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1 Introduction

Public procurement can be defined as the acquisition of goods and services by the gov-
ernment in order to improve upon the state of the economy. This includes procurement
contracts related to transport, health, education, infrastructure, defence equipments etc.
The government or government agencies call for tender proposals, rather than simply of-
fering the contracts on first-come-first-serve basis. Once the submission period is over and
the proposals are evaluated, the firm quoting the lowest price is declared the winner and
offered the contract. The revenue generated in this manner is high compared to any other
non-competitive procurement process where no bidding takes place and the good is bought
at a fixed or posted price . As Krishna (2010) points out,

“The process of procurement via competitive bidding is nothing but an auction,
except in this case the bidders compete for the right to sell their products or
services. Billions of dollars of government purchases are almost exclusively made
this way.”

It is estimated that public procurement approximately constitutes about 15-20% of GDP in
developed and developing jurisdictions.1 In India, public procurement has been estimated
to constitute about 30% of the GDP. Therefore, procurement processes are considered to be
of utmost economic importance and are a matter of interest to many researchers across the
world.

Quite often, public procurement auctions award the contract based on quality characteristics
along with the price. The firms are required to submit two proposals in the form of their
bids, a financial and a technical one. The financial proposal specifies the price while the
technical proposal specifies the product in terms of “the cost of operating, maintaining and
repairing goods or works, the time for delivery of goods, completion of works or provision of
services, the characteristics of the subject matter of the procurement, such as the functional
characteristics of goods or works and the environmental characteristics of the subject matter,
the terms of payment and of guarantees in respect of the subject matter of the procurement.”2

The technical proposals are then reviewed by an evaluation committee and are assigned
quality scores (Lengwiler and Wolfstetter, 2006).

Che (1993) describe a model where both price and the quality score are aggregated by
the means of a Scoring Rule designed by the buyer. This kind of a procurement process
that is used to buy a differentiated product is often termed as a “Scoring Auction” in the
Auction Literature. In his model, the sellers are assumed to be symmetric and the buyer
does not delegate the task of procuring the desired good to an agent. Further, Che goes on to
define three two-dimensional auctions that are called ‘first-score’, ‘second-score’ and ‘second-
preferred-offer’ auctions. In a first-score auction, “each firm submits a sealed bid and, upon
winning, produces the offered quality at the offered price.” In a second-score auction, the

1The Size of Government Procurement Markets, OECD, 2001.
2Stated under the guidelines of Public Procurement Bill 2012,India.
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winner is asked to match the second highest score in the auction while in a second-preferred-
offer auction, the winner is asked to match the exact price-quality combination of the bidder
who scored the second lowest. One of the crucial findings of his paper is the two-dimensional
Revenue Equivalence Theorem. This theorem states that under a Naive Scoring Rule which
truly reflects seller’s preferences, all the three scoring auctions yield the same expected utility
to the buyer.

The main contribution of our paper is to extend the model used by Che (1993), by considering
first-score and second-score auctions with asymmetric sellers and to show, using an example
that the Revenue Equivalence result no longer holds under a Naive Scoring Rule. According
to Maskin and Riley (2000) “...Asymmetries are often important in contract bidding. Each
potential contractor has essentially the same information about the nature of the project but
a different opportunity cost of completing it. Whenever some aspect of these differences is
common knowledge, beliefs are asymmetric...”. Asymmetry amongst sellers is quite common
in procurement processes in India and can be observed due to differences in location of the
firm (local or distant), processing capacity, technology etc. as emphasized by Ramaswami
et. al. (2009) and Banker and Mitra (2007).

Scoring auctions are found to dominate many other procurement processes such as menu
auctions, beauty contests, and price-only auctions in terms of expected utility to the buyer
even when a supplier’s private information about his costs is multidimensional (Asker and
Cantillon, 2008). The multidimensional and privately known costs can be represented by
their ‘pseudo-types’ and a correspondence can be established between the set of scoring
auctions and the set of standard single object one dimensional Independent Private Value
(IPV) auctions. In that case, equilibrium in the scoring auction acquires all the properties of
the corresponding IPV auction such as existence, uniqueness, efficiency etc. Also, the classic
revenue equivalence theorem can be generalized in multidimensional private information
setting where the first-score, second-score, ascending score and descending score yield same
expected utility to the buyer, provided the scoring rule used is quasi-linear (Asker and
Cantillon, 2004).

To implement a scoring rule with an optimal distortion from the buyer’s preferences and
make an optimal mechanism feasible, a certain degree of commitment is essential which is
not an issue in a public procurement process as the buyer has to abide by strict rules and
guidelines of the procedure (Asker and Cantillon, 2008). Even so, sometimes these optimal
mechanisms are too complicated to be practical. When the supplier’s cost including a fixed
cost and a marginal cost of producing quality is private information, a quasilinear scoring
function can no longer implement the optimal quality scheme. As the optimal mechanism
becomes too complex, simpler schemes such as buyer-optimal efficient auctions, negotiation
and quasilinear score auction are expected to perform better. However, all the above three
procedures under-perform in comparison to the optimal mechanism, negotiation being the
least recommended (Asker and Cantillon, 2005). Branco (1997) design multidimensional
auctions using correlated costs in the setting similar to Che (1993). He recommends a two-
stage optimal procedure where a firm is first selected and later is bargained with to readjust
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its quality bid.

The rest of the paper is divided into the following sections. Section 2 deals with the first-
score procurement auction with asymmetric bidders and section 3 consists of the workings of
the second-score procurement auction under Asymmetry. Section 4 discusses the comparison
between the two auction formats with respect to the expected utility generated for the buyer,
while section 5 concludes.

2 Asymmetric First-Score Procurement Auction

Consider a buyer who wants to procure an indivisible good from two potential suppliers.
The suppliers are supposed to submit a bid specifying the ‘promised quality’ q and the price
p of that good. The buyer’s utility from the contract (q, p) ∈ R2

+ is given by

U(q, p) = V (q)− p,

where we assume that V ′(q) > 0 , V ′′(q) < 0, limq→0 V
′(q) =∞, limq→∞V

′(q) = 0) in order
to ensure an interior solution.

There are two risk-neutral, (expected) profit maximizing suppliers, labelled strong (s) and
weak (w). The cost incurred by a firm in producing the good of the promised quality level
q is c(q, θi) where θi is the cost or efficiency parameter of the firm and is privately known.
Also, let us assume that cq > 0, cθ < 0, cqq ≥ 0, cθθ > 0 , cqθ < 0 and cqqθ < 0. Further,
let it be common knowledge that the cost parameters of the two bidders θs, θw are drawn
independently from the uniform distributions on [η, ηs] and [η, ηw] respectively where ηw < ηs
i.e.

Fs(θ) =
θ − η
ηs − η

∀ θ ∈ [η, ηs] and Fw(θ) =
θ − η
ηw − η

∀ θ ∈ [η, ηw].

In other words, support for the weak bidder is a subset of the support for the strong bidder
which implies that Fw (first-order) stochastically dominates Fs over [η, ηw] . Ex-ante profit
for the firm with type θ after winning the contract is

π(q, p|θ) = {p− c(q, θ)}.P rob[win|S(q, p)].

Let a scoring rule be a function S : R2 → R that associates a score S(q, p) to any potential
contract (q, p) between the buyer and a supplier. The Scoring Rule used by the buyer to
evaluate the two-dimensional bids submitted in the auction is of the quasi-linear form i.e.
S(q, p) = s(q)− p where s(.) is increasing at least for q ≤ argmaxq s(q)− c(q, θ) (Che 1993).
A Naive Scoring Rule is the one that reveals the buyer’s true preferences i.e. S(q, p) = U(q, p)
or some monotone transformation of U .
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2.1 Bidding Strategies

The objective function of the firm is given by

Maxq,p π(q, p|θ) = {p− c(q, θ)}.P rob[win|S(q, p)]. (1)

For the firms to make non-negative profits, it should be such that p ≥ c(q, θ). In other words,
S(q, p) = s(q)−p ≤ s(q)−c(q, θ) ≤ maxq s(q)−c(q, θ). We define So(θ) = maxq s(q)−c(q, θ)
and qo(θ) = argmaxq s(q)− c(q, θ) for all future purposes.

Lemma 1 : The promised quality level chosen by a firm of type θi is

qo(θi) = argmaxq s(q)− c(q, θi)

for all θi ∈ (η, ηi]; i = s, w.

Proof : This is immediate from Lemma 1 (Che, 1993). The perceived asymmetry amongst
the bidders has no effect on the firms’ quality bids. A formal proof is given in the Appendix.

The maximum score that any firm with type θ can offer, So(θ), is termed as the productive
potential of that firm by Che (1993). Applying Envelope Theorem, S ′o(θ) = −cθ(q, θ) > 0
since the cost of producing a certain level of quality decreases in the efficiency parameter
θ of that firm. Thus, So(.) is strictly increasing and therefore its inverse exists. Therefore,
this So(θ) can be treated as the pseudo-valuation of the contract by the firm with type
θ. This enables us to transform the two-dimensional procurement auction problem into a
unidimensional one.

Let v = So(θ) and follows a cumulative distribution function say, H(.) with density function
h(.), where

H(S) = Prob[So(θ) ≤ S] = Prob[θ ≤ S−1
o (S)] = F (S−1

o (S)).

Let b = S(qo(θ), p(θ)). Then v − b = {s(qo(θ)) − c(qo(θ), θ)} − {s(qo(θ)) − p(θ)} = p(θ) −
c(qo(θ), θ).

The firm’s problem can then be written as

Maxb π(b, v) = (v − b)Prob[win|b]. (2)

Suppose that in equilibrium, the strong and the weak firm follow strategies βs(So(θs)) and
βw(So(θw)) respectively. Further, let us assume that these strategy functions are increasing
and differentiable. Let their inverses functions be φs ≡ β−1

s and φw ≡ β−1
w .
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Claim 1 : βi(So(η)) = So(η) ∀ i = s, w and βs(So(ηs)) = βw(So(ηw)).

Proof : Refer to the Appendix.

Let b̄ ≡ βs(So(ηs)) ≡ βw(So(ηw)). The expected profit of the firm i when his pseudo-valuation
is vi ≡ So(θi) and the bid is b < b̄ given that firm j bids using βj(.) is

π(b, vi) = (vi − b)Prob[b > βj(So(θj))]

= (vi − b)Prob[φj(b) > So(θj)]

∴ π(b, vi) = (vi − b)Hj(φj(b)). (3)

The first-order condition for firm i, in order to maximize its expected profit is

(vi − b)hj(φj(b))φ′j(b)−Hj(φj(b)) = 0.

At the equilibrium, b = βi(vi), i.e ,β−1
i (b) = vi, or in other words, φi(b) = vi. Therefore, the

first-order conditions when both the firms maximize their expected profits simultaneously
are,

(φi(b)− b)hj(φj(b))φ′j(b)−Hj(φj(b)) = 0 ∀ i, j = s, w. (4)

Substituting for H(.) and h(.) in equation (3), we get

(φi(b)− b)fj(S−1
o (φj(b)))(S

−1
o (φj(b)))

′ = Fj(S
−1
o (φj(b))) ∀ i, j = s, w. (5)

A solution to this system of differential equations, with relevant boundary conditions (Claim
1) constitutes an equilibrium of the first-score auction. Since it is difficult to obtain a general
solution without a specific functional form for So(θ), we consider the following example.

2.2 An example

Let V (q) = 2
√
q and c(q, θ) =

q

θ
. Note that V (q) is increasing and concave in q and c(q, θ) is

decreasing and convex in the efficiency parameter θ. Under Naive scoring rule, s(q) = V (q)

therefore in this example, So(θ) = maxq 2
√
q − q

θ
while the first-order condition is

2(
1

2
√
q

)− 1

θ
= 0

=⇒ qo(θ) = θ2.

Therefore, So(θ) = 2θ − θ = θ and H(.) = F (.).

Proposition 1 :
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(a) The bidding strategies of the firms are

βFSj (θ) = η +
1

kj(θ − η)

(
−1 +

√
1 + kj(θ − η)2

)
∀j = s, w. (6)

(b) In this first-score auction, each firm in equilibrium offers

qFSs (θ) = qFSw (θ) = qo(θ) = θ2 (7)

pFSi (θ) = 2θ − η − 1

ki(θ − η)

(
−1 +

√
1 + ki(θ − η)2

)
(8)

where kj =
1

(ηi − η)2
− 1

(ηj − η)2
∀i, j = s, w.

Proof : The above is derived using the techniques shown in Maskin and Riley (2000). See
the Appendix.

It can be verified that βi(.) is increasing in θ for both i = s, w and while βs is concave, βw
is a convex function in θ.

Proposition 2 : βFSs (θ) < βFSw (θ) ∀θ ∈ [η, ηw]

Proof : To prove this, it suffices to show that φFSs (b) > φFSw (b). Since, ks = −kw,

1− ks(b− η)2 < 1 + ks(b− η)2 = 1− kw(b− η)2

or (1− ks(b− η)2)−1 > (1− kw(b− η)2)−1

=⇒ η +
2(b− η)

1− ks(b− η)2
> η +

2(b− η)

1− kw(b− η)2

or φFSs (b) > φFSw (b)

=⇒ βFSs (θ) < βFSw (θ) ∀θ ∈ [η, ηw].

Hence, in this first-score auction of with two asymmetric bidders, the weaker firm bids more
aggressively than the stronger firm. Figure 1 depicts the equilibrium bidding strategies when
η = 0.1, ηs = 0.9 and ηw = 0.5.

Corollary 1 :

(a) The expected winning offer in this first-score auction is

E(q)FS =

s,w∑
i 6=j

∫ ηi

η

qFSi (θ)
φFSj (βFSi (θ))− η
(ηi − η)(ηj − η)

dθ (9)

E(p)FS =

s,w∑
i 6=j

∫ ηi

η

pFSi (θ)
φFSj (βFSi (θ))− η
(ηi − η)(ηj − η)

dθ. (10)
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Figure 1: Equilibrium in Asymmetric First-Score Auction (η = 0.1 , ηw = 0.5 , ηs = 0.9)

(b) Under Naive-Scoring rule, the buyer’s expected utility under this first-score auction is

EUFS =

s,w∑
i 6=j

∫ ηi

η

βFSi (θ)
φFSj (βFSi (θ))− η
(ηi − η)(ηj − η)

dθ. (11)

3 Asymmetric Second-Score Procurement Auction

In a second-score auction, the winning firm is asked to match the second highest score in the
auction. However, it is not essential to offer the exact price and quality combination that
the firm with the second highest score did.

3.1 Bidding Strategies

Again, we define So(θ) = maxq s(q) − c(q, θ) and qo(θ) = argmaxqs(q) − c(q, θ) to convert
the two-dimensional second-score auction into a unidimensional exercise.
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Lemma 2 : The promised quality level chosen by a firm of type θi in this second-score
auction is

qo(θi) = argmaxqs(q)− c(q, θi)
for all θi ∈ (η, ηi]; i = s, w.

Proof : Similar to the proof of Lemma 1.

The expected profit of the firm i in the second-score auction when there are only two bidders
with pseudo-valuations is vi ≡ So(θi) ∀i and the bids are βi, is

π(βi, vi) = E
[
(vi − βj)Iβi>βj

]
∀ i, j = s, w. (12)

Proposition 3 :

(a) The bidding strategies of the firms are

βSSi (θ) = So(θ) ∀i = s, w. (13)

(b) In this second-score auction, each firm in equilibrium offers

qSSi (θ) = qo(θ) (14)

pSSi (θ) = c(qo(θ), θ) ∀i = s, w. (15)

Proof : Truthful bidding remains a weakly dominant strategy even when we introduce asym-
metry amongst the bidders. See the Appendix.

Let θ1 = Max(θs, θw) and θ2 = Min(θs, θw). Then, the Expected Utility under second-score
auction is given as

EUSS = E{V qo(θ1)− p(θ1, θ2)} (16)

where p(θ1, θ2) is the payment made by buyer and is equal to s(qo(θ1))−s(qo(θ2))+c(qo(θ2), θ2).

The expected winning offer in the second-score auction is

E(q)SS = E{qo(θ1)} (17)

E(p)SS = E{s(qo(θ1))− s(qo(θ2)) + c(qo(θ2), θ2)} (18)

Under Naive Scoring Rule, the buyer’s expected utility under the second-score auction be-
comes

EUSS = E{s(qo(θ2))− c(qo(θ2)θ2)

= E{So(θ2)}. (19)
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3.2 An example

We assume the same functional forms for V (q) and c(q, θ) as we did in Section 2.2 in order
to solve for the equilibrium bidding strategies in the second-score auction i.e. s(q) = V (q) =

2
√
q and c(q, θ) =

q

θ
. Using these functional forms, we have qo(θ) = θ2, So(θ) = θ, H(.) =

F (.) and therefore the bidding functions are

βSSi (θ) = θ ∀i = s, w. (20)

The expected winning offer is

E(q)SS = E{θ2
1} (21)

E(p)SS = E{2θ1 − θ2} (22)

where θ1 = Max(θs, θw) and θ2 = Min(θs, θw).

And the buyer’s expected utility in this case is

EUSS = E{θ2}. (23)

4 Expected Utility Comparison

We now compare the expected utilities of the buyer under the two auction formats. Under the
naive scoring rule, the expected utilities to the buyer in the first-score and the second-score
auctions are

EUFS =

s,w∑
i 6=j

∫ ηi

η

βFSi (θ)
φFSj (βFSi (θ))− η
(ηi − η)(ηj − η)

dθ (24)

EUSS = E{Min(θs, θw)} (25)

where βFSi (θ) = η +
1

ki(θ − η)

(
−1 +

√
1 + ki(θ − η)2

)
and φFSi (θ) = η +

2(b− η)

1− kj(b− η)2
.

Figure 2 depicts the equilibrium strategies for both the firms in first-score and second-score
auctions for η = 0.1, ηs = 0.9 and ηw = 0.5.

Proposition 4 : βFSi (θ) < βSSi (θ) ∀i = s, w.
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Figure 2: Equilibrium in Asymmetric First-Score and Second-Score Auction

Proof : We know that βSSi (θ) = θ ∀i. Now, βFSw (θ) cannot lie strictly above the b = θ axis
since it intersects at a point say, tw ∈ (η, ηw], as calculated below.

η +
1

kw(θ − η)

(
−1 +

√
1 + kw(θ − η)2

)
= θ

−1 +
√

1 + kw(θ − η)2 = kw(θ − η)2

(
√

1 + kw(θ − η)2 − 1)
√

1 + kw(θ − η)2 = 0.

∴ Either θ = η or θ = η± 1√
−kw

. Since, kw < 0, these expressions give us one and only one

real point of intersection tw = η +
1√
−kw

within the interval (η, ηs].

Therefore ,the curve βFSw (θ) lies strictly below the b = θ axis, when θ takes values form the
interval [η, tw]. Now the bid corresponding to tw where the curves βSSw (θ) = θ and βFSw (θ)

intersect is greater than the upper bound of the bids, b̄. Thus, the two curves will never
intersect within the interval [η, ηw] and βFSw (θ) would strictly lie below βSSw (θ) ∀ θ ∈ (η, ηw].

Similarly we will have the above expressions for the strong firm. However, the only valid
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point of intersection is θ = η which lies outside the interval (η, ηs]. The other two expressions

do not return real values since ks > 0. Therefore, the curve βFSs (.) and βSSs (.) do not intersect
other than their common point of origin. Since, βFSs (.) is increasing and concave in θ, this
possible only when βFSs (.) lies strictly below βSSs (.).

Since, βFSi (θ) < θ, φFSj (βFSi (θ)) 6= θ. In fact, φFSw (βFSs (θ)) < θ and φFSs (βFSw (θ)) > θ. Note
that

φFSs (b) > φFSw (b)

φFSs (βFSs (θ)) > φFSw (βFSs (θ))

=⇒ θ > φFSw (βFSs (θ)) ∀θ ∈ [η, ηs].

Similarly, for all θ in [η, ηw], φFSs (βFSw (θ)) > θ.

Now,

EUFS =

s,w∑
i 6=j

∫ ηi

η

βFSi (θ)
φFSj (βFSi (θ))− η
(ηi − η)(ηj − η)

dθ (26)

=

∫ ηs

η

βFSs (θ)
φFSw (βFSs (θ))− η
(ηs − η)(ηw − η)

dθ +

∫ ηw

η

βFSw (θ)
φFSs (βFSw (θ))− η
(ηs − η)(ηw − η)

dθ (27)

We perform the change of variables, φFSs (b) = θ and φFSw (b) in the two integrals respectively.

EUFS =

∫ b̄

η

b
φFSw (b)− η

(ηs − η)(ηw − η)

dφFSs (b)

db
db+

∫ b̄

η

b
φFSs (b)− η

(ηs − η)(ηw − η)

dφFSw (b)

db
db (28)

=
1

(ηs − η)(ηw − η)

∫ b̄

η

b

[
(φFSw (b)− η)

dφFSs (b)

db
+ (φFSs (b)− η)

dφFSw (b)

db

]
db (29)

=
1

(ηs − η)(ηw − η)

∫ b̄

η

b

[
d

db
(φFSw (b)− η)(φFSs (b)− η)

]
db (30)

= b̄− 1

(ηs − η)(ηw − η)

∫ b̄

η

(φFSw (b)− η)(φFSs (b)− η)db (31)

Since the term within the integral is always positive for all b ∈ [η, b̄], EUFS ≤ b̄.

In fact, the expected utility in the first-score auction turns out to be
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EUFS = b̄−
(ηs − η)2(ηw − η)2

(ηs − ηw)3/2(ηw + ηs − 2η)3/2

[
log

(√
ηw + ηs − 2η +

√
ηs − ηw√

ηw + ηs − 2η −
√
ηs − ηw

)

− 2 arctan

√
ηs − ηw

ηw + ηs − 2η

]
(32)

Similarly, we can calculate the expected utility to the buyer in the second-score auction using
the expression in equation (25).

EUSS =
1

6(ηs − η)

[
(3ηs − ηw)(ηw + η)− 4η2

]
(33)

Since it is difficult to compare EUFS and EUSS for arbitrary values of η, ηs and ηw we assume

that ηw = η +
1

1 + α
and ηs = η +

1

1− α
where 0 < α < 1 denotes the level of asymmetry

between the two firms. For α = 0, the firms are symmetric, i.e. ηs = ηw = η (say), and the
expected utility to the buyer under both the scoring auctions is same.

EU sym =
η + 2η

3
(34)

The expected utility under second score auction when α > 0 is

EUSS =
1 + 2α + 3η(1− α2)

3(1 + α)2

which can be easily seen to be decreasing in α. It is not straightforward to check whether the
expected utility under the first-score auction is increasing or decreasing in α. We consider
the distribution of the winning bid, say M(.) where

M(b) = Prob[Max{βs(θs), βw(θw)} ≤ b] (∵ So(θ) = θ)

= Prob[θs ≤ φs(b)]Prob[θw ≤ φw(b)]

= Fs(φs(b))Fw(φw(b))

= (1− α2)(φs(b)− η)(φw(b)− η)

For the above values of ηs and ηw, ks = −kw = 4α and b̄ = η + 1/2. Therefore, the
distribution of the equilibrium bid is

M(b) =
4(1− α2)(b− η)2

1− 16α2(b− η)4
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η ηw ηs EUFS EUSS

.1 .5 .9 .28 .27
1 2 3 1.46 1.42
1 2 5 1.59 1.46
1 3 5 3.15 1.83
1 4 5 7.03 2.12

1.3 1.6 7.8 1.55 1.45
10 47 59 24.13 23.84

Table 1: Expected Utilities in the First Score and Second-Score Auction

which is decreasing in α.

Now, the expected utility under first-score auction is nothing but the expected value of the
equilibrium bid i.e.

EUFS =

∫ η+1/2

η

b dM(b)

= η + 1/2−
∫ η+1/2

η

dM(b) (∵ Integrating by parts)

Therefore the expected utility under first-score auction is increasing in α since distribution
function M(.) is decreasing in α. Now for α = 0, the firms are symmetric and the expected
utilities under both the auction are same. However, an increase in α would lead to a decrease
in EUSS and an increase in EUFS. Thus we find that EUFS > EUSS for all values of α
i.e. the expected utility generated from the second-score auction is lower than that from the
first-score auction which is congruous with the result shown in Maskin and Riley (2000) who
show that if the strong bidder’s type distribution is a ”shifted” or a “stretched” version of
that of the weak bidder, the expected revenue from the first price auction dominates that
from the second.

We also summarize some numerical examples in Table 1 for generic values of η, ηw and ηs
which show that the expected utilities generated from both the first-score and the second-
score auctions are not equal to one another.

5 Conclusion

In this paper, we compute the equilibrium strategies of the firms in two procurement mech-
anisms, the first-score auction and the second-score auction, where the suppliers are asym-
metric in their costs of productions. In our constructed example, while the types of both
the strong and weak sellers are drawn from a uniform distribution, the strong seller’s type
distribution is a “stretched” version of that of the weak seller. The bidders are required to
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submit a two-dimensional bid quoting the level of quality promised to be delivered and the
payment in return. These bids are then evaluated using a scoring rule and the firm with
the highest score is declared the winner. We find that under these two auction formats,
the expected utility to the buyer no longer remains the same when the bidding firms are
asymmetric in nature. Thus the Revenue Equivalence of the Scoring Auctions as postulated
by Che (1993) breaks down in the presence of asymmetry.

Maskin and Riley (2000) proved that with asymmetric uniformly distributed values, the
first-price auction is revenue superior than the open or Vickrey auction. We find a similar
result in our setup, as bidders in our model bid in an identical environment as they map
their pseudo-valuations into scores. Since the probability that the weaker seller wins the
procurement auction is positive in the first-score auction, it is deemed to be inefficient; this
is in contrast to the second-score auction, where it is a weakly dominant strategy for both
the firms to bid their pseudo-valuation.

Appendix

Proof of Lemma 1 :
Suppose for firm j with θj < ηs, the equilibrium bid is (qj, pj) where qj 6= qo(θj). Then
we show that this bid-tuple (qj, pj) is strictly dominated by another tuple (Qj, Pj) where
Qj = qo(θj) and Pj = pj + s(qo(θj))− s(qj). Note that S(qj, pj) = S(Qj, Pj) as S(Qj, Pj) =
s(Qj)− Pj = s(qo(θj))− [pj + s(qo(θj))− s(qj)] = s(qj)− pj = S(qj, pj)

To show the strict dominance, we must show that π(Qj, Pj|θj) > π(qj, pj|θj).
Now,

π(Qj, Pj|θj) = {Pj − c(Qj, θj)}.P rob [ win |S(Qj, Pj)]
= {pj + s(qo(θj))− s(qj)− c(qo(θj), θj)}.P rob [ win |S(qj, pj)]
= {pj−c(qj, θj)+(s(qo(θj))−c(qo(θj), θj))−(s(qj)−c(qj, θj))}.P rob[win|S(qj, pj)]

Since qo(θj) = argmax s(qj)− c(qj, θj) and qj 6= qo(θj) , s(qo(θj))− c(qo(θj), θj) > s(qj)−
c(qj, θj).

∴ π(Qj, Pj|θj) > {pj − c(qj, θj)}.P rob [ win |S(qj, pj)], which is nothing but equal to the
π(qj, pj|θj) ,provided Prob [ win |S(qj, pj)] > 0.

Claim: Prob [ win |S(qj, pj)] > 0

To prove this claim, define S = inf{S|Prob [win |S(qj, pj)] > 0}. Then So(.) is a increasing
function in θj. Also, S ≤ So(η) for the trade to always take place. We shall prove the claim
by contradiction. Suppose ∃ a θm > η such that Prob [win |S(qm, pm)] = 0. Then the chosen
score Sm = S(qm, pm) must be such that Sm ≤ S. However, since S ≤ So(η) ≤ So(θm), firm
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with cost type θm can bid a score S ′m ∈ (S, So(θm)) which allows positive profits for that
firm, thereby contradicting the optimality of the score choice Sm. Hence the claim.

So, with the proof of this claim, we have shown that π(Qj, Pj|θj) > π(qj, pj|θj) which con-
tradicts the fact the bid-tuple (qj, pj) is the optimal choice for the firm j.

Proof of Claim 1 :
We prove the above claim by contradiction. Suppose βi(So(η)) 6= So(η) ∀ i = s, w. Then
βi(So(η)) cannot be greater than So(η), for the firm then will incur a loss if it wins the
auction. Also, it is not a dominant strategy for the firm of the lowest type η to bid less than
So(η) since the probability of winning the auction reduces with the bid moving further away
from the valuation. To elaborate further, suppose both the realized types are η and while
βi(So(η)) < So(η), let us suppose βj(So(η)) = So(η) ∀i 6= j. So, firm i will lose the auction
even when it could have won, by bidding βi(So(η)) = So(η).
Moreover, if βs(So(ηs)) > βw(So(ηw)), then the strong bidder of type ηs would win with
probability 1. However, it can increase its payoff by bidding slightly less than βs(So(ηs)) and
likewise, will get maximum benefit by bidding equal to βw(So(ηw)).

Proof of Proposition 1 :
Substituting So(θ) = θ and H(.) = F (.) in equation (5), we get

(φi(b)− b)fj(φj(b))φ′j(b) = Fj(φj(b)) ∀ i, j = s, w

=⇒ (φi(b)− b)
1

ηj − η
φ′j(b) =

φj(b)− η
ηj − η

=⇒ (φi(b)− b)φ′j(b) = φj(b)− η (A-1)

which is equivalent to

(φi(b)− b)(φ′j(b)− 1) = φj(b)− η − φi(b) + b

Adding the two equations for i, j = s, w, we get

d

db
(φs(b)− b)(φw(b)− b) = 2b− 2η (A-2)

Integrating this, we obtain

(φs(b)− b)(φw(b)− b) = b2 − 2ηb+K (A-3)

where K is the constant of integration. Substituting φs(η) = φw(η) = η, we get
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0 = η2 − 2η2 +K which implies that K = η2.

Therefore the above equation becomes,

(φs(b)− b)(φw(b)− b) = (b− η)2 (A-4)

Using Claim 1, we can calculate b̄ by substituting φi(b̄) = ηi ∀i = s, w.

(ηs − b̄)(ηw − b̄) = (b̄− η)2

which implies that,

b̄ =
ηsηw − η2

ηs + ηw − 2η
(A-5)

Now, we can rewrite equation (A-1) as,

φ′j(b) =
(φj(b)− η)(φj(b)− b)

(b− η)2
(A-6)

We apply a change of variables by defining (φj(b)− η) = Φj(b) and (b− η) = B. Therefore,
the above equation reduces to,

Φ′j(B) =
Φj(B)(Φj(B)−B)

B2
(A-7)

Let Φj(B)−B = BΓj(B). Then

Φ′j(B)− 1 = Γj(B) +BΓ′j(B)

Using this, equation (A-7) becomes,

Γj(B) +BΓ′j(B) + 1 = Γj(B)(Γj(B) + 1) (A-8)

or

Γ′j(B)

(Γ2
j(B)− 1)

=
1

B

Using integration by partial fractions, we obtain,
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Γj(B) =
1 + kjB

2

1− kjB2
(A-9)

where kj is a constant of integration ∀j = s, w

Reverting back to the original variables,

Φj(B)

B
− 1 =

1 + kjB
2

1− kjB2

or Φj(B) =
2B

1− kjB2
(A-10)

∴ ∀j = s, w,

φFSj (b) = η +
2(b− η)

1− kj(b− η)2
(A-11)

Since φj(b̄) = ηj, where b̄ is defined in (A-5), we obtain the constants of integration as

kj =
1

(ηi − η)2
− 1

(ηj − η)2
∀j = s, w (A-12)

The bidding strategies, obtained by inverting (A-11) are,

βFSj (θ) = η +
1

kj(θ − η)

(
−1 +

√
1 + kj(θ − η)2

)
∀j = s, w (A-13)

Proof of Proposition 3 :
To prove that, let βj = vj be the equilibrium strategy for the firm j. What is the optimal
response for firm i ?

Equation , then, can be rewritten as

π(βi, vi) = E
[
(vi − ṽj)Iβi>ṽj

]
∀ i, j = s, w (A-14)

where ṽj is the observable vj, a random variable ,since the actual pseudo-valuation of the
firm i is unknown. Therefore,

π(βi, vi) =

∫ βi

So(η)

(vi − x)hj(x)dx

=

∫ βi

So(η)

(vi − x) fj(S
−1
o (x))(S−1

o (x))′dx (A-15)
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Firm i’s problem is choose βi so as to maximize equation (A-15). We show that βi is neither
greater than nor lesser than vi.

Let βi < vi
If βi is increased to vi, the change in the integral in equation (A-15) is

∆π =

∫ vi

βi

(vi − x) fj(S
−1
o (x))(S−1

o (x))′dx

Since, fj(.) and S−1
o (.) are both increasing and βi < x < vi, we see that ∆π > 0. Therefore,

βi , cannot be less than vi.

Let βi > vi
The difference in profit in that case is

∆π =

∫ βi

vi

(vi − x) fj(S
−1
o (x))(S−1

o (x))′dx

which is negative for vi < x < βi. Firm i would deviate from its previous strategy βi > vi to
βi = vi.

Hence, the expected profit maximizing bids are

βSSi = vi ∀i = s, w (A-16)

This implies that,

s(qo(θ))− p(θ) = So(θ) = s(qo(θ))− c(qo(θ), θ)
∴ p(θ) = c(qo(θ), θ)

Therefore, in the second-score auction, each firm in equilibrium offers

qSSi (θ) = qo(θ)

pSSi (θ) = c(qo(θ), θ) ∀i = s, w (A-17)
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