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Goals

The likelihood estimation of AR/MA models
AR(1)
MA(1)

Inference
Model specification for a given dataset
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Why MLE?

Traditional linear statistics is one methodology of
estimating models standing on a set of assumptions that
are rigidly defined.
This yields a relative fixed set of models which can be
estimated.
One such assumption is the independence of the error
term.
Maximum Likelihood Estimation (MLE) appears a more
complicated way of coming to the same answer, when
looking for simple moment estimators (e.g. sample mean)
or classical least squares.
However, MLE permits us to go beyond simple problems.
It offers a more generic way to deal with models of
stochastic time series processes.
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The likelihood approach

For any model: y = f (x ; θ), MLE involves:
setting up the joint likelihood of observing the data
finding the θ that maximises the likelihood of the data

In non time-series problems, assume independence of
y1, y2, . . . , yN

L = f (y1, y2, . . . , yN |θ) = f (y1|θ).f (y2|θ). . . . .f (yN |θ)

In time series-problems, there is dependence in
x1, x2, . . . , xT

L = f (y1, y2, . . . , yN |φ)

= f (y1|φ).f (y2|y1, φ).f (y3|y2, y1, φ). . . . .f (yN |yN−1, . . . , y1, φ)

Here we need to use the joint probability of conditional
probabilities.
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MLE setup for AR(1) estimation
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The model

The AR(1) process is

Yt = c + φYt−1 + εt

where εt ∼ i.i.d.N(0, σ2)

We know
E(Yt) = µ = c/(1− φ) and
E(Yt − µ)2 = σ2/(1− φ2)

Now we need to setup the Likelihood of the data set:

Y1,Y2, . . . ,YT

Susan Thomas Estimating AR/MA models



Likelihood for AR(1)

Probability of the 1st observation is:

f (y1; θ) = f (y1; c, φ, σ2)

=
1√
2π

1√
σ2/(1− φ2)

exp

(
−{y1 − (c/(1− φ))}2

2σ2/(1− φ2)

)
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The second observation

Y2 = c + φY1 + ε2

Conditioning on Y1, i.e. treating Y1 as a constant y1,

Y2|(Y1 = y1) ∼ N(c + φy1, σ
2)

Conditional mean of Y2 = c + φy1

Conditional variance of
Y2 = E(Y2 − E(Y2))

2 = E(ε2)
2 = σ2.

Conditional density of Y2 is:

f (Y2|Y1) =
1√

2πσ2
exp

[
−(Y2 − c − φy1)

2

2σ2

]
=

1√
2πσ2

exp

[
−ε22
2σ2

]
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Putting it together

The joint of 1 and 2 is the product of these two elements:

fY1,Y2(y1, y2; θ) = fY1(y1; θ)fY2|Y1
(y2|y1; θ)

The conditional for observation 3 is

f (Y3|Y2) =
1√

2πσ2
exp

[
−(y3 − c − φy2)

2

2σ2

]
In this fashion we can setup all the conditionals, and
multiply them together to get the joint.
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Final Log likelihood

The objective function would be to maximise L or minimise
log L:

logL = −T − 1
2

2πσ2 −
T∑

t=2

ε2t
σ2 −

πσ2

(1− φ2)
−

(y1 − c
1−φ)2

2σ2

(1−φ2)
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Exact vs. Conditional likelihood

The above strategy yields the “exact MLE”:
This is because L includes the probability of the first
observation, y1.
Suppose we just ignore observation 1.
Then all other observations have an identical and familiar
form – it’s just an sum of squared errors, SSE.
This becomes equivalent to running OLS on the dataset,
with Yt as the LHS and the lagged values Yt−1 as the RHS
in the equation.
When the probability of the first observation in an AR(1)
model is not included, the MLE is called the “conditional
MLE”.
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Conditional likelihood for AR(1)

It is the same as earlier, except for the f (Y1|θ) term.

logL = −(T − 1)πσ2 −
T∑

t=2

ε2t
σ2

When T is very large, the exact and the conditional MLE
estimates have the same distribution.
This is true when the series is stationary.
When the series is non-stationary, |φ| > 1, the conditional
MLE gives consistent estimates.
But the exact MLE does not.
Thus, for most AR estimations, OLS is used to estimate
the parameters of the model.
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MLE setup for MA(1) estimation
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The MA(1) model

The model –

Yt = µ+ εt + θεt−1

εt ∼ iidN(0, σ2)

In this case, the exact likelihood is harder.
So we estimate using a conditional MLE.
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Conditional MLE for MA(1)

Suppose we knew that ε0 = 0 exactly. Then

(Y1|ε0 = 0) ∼ N(µ, σ2)

Once Y1 is observed, we know

ε1 = Y1 − µ1

exactly.
Then:

fY2|Y1,ε0=0(y2|y1, ε0 = 0; θ) =
1√

2πσ2
exp

[
−(y2 − µ− θε1)2

2σ2

]
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Conditional likelihood of MA(1)

In this fashion, we can go forward, iterating on
εt = yt − µ− θεt−1.
This gives us

L(θ) = log fYT ,YT−1,...,Y1|ε0=0(yT , yT−1, . . . , y1|ε0 = 0; θ)

= −T
2

log(2π)− T
2

log(σ2)−
T∑

t=1

ε2t
2σ2

L is different here from the AR(1) process: we need to
calculate the L by an iterative process.
Here, OLS cannot be applied to estimate an MA(1) model.
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Summarising MLE for ARMA models

There are two likelihood functions that can be used for the
maximisation of the MLE:

Exact MLE: where the probabilities of the first p
observations of an AR(p) model or the first q observations
of an MA(q) model are explicitly included.
Conditional MLE: These are assumed to be known with
certainty and are included as inputs in the estimation.

An AR process can be estimated using OLS under the
conditional MLE setup.
All MA processes have to be estimated using MLE.
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Inference
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Inference for MLE parameters

Inference of the estimated model parameters is based on
the observed Fischer information.

var(θ̂mle) =
1
T

I−1

I is the informaiton matrix and can be estimated either as:
1 The second derivative estimate:

Î = −T−1frac∂2L(θ)∂θ∂θ′

2 The first derivative estimate:

Î = −T−1
T∑

t=1

[
∂ log L(θ)

∂θ′
∂ log L(θ)

∂θ′

′
]

Both estimated at θ = θ̂

If T is large enough, then a standard t–test can be
performed using θ̂mle and var(θ̂mle).
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Time series model specification
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Specification = formulation + selection

Formulation is done based on a mixture of prior, theoretical
knowledge about the problem and diagnostic, exploratory
tests of the data.
Selection is based on estimation and hypothesis tests.
The Box–Jenkins methodology of forecasting: seperate
the identification of the model from the estimation of the
model.
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Formulating a model

Examples of prior knowledge driving model formulation:
Monthly series of agricultural produce will have a seasonal
behaviour for the kharif and rabi crop.
Daily data on the call money rates will have a fortnightly
pattern because of banks having report their capital
requirements to the central bank every fortnight.
The time series of prices of a single futures contract will
have a steadily decreasing trend as the contract comes
close to expiration.

Diagnostic tests: the Box–Jenkins methodology of a priori
identification.
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The Box–Jenkins identification methodology

Graphs of the raw data: To pick out the possible existence
of a trend, seasonality, etc.
These are only indicative. The question of how the seasonality
or trend affects the time series dyanamics – whether as an
additive component of f (t), or as part of the polynomial structure
of g(L) – depends upon more rigorous tests.

ACFs, PACFs: More subjective measures of whether there
is a stochastic trend, or a seasonal pattern.
A plot of the autocorrelation function is also useful to detect the
manner of time dependance – whether it is an AR, or MA, or a
mixed ARMA process, and how many lags are likely to be
required to describe the DGP.
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Statistical inference for the ACF, PACF

The statistical significance of each correlation coefficient is
tested as a t-test, where the σ of the coefficient is given by
Bartlett(1928). Typically, we test against the null of white
noise, φ = θ = 0. Here, the Bartlett’s formula approximates
to

var(ρ̂k ) = 1/T

Another test is the Portmanteau test of significance of the
sum of a set of k autocorrelation coefficients, Qk .

Qk = T
k∑

i=1

ρ̂2
k

∼ χ2(k − p − q)
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Problems of underestimating the significance of ρ̂k

We neither know the true model nor the true model
parameters. In this case, our bound is typically an
over–estimate of the true σ.
For example, an AR(1) model will have

var(ρ̂1) = φ2/T

If the model is stationary, then −1 < φ < 1, and
φ2/T << 1/T .
Therefore, we end up underestimating the presence of
temporal dependance when using var(ρ̂k ) = 1/T .
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Model estimation

Once the form and the order of the temporal dependance
has been approximately identified, the outcome is a set of
possible ARMA models that should be estimated.
Estimation is done using MLE/OLS depending upon
whether it has an MA term or not.
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Tests for model selection

We use one of the standard MLE tests to do a first brush
selection of a model.

The standard tests are:
1 Likelihood Ratio (LR)
2 Wald
3 Lagrange Multiplier

Tests that incorporate a penality for over-parameterisation
are:

1 Akaike Information Criteria (AIC): (2 ∗ log L)/T + (k ∗ 2)/T
2 Schwarz–Bayes Criteria (SBC):

(2 ∗ log(L))/T + (k ∗ log T )/T

where k is the number of parameters in the model, and T
is the number of obsrevations.
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Tests for model selection

These tests are superior to simple hypothesis testing for
parameters because:

They give numerical values.
In some cases, they can be used to compare non–nested
models.
With these tests, one model is being tested against the
other, whereas hypothesis testing requires a null of a “true”
model.
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Box–Jenkin’s a posteriori identification

The last stage of the modelling process is checking whether the
model chosen using the processes listed above is a suitable
approximation to the “true” DGP or not.

1 A model must be consistent with the prior/theoretical
knowledge and properties of the data.

2 Apply in–sample checks, residual analysis:
Use the model to calculate the residuals, and analyse the
properties of the residuals for consistency with prior
assumptions/knowledge.

3 Apply out–of–sample checks, forecast bias:
The dataset used for estimation must be a subset of the
total dataset.
Once the model is estimated, it can be used for forecasting
future values – the data not used in estimation should be
used to check the quality of the forecasts from the model.
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