stock market capitalisation (monthly): COSPI
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Bond market rates (daily): US 3-month interest rates
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Bond market rates (daily): US 10-year interest rates
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Bond market rates (daily): US BAA-rated interest rates
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Monthly Indian 3-month interest rates (%)
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Monthly US 3-month interest rates (%)
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Indian IIP (monthly): Raw levels
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Indian IIP (monthly): Seasonally adjusted levels
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Part III

Linear models for the conditional expectation
of stochastic time series processes
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Stationary stochastic processes

Any stochastic process is a collection of random variables

yt , yt−1, yt−2, yt−3, yt−4, . . .

where each observation in the series is assumed to be
generated by the previous observation.
Ie, yt is assumed to be generated/linked to yt−1.
The data itself may be only a sample – ie, there are
observations before the first one and after the last one.
Each t can be any frequency. However, the frequency is
fixed for a given time series.
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Stationary stochastic processes – Definition

yt is stationary if it has first and second moments that are
time-invariant.

First moment: E(yt ) = µy ∀t ⊂ T
Second moments: E[(yt −µy )(yt−h−µy )] = γh ∀t ⊂ T ,∀h
such that (t − h) ⊂ T .
where γh is called the autocovariance at lag of h with
respect to the data.
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Intuition

The first condition: values of the series must fluctuate
around a mean that is constant.
For example, if we take subsets of data, the mean should
be similar across all sets.
Observation: None of the data in samples.rda appear
to have this feature.
The second condition implies that the variances and the
covariances of the series remain constant with time as well.
Note: Each covariance is called an autocovariance.
A stationary process has variance/covariances that do not
change with time.
In addition, each covariance is a function of the number of
lags h.
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Nomenclature and norms

Sometimes, a process is called covariance stationary if the
first and the second moments are constant.
A process is also called covariance stationary if
E(yt − µy )(yt−h − µy ) = f (h)∀h
A process is called “trend stationary” when it becomes
stationary when a deterministic trend (like a term “a + bt”)
is removed from it.
At the start of a DGP, it is possible that a series appears to
not be covariance stationary until some “start-up” period.
Then, this series is called “asymptotically stationary”. If a
process can be made stationary by modifying some initial
values, that is called asymptotically stationary.
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Tools to detect second moment autocovariances:
autocorrelations and partial autocorrelations

Unlike in the case of the consistency of first moments in
the DGP, it is difficult to visually inspect data for stationarity
in the second moments.
Statistics used to test for second-moment stationarity:
sample autocovariances or autocorrelations and partial
autocorrelations.

1 Autocorrelations (ACs):

ρ̃h = γ̃h/γ̃0

where γh = E(yt − µy )(yt−h − µy )
2 Partial Autocorrelations (PACs): correlation between yt , yt−h

conditional on yt−1, yt−2, . . . , yt−h+1.
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Calculating sample autocorrelations

ACs are calculated as

autocovariance / variance.

where the autocovariances are calculated at a fixed lag, h.
ACs are denoted as AC(h).
Sample AC(h) is calculated as γ̃h:

γ̃h =
1

(T − h)

T∑
t=h+1

(yt − ȳ)(yt−h − ȳ)

ȳ =
T∑

t=1

yt

Observation: H0 : γh = 0 for stationary series.
At worst, under the null of stationarity, γh should grow as h.
For a stationary series, the sample ACs die out quickly.
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Calculating sample partial autocorrelations

PACs are calculated from the regression:

yt = ν + α1yt−1 + α2yt−2 + α3yt−3 + ldots + αhyt−h + ut

where sample PAC(h) = the OLS estimate α̂h in the above
regression.
Observation: H0 : αh → 0 as h→∞ for stationary series.
For a stationary series, the sample PACs die out quickly.
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ACs for daily levels of Nifty
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PACs for daily levels of Nifty
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ACs for daily levels of S&P500
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PACs for daily levels of S&P500
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ACs for monthly levels of Indian IIP
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PACs for monthly levels of Indian IIP
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Part IV

Data transformations and filters
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Log transformations and rates of change

Sometimes simple transformations can move a series
closer to stationarity.

1 Sometimes it is observation about the data – does the
series show larger fluctuations for larger values of the
series?
Suggested transform: a log transform may help to identify a
trend in the series.

2 Sometimes the data is explicitly seasonal.
For instance, there is seasonality in the IIP data. This might
be a deterministic or a stochastic seasonality.

3 Sometimes, theory suggests the transformation.
For instance, prices are modelled as log-normal. Then the
difference of the log(prices) – ∆ log Pt = rt or returns –
become stationary.
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ACs for daily levels of Nifty returns
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PACs for daily levels of Nifty returns
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Data filtering

Sometimes time series are filtered to remove a specific
feature, transforming it from one series into another.
Typically, a filter is a linear funciton.
Example: yt , yt−1, yt−2, . . . might be filtered to xt , xt−1, . . .
using:

xt =
l∑

j=−k

ωjyt−j , t = k + 1, . . . ,T − l

where ωj is a weight on lag j .
Usually, the weights are designed to add upto 1.
Filtering is often used to seasonally adjust data like
quarterly data.
A more generic filter is the Hodrick-Prescott filter, which is
used to adjust cyclical data.
Often used in the context of business cycle analysis.
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Data filtering using moving averages

Example: ω = (1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8)

xt =
1
8

yt−2 +
1
4

yt−1 +
1
4

yt +
1
4

yt+1 +
1
8

yt+2

gives xt as a weighted moving average transformation of yt

Such type of filters are often used to remove “excessive
noise” from the underlying data, which in turn helps identify
patterns more readily.
This can be more efficiently re-written as:

xt = (
1
8

L−2 +
1
4

L−1 +
1
4

L0 +
1
4

L+1 +
1
8

L+2)yt
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Data filtering using differencing

xt = ∆yt = yt − yt−1

If yt is a non-stationary process, this filter gives xt as a
stationary process.
yt is said to be an integrated time series.
If by differencing once, the resultant series xt becomes
stationary, then yt is said to be integrated to the order one.
Typically written as yt is an I(1) series.
Sometimes yt can have seasonal integration.
Example, if IIP is a seasonally stochastic monthly time
series. Then,

xt = ∆yt = yt − yt−12

will be the resulting stationary series.
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Textbooks with detailed treatment of time series
models

Fuller 1976: Introduction to statistical time series
Priestly 1981: Spectral analysis and time series
Brockwell and Davis 1987: Time series: Theory and
methods
Hamilton 1994: Time series analysis
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