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Goals

Trends in economic data.

Alternative models of time series trends:

deterministic trend, and
stochastic trend.

Comparison of deterministic and stochastic trend models
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The statistical models

Two models for a a series that shows a growth through time:

1 A model with a deterministic trend

xt = α + βt + (1− θL)εt , εt ∼ N(0, σ2
ε )

2 A model with a stochastic trend, ie, an integrated process of
some order. The simplest is an I(1) process like a random
walk:

yt = yt−1 + (1− θL)νt , νt ∼ N(0, σ2
ν)
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Deterministic trend model

In the model: yt = α + βt + (1− θL)εt , the unconditional
mean converges to

E (ŷt) = α + βt

This is a linear function of time, t.

Implication of the model: the main dynamic in the model is
the long term “trend”. All deviations from the trend is
eventually washed out and the trend is the long term expected
value.
To obtain the innovations,

1 Estimate the deterministic trend
2 Detrend the series by subtracting the deterministic trend as

yt − α− βt.
3 The resulting residuals are stationary.

Therefore, such a process is also called a “trend-stationary”
process.
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The stochastic trend model

If the variable is xt ,

xt = xt−1 + (1− θL)εt

This is called an I (1) or “integrated to the order of 1” process
since the first difference

∆xt = xt − xt−1 = (1− θL)εt

is stationary.

Here the expected value of the variable at any time in point is
the value of the previous period.
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Types of stochastic trend models used

Two popular forms of stochastic trend models (with white noise
innovations) are:

1 Pure random walk: zt = zt−1 + εt .
When zt is rolled back to understand the information it
contains, it becomes

zt = z0 +
∑t

i=0 εi
2 Random walk with drift: zt = δ + zt−1 + εt , where each zt is:

zt = z0 + δt +
∑t

i=0 εi

Here, we see that there is still a deterministic time trend, but
the deviations of zt from the trend is not stationary.

3 In both cases, if zt is differenced once to give z̃t = zt − zt−1,
it becomes stationary.

1 zt − zt−1 = z̃t = εt
2 zt − zt−1 = z̃t = δ + εt

These are called “difference-stationary” process.
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Terminology: general stochastic trend model

Recall the vocabulary of ARMA(p, q) models.

Suppose we have a time–series Xt where the first differences
∆Xt are ARMA(p, q). Then Xt is said to be integrated of
order 1, generally referred to as:

ARIMA(p, 1, q).

For example, if Xt is ARIMA(p, 1, q) process “with drift”, it
would be specified as:

Xt = α + Xt−1 + Ξ(L)εt ,

where Ξ(L) is such that
Φ(L)εt = Θ(L)ωt

ωt ∼ N(0, σ2
ω)
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Terminology: higher order general stochastic trend model

More generally, we may have ARIMA(p, d , q) processes.
For example, a random walk with drift model having
ARMA(p,q) innovation, which is integrated to the order of d
is written as:

Xt(1− L)d = α + Ξ(L)εt

However, several economic time series appear to be integrated
to the order of one, (I (1)).
Processes with higher orders of integration are rare.
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A Monte Carlo simulation of a time trend vs. I(1)

e <- rnorm(5000, sd=5)

x <- xi <- NULL

x[1] <- xi[1] <- e[1]

for (i in 2:5000) {

x[i] <- 1.2 + 0.1*i + e[i] + 0.5*e[i-1];

xi[i] <- xi[i-1] + e[i] + 0.5*e[i-1]

}

hilo <- range(rbind(x[1:100], xi[1:100]))

plot(x[1:100], type="l", lwd=2, ylim=hilo)

lines(xi[1:100], type="l", col="red", lwd=2)

N <- c(100, 200, 500)

par(mfrow=c(3,1))

for (i in 1:3) {

n <- N[i]

hilo <- range(rbind(x[1:n], xi[1:n]))

plot(1:n, x[1:n], type="l", ylim=hilo,

xlab="", ylab="", lwd=2,

main="Time trend of 0.25 vs. I(1)")

abline(h=0, lty=2)

lines(1:n, xi[1:n], col="red")

}
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First 1000 obs
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First 1000 obs
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Part I

Motivation to worry about trend stationary vs.
difference stationary processes
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Spurious regressions in econometrics

Clive W. J. Granger and P. Newbold, ”Spurious regressions in
econometrics.” Journal of Econometrics, 2:pg 111 – 120, (1974)
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What do you think about this regression?

> lm(formula = y ~ x)

>

> Residuals:

> Min 1Q Median 3Q Max

> -25.61685 -4.50486 -0.07608 4.56791 27.31734

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) -3.927e+00 1.347e-01 -29.16 <2e-16 ***

> x 6.667e+00 7.767e-05 85829.09 <2e-16 ***

> ---

> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 6.727 on 9998 degrees of freedom

> Multiple R-squared: 1, Adjusted R-squared: 1

> F-statistic: 7.367e+09 on 1 and 9998 DF, p-value: < 2.2e-16
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Where this came from

> obs <- 10000

>

> tind <- seq(1, obs, 1)

> x <- 0.2 + 0.3*tind + rnorm(obs,2)

> y <- 7 + 2*tind + rnorm(obs,4)

>

> m1 <- lm(y ~ x)
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We have a problem

The DGPs of Xt and Yt were totally unrelated.

Yet, OLS appears to establish a strong correlation between
them.

This seems to happen when both X and Y have time trends –
e.g. a regression of sugarcane production in Maharashtra on
spark plug production in Detroit.

Economists had indulged in a vast number of such regressions
in the post–war years, so this was a really damaging problem -
it invalidated a great deal of existing empirical papers.
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The setting

Suppose we have two series, xt , yt , which are uncorrelated
random walks:

xt = xt−1 + εt

yt = yt−1 + νt , where

εt ∼ iid(0, σ2
ε)

νt ∼ iid(0, σ2
ν)

E(εt , νt) = 0

E(εt , εt−i ) = 0∀i
E(νt , νt−i ) = 0∀i

Model for how xt , yt are related: yt = α + βxt + γt
Null hypothesis:

H0 : α = 0;H0 : β = 0

H0 : α = β = 0

Statistical tests:
1 t-statistic for β = 0, α = 0
2 F-statistic for the joint of α = β = 0
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Fundamental problem in testing the null

The above framework follows the classical framework to test
one model vs. another model.

However, following this framework leads to fundamental flaws.
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Problem in testing H0 : α = 0

Under H0 : α = 0, the model becomes:

yt = βxt + γt

This is a projection of a random walk on a random walk.
However, ρ̂xy converge to 1, even though the two are
unrelated.
Monte Carlo simulations show that

When the series are I(0) and uncorrelated, ρ̂xy is distributed as
nearly normal with a mean of 0.
When the series are I(1) with uncorrelated innovations, ρ̂xy

tends more towards a value of 1.
When the series have higher order of integration also, ρ̂xy is
very likely to have values of +1,−1.

G. U. Yule., ”Why do we sometimes get nonsense correlations
between time series? A study in sampling and the nature of
time series.” Journal of the Royal Statistical Society, 89:pages
164 (1926)
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Problems in testing H0 : β = 0; α = β = 0

Under H0 : β = 0, the model is:

yt = α + γt

This is a model of white noise with a level of α.

Under H0 : α = β = 0, the model is:

yt = γt

This also implies that yt is a white noise series.

However, the null that we want to test is not the white noise
model.
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Distributions of OLS β with I(1) variables

Some of the documented problems if dealing with I(1)
variables:

t-statistics on α and β are not t-distributed; in fact, they do
not have limiting distributions.
t-statistics on α and β diverge in distribution as T →∞.
F -statistic diverges in distribution as T →∞.
The autocorrelation coefficients of the OLS residuals, ρ̂γ → 1

Therefore, any inference made using conventional tests of
hypothesis in an OLS setting will be false when the variables
regressed are non–stationary.
P. C. B. Phillips. ”Understanding Spurious Regressions in
Econometrics.” Journal of Econometrics, 33:pages 311340
(1986)
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Some aspects documented for nonstationary timeseries in a
multivariate setting

Very high correlations between variables.

Very high autocorrelation in OLS residuals even if H0 : β = 0
is not rejected.

An increasing rejection rate for H0 : β = 0 as T →∞.
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Part II

Sample size T and convergance issues for trend
stationary vs. difference stationary models
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OLS estimates for trend stationary models

Model: yt = α + βt + εt .

Ordinary OLS:√
N(β̂ols − β) = [(1/N)

∑N
i=1 xix

′
i ]
−1[(1/

√
N
∑1

i=1 xiεi ]

For the deterministic time trend model:[
α̂

β̂

]
=

[ ∑T
t=1 1

∑T
t=1 t∑T

t=1 t
∑T

t=1 t2

]−1 [ ∑T
t=1 εt∑T
t=1 tεt

]
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Convergance properties for the OLS estimates of a
deterministic trend

α̂ converges at the rate of T 1/2, and β̂ at the rate of T 3/2.
Therefore,
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If the trend is truly deterministic, then all the standard tests
of OLS estimates are asymptotically valid, given that the
correct rates of convergance are used for each parameter.

However, identifying whether the trend observed in a given
data set arises from a deterministic trend vs. stochastic trend,
gets complicated.
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Problems with β inference with I(1) data

Typically, the deterministic trend model is estimated as
yt = α + βt + εt , and tested for the null:

H0 : α = β = 0

If the underlying data is I(1), the estimate of β does converge
to 0.
But the standard error for β does not converge to 0 under
large samples.
The behaviour of the t-statistic for the estimated β is not well
understood with non-stationary data as T increases.

If the underlying data is I(1), the estimate for α is divergent.
As T →∞, σα →∞.

S. N. Durlauf and P. C. B. Phillips , “Trends vs. random
walks in time series analysis”, Econometrica 56, pgs 1333-54
(1988).
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Detecting I(1) when φi is very close to 1

The stationary process –

xt = ρxt−1 + εt

Innovations move the process away from 0, but they tend to
die away over time.
Var(xt) = σ2

ε /(1− ρ), a finite and tame quantity.

The process
xt = xt−1 + εt

is profoundly different.

Difficulty in identification:

If ρ = 1, it is an I (1) process.
If ρ = 0.999 it is I (0).

It proves to be difficult to tell the two apart.
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The statistical problem

Model: yt = ρyt−1 + εt .
What happens at the boundary of ρ < 1 and ρ = 1? Say
ρ = 1− ν, where ν is very small.

For finite T , the variance of the series is:

σ2
y = σ2(1 + ρ2 + ρ4 + . . .+ ρ2(t−1))

= σ2t + σ2

(t−1)∑
i=1

ρ2i

When T is finite, σ2
y behaves as if it has a trend – ie, yt

behaves like an I(1) process.

Asymptotically, it behaves like a I(0) process.

This parameterisation is useful when deriving asymptotics for
the tests of unit root.
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A Monte Carlo simulation of a time trend vs. I(1)

> e <- rnorm(25000)

>

> x <- xni <- xi <- NULL

> x[1] <- xni[1] <- xi[1] <- e[1]

> for (i in 2:25000) {

> x[i] <- 0.2*x[i-1] + e[i];

> x[i] <- 0.99*x[i-1] + e[i];

> xi[i] <- xi[i-1] + e[i]

> }

>

> pdf("pix/i1sim-1.pdf", pointsize=8, width=5.6, height=3.2)

>

> n <- 100

> hilo <- range(rbind(x[1:n], xni[1:n], xi[1:n]))

> plot(1:n, x[1:n], type="l", ylim=hilo,

> xlab="", ylab="", lwd=2,

> main="AR1 coef of 0.5 vs. I(1)")

> abline(h=0, lty=2)

> lines(1:n, xni[1:n], col="red")

> lines(1:n, xi[1:n], col="blue")

>}
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First 100 obs
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First 1000 obs
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First 10000 obs
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Data demands

100 observations is roughly half a year of daily data, 8 years of
monthly data, 25 years of quarterly data.

1000 obs is roughly 4 years of daily data, 83 years of monthly
data, 250 years of quarterly data.

Typically, economic time series are available in the range of
50–60 years of data, typically quarterly (120 observations) or
monthly (720 observations).
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HW:

1 If the DGP is truly a stationary series, what is the joint test of
the hypothesis that α = β = 0 in the deterministic trend
model?

2 Write a Monte Carlo experiment that will test that the
asymptotic distribution of the (α̂ols , β̂ols) for a deterministic
trend model is really the same as an ordinary OLS estimator.
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