An introduction to ARMA models

Susan Thomas

19 August 2009

Susan Thomas An introduction to ARMA models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introducing the simplest linear time series models:

- White noise processes
- Moving Average (MA) models
- Auto Regressive (AR) models
- Mixed AR-MA models

(雪) (ヨ) (ヨ)

A white noise process

$$x_t = \epsilon_t; \quad \epsilon_t \sim D(\alpha_0, \sigma^2)$$

Stationary process:

•
$$E(x_t) = E\epsilon_t = \alpha_0, \forall t$$

• $E(x_t)^2 = E(\epsilon_t^2) = \sigma^2, \forall t$
• $E(x_t)(x_{t-j}) = E(\epsilon_t)(\epsilon_{t-j}) = 0, \forall t$

 Not a good DGP for most economic time series variables, which tend to change very slowly.

Introducing AR models

 An AR process y_t of order p is written as AR(p) and is modelled:

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \alpha_2 \mathbf{y}_{t-2} + \ldots + \alpha_p \mathbf{y}_{t-p} + \epsilon_t$$

where $\epsilon_t \sim w.n$ with $\mu_{\epsilon} = 0$.

It can be written as:

$$y_t = (\alpha_1 L + \alpha_2 L^2 + \ldots + \alpha_p L^p) y_t + \epsilon_t$$

$$\alpha(L) y_t = \epsilon_t$$

where $\alpha(L) = (1 - \alpha_1 L - \alpha_2 L^2 - \ldots - \alpha_p L^p)$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Introducing MA models

 An MA process y_t of order q is written as MA(q) and is modelled:

$$y_t = \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_q \epsilon_{t-q} + \epsilon_t$$

where $\epsilon_t \sim w.n.$ with $\mu_{\epsilon} = 0$.

It can also be written as:

$$y_t = (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_p L^p) \epsilon_t$$

$$y_t = \theta(L) \epsilon_t$$

where $\theta(L) = (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_p L^p)$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

•
$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \epsilon_t$$

• $E(y_t | y_{t-1}, ..., y_0) = \alpha_0 + \alpha_1 y_{t-1}$

ヘロン 人間 とくほとく ほとう

•
$$y_t = \alpha_0 + \theta_1 \epsilon_{t-1} + \epsilon_t$$

• $\mathsf{E}(y_t | y_{t-1}, \dots, y_0) = \alpha_0$

ヘロン 人間 とくほとく ほとう

Understanding stationarity of AR(1), MA(1)

Susan Thomas An introduction to ARMA models

= 990

- Strict stationarity: All the moments of the series are constants and are not functions of time.
- This implies that the distribution of innovations is bounded and not explosive.
- Weak/Covariance stationarity: The first two moments of the series is bounded:

•
$$E(y_t) = C$$

• $E(y_t)^2 = M$
• $E(y_ty_{t-s}) = f(s) \quad \forall s = 1, 2, ...$

(雪) (ヨ) (ヨ)

Stationarity of AR(1)

•
$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \epsilon_t$$

•
$$\mathsf{E}(\mathbf{y}_t) = \alpha_0 + \alpha_1 \mathbf{E}(\mathbf{y}_{t-1})$$

• If y_t is **stationary**, then $E(y_t) = E(Y_{t-1})$, then

$$E(y_t) = \frac{\alpha_0}{1 - \alpha_1}$$

• This works only if $\alpha_1 < 1$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Stationarity of AR(1), contd.

•
$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \epsilon_t$$

• $\operatorname{var}(y_t) = \alpha_1^2 \operatorname{var}(y_{t-1}) + \sigma_{\epsilon}^2$
• If y_t is stationary, then $\operatorname{var}(y_t) = \operatorname{var}(Y_{t-1})$, and σ^2

$$\operatorname{var}(\boldsymbol{y}_t) = \frac{\sigma^2}{1 - \alpha_1^2}$$

• This works only if $|\alpha_1| < 1$

ヘロト 人間 とくほとくほとう

₹ 990

Stationarity of AR(1), contd.

- $\mathbf{y}_t = \alpha_0 + \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$
- Define $\hat{y}_t = y_t \frac{\alpha_0}{(1-\alpha_1)}$
- We can show that:

$$\hat{\mathbf{y}}_t = \alpha_1 \hat{\mathbf{y}}_{t-1} + \epsilon_t$$

Then, covariance at lag 1 is: (assuming stationarity)

$$\begin{aligned} \operatorname{cov}(y_{t}, y_{t-1}) &= E(\hat{y}_{t})(\hat{y}_{t-1}) = \alpha_{1}E(\hat{y}_{t-1}^{2}) + E(\epsilon_{t}\hat{y}_{t-1}) \\ &= \alpha_{1}\operatorname{var}(y_{t-1}) = \frac{\alpha_{1}\sigma^{2}}{(1-\alpha_{1}^{2})} \end{aligned}$$

• In terms of correlations, $corr(y_t, y_{t-1}) = \alpha_1$.

★週 → ★ 注 → ★ 注 → 一 注

To work out: covariance and correlation at lag 2 for AR(1)

- What is the autocovariance at lag 2 for an AR(1) model?
- Solution:

$$\hat{y}_{t} = \alpha_{1}\hat{y}_{t-1} + \epsilon_{t}$$

$$\operatorname{cov}(y_{t}, y_{t-2}) = \alpha_{1}E(\hat{y}_{t-1})(\hat{y}_{t-2}) = \alpha_{1}E(\hat{y}_{t-1}\hat{y}_{t-2}) + E(\epsilon_{t}\hat{y}_{t-2})$$

$$= \alpha_{1}COV(y_{t}y_{t-1}) \text{ assuming stationarity}$$

$$= \frac{\alpha_{1}^{2}\sigma^{2}}{(1-\alpha_{1}^{2})}$$

Corr(y_t, y_{t-2}) = α₁².
 Generally, Corr(y_t, y_{t-s}) = α₁^s.

通 とくほ とくほ とう

y_t = α₀ + θ₁ϵ_{t-1} + ϵ_t where ϵ ~ w.n. with mean zero.
Mean of MA(1): E(y_t)

$$E(y_t) = E(\alpha_0 + \theta_1 \epsilon_{t-1} + \epsilon_t)$$

= $\alpha_0 + \theta_1 E(\epsilon_{t-1}) + E(\epsilon_t)$
= α_0

 $\mathsf{Mean} = \alpha$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ りへで

Stationarity of MA(1)

•
$$y_t = \alpha_0 + \theta_1 \epsilon_{t-1} + \epsilon_t$$

• Variance: $E(y_t - E(y_t))^2$

$$\operatorname{var}(\mathbf{y}_t) = \mathbf{E}(\mathbf{y}_t - \alpha_0)^2 = \mathbf{E}(\theta_1 \epsilon_{t-1} + \epsilon_t)^2$$

= $\theta_1^2 \mathbf{E}(\epsilon_{t-1})^2 + 2\theta_1 \mathbf{E}(\epsilon_{t-1}\epsilon_t) + \mathbf{E}(\epsilon_t)^2$
= $(1 + \theta_1^2)\sigma_{\epsilon}^2$

Variance = $(1 + \theta_1^2)\sigma_{\epsilon}^2$.

• Both the mean and the variance are constants.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• Covariance at lag 1: $E((y_t - \mu)(y_{t-1} - \mu))$

$$E(y_t - \alpha_0)(y_{t-1} - \alpha_0) = E(\theta_1 \epsilon_{t-1} + \epsilon_t)(\theta_1 \epsilon_{t-2} + \epsilon_{t-1})$$

= $\theta_1^2 E(\epsilon_{t-1} \epsilon_{t-2}) + \theta_1 E(\epsilon_{t-1})^2$
 $+ \theta_1 E(\epsilon_t \epsilon_{t-2}) + E(\epsilon_t \epsilon_{t-1})$
= $\theta_1 \sigma_{\epsilon}^2$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

To work out: covariance at lag 2 of MA(1)

• Covariance at lag 2: $E((y_t - \mu)(y_{t-2} - \mu))$

$$E(y_t - \alpha_0)(y_{t-1} - \alpha_0) = E(\theta_1 \epsilon_{t-1} + \epsilon_t)(\theta_1 \epsilon_{t-3} + \epsilon_{t-2})$$

= $\theta_1^2 E(\epsilon_{t-1} \epsilon_{t-3}) + \theta_1 E(\epsilon_t \epsilon_{t-3}) + \theta_1 E(\epsilon_{t-1} \epsilon_{t-3})$
= 0

 HW: Work out that autocovariances at lag 3 and all further lags are also 0.

通 と く ヨ と く ヨ と

Stationarity properties for AR(1), MA(1)

• AR1: $y_t = \alpha_0 + \alpha_1 y_{t-1} + \epsilon_t$; $\epsilon \sim N(0, \sigma^2)$ • Mean: $\frac{\alpha_0}{1-\alpha_1}$ • Variance: $\frac{\alpha_0 \sigma^2}{1-\alpha_1}$ • Correlation (at lag *s*): α_1^s • MA1: $y_t = \alpha_0 + \theta_1 \epsilon_{t-1} + \epsilon_t$; $\epsilon \sim N(0, \sigma^2)$ • Mean: α_0 • Variance: $(1 - \theta_1^2)\sigma^2$ • Correlation (at lag *s* = 1): θ_1 Correlation (at lag *s* > 1): 0

 Summary: All the conditions are met for both the AR(1) and MA(1) models to be stationary.

ヘロン 人間 とくほとく ほとう

Theoretical analysis of the information content of MA models and AR models

Susan Thomas An introduction to ARMA models

< 臣 → 三臣

Defining information sets in the simple AR-MA models

- Given a time series, $y_t, y_{t-1}, y_{t-2}, \ldots, y_0$.
- In both the models above, each observation at time t, yt has two components:
 - **1** The innovation, ϵ_t , which is revealed in period *t*.
 - 2 The permanent component of the information set $I_t | y_{t-1}, y_{t-2}, \dots, y_0$
- Understanding the time behaviour of a stochastic process is to identify which part of y_t derives from the permanent component, I_t and which from the innovation ϵ_t .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Information sources in the AR-MA framework

• Under the AR(1) model:

$$\mathbf{y}_t = \alpha_0 + \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$$

The structure of information appears to be from the permanent components.

• Under the MA(1) model:

$$\mathbf{y}_t = \alpha_0 + \theta_1 \epsilon_{t-1} + \epsilon_t$$

The structure of information appears to be from the innovations.

 However, the base information is still the same – the innovation series:

$$\epsilon_t, \epsilon_{t-1}, \epsilon_{t-2}, \epsilon_{t-3}, \ldots, \epsilon_0$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

MA models have limited past information

• MA(1):

$$y_t = \alpha_0 + \theta_1 \epsilon_{t-1} + \epsilon_t$$

$$y_{t-1} = \alpha_0 + \theta_1 \epsilon_{t-2} + \epsilon_{t-1}$$

$$y_{t-2} = \alpha_0 + \theta_1 \epsilon_{t-3} + \epsilon_{t-2}$$

There is a link between y_t and periods t, t - 1.
 This is the nature of the link between every y_{t-s}. It is linked to information from t - s, t - s - 1.

AR models have much more dependence on past information

• AR(1), where we set $\alpha_0 = 0$:

$$y_{t} = \alpha_{1}y_{t-1} + \epsilon_{t}$$

$$y_{t-1} = \alpha_{1}y_{t-2} + \epsilon_{t-1}$$

$$\rightarrow y_{t} = \alpha_{1}(\alpha_{1}y_{t-2} + \epsilon_{t-1}) + \epsilon_{t}$$

$$= \alpha_{1}^{2}y_{t-2} + \alpha_{1}\epsilon_{t-1} + \epsilon_{t}$$

$$y_{t-2} = \alpha_{1}y_{t-3} + \epsilon_{t-2}$$

$$\rightarrow y_{t} = \alpha_{1}^{2}(\alpha_{1}y_{t-3} + \epsilon_{t-2}) + \alpha_{1}\epsilon_{t-1} + \epsilon_{t}$$

$$= \alpha_{1}^{3}y_{t-3} + \alpha_{1}^{2}\epsilon_{t-2} + \alpha_{1}\epsilon_{t-1} + \epsilon_{t}$$

$$y_{t-3} = \alpha_{1}y_{t-4} + \epsilon_{t-3}$$

$$\rightarrow y_{t} = \alpha_{1}^{3}(\alpha_{1}y_{t-4} + \epsilon_{t-3}) + \alpha_{1}^{2}\epsilon_{t-2} + \alpha_{1}\epsilon_{t-1} + \epsilon_{t}$$

> < 臣 > < 臣 >

э

AR models have much more dependence on past information

• If we unravel this to the starting point in the series, y_0, ϵ_0 :

$$\mathbf{y}_t = \epsilon_t + \sum_{i=1}^T \alpha_1^i \epsilon_{t-i} + \alpha_1^T \mathbf{y}_0$$

- There is a link between y_t and every single period since the start of the series at t = 0, y₀.
- How much is the dependence between y_t and old information depends upon the sigze of α₁.
 Larger α₁ (closer to 1, or -1), the stronger the dependence. Smaller α₁ (closer to 0), the weaker the dependence.
- Note: Read, Hamilton on "Difference Equations" (Chapter 1, Section 1.1).

◎ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

The link between AR and MA models

• We can re-write the AR(1) model from:

$$\mathbf{y}_t = \epsilon_t + \sum_{i=1}^T \alpha_1^i \epsilon_{t-i} + \alpha_1^T \mathbf{y}_0$$

as a function of lag operators as:

$$y_t = \alpha_1 L(y_t) + \epsilon_t$$

$$(1 - \alpha_1 L)y_t = \epsilon_t$$

or, $y_t = \epsilon_t \frac{1}{(1 - \alpha_1 L)}$

$$= (1 + \alpha_1 L + \alpha_1 L^2 + \alpha_1 L^3 + \dots) \epsilon_t$$

This becomes a geometric series of lagged operators on ϵ_t .

• Thus, the AR(1) model becomes an MA(∞) model.

프 🖌 🛪 프 🛌

Interpreting stationarity conditions for AR/MA models

• For example, with the constraints, we can re-write the AR(1) as:

$$AR(1), y_t = \alpha_1 y_{t-1} + \epsilon_t$$

$$\rightarrow y_t = \alpha_1 L y_t + \epsilon_t$$

$$\rightarrow (1 - \alpha_1 L) y_t = \epsilon_t$$

$$\rightarrow y_t = \frac{\epsilon_t}{(1 - \alpha_1 L)}$$

 Generally, an invertible AR(p) process yields a specific MA(∞) one:

$$\alpha(L)y_t = (1 - \sum_{i=1}^p)y_t = \alpha_0 + \epsilon_t$$
$$y_t = \alpha^{-1}(L)(\alpha_0 + \epsilon_t)$$

Interpreting stationarity conditions for AR/MA models

- For an AR(1) process to be stationary, the constraints on the coefficients are that each coefficient should fall within the bounds of (-1, 1).
 With these constraints, an AR(1) process becomes "invertible."
- More generally, for an AR(p) process written as:

$$\mathbf{y}_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i \mathbf{y}_{t-i} + \epsilon_t$$

the necessary condition on the coefficients becomes:

$$-1 < \sum_{i=1}^{p} \alpha_i < 1$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Interpreting the coefficients of an MA processes

- An MA process is *always* bounded as long as the *number* of the lagged terms are limited.
- Therefore, even if the values of the MA coefficients are greater than one, the process will be stationary.

$$y_t = \alpha + \epsilon_t + \sum_{j=1}^{\infty} \theta_j \epsilon_{t-j} = \alpha + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \theta_3 \epsilon_{t-3} + \dots$$

- This process is auto-covariance stationary as long as the values of the coefficients are bounded.
- The condition that we check for is:

$$\sum_{j=0}^{\infty} \theta_j < \infty$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Analysing sample behaviour of data from an AR(1)/MA(1) process

Susan Thomas An introduction to ARMA models

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Sample vs. theoretical autocorrelations

 If the autocovariance is denoted by C_{t,t-s}, then we can define the autocorrelation as:

$$\rho_{s} = C_{t,t-s} / \sqrt{\sigma_{t}^{2} \sigma_{t-s}^{2}}$$

$$\sigma_{t}^{2} = \sigma_{t-s}^{2}$$

$$= C_{t,t-s} / \sigma_{t}^{2}$$

$$= \theta \text{ at } s = 1 \text{ for MA(1) process}$$

$$= 0 \text{ at } s > 1 \text{ for MA(1)}$$

- Given either AR or MA models, we know the theoretical form of the autocorrelations (as given above).
- However, we only work with sample estimators of the same, ρ̂_s.

Thus we need inference on the estimators to identify what type of linear stochastic process most likely fits the sample.

Sample vs. theoretical autocorrelations

- The tool most often is the Autocorrelation function (ACF).
- This is a graph of the sample autocorrelations (on the y-axis) against the lag (on the x-axis).

> < 프 > < 프 >

- $H_0: \rho_s = 0.$
- What is the standard error of the autocorrelation coefficient estimators (AC)?

프 에 에 프 어 - - -

• Bartlett 1928: approximation of the variance of an estimated AC of a stationary, normal process is:

$$var(\hat{\rho}_k) \sim \frac{1}{T} \sum_{i=-\infty}^{\infty} \rho_i^2 + \rho_{i+k}\rho_{i-k} - 4\rho_i\rho_{i+k}\rho_{i-k} + 2\rho_i^2\rho_k^2$$

For any given model, we can calculate what the variance of ρ_i ought to be approximately.

Bartlett's approximation for $\sigma(\rho_k)$

- For example, for an AR(1) model, $var(\hat{\rho}_1) = \frac{1}{T}(1 \phi^2)$.
- For example, for an MA(q) model, where for k > q, $\rho_k = 0$, Bartlett's approximation works out to be:

$$\operatorname{var}[\hat{\rho}_k] \sim \frac{1}{T}(1 + \sum_{i=1}^q \rho_i^2)$$

• For an AR(k) model, where $k \to \infty$ and if ϕ is different from 1, then

$$\operatorname{var}[\hat{\rho}_k] \sim \frac{1}{T} (1 + \sum_{i=1}^q \rho_i^2)$$

Most often used generalised form:

$$var(\hat{\rho}_k) = \frac{1}{T}$$

個人 くほん くほん しほ