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Goals

Recap: AR, MA, AR(1), MA(1) models, stationarity.
Violating stationarity conditions for AR(1)
Invertibility of MA processes.
Forecasting from AR/MA processes.
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Recap:

Simplest process: white noise

xt = εt ; εt ∼ D(α0, σ
2)

First line of stochastic models: linear stationary models.
AutoRegressive process:

yt = α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt

where εt ∼w.n with µε = 0.
Moving Average process:

yt = θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

where εt ∼w.n. with µε = 0.
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Conditions on AR models
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Example of AR model: AR(1)

yt = α0 + α1yt−1 + εt

E(yt |yt−1, . . . , y0) = α0 + α1yt−1

E(yt) = α0/(1− α1)

Variance: σ2
y = α0σ

2/(1− α1)

Covariance (at lag s): αs
1σ

2
y

Correlation (at lag s): αs
1

Stationarity conditions on α0, α1 : −1 < α1 < 1
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Stationarity conditions for an AR(2) process
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Stationarity of an AR(2) process

yt = a + φ1yt−1 + φ2yt−2 + εt

E(yt) = µ = a/(1− φ1 − φ2)

Calculating autocovariance structures become simpler
when the equation is re-organised as follows:

yt = µ(1− φ1 − φ2) + φ1yt−1 + φ2yt−2 + εt

yt − µ = φ1(yt−1 − µ) + φ2(yt−2 − µ) + εt

E(yt − µ)(yt−i − µ) = φ1E(yt−1 − µ)(yt−i − µ) +

φ2E(yt−2 − µ)(yt−i − µ) + E(εt(yt−i − µ)

giving → γi = φ1γi−1 + φ2γi−2 ∀i 6= 0

Using this structure, calculate γ0, γ1, γ2, γ3.
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Autocovariance structure of the AR(2) process

The γi = φ1γi−1 + φ2γi−2 structure of the autocovariances has
special cases: i = (0,1).

When i = 0, γ0 = σ2
y = φ1γ1 + φ2γ2 + σ2

ε

When i = 1, γ1 = φ1γ0 + φ2γ1, and
γ1 = φ1

1−φ2
γ0

We use both to calculate γ0 as follows:

γ0 = φ1γ1 + φ2γ2 + σ2
ε

γ0 =
φ2

1
1− φ2

γ0 +
φ2(φ

2
1 + φ2(1− φ2))

1− φ2
γ0 + σ2

ε

σ2
ε =

(1− φ2)− φ2
1 − φ2

1φ2 − φ2
2(1− φ2)

1− φ2
γ0

γ0 =
σ2

ε

1− φ2
1 − φ2

2
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Autocovariances for the AR(2) process

γ1 = E(yt − µ)(yt−1 − µ)

γ1 =
φ1

(1− φ2)(1− φ2
1 − φ2

2)
σ2

ε

γ2 = E(yt − µ)(yt−2 − µ)

γ2 = φ1γ1 + φ2γ2 =
φ2

1 + φ2(1− φ1)

(1− φ2)(1− φ2
1 − φ2

2)
σ2

ε

γ3 = E(yt − µ)(yt−3 − µ)

γ3 = φ1γ2 + φ2γ1 =
φ3

1 + φ1φ2(2− φ1)

(1− φ1)(1− φ2
1 − φ2

2)
σ2

ε
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Stationarity conditions for the AR(2) model

E(yt) = a
1−φ1−φ2

For this to be a constant, (φ1 + φ2) must not be 1.

From the form of E(yt − µ)2 = σ2

1−φ2
1−φ2

2
, it is not clear what

the binding conditions on (φ1, φ2) for stationarity are.
We go back to stability conditions for the difference
equation:

(1− φ1L− φ2L2)yt = εt

The stability condition of the AR(2) processes depends
upon the roots of (1− φ1L− φ2L2).
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HW: AR(3)

yt = a + φ1yt−1 + φ2yt−2 + φ3yt−3 + εt

What is the autocovariance structure of this process?
What are the stationarity conditions for this?

Susan Thomas More about AR/MA



Violating the stationarity condition for an
AR(1) model
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What happens when α1 = 1 in AR(1) model?

yt = α0 + yt−1 + εt

(1− L)yt = εt ; yt =
εt

(1− L)
= εt

T∑
i=0

Li

E(yt) = 0
Variance, σ2

y =
∑T

i=0 σ
2 = Tσ2

This is a increasing function in T – as the series gets larger, the
variance becomes larger. Therefore, it is a non-stationary
process.

Covariance, E(ytyt−i) =
E(εt + εt−1 + εt−2 + . . .+ ε0)(εt−i + εt−i−1 + εt−i−2 + . . .+ ε0)
E(ytyt−i) =

∑T
j=i ε

2
t−i+ covariance terms.

E(ytyt−i) = (T − i)σ2.
This is an increasing function in T . So it is non-stationary.
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Nomenclature

The non-stationary AR(1) model of the form:

yt = yt−1 + εt

is called the Random Walk model.
When the non-stationary AR(1) model has the form:

yt = α0yt−1 + εt

is called the Random Walk with drift model.
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Conditions on MA models
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Example of MA models: MA(1)

yt = α0 + θ1εt−1 + εt

E(yt |yt−1, . . . , y0) = α0 + θ1εt−1

E(yt) = α0

Variance, σ2
y = (1 + θ2

1)σ2

Covariance (at lag s): θ1σ
2 at s = 1; 0 at s > 1.

Correlation (at lag s): θ1 at s = 1; 0 at s > 1.
Stationarity conditions on α0, θ1 : none.
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What happens when θ1 = 1 in an MA(1) model?

yt = α0 + εt−1 + εt = α0 + (1 + L)εt

E(yt) = α0

Variance, σ2
y = 2σ2

Covariance (at lag s): σ2 at s = 1; 0 at s > 1.
Correlation (at lag s): 1 at s = 1; 0 at s > 1.
Stationarity conditions on α0, θ1 : none.
However, invertibility conditions are not so clear.

Susan Thomas More about AR/MA



Definition: Invertibility of an MA process

Any given MA(1) process, yt = α+ (1 + θL)εt , can be
re-written as:

(1 + θL)−1(yt − α) = εt

(1− θL + θ2L2 − θ3L3 + . . .)(yt − α) = εt

which becomes an AR(∞) model:
yt = α0 + θyt−1 − θ2yt−2 + θ3yt−3 + . . .+ εt

This is referred to as the invertibility condition for an MA
process.
The form of the MA(1) process with θ < 1 is called the
invertible form.
When θ > 1, the MA(1) process is called the
non-invertible form.
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Why is the invertibility condition important?

Invertibility conditions are important for forecastability of an
MA process.
Forecasting using a non-invertible MA process is difficult.
Good news: every non-invertible MA process can be
equally generated by a invertible MA process.
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Calculating the non-invertible form of an invertible
MA(1)

Consider two MA(1) processes:
1 ỹt = α+ ε̃t + θ̃1ε̃t−1
2 yt = α+ εt + θ1εt−1

By virtue of having the same α and the same MA order,
these two processes have the same first moment.
If these processes also satisfy the following two conditions:

θ1 = θ̃−1
1

σ2 = θ̃2
1σ̃

2

they will also have the same second moment.
Then, ỹt is the non-invertible representation of the
invertible process yt , and vice-versa.
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Implications of invertible/non-invertible pairs

Any DGP that appears as an MA(1) process could be
generated by either of the invertible/non-invertible
processes with equal likelihood.
Example, in

yt = α+ (1 + θ1L)εt εt ∼ N(0, σ2)

and if θ1 > 1, then it’s equally likely that

yt = α+ (1 + 1/θ1L)ε̃t ε̃t ∼ N(0, σ2/θ2
1)

A problem with a model such that

ε̃t = (1 + θ̃1L)−1(yt − α)

where θ̃1 > 1 is that it implies that ε̃t depends upon the
forward values of yt !
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Invertibility of the MA(q) process

Given yt − α = (1 + θ1L + θ2L2 + . . .+ θqLq)εt

It in invertible as long as the roots of
(1 + θ1L + θ2L2 + . . .+ θqLq) lie outside the unit circle.
Alternatively,

(1 + θ1L + θ2L2 + . . .+ θqLq) =

(1− λ1L)(1− λ2L) . . . (1− λqL)

the invertibility condition implies that |λ1|, |λ2|, . . . , |λq| < 1.
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Forecasting using AR/MA models
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Issues in forecasting using stochastic models

1 Every forecast has to have a estimate along with an
“estimated forecast error”.
This is common to all econometric models.

2 New to time series problems: one-step ahead and
multiple-step ahead forecasts.

One-step ahead forecast: Observe information till t = T .
Forecast for t = T + 1.
Multi-step ahead forecast: Observe information till t = T .
Forecast for t = T + 1,T + 2,T + 3, . . ..

3 Depending upon the type of the stochastic process and
how many steps ahead is being forecasted, “estimated
forecast error” can be vary significantly.
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Forecasting using an AR model

One–step ahead forecast for yt given It = (yt−1, yt−2, . . .)
If the model is AR(1),

E(yt |It) = a + φ1yt−1

If the model is AR(2),

E(yt |It) = a + φ1yt−1 + φ2yt−2
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Forecast errors for an AR model

The one-step ahead forecast MSE of an AR(1) model

E(yt − ŷt)
2 = (a + φyt−1 + εt − a− φyt−1)

2

= σ2

The one-step ahead forecast MSE of an AR(2) model

E(yt − ŷt)
2 = (a + φ1yt−1 + φ2yt−1 + εt − a− φ1yt−1 − φ2yt−2)

2

= σ2
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Multi-step ahead forecasts for an AR(1) model

MSE of a two-step ahead forecast for AR(1)

E(yt+1 − ŷt+1)
2 = (a + φyt + εt+1 − a− φŷt)

2

= (φ(a + φyt−1 + εt) + εt+1 − φ(a− φyt−1))
2

= (φεt + εt+1)
2

= (1 + φ2)σ2

The MSE for an s-step ahead forecast for AR(1) is:

E(yt+s − ŷt+s)
2 = (1 + φ2 + φ4 + φ6 + . . .+ φ2(s−1))σ2

The MSE becomes larger for longer forecasting horizons,
and is σ2/(1− φ2) asymptotically.
Note: What happens for forecasts out of a non-stationary
AR(1) model?
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Multi-step ahead forecasts for an AR(2) model

MSE of a two-step ahead forecast for AR(2)

E(yt+1 − ŷt+1)
2 = (a + φ1yt + φ2yt−1 + εt+1 − a− φ1ŷt − φ2yt−1)

2

= (εt+1 + φ1(a + φ1yt−1 + φ2yt−2 + εt)−
φ1(a− φ1yt−1 − φ2yt−2))

2

= (φ1εt + εt+1)
2

= (1 + φ2
1)σ

2
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Multi-step ahead forecasts for an AR(2) model

MSE of a three-step ahead forecast for AR(2)

E(yt+2 − ŷt+2)
2 = (a + φ1yt+1 + φ2yt + εt+2 − a− φ1ŷt+1 − φ2ŷt)

2

= (φ1(a + φ1yt + φ2yt−1 + εt+1) +

(φ2(a + φ1yt−1 + φ2yt−2 + εt)

+εt+2 −
φ1(a− φ1ŷt − φ2yt−1)−
φ2(a− φ1yt−1 − φ2yt−2))

2

= (εt+2 + φ1εt+1 + φ2εt +

φ2
1(a + φ1yt−1 + φ2yt−2 + εt)−
φ2

1(a + φ1yt−1 + φ2yt−2))
2

= (1 + φ2
1 + (φ2

1 + φ2)
2)σ2
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Forecasting using an MA model

One–step ahead forecasts: We have
It = (yt−1, yt−2, . . . , εt−1, εt−2, . . .)
We need to forecast yt .
If the model is MA(1),

ŷt = α+ E(εt) + θ1εt−1

= α+ θ1εt−1

If the model is MA(∞),

ŷt = α+ θ1εt−1 + θ2εt−2 + θ3εt−3 + . . .

Forecast error: Mean Squared Error (MSE).

MSE = (yt − E(yt |It))2 = (εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + . . .)

−(θ1εt−1 + θ2εt−2 + θ3εt−3 + . . .)

= σ2
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Multi–step ahead forecasts for an MA model

E(yt+s|It)

E(yt+s|It) = α+ θsεt + θs+1ε2 + θs+2ε3 + . . .

Forecast error:

MSE = (yt+s − E(yt+s|It))2 = (εt+s + θ1εt+s−1 + θ2εt+s−2 + θ3εt+s−3 + . . .+ θs−1εt+1)
2

Forecast error for an MA(q) process:

MSE = σ2, s = 1
= (1 + θ2

1 + θ2
2 + . . .+ θ2

s−1)σ
2, ∀s = 2, . . . ,q

= (1 + θ2
1 + θ2

2 + . . .+ θ2
q)σ2, ∀s = q + 1, . . .
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