Game Theory

Introduction

Middlemar

The I-value

Characterizatio

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Three Person Game

Conclusion

References

Middlemen in Cooperative Games : The Intermediary Value

Surajit Borkotokey Department of Mathematics Dibrugarh University Assam, India-786004

International Conclave on Foundations of Decision and Game Theory at IGIDR, Mumbai

14 March 2016

Game Theory

Introductior

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

Outline

1 Introduction

- Cooperative Games
- The notion of the middlemen in Game theory
- 2 Main results
 - Middlemen in Cooperative games
 - The I-value and its Characterization
 - Comparison with the existing types
 - Examples
 - Alternative Characterizations
- 3 Conclusion

Cooperative Games

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

Definition

- There is a set of agents/players $N = \{1, 2, 3, ..., n\}$.
- Each subset (or coalition) S of agents can work together in various ways, leading to various utilities for the agents.
- Cooperative/coalitional game theory studies which outcome will/should materialize.
- Key criteria:
 - Stability: No coalition of agents should want to deviate from the solution and go their own way.
 - Fairness: Agents should be rewarded for what they contribute to the group.

Cooperative game Formally

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- Let $N = \{1, ..., n\}$ be a finite set of players.
- $v: 2^N \to \mathbb{R}$, is the characteristic function from the set of all possible coalitions of players that satisfies $v(\emptyset) = 0$.
- A Cooperative game (transferable utility game) is characterized by two main factors:
 - the player set N and
 - the characteristic function $v: 2^N \to \mathbb{R}$.
- Let $\mathscr{G}(N)$ denote the universal game space consisting of all TU Cooperative games.

Solutions:

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- The main assumption in cooperative game theory is that the grand coalition v(N) will form.
- Then the challenge is to allocate the payoff among the players N in some fair way (or Stability ensured).
- A solution concept evaluates how much will be paid to a player for participating in a game.
- A solution concept for TU Cooperative game is a function that assigns a set of payoff vectors to each player in a Cooperative game.

Example

The core solution (Gillies, 1952), The Shapley value (Shapley, 1953), Banzhaf value (Banzhaf, 1965), Compromise value (Tijs,1993), Nucleolus (Schmeidler, 1969), Aumann-Shapley value (Aumann, 1995) and many more...

Shapley Value (Shapley, 1953)

Game Theory

Introduction

- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

The Shapley value is the aggregation of the marginal contributions of a player in each coalition and is given by,

$$\Phi_i^{Sh}(v) = \sum_{S \subseteq N : i \in S} \frac{(s-1)! (n-s)!}{n!} [v(S) - v(S \setminus i)]$$
(1)

Theorem

The Shapley value is the unique value satisfying the following axioms.

Efficiency :
$$\sum_{i \in N} \Phi(v) = v(N)$$

- Linearity: $\Phi_i(\alpha u + \beta v) = \alpha \Phi_i(u) + \beta \Phi_i(v)$
- Null player property: $\Phi_i(v) = 0$ for every null player $i \in N$
- Anonymity : $\Phi_i(v) = \Phi_{\pi i}(\pi v)$.

The Nucleolus (Schmeidler, 1969)

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

- Consider v :
 - $\{\mathbf{x} \in \mathbb{R} \mid \sum_{i \in N} x_i = v(N) \text{ and } x_i \ge v(i) \ \forall i \in N\} \neq \emptyset.$
- Let $\mathbf{x} \in \mathbb{R}^n$ be an imputation.
- The excess of a coalition $S \subseteq N$ at \mathbf{x} is the real number $e(S, \mathbf{x}) = v(S) \sum_{i \in S} x_i$.
- At any imputation \mathbf{x} , let us denote by $\theta(\mathbf{x}) \in \mathbb{R}^n$ the vector of excesses arranged in non-increasing order, i.e., $\theta_l(\mathbf{x}) \ge \theta_{l'}(\mathbf{x})$ whenever l < l'.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

The nucleolus of v denoted by $\Phi^{\mathcal{N}}$ is the (unique) imputation that lexicographically minimizes the vector $\theta(\mathbf{x})$.

Marginalists vs Bargaining minus Stability

Game Theory

- Introduction
- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

- The Shapley value is based on the well known marginalist principle in economic theory.
- The nucleolus is based on some endogenous bargaining process.
- The nucleolus need not be equal to the Shapley value.
- The Shapley value builds on the principle of fairness.
- The nucleolus does not consider fairness as a reasonable mean.

Remark

Stability implies that no subset of players has an incentive to break off and work on its own.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

The Shapley value and the nucleolus are not necessarily stable.

An Example

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- Network to form among four adjacent countries 1, 2, 3 and 4.
 - The trans-national gas pipelines through Iran, Afganisthan and China...
 - The 32 nation Great Asian Highway project and road links to Europe.
- The benefits measured in terms of trade.
- The network needs a hub spoke architecture to attain maximum profit.
- If each country trades directly with each other then it is not so profitable.

The Higway Problem

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

S	{1}	$\{2\}$	{3}	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$	$\{1, 2, 3\}$	Ø
v(S)	1.5	1	1	2	2	2	4	0
S	{4}	$\{1, 4\}$	$\{2, 4\}$	$\{3, 4\}$	$\{1, 2, 4\}$	$\{1, 3, 4\}$	$\{2, 3, 4\}$	$\{1, 2, 3, 4\}$
v(S)	0	5.5	5	5	5	5	5	6

Table: The Highway Problem

- The Shapley value with $N = \{1, 2, 3, 4\} :: (1.42, 1.17, 1.17, 2.24).$
- The Shapley value with $N = \{1, 2, 3\} :: (1.5, 1.25, 1.25).$
- The Nucleolus with $N = \{1, 2, 3, 4\} :: (1.3, 0.8, 0.8, 3.1).$
- The Nucleolus with $N = \{1, 2, 3\} :: (1.6667, 1.16666, 1.16666).$

Question?

Can this game be seen on a different light?

Players as catalyst!

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

Situations where players are not individually productive. But crucial in bringing out the synergies among other players.

- Grubhub Food Delivery and Takeout Service in the USA and Europe.
 - A mobile and online food ordering company that connects diners and corporate businesses with thousands of takeout restaurants.
 - It is not productive by itself but creates synergies among the customers.
- Similar examples include Uber Cab Services, Groupons, Ola etc.

Question?

Can we call them "The Middlemen"?

Middlemen: Definitions

Game Theory

Introduction

- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- Non-cooperative games
 - A time saving institution who buys goods from the seller and then sells them to the buyer when direct communication between the buyer and the seller is not possible.
 - An intermediary/middleman (or go-between) is a third party that offers intermediation services between two trading parties.
 - The intermediary acts as a conduit for goods or services offered by a supplier to a consumer.
 - In a larger sense, an intermediary can be a person or organization who or which facilitates a contract between two other parties.
 - Middleman is responsible for trade or any other negotiations.

Intermediary Activities

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- The notion of a *middleman* under non-cooperative framework is primarily attributed to the seminal work of Rubinstein and Wolinsky, 1987.
- Middlemen trade but don't originally own a good, don't physically alter the good, receive no consumption value from processing the good. (Biglaiser, 1993)
- The middleman is introduced as an intermediate node in the network through which all resources pass by (Yavas, 1994).
- Bailey and Bakos (1997) analyzed a number of case studies and identified four roles of electronic intermediaries including information aggregating, providing trust, facilitating and matching.
- Competition among intermediary service providers (Cailland and Jullien, 2003).

Pricing in complex structures of Intermediation (Choi et al., 2015).

Traces of the middlemen in Cooperative Games

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

Buyer-Seller Model (ROTH 1988)-Middlemen

- Seller reservation price 100. Buyer 1 has reservation price 150 and Buyer 2 has reservation price 175.
- v(S) = Max of the difference of the seller-buyer reservation prices.
- Trade will be in between the Seller and the buyer with maximum v(S).

S	$\{S\}$	$\{B1\}$	$\{B2\}$	$\{S, B1\}$	$\{S, B2\}$	$\{B1, B2\}$	$\{S, B1, B2\}$
v(S)	0	0	0	50	75	0	75

Table: The Buyer-Seller Model : The Shapley value is (45.83, 8.3, 20.3).

Question?

Why should we pay Buyer 1 when the actual trade took place between the Seller and Buyer 2 only?

Traces of the middlemen in Cooperative Games

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatior
- Standard for Thre Person Game
- Conclusion
- References

Kalai, E., A. Postlewaite and J. Roberts, "Barriers to Trade and Disadvantageous Middlemen: Nonmonotonicity of the Core," Journal of Economic Theory, 19, No. 1, 1979, 200-209.

A player will choose whether its better to be middleman.

2 Core solution gives a kind of stability among the players.

Borkotokey, S., R. Kumar, S. Sarangi, A Solution Concept for Network Games : The Role of Multilateral Interactions, European Journal of Operational Research, 243, 2015, 912-920.

- Players' multilateral interactions in a network studied.
- 2 Role of a player in various key positions (centrality) in generating worth.

The Highway Problem Revisited

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

- The Highway through Country 4 gives the maximum profit.
- Alternative passages are insignificant in comparison to the new highway.
- Country 4 facilitates some extra earning to all the countries and can charge some intermediary fee by giving her territorial land support.

S	{1}	$\{2\}$	{3}	$\{1, 2\}$	$\{1, 3\}$	$\{2,3\}$	$\{1, 2, 3\}$	Ø
v(S)	1.5	1	1	2	2	2	4	0
S	$\{4\}$	$\{1, 4\}$	$\{2,4\}$	$\{3,4\}$	$\{1, 2, 4\}$	$\{1, 3, 4\}$	$\{2, 3, 4\}$	$\{1, 2, 3, 4\}$
v(S)	0	5.5	5	5	5	5	5	6

Table: The Highway Problem

▲□ → ▲□ → ▲□ → ▲□ → □ → ○ ○ ○

The Formal Model : Middleman

Game Theory

Introduction

Middleman

The I-value

Characterizatio

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Three Person Game

Conclusion

References

A player $i \in N$ is said to engage in intermediary activities in a game $v \in \mathscr{G}(N)$ if $v(S \cup i) > v(S), \ \forall S \in \mathscr{N}_i \text{ and } v(\{i\}) = 0.$

Definition

Definition

Given a $v \in \mathscr{G}(N)$, player $i \in N$ engages in intermediary activities for v if and only if i is endowed with a set $\zeta = \{\zeta_S^i \in (0,\infty) | S \in \mathcal{N}_i\}$ such that

$$v(S\cup i)=\zeta_S^i+v(S) \ \text{ and } v(\{i\})=0.$$

Definition

The set ζ is called a Scheme of Intermediary Activities (SIA) of player *i*.

The Middleman

Game Theory

Introduction

Middleman

- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

An SIA, $\boldsymbol{\zeta} = \left\{ \zeta_S^i \in (0,\infty) | S \in \mathscr{N}_i \right\}$ of player i is called equitable if $\zeta_S^i = \zeta_{S'}^i$ for every $S, S' \subseteq N$ with s = s'.

Definition

Definition

A player $i \in N$ is called a middleman for a game $v \in \mathcal{G}(N)$ if it leads to intermediary activities in v with a unique SIA.

Let the class of TU games with middlemen be denoted by \mathscr{GM} .

Notations

Every member of \mathscr{GM} is represented by the quadruple $(N, \boldsymbol{\zeta}, \xi, v)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Middlemen in TU Cooperative games

Game Theory

Middleman

Assumption

- Every TU game with middlemen has exactly one middleman, i.e.,
 - $\blacksquare \exists i \in N \text{ such that } \forall S \subset N \setminus i, \ v(S \cup i) > v(S) \text{ and}$
 - **2** $\forall j \neq i, j \in N \ v(\{j\}) \neq 0$ or $\exists T \subseteq N \setminus j : v(T \cup j) \not > v(T)$.
- The unique middleman *i*'s equitable SIA is $\{\zeta_S : \forall S \subseteq N \setminus i\}$.
- Fixed intermediary fee $\xi v(N)$. ξ : Intermediary Factor (IF).
- A middleman is not awarded any non-zero payoff from the game (other than his intermediary fee).
- The remaining of the grand coalition distributed to the other players.

They are intuitive...

How to distribute the Remaining?

Game Theory

- Introduction
- Middleman

The I-value

- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

S	{1}	$\{2\}$	{3}	$\{4\}$	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$
v(S)	1.5	1	1	0	2	2	2
S	$\{1, 2, 3\}$	$\{1, 4\}$	$\{2, 4\}$	$\{3, 4\}$	$\{1, 2, 4\}$	$\{2, 3, 4\}$	$\{1, 3, 4\}$
v(S)	4	5.5	5	5	5	5	5

Table: The Highway Game : $(N, \boldsymbol{\zeta}, \xi, v) \in \mathscr{GM} : v\{1, 2, 3, 4\} = 6.$

The SIA of 4 is
$$\zeta_{\{i\}} = 4$$
, $\zeta_{\{i,j\}} = 3$, $\zeta_{\{i,j,k\}} = 2$.

• $\Phi^{S}h(v) = (1.416, 1.167, 1.167, 2.25), \Phi^{N}(v) = (1.3, 0.8, 0.8, 3.1).$

- $\Phi^{S}h(v) = (1.5, 1.25, 1.25), \Phi^{N}(v) = (1.68, 1.16, 1.16).$
- Thus players will prefer to play without a middleman. Scope for negotiation...

The Bottomline is-

We need an alternative Allocation Scheme...

The I-value for the class \mathcal{GM} : Linearity

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Thre Person Game
- Conclusion
- References

Lemma

Let Φ be a value for $\mathscr{G}(N)$ that satisfies Lin. Then there exist real constants α_S^j for all $j \in N$ and $S \subseteq N$ such that for every $v \in \mathscr{G}(N)$,

$$\Phi_j(v) = \sum_{\emptyset \neq S \subseteq N} \alpha_S^j \ v(S) \tag{2}$$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

The I-value for the class \mathcal{GM} : Middleman Axiom

Game Theory

Introduction

Middleman

The I-value

Characterization

Independence

Example

Comparison

Voting Games

Alternative Characterization

Person Game

Conclusion

References

The axiom of *middleman* (MA): A value $\Phi : \mathcal{GM}^A \to \mathbb{R}^n$ satisfies MA if $\Phi_i(v) = 0$ whenever $i \in N$ is a *middleman* for v.

Lemma

Let the value Φ satisfy Lin and MA. Then for each $i \in N$ there exist real constants δ_S^i for all $S \subseteq N \setminus i$ such that for every $(N, \boldsymbol{\zeta}, \xi, v) \in \mathscr{GM}$,

$$\Phi_i(N, \boldsymbol{\zeta}, \boldsymbol{\xi}, v) = \sum_{S \subseteq N \setminus i} \, \delta_S^i \, \left\{ v(S \cup i) - v(S) \right\}. \tag{3}$$

Moreover $\delta_S^i = 0$ for each $S \subseteq N \setminus i$, if i is a middleman.

The I-value for the class \mathcal{GM} : Monotonicity

Game Theory

Introduction

Middleman

The I-value

Characterization

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Three Person Game

Conclusion

References

Axiom of Monotonicity(*M*) : A value $\Phi : \mathscr{GM} \to \mathbb{R}^n$ satisfies monotonicity if $\Phi_i(N, \boldsymbol{\zeta}, \xi, v) \geq 0$ for every monotonic game $(N, \boldsymbol{\zeta}, \xi, v) \in \mathscr{GM}$.

Lemma

Let Φ be a value for \mathscr{GM} and assume that Φ satisfy Lin, MA and M. Then for all $i \in N$ and $S \subseteq N \setminus i$ there exist real constants δ_S^i such that for every $v \in \mathscr{GM}$,

$$\Phi_i(N, \boldsymbol{\zeta}, \xi, v) = \sum_{S \subseteq N \setminus i} \, \delta_S^i \, \left\{ v(S \cup i) - v(S) \right\}. \text{ with } \delta_S^i \ge 0.$$
(4)

The I-value for the class \mathcal{GM} : Anonymity

Game Theory

Introduction

Middleman

The I-value

Characterization

Lemma

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Thre Person Game

Conclusion

References

Under Lin, MA, M and AN for all $j \in N \setminus i$, there exist real constants δ_s for all $S \subseteq N \setminus j$ such that for every $(N, \boldsymbol{\zeta}, \xi, v) \in \mathscr{GM}$ we have,

$$\Phi_j(N, \boldsymbol{\zeta}, \boldsymbol{\xi}, v) = \sum_{S \subseteq N \setminus j} \delta_s \left\{ v(S \cup j) - v(S) \right\}.$$
(5)

The I-value for the class \mathcal{GM} : I-Efficiency

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- The *intermediary fee* of $\xi_i v(N)$ for the *middleman* i is paid from v(N).
- There remains only $v(N) \xi_i v(N)$ to allocate under Φ .

I-Efficiency Axiom (I-Eff): A value Φ on \mathcal{GM} satisfy I-efficiency (*I-Eff*) i.e.,

$$\sum_{j \in N \setminus i} \Phi_i(N, \boldsymbol{\zeta}, \xi, v) = v(N) - \xi_i v(N)$$

The I-value for the class $\mathcal{G}\mathcal{M}$

Game Theory

Introduction

Middleman

The I-value

Characterization

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Three Person Game

Conclusion

References

Let Φ be a value for \mathscr{GM} and assume that Φ satisfy Lin, MA, M, AN and Eff. Then for every $v \in \mathscr{GM}$ there exist real constants γ'_s for all $S \subseteq N$ given by

$$\boldsymbol{\zeta}, \boldsymbol{\xi}, \boldsymbol{v}) = \begin{cases} & \sum_{\substack{S \subseteq N \setminus j \\ i \in S}} \gamma'_s \left\{ v(S \cup j) - v(S) \right\}, & \text{if } j \neq i \\ & \\ & \\ & 0, & \text{if } j = i \end{cases}$$

where,

 $\Phi_i(N,$

Lemma

$$\gamma'_s = \frac{(s-1)!(n-s-1)!}{(n-1)!}(1-\xi)$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Game Theory

Introduction

Middleman

The I-value

Characterization

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Three Person Game

Conclusion

References

Combining Lemma (1)-(5), we have the following important theorem.

Theorem

A value Φ defined over \mathcal{GM} satisfies the axioms Lin, MA, M, AN and Eff if and only if it is given by (6).

- Theorem provides separate characterizations for Φ(N, ζ, ξ, v) specific to the quantities ζ and ξ.
- Opposed to the Shapley value or the nucleolus which are defined on the entire class G(N) of TU games.
- Denote the value by $\Phi^{I}(N, \boldsymbol{\zeta}, \xi, v).$

The I-value for the class $\mathscr{G}_{\mathscr{M}}$

We call the Intermediary value or the I-value in short.

Independence of the Axioms

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

Example

Let $\Phi^1(N,\pmb{\zeta},\xi,v)=(0,0,...,0).$ Then Φ^1 satisfies all axioms except I-Eff.

Example

The function $\Phi^2(N,\pmb{\zeta},\xi,v)=(1-\xi)\Phi^{Sh}(N,v)$ satisfies all the axioms other than MA.

Example

- Let $\bar{n}(N)$ be the lowest labelled player such that $\bar{n}(N) \neq i$ and for each $j \neq i$ in $N, j > \bar{n}(N)$, see van den Brink et al. (2013).
- Let $\Phi^3_{\bar{n}(N)}(N, \zeta, \xi, v) = (1 \xi)v(N)$, and $\Phi_j(N, \zeta, \xi, v) = 0$ for each $j \neq \bar{n}(N)$. Then Φ^3 satisfies all the axioms except *AN*.

Independence Contd.

Game Theory

Introduction

Middleman

The I-value

Characterization

Independence

Example

Comparison

Voting Games

Alternative Characterizatio

Standard for Three Person Game

Conclusion

References

$\Phi_{j}^{4}(N,\boldsymbol{\zeta},\xi,v) = \begin{cases} & (1-\xi) \left\{ v(\{j\}) + \frac{v(N) - \sum_{j \in N} v(\{j\})}{n-1} \right\} \text{ if } j \neq i \\ & 0 \text{ if } j = i \end{cases}$

Then Φ_i^4 satisfies all the axioms except *M*.

Example

đ

Example

Fix an $\alpha > 0$.

$$\Phi_{j}^{5}(N,\boldsymbol{\zeta},\xi,v) = \begin{cases} & \frac{v(N)(1-\xi)}{n-1} \text{ when } j \neq i \text{ and } v(N) > \alpha \\ & \Phi_{j}^{I}(N,\boldsymbol{\zeta},\xi,v) \text{ when } j \neq i \text{ and } v(N) \leq \alpha \\ & 0 \text{ when } j = i \end{cases}$$

Thus Φ^5 satisfies all the properties except *Lin*.

The Highway Game Revisited

- Introduction
- Middlemar
- The I-value
- Characterizatio
- Independence

Example

- Comparison
- Voting Game
- Alternative Characterizati
- Standard for Three Person Game
- Conclusion
- References

- $\Phi^{Sh}(v) = (1.416, 1.167, 1.167, 2.25).$
- Without a middleman, $\Phi^{Sh}(v) = (1.5, 1.25, 1.25).$
- $\Phi^N(v) = (1.3, 0.8, 0.8, 3.1).$
- $\label{eq:phi} \begin{array}{ll} \mbox{Without a middleman,} \\ \Phi^N(v) = (1.68, 1.16, 1.16) \end{array}$
- Thus if the players and the middleman agree to an intermediary fee of $\frac{v(N)}{n} = 1.5$,

 $\Phi^{I}(N,\boldsymbol{\zeta},\xi,v) = (1.625, 1.4375, 1.4375).$

If the players and the middleman agree to an intermediary fee of 1.3,

 $\Phi^{I}(N, \boldsymbol{\zeta}, \boldsymbol{\xi}, v) = (1.7, 1.5, 1.5), \quad \boldsymbol{\gamma}$

Comparison with Other types of Players

Game Theory

- Introduction
- Middleman
- The I-value
- Characterization
- Independence
- Example

Comparison

- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

- δ -reducing player (Calvo and Gutiérrez-López, 2016) : $v(S \cup i) = \delta v(S)$ for all $S \subseteq N \setminus i$.
- The δ -reducing player does exactly the opposite of what we have assumed in our model.
- $\boldsymbol{\xi}$ -player (Casajus and Huettner, 2014) in $v \in \mathscr{G}(N)$ if v(i) = 0 and $v(S \cup i) v(S) = \xi_s \frac{v(S)}{s}$ for all $S \subseteq N \setminus i, S \neq \emptyset$.
- The ξ -player increases or decreases the worth of a coalition $S \subseteq N \setminus i, \xi_s$ times her per capita worth.
- Player $i \in N$ is a proportional player in $v \in \mathscr{G}(N)$, if v(i) = 0 and $\frac{v(S \cup i)}{s+1} = \frac{v(S)}{s}$ for all $S \subseteq N \setminus i$.
- Player $i \in N$ is a quasi proportional player in $v \in \mathscr{G}(N)$, if v(i) = 0 and $\frac{v(S \cup i)}{s+2} = \frac{v(S)}{s+1}$ for all $S \subseteq N \setminus i$.
- Observe that the ξ -player is a proportional player for $\xi_s = 1$ and a quasi proportional player for $\xi_s = \frac{s}{s+1}$ for all $s \in N \setminus i$.

Voting Game

Game Theory

- Introduction
- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison

Voting Games

- Alternative Characterizatior
- Standard for Thre Person Game
- Conclusion
- References

Observation

- $v \in V \cap \mathscr{GM}$ if and only if $\zeta_S = 1$ for every $S \subseteq N \setminus i$.
- \blacksquare Any coalition $S \subseteq N \setminus i$ is a loosing coalition
- $\blacksquare S \cup i \text{ is always winning.}$

Remark

- If i is a middleman then he is also a critical player.
- A middleman cannot be a veto player.
- v does not have a null player as for each $j \in N \setminus i$, we have $v(i, j) = 1 \neq 0 = v(j)$.
- The only minimal winning coalitions in (N, v) are the pairs {i, j} where i is a middleman and j is any other player.

The Potential to characterize the I-value

Game Theory

Introduction

Middleman

The I-value

Characterizatio

Independence

Example

Comparison

Voting Games

Alternative Characterization

Standard for Three Person Game

Conclusion

References

Definition

Given a function $P: \mathscr{GM} \to \mathbb{R}$ associated with a real number $P(N, \zeta, \xi, v)$ to each $(N, \zeta, \xi, v) \in \mathscr{GM}$ with middleman $i \in N$, the *intermediary-gradient* of a player $j \in N$ is defined as

$$D_j P(N, \boldsymbol{\zeta}, \boldsymbol{\xi}, v) := \begin{cases} P(N, \boldsymbol{\zeta}, \boldsymbol{\xi}, v) - P(N \setminus j, \boldsymbol{\zeta}, \boldsymbol{\xi}, v) & \text{if } j \neq i. \\ 0 & \text{if } j = i \end{cases}$$
(6)

Definition

Let $i \in N$ be a middleman in $(N, \zeta, \xi, v) \in \mathscr{GM}$. A function $P : \mathscr{GM} \to \mathbb{R}$ starting from $P(\{i, j\}, \zeta, \xi, v) = (1 - \xi)v(\{i, j\})$ for all $j \in N \setminus i$ is called an intermediary-potential if

$$\sum_{j \in N \setminus i} D_j P(N, \boldsymbol{\zeta}, \xi, v) = (1 - \xi) v(N).$$
(7)

The Potential

Game Theory

Introduction

- . .

Characterizatio

Independence

Example

Comparison

Voting Games

Alternative Characterization

Standard for Three Person Game

Conclusion

References

Theorem

There exists a unique intermediary-potential P for every $(N, \zeta, \xi, v) \in \mathscr{GM}$ with middleman $i \in N$, the payoffs $(D_j P(N, \zeta, \xi, v))_{j \in N \setminus i}$ coincide with the *I*-value of the game and the intermediary-potential of (N, ζ, ξ, v) is uniquely determined by (7).

Definition

Let Φ be a solution of $(N, \boldsymbol{\zeta}, \xi, v) \in \mathscr{GM}$ with middleman $i \in N$. Given $T \subseteq N : i \in T$, define the reduced game (T, v_T^{Φ}) as follows.

$$v_T^{\Phi}(S) = \begin{cases} & v(S \cup T^c) - \frac{1}{(1-\xi)} \sum_{j \in T^c} \Phi_j(S \cup T^c, \boldsymbol{\zeta}, \xi, v), \text{ if } i \in S \\ & 0, \text{ otherwise} \end{cases}$$

where $T^c = N \setminus T$.

(8)

Consistency

Game Theory

Introduction

- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games

Alternative Characterization

Standard for Three Person Game

Conclusion

References

Definition

A solution function Φ is consistent if for any $(N, \zeta, \xi, v) \in \mathscr{GM}$ with middleman i and $T \subseteq N$ such that $i \in T$,

$$\Phi_j(T,\boldsymbol{\zeta},\boldsymbol{\xi},\boldsymbol{v}_T^{\Phi}) = \Phi_j(N,\boldsymbol{\zeta},\boldsymbol{\xi},\boldsymbol{v}), \; \forall j \in T \setminus i$$
(9)

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Theorem

The I-value is consistent.

Standard for Three Person Game

Game Theory

- Introduction
- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterization
- Standard for Three Person Game
- Conclusion
- References

Definition

A solution function Φ is standard for three-person games $(\{i,j,k\},v)$ with middleman i if

$$\Phi_{j}(\{i,j,k\},\boldsymbol{\zeta},\xi,v) = (1-\xi) \left[v(\{i,j\}) + \frac{1}{2} \left(v(\{i,j,k\}) - v(\{i,j\}) - v(\{i,k\}) \right) \right] \quad \forall j \neq k.$$

Lemma

A solution Φ is I-efficient if it satisfies consistency and standard for three-person games with a middleman.

Characterization : Main Theorem 2

Game Theory

- Introduction
- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatior
- Standard for Three Person Game
- Conclusion
- References

Theorem

let Φ be a solution function. Then Φ is the I-value if and only if it is consistent and standard for three-person games with a middleman.

Independence of the Axioms

- $\Phi^1 = (0, 0, 0..., 0)$ satisfies consistency but is not standard for the three person game with a middleman.
- Define,

$$\Phi'(N,\boldsymbol{\zeta},\boldsymbol{\xi},v) = \begin{cases} & \Phi^{I}(N,\boldsymbol{\zeta},\boldsymbol{\xi},v) \text{ when } n = 3\\ & \Phi(N,\boldsymbol{\zeta},\boldsymbol{\xi},v) \text{ when } n > 3 \end{cases}$$

Then Φ^\prime satisfies consistency but not standard for three person games with middleman.

Game Theory

- Introduction
- Middlemar
- The I-value
- Characterization
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizati
- Standard for Three Person Game
- Conclusion
- References

Conclusion

- We introduce the notion of *middlemen* in TU cooperative games.
- We propose a new value for TU cooperative games with *middlemen*.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

- The axioms which are used to characterize this value are linearity, anonymity, efficiency and a new axiom : the axiom of middlemen.
- Future of Middlemen? The multiplicative model.

References I

Game Theory

- Introduction
- Middleman
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatior
- Standard for Three Person Game
- Conclusion
- References

- Aumann, R. J. and Hart, S. (eds.), 2002, Handbook of game theory, with economic applications, vol 3. North- Holland, Amsterdam.
 - Banzhaf, J.F.I., 1965, Weighted voting does not work: A mathematical analysis, Rutgers Law Review, 19, 317-343.
- Branzei, R., Dimitrov, D. and Tijs, S., Models in Cooperative Game Theory: Crisp, Fuzzy and Multichoice Games, Springer, Berlin Heidelberg, 2008.
 - Bailey, J. P., and Bakos, J. Y., 1997, An Exploratory Study of the Emerging Role of Electronic Intermediariations and Policy, International Journal of Electronic Commerce 1(3), 7-20.

- Chun, Y., 1991, On the symmetric and weighted Shapley values, Int. J. Game Theory, 20, 183-190.
- Derks, J., Haller, H. and Peters, H., 2000, The selectope for cooperative games, Int. J. Game Theory, 29, 23-38.

20

Game Theory

- Introduction
- Middlemar
- The I-value
- Characterizatio
- Independence
- Example
- Comparison
- Voting Games
- Alternative Characterizatio
- Standard for Three Person Game
- Conclusion
- References

Thank You... Your Comments