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Goals

Introducing the simplest linear time series models:
White noise processes
Moving Average (MA) models
Auto Regressive (AR) models
Mixed AR-MA models
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A white noise process

xt = εt ; εt ∼ D(α0, σ
2)

Stationary process:
1 E(xt) = Eεt = α0, ∀t
2 E(xt)

2 = E(ε2t ) = σ2, ∀t
3 E(xt)(xt−j) = E(εt)(εt−j) = 0, ∀j

Not a good DGP for most economic time series variables,
which tend to change very slowly.
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Introducing AR models

An AR process yt of order p is written as AR(p) and is
modelled:

yt = α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt

where εt ∼w.n with µε = 0.
It can be written as:

yt = (α1L + α2L2 + . . .+ αpLp)yt + εt

α(L)yt = εt

where α(L) = (1− α1L− α2L2 − . . .− αpLp)
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Introducing MA models

An MA process yt of order q is written as MA(q) and is
modelled:

yt = θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

where εt ∼w.n. with µε = 0.
It can also be written as:

yt = (1 + θ1L + θ2L2 + . . .+ θpLp)εt

yt = θ(L)εt

where θ(L) = (1 + θ1L + θ2L2 + . . .+ θpLp)
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Example of AR model: AR(1)

yt = α0 + α1yt−1 + εt

E(yt |yt−1, . . . , y0) = α0 + α1yt−1
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Example of MA models: MA(1)

yt = α0 + θ1εt−1 + εt

E(yt |yt−1, . . . , y0) = α0
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Understanding stationarity of AR(1), MA(1)
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Recapitulating stationarity

Strict stationarity: All the moments of the series are
constants and are not functions of time.
This implies that the distribution of innovations is bounded
and not explosive.
Weak/Covariance stationarity: The first two moments of
the series is bounded:

E(yt) = C
E(yt)

2 = M
E(ytyt−s) = f (s) ∀s = 1,2, . . . .
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Stationarity of AR(1)

yt = α0 + α1yt−1 + εt

E(yt) = α0 + α1E(yt−1)

If yt is stationary, then E(yt) = E(Yt−1), then

E(yt) =
α0

1− α1

This works only if α1 < 1
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Stationarity of AR(1), contd.

yt = α0 + α1yt−1 + εt

var(yt) = α2
1var(yt−1) + σ2

ε

If yt is stationary, then var(yt) = var(Yt−1), and

var(yt) =
σ2

1− α2
1

This works only if |α1| < 1
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Stationarity of AR(1), contd.

yt = α0 + α1yt−1 + εt

Define ŷt = yt − α0
(1−α1)

We can show that:

ŷt = α1ŷt−1 + εt

Then, covariance at lag 1 is: (assuming stationarity)

cov(yt , yt−1) = E(ŷt)(ŷt−1) = α1E(ŷ2
t−1) + E(εt ŷt−1)

= α1var(yt−1) =
α1σ

2

(1− α2
1)

In terms of correlations, corr(yt , yt−1) = α1.
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To work out: covariance and correlation at lag 2 for
AR(1)

What is the autocovariance at lag 2 for an AR(1) model?
Solution:

ŷt = α1ŷt−1 + εt

cov(yt , yt−2) = α1E(ŷt−1)(ŷt−2) = α1E(ŷt−1ŷt−2) + E(εt ŷt−2)

= α1cov(ytyt−1) assuming stationarity

=
α2

1σ
2

(1− α2
1)

Corr(yt , yt−2) = α2
1.

Generally, Corr(yt , yt−s) = αs
1.
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Stationarity of MA(1)

yt = α0 + θ1εt−1 + εt where ε ∼ w.n. with mean zero.
Mean of MA(1): E(yt)

E(yt) = E(α0 + θ1εt−1 + εt)

= α0 + θ1E(εt−1) + E(εt)

= α0

Mean = α
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Stationarity of MA(1)

yt = α0 + θ1εt−1 + εt

Variance: E(yt − E(yt))
2

var(yt) = E(yt − α0)
2 = E(θ1εt−1 + εt)

2

= θ2
1E(εt−1)

2 + 2θ1E(εt−1εt) + E(εt)
2

= (1 + θ2
1)σ2

ε

Variance = (1 + θ2
1)σ2

ε .
Both the mean and the variance are constants.
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Stationarity of MA(1), contd.

Covariance at lag 1: E((yt − µ)(yt−1 − µ))

E(yt − α0)(yt−1 − α0) = E(θ1εt−1 + εt)(θ1εt−2 + εt−1)

= θ2
1E(εt−1εt−2) + θ1E(εt−1)

2

+θ1E(εtεt−2) + E(εtεt−1)

= θ1σ
2
ε
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To work out: covariance at lag 2 of MA(1)

Covariance at lag 2: E((yt − µ)(yt−2 − µ))

E(yt − α0)(yt−1 − α0) = E(θ1εt−1 + εt)(θ1εt−3 + εt−2)

= θ2
1E(εt−1εt−3) + θ1E(εtεt−3) + θ1E(εt−1εt−2) + E(εtεt−2)

= 0

HW: Work out that autocovariances at lag 3 and all further
lags are also 0.
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Stationarity properties for AR(1), MA(1)

AR1: yt = α0 + α1yt−1 + εt ; ε ∼ N(0, σ2)

Mean: α0
1−α1

Variance: α0σ2

1−α1
Correlation (at lag s): αs

1

MA1: yt = α0 + θ1εt−1 + εt ; ε ∼ N(0, σ2)

Mean: α0
Variance: (1− θ2

1)σ2

Correlation (at lag s = 1): θ1
Correlation (at lag s > 1): 0

Summary: All the conditions are met for both the AR(1)
and MA(1) models to be stationary.
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Theoretical analysis of the information
content of MA models and AR models

Susan Thomas An introduction to ARMA models



Defining information sets in the simple AR-MA models

Given a time series, yt , yt−1, yt−2, . . . , y0.
In both the models above, each observation at time t , yt
has two components:

1 The innovation, εt , which is revealed in period t .
2 The permanent component of the information set

It |yt−1, yt−2, . . . , y0

Understanding the time behaviour of a stochastic process
is to identify which part of yt derives from the permanent
component, It and which from the innovation εt .

Susan Thomas An introduction to ARMA models



Information sources in the AR-MA framework

Under the AR(1) model:

yt = α0 + α1yt−1 + εt

The structure of information appears to be from the
permanent components.
Under the MA(1) model:

yt = α0 + θ1εt−1 + εt

The structure of information appears to be from the
innovations.
However, the base information is still the same – the
innovation series:

εt , εt−1, εt−2, εt−3, . . . , ε0
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MA models have limited past information

MA(1):

yt = α0 + θ1εt−1 + εt

yt−1 = α0 + θ1εt−2 + εt−1

yt−2 = α0 + θ1εt−3 + εt−2

There is a link between yt and periods t , t − 1.
This is the nature of the link between every yt−s. It is linked
to information from t − s, t − s − 1.
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AR models have much more dependence on past
information

AR(1), where we set α0 = 0:

yt = α1yt−1 + εt

yt−1 = α1yt−2 + εt−1

→ yt = α1(α1yt−2 + εt−1) + εt

= α2
1yt−2 + α1εt−1 + εt

yt−2 = α1yt−3 + εt−2

→ yt = α2
1(α1yt−3 + εt−2) + α1εt−1 + εt

= α3
1yt−3 + α2

1εt−2 + α1εt−1 + εt

yt−3 = α1yt−4 + εt−3

→ yt = α3
1(α1yt−4 + εt−3) + α2

1εt−2 + α1εt−1 + εt
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AR models have much more dependence on past
information

If we unravel this to the starting point in the series, y0, ε0:

yt = εt +
T∑

i=1

αi
1εt−i + αT

1 y0

There is a link between yt and every single period since
the start of the series at t = 0, y0.
How much is the dependence between yt and old
information depends upon the sigze of α1.
Larger α1 (closer to 1, or -1), the stronger the dependence.
Smaller α1 (closer to 0), the weaker the dependence.
Note: Read, Hamilton on “Difference Equations” (Chapter
1, Section 1.1).
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The link between AR and MA models

We can re-write the AR(1) model from:

yt = εt +
T∑

i=1

αi
1εt−i + αT

1 y0

as a function of lag operators as:

yt = α1L(yt) + εt

(1− α1L)yt = εt

or, yt = εt
1

(1− α1L)

= (1 + α1L + α1L2 + α1L3 + . . . ...)εt

This becomes a geometric series of lagged operators on εt .
Thus, the AR(1) model becomes an MA(∞) model.
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Interpreting stationarity conditions for AR/MA models

For example, with the constraints, we can re-write the
AR(1) as:

AR(1), yt = α1yt−1 + εt

→ yt = α1Lyt + εt

→ (1− α1L)yt = εt

→ yt =
εt

(1− α1L)

Generally, an invertible AR(p) process yields a specific
MA(∞) one:

α(L)yt = (1−
p∑

i=1

)yt = α0 + εt

yt = α−1(L)(α0 + εt)
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Interpreting stationarity conditions for AR/MA models

For an AR(1) process to be stationary, the constraints on
the coefficients are that each coefficient should fall within
the bounds of (−1,1).
With these constraints, an AR(1) process becomes
“invertible.”
More generally, for an AR(p) process written as:

yt = α0 +

p∑
i=1

αiyt−i + εt

the necessary condition on the coefficients becomes:

−1 <
p∑

i=1

αi < 1
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Interpreting the coefficients of an MA processes

An MA process is always bounded as long as the number
of the lagged terms are limited.
Therefore, even if the values of the MA coefficients are
greater than one, the process will be stationary.
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MA(∞) processes

yt = α+ εt +
∞∑

j=1

θjεt−j = α+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + . . .

This process is auto-covariance stationary as long as the
values of the coefficients are bounded.
The condition that we check for is:

∞∑
j=0

θj < ∞
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Analysing sample behaviour of data from an
AR(1)/MA(1) process
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Sample vs. theoretical autocorrelations

If the autocovariance is denoted by Ct ,t−s, then we can
define the autocorrelation as:

ρs = Ct ,t−s/
√
σ2

t σ
2
t−s

σ2
t = σ2

t−s

= Ct ,t−s/σ
2
t

= θ at s = 1 for MA(1) process

= 0 at s > 1 for MA(1)

Given either AR or MA models, we know the theoretical
form of the autocorrelations (as given above).
However, we only work with sample estimators of the
same, ρ̂s.
Thus we need inference on the estimators to identify what
type of linear stochastic process most likely fits the sample.
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Sample vs. theoretical autocorrelations

The tool most often is the Autocorrelation function (ACF).
This is a graph of the sample autocorrelations (on the
y-axis) against the lag (on the x-axis).
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Inference for the autocorrelation estimates

H0 : ρs = 0.
What is the standard error of the autocorrelation coefficient
estimators (AC)?
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Bartlett’s approximation for σ(ρk)

Bartlett 1928: approximation of the variance of an
estimated AC of a stationary, normal process is:

var(ρ̂k ) ∼ 1
T

∞∑
i=−∞

ρ2
i + ρi+kρi−k − 4ρiρi+kρi−k + 2ρ2

i ρ
2
k

For any given model, we can calculate what the variance of
ρi ought to be approximately.
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Bartlett’s approximation for σ(ρk)

For example, for an AR(1) model, var(ρ̂1) = 1
T (1− φ2).

For example, for an MA(q) model, where for k > q, ρk = 0,
Bartlett’s approximation works out to be:

var[ρ̂k ] ∼ 1
T

(1 +

q∑
i=1

ρ2
i )

For an AR(k) model, where k →∞ and if φ is different from
1, then

var[ρ̂k ] ∼ 1
T

(1 +

q∑
i=1

ρ2
i )

Most often used generalised form:

var(ρ̂k ) =
1
T

This is because the null that we most often test against is
w.n. where p = q = 0.
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