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Goals

@ The likelihood estimation of AR/MA models
o AR(1)
o MA(1)

@ Inference
@ Model specification for a given dataset
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Why MLE?

@ Traditional linear statistics is one methodology of
estimating models standing on a set of assumptions that
are rigidly defined.

This yields a relative fixed set of models which can be
estimated.

@ One such assumption is the independence of the error
term.

@ Maximum Likelihood Estimation (MLE) appears a more
complicated way of coming to the same answer, when
looking for simple moment estimators (e.g. sample mean)
or classical least squares.

@ However, MLE permits us to go beyond simple problems.
It offers a more generic way to deal with models of
stochastic time series processes.

Susan Thomas Estimating AR/MA models



The likelihood approach

@ For any model: y = f(x;6), MLE involves:

e setting up the joint likelihood of observing the data
e finding the ¢ that maximises the likelihood of the data

@ In non time-series problems, assume independence of
Yi,Ye,. . YN

L=1(y1,¥2,...,ynl0) = f(y110).f(y210)..... f(yn|6)

@ In time series-problems, there is dependence in
X1, Xg, ..., XT

L = f(y1,¥2....,¥n|®)
= f(y118).-f(y2ly1, 8)-f(yaly2, ¥1,0)- - - F(YNIYN=15- -, V1. D)

Here we need to use the joint probability of conditional
probabilities.
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MLE setup for AR(1) estimation
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The model

@ The AR(1) process is

Yi=C+oYi1+e

where ¢; ~ i.i.d.N(0, o)
@ We know
o E(Y})=p=c/(1-¢)and
o E(Yi—uf=0*/(1-¢)
@ Now we need to setup the Likelihood of the data set:

Yi,Y2,... Y7

Susan Thomas Estimating AR/MA models



Likelihood for AR(1)

@ Probability of the 1st observation is:

f(y1;0) = f(y;c ¢,0°)
1 1 <{y1 ~(¢/(1 ¢>)}2>

Var [ —#) T\ 21— )
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The second observation

Yo=c+ oY1 +e
@ Conditioning on Y7, i.e. treating Y; as a constant yy,

Ya|(Y1 = y1) ~ N(c+ ¢y1,0°)

@ Conditional mean of Yo = ¢ + ¢yq
@ Conditional variance of

Y2 = E(Y2 — E(Yg))z = E(€2)2 = 0'2.
@ Conditional density of Y5 is:

1 —(Ya—c—oy1)?] —e
f(YelY1) = o= 0P 252 T Vanoz P (202

el
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Putting it together

@ The joint of 1 and 2 is the product of these two elements:

v, v (Y1, Y2:0) = fy, (y1: 0)fy, v, (Vo|y1; 0)
@ The conditional for observation 3 is

1 (Ve — C— dys)2
f(YslYe) = —— exp (3 < oY»)

@ In this fashion we can setup all the conditionals, and
multiply them together to get the joint.
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Final Log likelihood

@ The objective function would be to maximise L or minimise

log L:
T c )2
T— o €2 o2 = 125)
logl = — 2no —Z? =) o
t=2 )
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Exact vs. Conditional likelihood

@ The above strategy yields the “exact MLE”:
This is because L includes the probability of the first
observation, y;.

@ Suppose we just ignore observation 1.

@ Then all other observations have an identical and familiar
form —it’s just an sum of squared errors, SSE.
This becomes equivalent to running OLS on the dataset,
with Y; as the LHS and the lagged values Y;_1 as the RHS
in the equation.

@ When the probability of the first observation in an AR(1)
model is not included, the MLE is called the “conditional
MLE”.
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Conditional likelihood for AR(1)

@ It is the same as earlier, except for the f(Y1|0) term.

T 2
logl = —(T —1)mo?2 - S L
oglL (T—1)mo Z 2
t=2
@ When T is very large, the exact and the conditional MLE
estimates have the same distribution.

This is true when the series is stationary.

@ When the series is non-stationary, |¢| > 1, the conditional
MLE gives consistent estimates.
But the exact MLE does not.

@ Thus, for most AR estimations, OLS is used to estimate
the parameters of the model.
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MLE setup for MA(1) estimation
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The MA(1) model

@ The model —

Yt = M+€t+9€t_1
e ~ IidN(0,0?)

@ In this case, the exact likelihood is harder.
So we estimate using a conditional MLE.

Susan Thomas Estimating AR/MA models



Conditional MLE for MA(1)

@ Suppose we knew that ¢ = 0 exactly. Then
(Yileo = 0) ~ N(p, o)

@ Once Y; is observed, we know

€1 =Y1— 1
exactly.
@ Then:
1 —(Yo — 11 — Oeq1)?
sz\Y1 ,60:0(}/2’}/1,60 =0; 9) = W exp (y2 2i2 1)
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Conditional likelihood of MA(1)

@ In this fashion, we can go forward, iterating on
et =Yr—p—0Oc_1.
@ This gives us

L£(0) = logfy. v, | . vieo=0YT:YT-1,...,Y1le0 = 0;0)

T
_ T T 2 f?

t=1

@ L is different here from the AR(1) process: we need to
calculate the L by an iterative process.
Here, OLS cannot be applied to estimate an MA(1) model.
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Summarising MLE for ARMA models

@ There are two likelihood functions that can be used for the
maximisation of the MLE:

e Exact MLE: where the probabilities of the first p
observations of an AR(p) model or the first g observations
of an MA(q) model are explicitly included.

e Conditional MLE: These are assumed to be known with
certainty and are included as inputs in the estimation.

@ An AR process can be estimated using OLS under the
conditional MLE setup.

@ All MA processes have to be estimated using MLE.
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Inference
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Inference for MLE parameters

@ Inference of the estimated model parameters is based on

the observed Fischer information.
A 1
Var(em/e) = ?I

@ /is the informaiton matrix and can be estimated either as:
@ The second derivative estimate:

1= —T " fracd?L(0)9000'

@ The first derivative estimate:

A dlog L(#) dlog L(0)’
_ 1
/=T Z[ oo or |

Both estimated at § = @

o If T is large enough, then a standard t-test can be
performed using 6, and var(fme)-
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Time series model specification
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Specification = formulation + selection

@ Formulation is done based on a mixture of prior, theoretical
knowledge about the problem and diagnostic, exploratory
tests of the data.

@ Selection is based on estimation and hypothesis tests.

@ The Box—Jenkins methodology of forecasting: seperate
the identification of the model from the estimation of the
model.
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Formulating a model

@ Examples of prior knowledge driving model formulation:

e Monthly series of agricultural produce will have a seasonal
behaviour for the kharif and rabi crop.

e Daily data on the call money rates will have a fortnightly
pattern because of banks having report their capital
requirements to the central bank every fortnight.

e The time series of prices of a single futures contract will
have a steadily decreasing trend as the contract comes
close to expiration.

@ Diagnostic tests: the Box—Jenkins methodology of a priori
identification.
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The Box—Jenkins identification methodology

@ Graphs of the raw data: To pick out the possible existence
of a trend, seasonality, etc.
These are only indicative. The question of how the seasonality
or trend affects the time series dyanamics — whether as an
additive component of f(t), or as part of the polynomial structure
of g(L) — depends upon more rigorous tests.

@ ACFs, PACFs: More subjective measures of whether there
is a stochastic trend, or a seasonal pattern.
A plot of the autocorrelation function is also useful to detect the
manner of time dependance — whether it is an AR, or MA, or a
mixed ARMA process, and how many lags are likely to be
required to describe the DGP.
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Statistical inference for the ACF, PACF

@ The statistical significance of each correlation coefficient is
tested as a t-test, where the o of the coefficient is given by
Bartlett(1928). Typically, we test against the null of white
noise, ¢ = 6 = 0. Here, the Bartlett’s formula approximates
to

var(pg) = 1/T

@ Another test is the Portmanteau test of significance of the
sum of a set of k autocorrelation coefficients, Q.

K
Q = TY %
i=1

~ X*(k-p-q)
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Problems of underestimating the significance of /i

@ We neither know the true model nor the true model
parameters. In this case, our bound is typically an
over—estimate of the true o.

@ For example, an AR(1) model will have
var(pr) = ¢%/T

If the model is stationary, then —1 < ¢ < 1, and
)T << 1/T.

@ Therefore, we end up underestimating the presence of
temporal dependance when using var(px) =1/T.
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Model estimation

@ Once the form and the order of the temporal dependance
has been approximately identified, the outcome is a set of
possible ARMA models that should be estimated.

@ Estimation is done using MLE/OLS depending upon
whether it has an MA term or not.
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Tests for model selection

We use one of the standard MLE tests to do a first brush
selection of a model.
@ The standard tests are:

@ Likelihood Ratio (LR)

Q@ Wald

© Lagrange Multiplier

@ Tests that incorporate a penality for over-parameterisation

are:

@ Akaike Information Criteria (AIC): (2 logL)/T + (k*2)/T

@ Schwarz—Bayes Criteria (SBC):

(2xlog(L))/ T+ (kxlogT)/T

where k is the number of parameters in the model, and T
is the number of obsrevations.
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Tests for model selection

These tests are superior to simple hypothesis testing for
parameters because:

@ They give numerical values.
@ In some cases, they can be used to compare non—nested
models.

@ With these tests, one model is being tested against the
other, whereas hypothesis testing requires a null of a “true”
model.
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Box—Jenkin’s a posteriori identification

The last stage of the modelling process is checking whether the
model chosen using the processes listed above is a suitable
approximation to the “true” DGP or not.

@ A model must be consistent with the prior/theoretical
knowledge and properties of the data.

© Apply in—sample checks, residual analysis:
Use the model to calculate the residuals, and analyse the
properties of the residuals for consistency with prior
assumptions/knowledge.

© Apply out—of—sample checks, forecast bias:
The dataset used for estimation must be a subset of the
total dataset.
Once the model is estimated, it can be used for forecasting
future values — the data not used in estimation should be
used to check the quality of the forecasts from the model.
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