A DOMAIN CHARACTERIZATION FOR MIN-MAX RULES

Gopakumar Achuthankutty¹ and Souvik Roy¹

¹Economic Research Unit, Indian Statistical Institute, Kolkata

BASIC FRAMEWORK

BASIC FRAMEWORK

- SINGLE-PEAKED (SP) Domain
- SINGLE-PEAKED & Adjacent Pair at the Top Property
- CHARACTERIZATION OF MIN-MAX DOMAIN
- TOPS-ONLYNESS & UNCOMPROMISINGNESS
- Single-Crossing (SC) Domain
- SINGLE-CROSSING (SC) DOMAIN (CONTD.)
- MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN
- MINIMAL DICTATORIAL & MAXIMAL Possibility Cover Characterization Result

Thank You

- A society is described by the set of agents, $N = \{1, ..., n\}$.
- A finite set $X = \{a, a + 1, ..., b 1, b\}$, of atleast three alternatives, where $a, b \in \mathbb{Z}$.
- Let $\mathbb{L}(X)$ the set of all strict preferences over X and let $\mathcal{D} \subseteq \mathbb{L}(X)$ be a set of admissible preferences.
- For any $P \in \mathcal{D}$, let $r_k(P)$ be the k^{th} ranked alternative in P.
- A social choice function (SCF) f is a mapping $f : \mathcal{D}^n \to X$.
- A SCF $f : \mathcal{D}^n \to X$ is *unanimous* if for all $P_N \in \mathcal{D}^n$, $r_1(P_i) = x$ for all $i \in N$ implies $f(P_N) = x$.
- A SCF *f* is *manipulable* if there exists an individual *i*, an admissible profile $P_N = (P_i)_{i \in N} \in \mathcal{D}^n$ and an admissible ordering $P'_i \in \mathcal{D}$ such that $f(P'_i, P_{-i})P_if(P_N)$.
 - A SCF *f* is *strategy-proof* if it is not manipulable.

SINGLE-PEAKED (SP) DOMAIN

BASIC FRAMEWORK

Single-Peaked (SP) Domain

- SINGLE-PEAKED & Adjacent Pair at the Top Property
- CHARACTERIZATION OF MIN-MAX DOMAIN
- TOPS-ONLYNESS & UNCOMPROMISINGNESS
- SINGLE-CROSSING (SC) Domain
- SINGLE-CROSSING (SC) DOMAIN (CONTD.)
- MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN
- MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER CHARACTERIZATION RESULT

THANK YOU

A preference $P \in \mathbb{L}(X)$ is *single-peaked* if for all $x, y \in X$, $[x < y \le r_1(P) \text{ or } x > y \ge r_1(P)]$ implies yPx.

- Let $S \subseteq \mathbb{L}(X)$ denote the set of all (maximal) single-peaked preferences on *X*.
- Let $\beta = (\beta_S)_{S \subseteq N}$ be a a list of 2^n parameters satisfying: (i) $\beta_{\emptyset} = b$, (ii) $\beta_N = a$, and (iii) for any $S \subseteq T$, $\beta_T \leq \beta_S$.
 - A SCF $f^{\beta} : \mathcal{D}^n \to X$ is a *min-max rule* (MMR) with respect to β if:

$$f^{\beta}(P_1,\ldots,P_n) = \min_{S \subseteq N} \{\max_{i \in S} \{r_1(P_i), \beta_S\}\}.$$

Weymark (2011) showed that MMRs are the only unanimous and strategy-proof rules over S.

SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY

Basic Framework Single-Peaked (SP) Domain

SINGLE-PEAKED & Adjacent Pair at the Top Property

CHARACTERIZATION OF MIN-MAX DOMAIN

TOPS-ONLYNESS & UNCOMPROMISINGNESS

SINGLE-CROSSING (SC) Domain

SINGLE-CROSSING (SC) DOMAIN (CONTD.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL Possibility Cover Characterization Result

Thank You

- A domain \mathcal{D} satisfies *single-peaked* property if all the preferences in the domain are single-peaked.
- For any $x \in X$, $\mathcal{D}(x) = \{P \in \mathcal{D} \mid r_1(P) = x\}.$
- A domain \mathcal{D} of preferences satisfies *adjacent pair at the top* (APT) property if:
 - □ for all $P \in \mathcal{D}(a)$, $r_2(P) = a + 1$ and for all $P \in \mathcal{D}(b)$, $r_2(P) = b - 1$,
 - □ for all $z \in X \setminus \{a, b\}$, there exists $P', P'' \in D(z), r_2(P') = z 1$ and $r_2(P'') = z + 1$.
- A domain \hat{S} of preferences is called a *single-peaked domain with APT property* if it satisfies both single-peaked and APT property.

CHARACTERIZATION OF MIN-MAX DOMAIN

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY

CHARACTERIZATION OF MIN-MAX DOMAIN

TOPS-ONLYNESS & UNCOMPROMISINGNESS SINGLE-CROSSING (SC) DOMAIN

SINGLE-CROSSING (SC) Domain (Contd.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER CHARACTERIZATION RESULT

Thank You

A domain \mathcal{D} of preferences is called a *min-max* (MM) domain if every unanimous and strategy-proof SCF f defined on \mathcal{D}^n is an MMR.

Theorem 1. A SCF *f* defined on \hat{S}^n is unanimous and strategy-proof if and only if *f* is an MMR.

Theorem 2. A domain \mathcal{D} of preferences is a min-max domain if and only if it is a single-peaked domain with APT property.

TOPS-ONLYNESS & UNCOMPROMISINGNESS

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY CHARACTERIZATION OF

MIN-MAX DOMAIN

TOPS-ONLYNESS & UNCOMPROMISINGNESS

Single-Crossing (SC) Domain

SINGLE-CROSSING (SC) Domain (Contd.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER CHARACTERIZATION RESULT

Thank You

Two preference profiles P_N , P'_N are called *tops-equivalent* preference profiles if $r_1(P_i) = r_1(P'_i)$ for all $i \in N$.

A SCF $f : \mathcal{D}^n \to X$ is called *tops-only* if for any two tops-equivalent profiles $P_N, P'_N \in \mathcal{D}^n, f(P_N) = f(P'_N)$.

Theorem 3. Let *f* be a unanimous and strategy-proof SCF defined on \hat{S}^n . Then *f* is tops-only.

- A SCF $f : \mathcal{D}^n \to X$ is uncompromising if $\forall P_N \in \mathcal{D}^n, \forall i \in N, \forall P'_i \in \mathcal{D}$:
 - □ if $r_1(P_i) < f(P_N)$ and $r_1(P'_i) \le f(P_N)$, then $f(P_N) = f(P'_i, P_{-i})$ and, □ if $r_1(P_i) > f(P_N)$ and $r_1(P'_i) \ge f(P_N)$, then $f(P_N) = f(P'_i, P_{-i})$.

Theorem 4. Let *f* be a unanimous and strategy-proof SCF defined on \hat{S}^n . Then *f* is uncompromising.

SINGLE-CROSSING (SC) DOMAIN

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY

CHARACTERIZATION OF MIN-MAX DOMAIN

TOPS-ONLYNESS & UNCOMPROMISINGNESS

Single-Crossing (SC) Domain

SINGLE-CROSSING (SC) Domain (Contd.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL Possibility Cover Characterization Result

Thank You

A domain \mathcal{D} of preferences is said to satisfy the *single-crossing property* on *X* if there is a linear order $> \in \mathbb{L}(X)$ and a linear order \succ of elements in \mathcal{D} such that $\forall x, y \in X$ and $\forall P, P' \in \mathcal{D}$:

$$\Box \quad [y > x, P' \succ P, \text{ and } yPx] \Rightarrow yP'x$$

• Let $\tau(\mathcal{D})$ be the set of top alternatives given by $\tau(\mathcal{D}) = \{x \mid \exists P \in \mathcal{D} \text{ with } r_1(P) = x\}.$

- For $P \in \mathbb{L}(X)$ and $Y \subseteq X$, define $P_{|Y}$ as $uP_{|Y}v$ if and only if uPv for all $u, v \in X$.
- For a domain \mathcal{D} , let $\mathcal{D}_{|Y} = \{P_{|Y} \mid P \in \mathcal{D}\}.$

SINGLE-CROSSING (SC) DOMAIN (CONTD.)

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY CHARACTERIZATION OF MIN-MAX DOMAIN TOPS-ONLYNESS & UNCOMPROMISINGNESS SINGLE-CROSSING (SC)

DOMAIN SINGLE-CROSSING (SC)

DOMAIN (CONTD.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER CHARACTERIZATION RESULT

Thank You

Theorem 5. Let *f* be unanimous and strategy-proof on a single crossing domain \mathcal{D} . Then $f(P_N) \in \tau(\mathcal{D})$ for all $P_N \in \mathcal{D}$.

Lemma 1. Let \mathcal{D} be a single-crossing domain. Then $\mathcal{D}_{|\tau(\mathcal{D})}$ is a single-peaked domain with APT property.

Theorem 6. Let \mathcal{D} be a single crossing domain. Then an SCF f on \mathcal{D} is unanimous and strategy-proof if and only if f is an MMR restricted to $\tau(\mathcal{D})$.

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY

CHARACTERIZATION OF MIN-MAX DOMAIN

TOPS-ONLYNESS & UNCOMPROMISINGNESS SINGLE-CROSSING (SC)

DOMAIN

SINGLE-CROSSING (SC) DOMAIN (CONTD.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER CHARACTERIZATION RESULT

Thank You

- A preference $P \in \mathbb{L}(X)$ is a *left single-peaked* (*right single-peaked*) preference if P is single-peaked and for all $x, y \in X$ with $x < r_1(P) < y, xPy$ (yPx).
- The domain of preferences is called a *minimally rich* single-peaked domain if it contains all the left single-peaked and right single-peaked preferences.
- Any minimally rich single-peaked domain S_m is a single-peaked domain with APT property.

Corollary 1. Let S_m be a minimally rich single-peaked domain. Then an SCF f on S_m is unanimous and strategy-proof if and only if f is an MMR.

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER

- BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY CHARACTERIZATION OF MIN-MAX DOMAIN
- TOPS-ONLYNESS & UNCOMPROMISINGNESS SINGLE-CROSSING (SC)
- DOMAIN
- SINGLE-CROSSING (SC) Domain (Contd.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL Possibility Cover

CHARACTERIZATION RESULT

Thank You

- Consider a domain \mathcal{D} of admissible preferences.
- The *minimal dictatorial cover* (MDC) of the domain \mathcal{D} , denoted as $\tilde{\mathcal{D}}$, satisfies the following properties:
 - $\Box \quad \tilde{\mathcal{D}} \supset \mathcal{D}.$
 - $\Box \quad \nexists \mathcal{D}' \text{ with } \mathcal{D} \subsetneq \mathcal{D}' \subsetneq \tilde{\mathcal{D}} \text{ such that } \mathcal{D}' \text{ is dictatorial.}$
- The *maximal possibility cover* (MPC) of the domain D, denoted as \overline{D} , satisfies the following properties:
 - $\exists \quad \bar{\mathcal{D}} \supset \mathcal{D}.$
 - $\Box \quad \text{Any domain } \mathcal{D}' \text{ such that } \mathcal{D}' \supsetneq \bar{\mathcal{D}} \text{ is dictatorial.}$

CHARACTERIZATION RESULT

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY CHARACTERIZATION OF MIN-MAX DOMAIN TOPS-ONLYNESS & UNCOMPROMISINGNESS

SINGLE-CROSSING (SC) Domain

SINGLE-CROSSING (SC) Domain (Contd.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER

CHARACTERIZATION RESULT

Thank You

Theorem 7. A domain \tilde{S} is the MDC of a single-peaked domain with APT property \hat{S} if and only if $\tilde{S} = \hat{S} \cup \{Q, Q'\}$ where:

•
$$r_1(Q) = a \text{ and } r_2(Q) \neq a+1,$$

•
$$r_1(Q') = b$$
 and $r_2(Q') \neq b - 1$.

Corollary 2. A domain \overline{S} is a MPC of a single-peaked domain with APT property \hat{S} if and only if the following holds:

$$\bar{\mathcal{S}} = \{P \in \mathbb{L}(X) | r_1(P) = a \Rightarrow r_2(P) = a + 1\}, \text{ or,}$$

$$\bar{\mathcal{S}} = \{ P \in \mathbb{L}(X) | r_1(P) = b \Rightarrow r_2(P) = b - 1 \}.$$

BASIC FRAMEWORK SINGLE-PEAKED (SP) Domain SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY CHARACTERIZATION OF MIN-MAX DOMAIN TOPS-ONLYNESS & UNCOMPROMISINGNESS SINGLE-CROSSING (SC) Domain SINGLE-CROSSING (SC) DOMAIN (CONTD.) MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN MINIMAL DICTATORIAL & Maximal Possibility Cover CHARACTERIZATION Result

THANK YOU

INTERVAL LEMMA & THRESHOLD LEMMA

THANK YOU

INTERVAL LEMMA & THRESHOLD LEMMA

BASIC FRAMEWORK SINGLE-PEAKED (SP) DOMAIN SINGLE-PEAKED & ADJACENT PAIR AT THE TOP PROPERTY

CHARACTERIZATION OF MIN-MAX DOMAIN

TOPS-ONLYNESS & UNCOMPROMISINGNESS SINGLE-CROSSING (SC) DOMAIN

Single-Crossing (SC) Domain (Contd.)

MINIMALLY RICH SINGLE-PEAKED (MRSP) DOMAIN

MINIMAL DICTATORIAL & MAXIMAL POSSIBILITY COVER CHARACTERIZATION RESULT

Thank You

INTERVAL LEMMA & THRESHOLD LEMMA For $x, y \in X$, define the (closed) interval [x, y] of alternatives as follows:

$$[x,y] = \begin{cases} \{x, x+1, \dots, y-1, y\} \text{ if } x < y \\ \{x\} \text{ otherwise} \end{cases}$$

Similarly, we can define (x, y], [x, y) and (x, y).

For a preference profile P_N , the *top set of the preference profile*, $\tau(P_N)$ is defined as $\tau(P_N) = \{x \in X \mid r_1(P_i) = x \text{ for some } i \in N\}.$

For a preference profile $P_N \in D^n$, the minimum top of the preference profile (maximum top of the preference profile), denoted by min (P_N) (max (P_N)), defined as min $(P_N) = \min\{x \mid x \in \tau(P_N)\}$ (max $(P_N) = \max\{x \mid x \in \tau(P_N)\}$).

Lemma 2. Let f be a unanimous and strategy-proof SCF defined on \hat{S}^n . Then $f(P_N) \in [\min(P_N), \max(P_N)]$ for all $P_N \in \hat{S}^n$.

Lemma 3. Let $P_N, P'_N \in \hat{S}^n$ and $y \in X$ be such that if $r_1(P_i) \ge y$ $(r_1(P_i) \le y)$ then $P_i = P'_i$, otherwise $r_1(P'_i) = y$. Then $f(P'_N) = \max\{f(P_N), y\}$ $(f(P'_N) = \min\{f(P_N), y\})$. 13 / 13