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Goal: How to choose one out of alternative AR/MA
models?

Recap: Specification = formulation + selection.

Recap: Formulation: Box–Jenkins Methodology.

Specification based on Likelihood values at the optimum
parameter values.

Specification based on residual analysis.
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Recap: Specification = formulation + selection

Formulation is based on a mixture of

theoretical knowledge about the problem and
diagnostic, exploratory tests of the data.

The Box–Jenkins methodology: separate the
identification of the model from the estimation of the
model.

Selection is based on post-estimation analysis. This includes:

value of the likelihood at the optimal
parameters,
hypothesis tests of coefficients,
analysis of the residuals, and
performance of model forecasts.
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Recap: Box–Jenkins identification methodology

Step 1 Graph the data.
Aim: To identify possible trends, seasonality, breaks,
etc. Action: Use OLS to estimate the trends,
de-trend the raw data.
The analysis is carried out on the residuals from the
OLS trend model.

Step 2 Plot acfs, pacfs
Aim: To identify the pattern of stochastic
dependence in data. Action: Postulate a possible
model of

Pure AR? What order, (p)?
Pure MA? What order, (q)?

Step 3: Estimation.
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Part I

Likelihood measure for model specification
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Estimation measures for model specification

The AR order selection criteria, C (p), generally takes the
form:

C (p) = log L(p) + wT c(p)

where

log L(p) is the log likelihood of the AR(p) model.
This typically decreases for a larger order.
wT is a weighting function of the sample size T .
c(p) is the function that rewards parsimony.

That model is chosen which minimises C (p).

The ACF/PACF identify a set of possible models (say, k) for a
given time series.
C (p) is used to select one/subset (say, k1) out of k models
implied by the ACF/PACF analysis.
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Estimation measures for model specification

Standard forms of C (p):
1 Akaike Information Criteria (AIC): (2 log L)/T + (k2)/T
2 Schwarz–Bayes Criteria (SBC): (2 log(L))/T + (k log T )/T

This is also sometimes referred to as the Bayes Information
Criteria (BIC).

where k is the number of parameters in the model, and T is the

number of observations.

Facts:
AIC asymptotically overestimates the order with positive
probability.
SBC is strongly consistent in identifying the correct order of
the process if the actual DGP is a finite-order AR process.

Thus, if p̂(AIC ), p̂(SBC ) are the orders selected by the AIC
and the SBC respectively, and they are different,

p̂(SBC ) < p̂(AIC )

even in small sample.
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Identifying ARMA models

In principle, the same approach can be used for specifying the
more general ARMA model.

However, since there are two orders to simultaneously get
“right”,

there will be a much larger number of models to be estimated,
which in turn, could lead to over-specified orders.
need to cheque for the “uniqueness” of the parameters.
There could be cancellation of parts of the AR/MA operators
that is possible.

The specification of ARMA models is therefore done using
multiple steps using simpler estimation models.
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Lack of uniqueness: possible cancellation of AR/MA terms
in ARMA models

Consider the following ARMA(2,1) model:

yt = −0.2yt−1 + 0.15yt−2 − 0.3εt−1 + εt

This is a plausible model, which is stationary? invertible?

This model can be reworked as:

yt = (−0.2L + 0.15L2)yt + εt(1− 0.3L)

yt(1 + 0.2L− 0.15L2) = εt(1− 0.3L)

(1 + 0.2L− 0.15L2) = (1 + 0.5L− 0.3L− 0.15L2)

= (1 + 0.5L)− 0.3L(1 + 0.5L) = (1 + 0.5L)(1− 0.3L)

yt(1 + 0.5L)(1− 0.3L) = εt(1− 0.3L) becomes,

yt(1 + 0.5L) = εt

−→ yt = −0.5yt−1 + εt

which is actually an AR(1) model with the same ε series!
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ARMA model specification using Hannan-Rissanen

This is a multi-step process that is frequently employed to
obtain the order of the ARMA(p,q) process.

It is also used to get starting values of the p, q parameters of
the model to use in the MLE.

Reference: Hannan, E.J., and Rissanen, J., 1982, Recursive
estimation of fixed autoregressive-moving average order,
Biometrika 69, 81–94.
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Specification process for ARMA models

Task: identify p, q of the ARMA DGP.

Step 1: Estimate a very long order AR(h) model, where
h >> p.
p can be guessed at from the ACF/PACF.
Obtain the residuals ût(h) from the AR(h) estimation.

Step 2: Estimate the following model using OLS:

yt = α1yt−1+α2yt−2+. . .+αnyt−n+ut+m1ût−1(h)+. . .+ml ût−l(h)

This is done for all combinations of (n, l) ≤ p ≤ h.

The order (n, l) which minimises C (n + l) is chosen as the
true order (p, q).
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Part II

Post estimation residual analysis for model
specification
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Estimation residual analysis

Once a model is specified, the residuals are analysed for model
adequacy.
An adequate model is one which captures all the dynamics
and leaves only pure white noise residuals.

Step 1: Graphs for visual checks of the residuals for temporal
patterns.

Step 2: Run statistical tests to test whether the residuals are
white noise or not.
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The Portmanteau test and modifications

The Portmanteau test checks whether the residuals have no
autocorrelation patterns.

H0 : ρ1 = ρ2 = . . . = ρh = 0

H1 : ρi 6= 0

Test statistic: Qh = T
∑h

k=1 ρ̂
2
k

Test distribution: ∼ χ2(h − p − q) under H0.

Box-Ljung-Pierce test modifies the test statistic to adjust
for a better approximation to the distribution used.

Q∗
h = T (T + 2)

h∑
k=1

ρ̂2
k/(T − k)
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Other statistical tests on the residual autocorrelations

LM test. This is also sometimes called the Breusch-Godfrey
test. Fit an AR(h) model to the residuals:

ut = β1ut−1 + β2ut−2 + . . .+ βhut−h + ξt

H0 : β1 = β2 = . . . = βh = 0 vs.

H1 : β1 = 0, or β2 = 0, or . . . β1 = h

This is estimated using OLS.

The test statistic is TR2 which is distributed as χ2(h) under the null.

Higher-order moment tests.
The next level of tests check for the nonnormality of the
residual distribution by testing the values of the higher order
moments.

Lomnicki-Jacque-Bera test: for nonnormality of 3rd , 4th

order moments.
LM test on ARCH residuals:
RESET test

We do these in detail after developing models of
heteroskedasticity.
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Part III

Applying our learning: Fitting models to data
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We’re given three time-series

N Mean Variance

x1 200 0.03 0.06
x2 200 -0.01 0.05
x3 200 -0.00 0.11
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Let’s look at them

> par(mfrow=c(3,1),

+ mai=c(.4,.6,.1,.1))

> hilo <- range(c(x1,x2,x3))

> plot(x1, xlab="", ylim=hilo); abline(h=0)

> plot(x2, xlab="", ylim=hilo); abline(h=0)

> plot(x3, xlab="", ylim=hilo); abline(h=0)

Susan Thomas Model specification



x1

0 50 100 150 200

−
1.

0
0.

0
0.

5
1.

0

x2

0 50 100 150 200

−
1.

0
0.

0
0.

5
1.

0

x3

0 50 100 150 200

−
1.

0
0.

0
0.

5
1.

0

Susan Thomas Model specification



Let’s look at ACFs and PACFs

> par(mfrow=c(3,2), mai=c(.4,.6,.1,.1))

> mypic <- function(x, labelstring) {

+ acf(x,main="",xlab="",mar=c(1,1,1,.8))

+ text(x=12.5, y=.9, labels=labelstring, cex=1.2)

+ pacf(x,main="",xlab="",mar=c(1,1,1,.8))

+ }

> mypic(x1,"x1"); mypic(x2,"x2"); mypic(x3,"x3")
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Part IV

Analysing x1
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Let’s evaluate AR models for x1

Recall: We think it’s AR, not AR(1), might be ARMA.

> results <- matrix(NA, nrow=4, ncol=3)

> rownames(results) <- paste("AR", 0:3)

> colnames(results) <- c("AIC", "SBC", "Ljung-Box p value")

> for (p in 0:3) {

+ m <- arima(x1, order=c(p, 0, 0), method="ML")

+ results[p+1,] <- c(m$aic, AIC(m, k=log(length(x1))),

+ Box.test(m$residuals, type="Ljung")$p.value)

+ }
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Recall that the null of the Ljung-Box test is white noise

> Box.test(rnorm(100), type="Ljung")$p.value

[1] 0.4829763

> Box.test(cumsum(rnorm(100)), type="Ljung")$p.value

[1] 0
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Model selection for x1

AIC SBC Ljung-Box p value

AR 0 8.5136 15.1102 0.0000
AR 1 -69.4124 -59.5175 0.0660
AR 2 -78.3769 -65.1836 0.9146
AR 3 -76.4596 -59.9680 0.9603

Suggests: AR(2) (a big gain in AIC compared with AR(1).
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AR(2) model for x1

> arima(x1, order=c(2, 0, 0), method="ML")

Call:
arima(x = x1, order = c(2, 0, 0), method = "ML")

Coefficients:
ar1 ar2 intercept

0.4386 0.2314 0.0259
s.e. 0.0686 0.0689 0.0412

sigma^2 estimated as 0.03792: log likelihood = 43.19, aic = -78.38
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Part V

Analysing x2

Susan Thomas Model specification



Let’s evaluate MA models for x2

Recall: We think it’s MA(1) (likely), might be MA(2).

> results <- matrix(NA, nrow=4, ncol=3)

> rownames(results) <- paste("MA", 0:3)

> colnames(results) <- c("AIC", "SBC", "Ljung-Box p value")

> for (q in 0:3) {

+ m <- arima(x2, order=c(0, 0, q), method="ML")

+ results[q+1,] <- c(m$aic, AIC(m, k=log(length(x2))),

+ Box.test(m$residuals, type="Ljung")$p.value)

+ }
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Model selection for x2

AIC SBC Ljung-Box p value

MA 0 -39.9416 -33.3450 0.0000
MA 1 -72.9462 -63.0512 0.4325
MA 2 -73.6604 -60.4671 0.9507
MA 3 -71.9553 -55.4637 0.9808

Suggests: MA(1). MA(2) is only a small gain in AIC compared
with MA(1).
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MA(1) model for x2

> arima(x2, order=c(0, 0, 1), method="ML")

Call:
arima(x = x2, order = c(0, 0, 1), method = "ML")

Coefficients:
ma1 intercept

-0.4947 -0.0078
s.e. 0.0697 0.0071

sigma^2 estimated as 0.0394: log likelihood = 39.47, aic = -72.95
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Part VI

Analysing x3
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Let’s evaluate AR and ARMA models for x3

Recall: We think it’s ARMA(1,1) or AR(2)

> results <- matrix(NA, nrow=5, ncol=3)

> rownames(results) <- c("AR0", "AR(1)","AR(2)","AR(3)",

+ "ARMA(1,1)")

> colnames(results) <- c("AIC", "SBC", "Ljung-Box p value")

> for (p in 0:3) {

+ m <- arima(x3, order=c(p, 0, 0), method="ML")

+ results[p+1,] <- c(m$aic, AIC(m, k=log(length(x3))),

+ Box.test(m$residuals, type="Ljung")$p.value)

+ }

> m <- arima(x3, order=c(1,0,1), method="ML")

> results[5,] <- c(m$aic, AIC(m, k=log(length(x3))),

+ Box.test(m$residuals, type="Ljung")$p.value)
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Model selection for x3

AIC SBC Ljung-Box p value

AR0 130.3049 136.9015 0.0000
AR(1) -104.1459 -94.2509 0.0450
AR(2) -107.6283 -94.4350 0.5794
AR(3) -114.6651 -98.1735 0.9713

ARMA(1,1) -111.3014 -98.1081 0.7441

Suggests: ARMA(1,1) or AR(3). The AR(3) model has a better
AIC but requires one more free parameter.

Susan Thomas Model specification



AR(3) model for x3

> arima(x3, order=c(3, 0, 0), method="ML")

Call:
arima(x = x3, order = c(3, 0, 0), method = "ML")

Coefficients:
ar1 ar2 ar3 intercept

-1.0021 -0.3675 -0.2089 -0.0009
s.e. 0.0689 0.0954 0.0687 0.0049

sigma^2 estimated as 0.03118: log likelihood = 62.33, aic = -114.67

Strange AR(1) coefficient!
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ARMA(1,1) model for x3

> arima(x3, order=c(1, 0, 1), method="ML")

Call:
arima(x = x3, order = c(1, 0, 1), method = "ML")

Coefficients:
ar1 ma1 intercept

-0.7382 -0.3046 -0.0009
s.e. 0.0576 0.0904 0.0051

sigma^2 estimated as 0.03204: log likelihood = 59.65, aic = -111.3
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How different are these, really?

> tmp <- function(x, order) {

+ arima(x, order=order, method="ML")$residuals

+ }

> e <- cbind(tmp(x3, order=c(2,0,0)),

+ tmp(x3, order=c(3,0,0)),

+ tmp(x3, order=c(1,0,1)))

> colnames(e) <- c("AR(2)","AR(3)","ARMA(1,1)")

> cor(e)

AR(2) AR(3) ARMA(1,1)
AR(2) 1.0000000 0.9779688 0.9942808
AR(3) 0.9779688 1.0000000 0.9872445
ARMA(1,1) 0.9942808 0.9872445 1.0000000
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Part VII

Bottom line
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Systematic steps in ARMA identification

Analyse the ACF and PACF

Estimate some candidates

Use the AIC, SBC and tests of serial correlation of the residual
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How did we fare?

Problem We think The truth

x1 AR(2), (0.44, 0.23) AR(2), (0.4, 0.3)
x2 MA(1), (-0.49) MA(1) (-0.4)
x3 ARMA(1,1), (-0.73, -0.3) ARMA(1,1), (-0.7, -0.4)
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Part VIII

Expert systems for ARMA identification

Susan Thomas Model specification



The idea

An expert system : encode in computer software all the steps
that a sophisticated human expert would make.

Writing an expert system forces us to go up from vague
intuition to writing down hard rules.

The field of: automatic identification of ARMA models
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Automatic choice of AR order

> ar(x1)$order

[1] 2

> ar(x2)$order

[1] 6

> ar(x3)$order

[1] 3

He gets x1 right

He thinks x2 is a long lag AR process

He gets x3 wrong.
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forecast::auto.arima()

> library(forecast)

This is forecast 1.24

> auto.arima(x1, ic="aic", trace=TRUE)

ARIMA(2,0,2) with non-zero mean : -74.03315
ARIMA(0,0,0) with non-zero mean : 8.91052
ARIMA(1,0,0) with non-zero mean : -68.45697
ARIMA(0,0,1) with non-zero mean : -36.42676
ARIMA(1,0,2) with non-zero mean : -75.10331
ARIMA(1,0,1) with non-zero mean : -76.05008
ARIMA(1,0,1) with zero mean : -77.60985
ARIMA(0,0,1) with zero mean : -36.89050
ARIMA(2,0,1) with zero mean : -76.9843
ARIMA(1,0,0) with zero mean : -69.80587
ARIMA(1,0,2) with zero mean : -76.63824
ARIMA(0,0,0) with zero mean : 9.297301
ARIMA(2,0,2) with zero mean : -75.35354

Best model: ARIMA(1,0,1) with zero mean

Series: x1
ARIMA(1,0,1) with zero mean

Call: auto.arima(x = x1, ic = "aic", trace = TRUE)

Coefficients:
ar1 ma1

0.7929 -0.3330
s.e. 0.0646 0.0975

sigma^2 estimated as 0.03828: log likelihood = 42.25
AIC = -78.5 AICc = -78.38 BIC = -68.6
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What does it find?

> names(auto.arima(x1, ic="aic")$coef)

[1] "ar1" "ma1"

> names(auto.arima(x2, ic="aic")$coef)

[1] "ma1" "ma2"

> names(auto.arima(x3, ic="aic")$coef)

[1] "ar1" "ma1" "ma2"

Susan Thomas Model specification



SBC fares better?

> names(auto.arima(x1, ic="bic")$coef)

[1] "ar1" "ar2"

> names(auto.arima(x2, ic="bic")$coef)

[1] "ma1"

> names(auto.arima(x3, ic="bic")$coef)

[1] "ar1" "ma1"
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Conclusion

Your first best approach is to study the data, draw graphs,
think.

If you’re in a hurry, you can go far with forecast::auto.arima(x,
ic=”bic”)
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