A Domain Characterization for Min-Max Rules

Gopakumar Achuthankutty\(^1\) and Souvik Roy\(^1\)

\(^1\)Economic Research Unit, Indian Statistical Institute, Kolkata
A society is described by the set of agents, \(N = \{1, \ldots, n\} \).

A finite set \(X = \{a, a + 1, \ldots, b - 1, b\} \), of at least three alternatives, where \(a, b \in \mathbb{Z} \).

Let \(L(X) \) the set of all strict preferences over \(X \) and let \(D \subseteq L(X) \) be a set of admissible preferences.

For any \(P \in D \), let \(r_k(P) \) be the \(k^{th} \) ranked alternative in \(P \).

A social choice function (SCF) \(f \) is a mapping \(f : D^n \rightarrow X \).

A SCF \(f : D^n \rightarrow X \) is unanimous if for all \(P_N \in D^n, r_1(P_i) = x \) for all \(i \in N \) implies \(f(P_N) = x \).

A SCF \(f \) is manipulable if there exists an individual \(i \), an admissible profile \(P_N = (P_i)_{i \in N} \in D^n \) and an admissible ordering \(P'_i \in D \) such that \(f(P'_i, P_{-i}) \neq f(P_N) \).

A SCF \(f \) is strategy-proof if it is not manipulable.
A preference $P \in \mathbb{L}(X)$ is single-peaked if for all $x, y \in X$, $[x < y \leq r_1(P) \text{ or } x > y \geq r_1(P)]$ implies yPx.

Let $S \subseteq \mathbb{L}(X)$ denote the set of all (maximal) single-peaked preferences on X.

Let $\beta = (\beta_S)_{S \subseteq N}$ be a list of 2^n parameters satisfying: (i) $\beta_\emptyset = b$, (ii) $\beta_N = a$, and (iii) for any $S \subseteq T$, $\beta_T \leq \beta_S$.

A SCF $f^\beta : D^n \to X$ is a min-max rule (MMR) with respect to β if:

$$f^\beta(P_1, \ldots, P_n) = \min_{S \subseteq N} \max_{i \in S} \{r_1(P_i), \beta_S\}.$$

Weymark (2011) showed that MMRs are the only unanimous and strategy-proof rules over S.
A domain \mathcal{D} satisfies *single-peaked* property if all the preferences in the domain are single-peaked.

For any $x \in X$, $\mathcal{D}(x) = \{ P \in \mathcal{D} \mid r_1(P) = x \}$.

A domain \mathcal{D} of preferences satisfies *adjacent pair at the top (APT)* property if:

- for all $P \in \mathcal{D}(a)$, $r_2(P) = a + 1$ and for all $P \in \mathcal{D}(b)$, $r_2(P) = b - 1$,
- for all $z \in X \setminus \{a, b\}$, there exists $P', P'' \in \mathcal{D}(z)$, $r_2(P') = z - 1$ and $r_2(P'') = z + 1$.

A domain $\hat{\mathcal{S}}$ of preferences is called a *single-peaked domain with APT property* if it satisfies both single-peaked and APT property.
A domain \mathcal{D} of preferences is called a *min-max* (MM) domain if every unanimous and strategy-proof SCF f defined on D^n is an MMR.

Theorem 1. A SCF f defined on \hat{S}^n is unanimous and strategy-proof if and only if f is an MMR.

Theorem 2. A domain \mathcal{D} of preferences is a min-max domain if and only if it is a single-peaked domain with APT property.
Two preference profiles P_N, P'_N are called *tops-equivalent* preference profiles if $r_1(P_i) = r_1(P'_i)$ for all $i \in N$.

A SCF $f : \mathcal{D}^n \to X$ is called *tops-only* if for any two tops-equivalent profiles $P_N, P'_N \in \mathcal{D}^n$, $f(P_N) = f(P'_N)$.

Theorem 3. Let f be a unanimous and strategy-proof SCF defined on \hat{S}^n. Then f is tops-only.

A SCF $f : \mathcal{D}^n \to X$ is *uncompromising* if $\forall P_N \in \mathcal{D}^n, \forall i \in N, \forall P'_i \in \mathcal{D}$:

- if $r_1(P_i) < f(P_N)$ and $r_1(P'_i) \leq f(P_N)$, then $f(P_N) = f(P'_i, P_{-i})$ and,
- if $r_1(P_i) > f(P_N)$ and $r_1(P'_i) \geq f(P_N)$, then $f(P_N) = f(P'_i, P_{-i})$.

Theorem 4. Let f be a unanimous and strategy-proof SCF defined on \hat{S}^n. Then f is uncompromising.
A domain \mathcal{D} of preferences is said to satisfy the single-crossing property on X if there is a linear order $\succ \in \mathbb{L}(X)$ and a linear order \succcurlyeq of elements in \mathcal{D} such that $\forall x, y \in X$ and $\forall P, P' \in \mathcal{D}$:

$$[y > x, P' \succ P, \text{ and } yPx] \Rightarrow yP'x$$

Let $\tau(\mathcal{D})$ be the set of top alternatives given by $\tau(\mathcal{D}) = \{x \mid \exists P \in \mathcal{D} \text{ with } r_1(P) = x\}$.

For $P \in \mathbb{L}(X)$ and $Y \subseteq X$, define $P|Y$ as $uP|Yv$ if and only if uPv for all $u, v \in X$.

For a domain \mathcal{D}, let $\mathcal{D}|Y = \{P|Y \mid P \in \mathcal{D}\}$.
Theorem 5. Let f be unanimous and strategy-proof on a single crossing domain \mathcal{D}. Then $f(P_N) \in \tau(\mathcal{D})$ for all $P_N \in \mathcal{D}$.

Lemma 1. Let \mathcal{D} be a single-crossing domain. Then $\mathcal{D}|_{\tau(\mathcal{D})}$ is a single-peaked domain with APT property.

Theorem 6. Let \mathcal{D} be a single crossing domain. Then an SCF f on \mathcal{D} is unanimous and strategy-proof if and only if f is an MMR restricted to $\tau(\mathcal{D})$.
Minimally Rich Single-Peaked (MRSP) Domain

- A preference \(P \in \mathbb{L}(X) \) is a left single-peaked (right single-peaked) preference if \(P \) is single-peaked and for all \(x, y \in X \) with \(x < r_1(P) < y, xPy (yPx) \).
- The domain of preferences is called a minimally rich single-peaked domain if it contains all the left single-peaked and right single-peaked preferences.
- Any minimally rich single-peaked domain \(S_m \) is a single-peaked domain with APT property.

Corollary 1. Let \(S_m \) be a minimally rich single-peaked domain. Then an SCF \(f \) on \(S_m \) is unanimous and strategy-proof if and only if \(f \) is an MMR.
Consider a domain \mathcal{D} of admissible preferences.

The minimal dictatorial cover (MDC) of the domain \mathcal{D}, denoted as $\tilde{\mathcal{D}}$, satisfies the following properties:

- $\tilde{\mathcal{D}} \supset \mathcal{D}$.
- $\exists \mathcal{D}'$ with $\mathcal{D} \subsetneq \mathcal{D}' \subsetneq \tilde{\mathcal{D}}$ such that \mathcal{D}' is dictatorial.

The maximal possibility cover (MPC) of the domain \mathcal{D}, denoted as $\bar{\mathcal{D}}$, satisfies the following properties:

- $\bar{\mathcal{D}} \supset \mathcal{D}$.
- Any domain \mathcal{D}' such that $\mathcal{D}' \supsetneq \bar{\mathcal{D}}$ is dictatorial.
Theorem 7. A domain \(\tilde{S} \) is the MDC of a single-peaked domain with APT property \(\hat{S} \) if and only if \(\tilde{S} = \hat{S} \cup \{Q, Q'\} \) where:

- \(r_1(Q) = a \) and \(r_2(Q) \neq a + 1 \),
- \(r_1(Q') = b \) and \(r_2(Q') \neq b - 1 \).

Corollary 2. A domain \(\tilde{S} \) is a MPC of a single-peaked domain with APT property \(\hat{S} \) if and only if the following holds:

- \(\tilde{S} = \{P \in L(X) | r_1(P) = a \Rightarrow r_2(P) = a + 1\} \), or,
- \(\tilde{S} = \{P \in L(X) | r_1(P) = b \Rightarrow r_2(P) = b - 1\} \).
THANK YOU
For $x, y \in X$, define the (closed) interval $[x, y]$ of alternatives as follows:

$$[x, y] = \begin{cases}
\{x, x + 1, \ldots, y - 1, y\} & \text{if } x < y \\
\{x\} & \text{otherwise}
\end{cases}$$

Similarly, we can define $(x, y]$, $[x, y)$ and (x, y).

For a preference profile P_N, the top set of the preference profile, $\tau(P_N)$ is defined as $\tau(P_N) = \{x \in X \mid r_1(P_i) = x \text{ for some } i \in N\}$.

For a preference profile $P_N \in D^n$, the minimum top of the preference profile (maximum top of the preference profile), denoted by $\min(P_N)$ ($\max(P_N)$), defined as $\min(P_N) = \min\{x \mid x \in \tau(P_N)\}$ ($\max(P_N) = \max\{x \mid x \in \tau(P_N)\}$).

Lemma 2. Let f be a unanimous and strategy-proof SCF defined on \hat{S}^n. Then $f(P_N) \in [\min(P_N), \max(P_N)]$ for all $P_N \in \hat{S}^n$.

Lemma 3. Let $P_N, P'_N \in \hat{S}^n$ and $y \in X$ be such that if $r_1(P_i) \geq y$ ($r_1(P_i) \leq y$) then $P_i = P'_i$, otherwise $r_1(P'_i) = y$. Then $f(P'_N) = \max\{f(P_N), y\}$ ($f(P'_N) = \min\{f(P_N), y\}$).