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Dynamics in the second moments

So far, all models dealt with stochastic dependence in the first
moment:

xt = φ1xt−1 + . . .+ φpxt−p + εt + θ1εt−1 + . . .+ θqεt−q

ε ∼ iid(0, σ2)

Dependence in the second moment is:

xt = εt

ε ∼ iid(0, σ2
t )

σ2
t = γ1σ

2
t−1 + . . .+ γkσ

2
t−k
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Simulating ARCH data

> library(ccgarch)

> N <- 2000

> a <- c(0.1, 0.5, 0.0)

> et <- uni.vola.sim(a, N)
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The data
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ACF/PACF of the data
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The data squared
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ACF/PACF of the data squared
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Part I

The ARCH/GARCH model
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Modelling heteroskedasticity

In a generic ARMA model, Φ(L)yt = Θ(L)εt , we assume that

E (εt) = 0

E (εtεt) = σ2

E (εtετ ) = 0

The implication is that the unconditional variance of εt is
constant.
But the conditional variance of εt could change over time.
To capture this, we can rewrite the error term characteristics
as:

εt =
√

(ht)νt

E (νt) = 0,E (ν2
t ) = 1

E (ε2t ) = ht

where ht can be some deterministic function through time.
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The ARCH family

If ht is a linear function with lagged values of the mean
equation errors, then the time-series dynamic of volatility is
like an AR process.

ε2t = γ0 + γ1ε
2
t−1 + γ2ε

2
t−2 + . . .+ wt

E (wt) = 0,E (wt ,wt) = λ2,E (wt ,wτ ) = 0

E (ε2t ) = γ0 + γ1ε
2
t−1 + γ2ε

2
t−2 + . . .+ 0

ε2t = htν
2
t

E (ε2t ) = ht

ht = γ0 + γ1ε
2
t−1 + γ2ε

2
t−2 + . . .

This is called the Autoregressive Conditional
Heteroskedasticity (ARCH) model. Engle (1982)
The order of the model is the number of terms of lagged ε2

are contained in it.
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ARCH is an AR model of volatility

For example, we consider the ARCH(1) model:

yt = α + εt

εt ∼ N(0, ht)

ht = γ0 + γ1ε
2
t−1

ht is a deterministic estimate of volatility.
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ARCH is an AR model of volatility

Since we can never observe volatility with certainty, true volatility
ε2t is defined as:

ε2t = ht + wt

Then the above equation for ht can be re-expressed as:

ε2t − wt = γ0 + γ1ε
2
t−1

ε2t = γ0 + γ1ε
2
t−1 + wt

(1− γ1L)ε2t = γ0 + wt

This is an AR(1) in ε2t , where wt as the error between the
deterministic part of volatility ht and actual volatility ε2t .
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Stationarity of ARCH(1)

The ARCH(1) is defined as:

yt = α + εt

εt ∼ N(0, ht)

ht = γ0 + γ1ε
2
t−1
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Stationarity of ARCH(1)

We check for stationarity conditions:

E (yt) = α

E (yt)2 = E (ht)

E (ht) = γ0 + γ1E (ε2t−1)

(1− γ1)E (ht) = γ0

E (ht) = σ2 = γ0/(1− γ1)

E (ytyt−1) = E (
√

(ht)νt

√
(ht−1νt−1) = 0

The new stationarity conditions are that γ1 < 1.

However, this is not a sufficient condition to ensure
strong–form stationarity when the errors are gaussian
distributed.
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ARCH(p)

The ARCH(p) is defined as:

yt = α + εt

εt ∼ N(0, ht)

ht = γ0 + γ1ε
2
t−1 + γ2ε

2
t−2 + . . . γpε

2
t−p

HW: Work out what is the stationarity conditions on the ARCH(p)
model?
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ARCH models with real–world data

The ARCH models were quite successful in describing
volatility dynamics, specifically in the world of finance
(interest rate, foreign exchange, equity price volatility).

However, a common feature was that the best specifications
of volatility dynamics implied very long lags for the ARCH
process.
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The GARCH specification

Bollerslev, (1986) came up with the GARCH specification to
create a more parsimonious specification to describe financial
market volatility.

The simplest of the GARCH specification is that of a
GARCH(1,1) model. This is defined as:

yt = α + εt

εt ∼ N(0, ht)

ht = γ0 + γ1ε
2
t−1 + β1ht−1

More generically, there are GARCH(p,q) specifications where
ht is:

ht = γ0 + γ1ε
2
t−1 + . . .+ γpε

2
t−1 + β1ht−1 + . . .+ βqht−q

Susan Thomas Changes in second moments: models of conditional heteroskedasticity



GARCH is an ARMA form of heteroscedasticity

ht = γ0 + γ1ε
2
t−1 + β1ht−1

However, this is only the deterministic part of volatility. Actual
volatility ε2t cannot be observed fully, and is therefore defined as:

ε2t = ht + wt

Then, the above equation in ht becomes:

ht = ε2t − wt = γ0 + γ1ε
2
t−1 + β1ht−1

ε2t = γ0 + γ1ε
2
t−1 + β1(ε2t−1 − wt−1) + wt

= γ0 + (γ1 + β1)ε2t−1 + wt − β1wt−1

(1− (γ1 + β1)L)ε2t = γ0 + (1− β1L)wt

This is an ARMA(1,1) model with the AR component of ε2t and
the MA component of wt .
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Stationarity conditions for GARCH(1,1)

E (yt) = α

E (yt)2 = E (εt)2

E (εt)2 = γ0 + (γ1 + β1)E (ε2t−1) + wt − β1wt−1

(1− γ1 − β1)σ2 = γ0

σ2 = γ0/(1− (γ1 + β1))

For stationarity, we need (γ1 + β1) < 1.
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HW 1

Find out the AR form and the stationarity conditions for an
AR(1)-ARCH(3) specification.

Find out the AR form and the stationarity conditions for an
GARCH(1,2) specification.

Susan Thomas Changes in second moments: models of conditional heteroskedasticity



Part II

MLE for time series models of heteroskedasticity
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MLE for ARCH models

The parameter vector for an ARCH(m) model is
Γ = α0, α1, . . . , αm,.
We assume that νt and wt have σ2 = 1.
Assuming that νt is normally distributed, εt is normally
distributed.
For the ARCH model, the conditional likelihood for xt

becomes:

f (xt ; Γ, xt−1, . . .) = f (xt ; (α0, α1, . . . , αm), xt−1, . . .)

=
1√

2πht
exp

[
−1

2

(
x2
t

ht

)]
=

1√
2π(α0 + α1x2

t−1 + α2x2
t−2 + . . .)

exp

[
−1

2

(
x2
t

α0 + α1x2
t−1 + α2x2

t−2 + . . .

)]
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Conditional MLE for ARCH(1)

For the first observation, x1

x1 = ε1

ε1 ∼ N(0, h1)

h1 = α0 + α1ε
2
0

For the data (x1, . . . , xT ), we say that

E (ε0) = E (x0) = 0

E (ε20) = E (x2
t ) = σ̂2

ε = σ̂2
x

The density of the first observation is

f (x1; Γ) = f (x1;α0, α1)

=
1√

2π(α0 + α1σ̂2
x)

exp

[
−
(

x2
1

2(α0 + α1σ̂2
x)

)]
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Conditional MLE for ARCH(1), contd.

For the second observation, x2

x2 = ε2

ε2 ∼ N(0, h2)

h2 = α0 + α1ε
2
1

= α0 + α1x2
1

Therefore,
f (x2|Γ, x1) = f (x2|α0, α1, x1)

=
1√

2π(α0 + α1x2
1 )

exp

[
−
(

x2
2

2(α0 + α1x2
1 )

)]
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Conditional MLE for ARCH(1), contd.

For the third observation, x3

x3 = ε3

ε3 ∼ N(0, h3)

h3 = α0 + α1ε
2
2

= α0 + α1x2
2

f (x3|Γ, x2) = f (x3|α0, α1, x2)

=
1√

2π(α0 + α1x2
2 )

exp

[
−
(

x2
3

2(α0 + α1x2
2 )

)]
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Unconditional MLE for ARCH(1) model

For observation 1, x1

E (ε20) = α0/(1− α1)

Therefore, the likelihood of x1 is,

f (x1; Γ) = f (x1;α0, α1)

=
1√

2π(α0 + α1(α0/(1− α1)))
exp

[
−
(

x2
1

2(α0 + α1(α0/(1− α1)))

)]
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HW 2

1 Calculate the first order derivatives for the log likelihood
function of an ARCH(2) model.

2 Calculate the second order derivatives for the log likelihood
function of an ARCH(2) model.
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MLE for GARCH models

The parameter vector for a GARCH(m,n) model is
Γ = α0, α1, . . . , αm, γ1, . . . , γn.
We assume that νt and wt have σ2 = 1.
Assuming that νt is normally distributed, εt is normally
distributed.
For the GARCH model, the conditional likelihood for xt

becomes:

f (xt ; Γ, xt−1, . . .) = f (xt ; (α0, α1, . . . , αm, γ1, . . . , γn), xt−1, . . . , ht−1, . . .)

=
1√

2πht
exp

[
−1

2

(
x2
t

ht

)]
=

1√
2π(α0 + α1x2

t−1 + α2x2
t−2 + . . .+ γ1ht−1 + . . .)

exp

[
−1

2

(
x2
t

α0 + α1x2
t−1 + α2x2

t−2 + . . .+ γ1ht−1 + . . .

)]
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Conditional MLE for GARCH(1,1)

For the first observation, x1

x1 = ε1

ε1 ∼ N(0, h1)

h1 = α0 + α1ε
2
0 + γ1h0

E (ε20) = E (x2
t ) = σ̂2

x

h0 = E (ε20) = σ̂2
x

The density of the first observation is

f (x1; Γ) = f (x1;α0, α1, γ1)

=
1√

2π(α0 + (α1 + γ1)σ̂2
x)

exp

[
−
(

x2
1

2(α0 + (α1 + γ1)σ̂2
x)

)]
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Conditional MLE for GARCH(1,1), contd.

For the second observation, x2

x2 = ε2

ε2 ∼ N(0, h2)

h2 = α0 + α1ε
2
1 + γ1h1

= α0 + α1x2
1 + γ1h1

Therefore,
f (x2|Γ, x1) = f (x2|α0, α1, x1)

=
1√

2π(α0 + α1x2
1 + γ1h1)

exp

[
−
(

x2
2

2(α0 + α1x2
1 + γ1h1)

)]
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Conditional MLE for GARCH(1,1), contd.

For the third observation, x3

x3 = ε3

ε3 ∼ N(0, h3)

h3 = α0 + α1ε
2
2 + γ1h2

= α0 + α1x2
2 + γ1h2

f (x3|Γ, x2) = f (x3|α0, α1, x2)

=
1√

2π(α0 + α1x2
2 + γ1h2)

exp

[
−
(

x2
3

2(α0 + α1x2
2 + γ1h2)

)]
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Unconditional MLE for GARCH(1,1) model

For observation 1, x1,

E (ε20) = α0/(1− α1 − γ1)

E (h0) = α0/(1− α1 − γ1)

Therefore, the likelihood of x1 is,

f (x1; Γ) = f (x1;α0, α1)

=
1√

2π(α0 + (α1 + γ1)(α0/(1− α2
1 − γ1)))

exp

[
−
(

x2
1

2(α0 + (α1 + γ1)α0/(1− α1 − γ1))

)]
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Problems

1 Calculate the first order derivatives for the log likelihood
function of an GARCH(1,1) model.

2 Calculate the second order derivatives for the log likelihood
function of an GARCH(1,1) model.

3 How are these first order derivatives different from those of an
ARCH(2) model?
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Joint ARCH models, some examples

AR-ARCH models: for example, AR(1)-ARCH(1) –

xt = a + φxt−1 + εt

ht = α0 + α1ε
2
t−1

MA-ARCH models: for example, MA(1)-ARCH(1) –

xt = a + εt + θεt−1

ht = α0 + α1ε
2
t−1

ARMA-ARCH models: for example, ARMA(1,1)-ARCH(2) –

xt = a + φxt−1 + θεt−1 + εt

ht = α0 + α1ε
2
t−1 + α1ε

2
t−2
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Joint GARCH models, some examples

AR-GARCH models: for example, AR(1)-GARCH(1,1) –

xt = a + φxt−1 + εt

ht = α0 + α1ε
2
t−1 + γ1ht−1

MA-GARCH models: for example, MA(1)-GARCH(2,1) –

xt = a + εt + θεt−1

ht = α0 + α1ε
2
t−1 + α2ε

2
t−2 + γ1ht−1

ARMA-GARCH models: for example,
ARMA(1,1)-GARCH(1,2) –

xt = a + φxt−1 + θεt−1 + εt

ht = α0 + α1ε
2
t−1 + γ1ht−1 + γ2ht−2
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Conditional MLE for AR(1)-GARCH(1,1)

For the first observation, x1

x1 = a + θx0 + ε1

ε1 ∼ N(0, h1)

h1 = α0 + α1ε
2
0 + γ1h0

We know that

E (x0) = µ̂x

ε1 = x1 − a− θµ̂x

E (ε20) = E ((xt − a− θµ̂x)2) = σ̂2
ε

h0 = E (ε20) = σ̂2
ε
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Conditional MLE for AR(1)-GARCH(1,1)

The density of the first observation is

f (x1; Γ) = f (x1; a, θ, α0, α1, γ1)

=
1√

2π(α0 + (α1 + γ1)σ̂2
ε )

exp

[
−
(

(x1 − a− θµ̂x)2

2(α0 + (α1 + γ1)σ̂2
ε )

)]
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Conditional MLE for AR(1)-GARCH(1,1), contd.

For the second observation, x2

x2 = a + θx1 + ε2

ε2 = (x2 − a− θx1) ∼ N(0, h2)

h2 = α0 + α1ε
2
1 + γ1h1

= α0 + α1x2
1 + γ1h1

Therefore,
f (x2|Γ, x1) = f (x2|α0, α1, x1)

=
1√

2π(α0 + α1x2
1 + γ1h1)

exp

[
−
(

(x2 − a− θx1)2

2(α0 + α1x2
1 + γ1h1)

)]
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Conditional MLE for AR(1)-GARCH(1,1), contd.

For the third observation, x3

x3 = ε3

ε3 = (x3 − a− θx2) ∼ N(0, h3)

h3 = α0 + α1ε
2
2 + γ1h2

= α0 + α1x2
2 + γ1h2

f (x3|Γ, x2) = f (x3|α0, α1, x2)

=
1√

2π(α0 + α1x2
2 + γ1h2)

exp

[
−
(

(x3 − a− θx2)2

2(α0 + α1x2
2 + γ1h2)

)]
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HW 3

1 How are the first order derivatives of an AR(1)-GARCH(1,1)
model different from those of a simple GARCH(1,1) model?
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Part III

Alternative specifications for heteroskedasticity
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Other models of heteroskedasticity

Standardised residuals from GARCH models still display some
presence of fat tails. This led to the following models:

νt is modelled as having a non–gaussian distribution. Some of
the literature uses a t-distribution to model νt .
EGARCH, or exponential garch. Nelson (1991)

1 It models log ht instead of ht .
2 It allows the variance to have asymmetric behaviour to reflect

any asymmetries in the data. This model uses |εt−i | along with
εt−i to capture the asymmetries in the returns data in the
heteroskedasticity model.

Other models have been developed which also models the
asymmetric effect without using the exponential form.
IGARCH, or Integrated GARCH. These are models where the
variance is non–stationary. It has the form of the GARCH
model, where the GARCH parameters add to one. For
example, an IGARCH(1,1) model will have the form:

ht = α0 + α1ε
2
t−1 + (1− α1)ht−1
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ARCH–in–mean models

xt is a linear function of ht .

How ht enters the function for xt comes from (a) theory and
(b) empirical testing both.

For example, an AR(1)-ARCH(1)–in–mean model:

xt = a + φxt−1 + d
√

ht + εt

ht = α0 + α1εt−1
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