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What is Social Storage?

I Network where each user shares storage space with her/ his
friends for data backup

I Overlay on top of an existing Social Network
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Why Social Storage?

I Personal data size is growing exponentially

I Data stored on one’s local machine is prone to loss due to
disk-failure, malware, etc.

I Data backup on local external hard disk(s) on regular basis is
cumbersome

I Centralized online backup typically costs more than
decentralized, and there are concerns such as trust, privacy
and security

Hence, Friend-to-Friend (F2F) backup systems. (Gracia-Tinedo et
al., 2012).
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I Network Formation in Social Storage has not been studied

I We need bilateral link addition and deletion

I Hence, we redefine the pairwise stability solution concept of
Jackson and Wolinsky (1996)
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Social Storage Network Model

I Social Storage g = (A,L) where A is a set of agents (or
players) and L is a set of edges (or links) connecting these
agents.

I A = {1,2, ..., i , ..., j , ...,N}.
I Link 〈ij〉 ∈ L represents that players i and j are involved in a

mutual data backup agreement.
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Social Storage Networkg may be connected or may consist of two
or more connected components.

I g is connected if there exists a path between every pair of
nodes i and j ∈ A

I A disconnected network g can be divided into a number of
components (sub-networks) g(A1),g(A2), ...,g(An), where
A1∪A2∪ . . .∪An = A,Ak ∩Al = φ for k 6= l , such that a pair
of nodes i and j is connected if and only if i and j are
members of the same set Ai .
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I g+ 〈ij〉 means link 〈ij〉 is added to g.

I g−〈ij〉 means link 〈ij〉 is deleted from g.

I ηi (g) is the neighborhood size of player i in g (also denotes
the set of neighbors of i).
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Parameters

I c is the cost to maintain a link.

I βi is the value that player i has for its data.

I si is the amount of storage available with player i that it can
contribute to other players.

I di is the amount of data that player i wants to backup.

I bi is budget that player i has for backup agreements.

I λ is the disk failure rate.

11 / 61



Parameters

I c is the cost to maintain a link.

I βi is the value that player i has for its data.

I si is the amount of storage available with player i that it can
contribute to other players.

I di is the amount of data that player i wants to backup.

I bi is budget that player i has for backup agreements.

I λ is the disk failure rate.

11 / 61



Parameters

I c is the cost to maintain a link.

I βi is the value that player i has for its data.

I si is the amount of storage available with player i that it can
contribute to other players.

I di is the amount of data that player i wants to backup.

I bi is budget that player i has for backup agreements.

I λ is the disk failure rate.

11 / 61



Parameters

I c is the cost to maintain a link.

I βi is the value that player i has for its data.

I si is the amount of storage available with player i that it can
contribute to other players.

I di is the amount of data that player i wants to backup.

I bi is budget that player i has for backup agreements.

I λ is the disk failure rate.

11 / 61



Parameters

I c is the cost to maintain a link.

I βi is the value that player i has for its data.

I si is the amount of storage available with player i that it can
contribute to other players.

I di is the amount of data that player i wants to backup.

I bi is budget that player i has for backup agreements.

I λ is the disk failure rate.

11 / 61



Parameters

I c is the cost to maintain a link.

I βi is the value that player i has for its data.

I si is the amount of storage available with player i that it can
contribute to other players.

I di is the amount of data that player i wants to backup.

I bi is budget that player i has for backup agreements.

I λ is the disk failure rate.

11 / 61



Outline
Background and Motivation

What is Social Storage?
Why Social Storage?

Social Storage Network Model
The Model
Parameters

Utility Function
Multi-Objective Framework (MO-Framework)
Single Objective Framework (SO-Framework)

Pairwise Stability
Jackson and Wolinsky (1996)
Proposed Definitions for Social Storage

Stability Point and Stable Networks
Conditions for Stability
Uniqueness of Stability Point
Stable Networks

12 / 61



Utility Function

Given A = {1,2, ...,N}, the utility of player i in the network g is
ui (g) where ui : G (A)→ R.
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I Chance of data recovery of a player depends on its
neighborhood size.

I The more the neighbors, the higher the reliability.

I But, the more the neighbors, the higher the cost of adding/
maintaining links.
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Multi-Objective Framework (MO-Framework)

I Each player i wants to minimize the total cost associated
with maintaining the links, that is, cηi (g).

I Each player wants to maximize the expected value of data
backup, that is, βi (1−λ ηi (g)).

We combine these as:

[α(βi (1−λ
ηi (g)))]− [(1−α)(cηi (g))], where α ∈ (0,1). (1)

For elegance of results on stability, we let α = 1/2, and drop the
factor of 1/2 from (1), ∀i ∈ A.

We, hence, have

ui (g) = βi (1−λ
ηi (g))− cηi (g),∀i ∈ A
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The social optimization problem can formulated as

max
ηi (g)∈N

(ui (g))

such that

ηi (g) = ∑
i ,j∈g

aij and

si ≥ ∑
j∈ηi (g)

djaij ,

where,

aij =

{
1 if i and j have a backup agreement,

0 otherwise.
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Single Objective Framework (SO-Framework)

I Each player has a budget, bi , allocated for data backup

I That is, there is a constraint on the total cost associated with
maintaining links, cηi (g)

I Hence, ui (g) = βi (1−λ ηi (g)),∀i ∈ A
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Jackson and Wolinsky (1996):

Definition 1
A network g is pairwise stable if and only if

1. ui (g)≥ ui (g−〈ij〉) and uj(g)≥ uj(g−〈ij〉), for all 〈ij〉 ∈ g,
and

2. If ui (g+ 〈ij〉) > ui (g), then uj(g+ 〈ij〉) < uj(g), for all 〈ij〉 6∈ g.
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Modified definition of pairwise stability:

Definition 2
A social storage network g is pairwise stable if and only if

1. ∀〈ij〉 ∈ g, if ui (g−〈ij〉) > ui (g), then uj(g−〈ij〉) < uj(g), and

2. ∀〈ij〉 6∈ g, if ui (g+ 〈ij〉) > ui (g), then uj(g+ 〈ij〉) < uj(g).
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Sufficient Storage

Each player in the given network g has as much storage as is re-
quired for all other players in g. That is,

si ≥ ∑
j∈g,
j 6=i

dj , ∀i ∈ g. (2)

Note that si may be different from sj .

22 / 61



We define remaining storage available with player i in a network g
as

RSi = si − ∑
j∈ηi (g)

djaij , (3)

and remaining budget of player i in g as

RBi = bi − ∑
j∈ηi (g)

caij , (4)

where

aij =

{
1 if i and j have a backup agreement,

0 otherwise.
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Definition 3
A social storage network g with storage constraints is pairwise
stable if and only if

1. ∀〈ij〉 ∈ g, if ui (g−〈ij〉) > ui (g), then uj(g−〈ij〉) < uj(g), and

2. ∀〈ij〉 6∈ g, if [ui (g+ 〈ij〉) > ui (g) and RSj ≥ di ], then
[uj(g+ 〈ij〉) < uj(g) or RSi < dj ].
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Definition 4
A social storage network g with storage and budget constraints is
pairwise stable if and only if

1. ∀〈ij〉 ∈ g, if ui (g−〈ij〉) > ui (g), then uj(g−〈ij〉) < uj(g), and

2. ∀〈ij〉 6∈ g, if [ui (g+ 〈ij〉) > ui (g) and RSj ≥ di and RBi ≥ c)],
then

[uj(g+ 〈ij〉) < uj(g) or RSi < dj or RBj < c].
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Stability Point and Stable Networks

We look at symmetric social storage.

Definition 5
A symmetric resource network (SRN) g is a social storage network
where all players in g have an equal amount of (limited) storage
space available to them, and an equal amount of data that they
want to backup. That is, ∀i , j ∈ s, si = sj (say s), and di = dj (say
d).
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Definition 6
A symmetric value network (SVN) g is a social storage network
where the benefit (value) associated with backed-up data is the
same for all players in the network, i.e., βi = βj (say β ), ∀i , j ∈ A,
and hence, utility of each player i in the network is

ui (g) = β (1−λ
ηi (g))− cηi (g) for the MO-Framework and,

ui (g) = β (1−λ
ηi (g)) for the SO-Framework,

(5)

where β ,λ ,c ∈ (0,1).
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We first discuss the results for SVN under the MO-Framework,
where each player in the given network g has as much storage as is
required for all other players in g.
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Lemma 1
In an SVN g with sufficient storage, under the MO-Framework, for
any player i ∈ g, forming a partnership with another player j ∈ g is
beneficial if and only if c < β [λ ηi (g)−λ ηi (g)+1].

Proof.
If the link 〈ij〉 is not present, then by adding 〈ij〉 the structure of g
changes to g+ 〈ij〉, and the utility of player i in the new structure
g+ 〈ij〉 will be
ui (g+ 〈ij〉) = [β (1−λ ηi (g)+1)]− [c(ηi (g) + 1)].
Then, from Definition 2, adding a new link or backup partner is
beneficial for any player i if and only if
ui (g+ 〈ij〉) > ui (g)
⇔ [β (1−λ ηi (g)+1)− c(ηi (g) + 1)] > [β (1−λ ηi (g))− c(ηi (g))]
⇔ c < β [λ ηi (g)−λ ηi (g)+1].
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Lemma 2
In an SVN g with sufficient storage, under the MO-Framework, for
any player i ∈ g, breaking an existing partnership with another
player j ∈ g is beneficial if and only if c > β [λ ηi (g)−1−λ ηi (g)].

Theorem 3
An SVN g with sufficient storage, under the MO-Framework, g is
pairwise stable if and only if

1. ∀〈ij〉 ∈ g, β [λ ηi (g)−1−λ ηi (g)] < c ⇒ β [λ ηj (g)−1−λ ηj (g)] > c ,
and

2. ∀〈ij〉 6∈ g, β [λ ηi (g)−λ ηi (g)+1] > c ⇒ β [λ ηj (g)−λ ηj (g)+1] < c.
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Now, we look at SRN and SVN-SRN networks.
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Theorem 4
An SVN-SRN g, under the MO-Framework, is pairwise stable if
and only if

1. ∀〈ij〉 ∈ g, β [λ ηi (g)−1−λ ηi (g)] < c ⇒ β [λ ηj (g)−1−λ ηj (g)] > c ,
and

2. ∀〈ij〉 6∈ g, β [λ ηi (g)−λ ηi (g)+1] > c and s−dηj(g)≥ d ⇒
β [λ ηj (g)−λ ηj (g)+1] < c or s−dηi (g) < d .
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Theorem 5
An SRN g, under the SO-Framework is pairwise stable if and only
if ∀〈ij〉 6∈ g, [b− cηi (g)≥ c and s−dηj(g)≥ d ]⇒ [b− cηj(g) < c
or s−dηi (g) < d ].
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Uniqueness of Stability Point

Definition 7
Given a network g, we define the stability point η̂ of g as the
neighborhood size (degree) such that no player in g has any
incentive to increase its neighborhood size to more than η̂ and to
decrease it to less than η̂ .
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Lemma 6
In an SVN g with sufficient storage, under the MO-Framework, for
a player i ∈ g, increasing neighborhood size is not beneficial if and
only if

ηi (g)≥
| ln( c

β(1−λ) )|
| lnλ | , ∀i ∈ g.

Proof.

From Lemma 1, adding a link for player i is beneficial iff
β [λ ηi (g)−λ ηi (g)+1] > c
⇔ βλ ηi (g)[1−λ ] > c
⇔ λ ηi (g) > c

β (1−λ )

⇔ ηi (g) lnλ > ln( c
β (1−λ )

)

⇔ ηi (g) <
| ln( c

β(1−λ)
)|

| lnλ |
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Lemma 7
In an SVN g with sufficient storage, under the MO-Framework, for
a player i ∈ g, decreasing neighborhood size is not beneficial if and
only if

ηi (g)≤
|(ln cλ

β(1−λ) )|
| lnλ | , ∀i ∈ g.
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Theorem 8
Let

| ln( c
β(1−λ) )|
| lnλ | be a non-integer. (Note that for most values of

c ,β ,λ , this is true). Let g be an SVN network with sufficient
storage, under the MO-Framework. Then, the stability point η̂ of
g is unique and is given by

η̂ =

⌈
| ln( c

β(1−λ) )|
| lnλ |

⌉
=

⌊
|(ln cλ

β(1−λ) )|
| lnλ |

⌋
.
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Example 1

Let c = 0.0055, β = 0.6, and λ = 0.2. Then,⌈
| ln( c

β(1−λ) )|
| lnλ |

⌉
= d2.72e and

⌊
|(ln cλ

β(1−λ) )|
| lnλ |

⌋
= b3.72c, and hence,

η̂ = 3.

(a) Network g (b) Network s

Figure 1: Stable SVN Networks g and s
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I Following are for networks under the MO-Framework, where
players may not necessarily have storage sufficient for all
others.

I As we are talking about limited storage, Definition 3 is
relevant.

I For simplicity, we assume that s
d is an integer.
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Theorem 9
Let g be an SVN-SRN, under the MO-Framework.
Then, ñ = min{η̂ , sd }, is the stability point of g.

Henceforth, for the sake of uniformity, we shall use η̂ (and not ñ)
for the stability point of SVN-SRN under the MO-Framework too.
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I We look at the stability point of SVNs with sufficient storage
and sufficient budget, under the SO-Framework. Here,
Definition 2 is relevant.

I We look at the stability point of SRNs under the
SO-Framework, where players may not necessarily have
storage sufficient for all others, and players’ budget may also
be limited. Here, Definition 4 is relevant.
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Theorem 10
In an SVN g with sufficient storage and sufficient budget, under
the SO-Framework, η̂ = N−1, is the stability point, where N is
the number of players.
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Theorem 11
In an SRN g, under the SO-Framework, η̂ = min{ sd ,

b
c }, ∀i ∈ s, is

the stability point, where no player has incentive to add or delete a
link.
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Stable Networks

I We have proved that, given N players, we have a unique
stability point η̂ for symmetric social storage networks.

I Now, we shall see which network(s) is (are) likely to evolve,
given N and η̂ .
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Remark 1
Each player tries to maximize his/ her utility by achieving
neighborhood size η̂ .
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Example 2

Let η̂ = 2.

(a) Null g (b) g+ 〈ab〉 (c) g+ 〈ac〉 (d) g+ 〈bd〉

(e) g+ 〈cd〉

Figure 2: Formation of a Stable Network
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Example 3

(a) Two com-
ponents, g(κ1)
and g(κ2), of g

(b)
Adding links
〈ae〉,〈cg〉,and〈df 〉

(c) Pairwise
stable network
g

Figure 3: Two components g(κ1) and g(κ2) which are unstable, though
complete, form a pairwise stable network g (given η̂ = 3).
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Lemma 12
Let g be a symmetric social storage network. Let N and η̂ be
(positive) odd integers, with η̂ < N. Then, g is pairwise stable if
and only if g consists of exactly N−1 players who have no
incentives to either add or delete any link.

Proof.
∑
i∈g

ηi (g) = 2`.

The maximum number of links possible is N×(N−1)
2 .

As η̂ < N, we have N×η̂

2 ≤ N×(N−1)
2 .

˜̀= N×η̂

2 will be attained if possible, but, ˜̀ is not an integer.

N−1 players having η̂ neighbors and the Nth player having η̂−1
neighbors is attained.
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Lemma 13
Let g be a symmetric social storage network. Let at least one of N
and η̂ be even, and let N ≥ η̂ + 1. Then, g is pairwise stable if
and only if g consists of no player who has incentives to either add
or delete any link.
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Corollary
Let η̂ be an odd integer. If g consists of at least two connected
components, each with an odd number of players, then g is not
pairwise stable.

51 / 61



Lemma 14
Let g be a symmetric social storage network. Let η̂ be odd.
Suppose g consists of κ connected components, κ ≥ 2, where

component i(1≤ i ≤ κ) has ni players. (That is, N =
κ

∑
i=1

ni ).

Suppose at least two of the components, say g(κ1) and g(κ2),
each have an odd number of players more than η̂ . That is,
nκ1 > η̂ and nκ2 > η̂ where nκ1 and nκ2 are odd. Then g is not
pairwise stable.
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Corollary
Let g be a symmetric social storage network consisting of κ com-
ponents, κ ≥ 2. Let η̂ be odd, and let N > η̂ . If g is pairwise
stable, then at least κ − 1 components must consist of an even
number of players greater than η̂ .
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Proposition 15

There exists a unique pairwise stable network g in each of the
following cases:

1. If N = η̂ + 1, then g is the complete network on N players.

2. If η̂ = 1, and if g has evolved from the null graph, then g
consists of a set of N−1

2 connected pairs of players plus one

isolated player if N is odd, and a set of N
2 connected pairs of

players if N is even.

3. If η̂ ≥ N, then g is the complete network on N players.
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Remark 2
Let η̂ = 1. If we are not looking at Network Formation starting
from the null network, and are looking at given networks, then
networks consisting of at most one isolated player plus
components which are star networks, are also pairwise stable as
per Definitions 2, 3, and 4.
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Note: In any star network, given that η̂ = 1, though the universal
(central) player has incentive to delete a link (or links), no other
(pendant) player will consent to deletion.

However, if we consider Network Formation starting from the null
network, we have the following result.
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Proposition 16

Suppose g has evolved from the null network. Then, if g is stable,
g can never contain a star network as component.

(Note that Proposition 16 is true for any η̂ , not just η̂ = 1)
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Observation If N > η̂ + 1, then there are always two or more non-
isomorphic pairwise stable networks.
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Example 4

Let η̂ = 3.

(a) n1 (b) n2

Figure 4: Pairwise Stable Networks with N = 6 players

(a) g1 (b) g2 (c) g3 (d) g4

Figure 5: Pairwise Stable Networks with N = 7 players
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Proposition 17

If N = η̂ + 2, then there exists two non-isomorphic pairwise stable
networks. One, the connected network consisting of η̂ + 2 players,
and two, the network consisting of one component with η̂ + 1
players and the (η̂ + 2)th isolated player as the other component.
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Thank You
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