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Data is New Natural Resource

- Ginni Rometty, CEO, IBM
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Human Intelligence Tasks (HITs)

363,428 HITs
available now

amazonmechanical turk

Your Account | HITs ‘ Qualifications

All HITs | HITs Available To You | HITs Assigned To You

s L] : 00 |0

HITs containing ‘classify’ =
1-10 of 10 Results
Sort by: HITs Available (most first) @ ShowsllideEie | HideEidenis
(Classify Receipt View a HIT in this group
Requester: Jon Brelig HIT Expiration Date:  Oct 28, 2015 (6 days 23 hours) Reward: $0.02
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(" Eind and st craft shows, fairs and festivals in the USA - .25 cent additional bonus PER HIT available View a HIT in this group
Requester: Craft Listings HIT Expiration Date:  Oct 6, 2016 (50 weeks 1 day) Reward: $0.20
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View a HIT in this group
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Data Labeling: Not a Child's Play

Requester /Learner

000

Labeling Tasks

Crowdworkers / Annotators
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Data Labeling: Not a Child's Play

Data . x x True
Annotators 1 2 m Label
Ay +1 ? -1 ?
A, -1 +1 -1 ?
As ? +1 ? ?
Requester /Learner
A, ? +1 2 2

00O

) How to aggregate the labels ?

Labeling Tasks

)Who should annotate what?

) How much to pay for? |

Crowdworkers / Annotators
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Binary Labeling: A Mental Model

y :=True Label of x
y' := Label of x given by annotator i
=Prob(y' #y)

Task Allocation
Mechanism

Aggregation
Rule

Requester /Learner

Labeling Tasks

Annotators:

Payment
Mechanism

@ Multiple noisy human annotators

Noise Rate

[e]

[e]

Crowdworkers

@ Noise could be due to human error, lack of expertise, or even intentional

@ Expertise level of an annotator can be expressed by its noise rate

@ Each annotator needs to be paid

Learner:

@ Goal is to obtain good quality labels at minimum cost
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Binary Labeling: Problem Setup
Finite Concept Class C

&

Requester /Learner

Classifier h

Labeling Tasks
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000

Payment Mechanism
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Noisy Labeled Data

T
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Binary Labeling: Problem SetuD

Finite Concept Class C

Classifier h

Requester /Learner

Task Allocation

ok 2 ) -
(o]

(Random Sampler D)

o

Dinesh Garg (IBM Research)

Aggregation Rule

Payment Mechanism

(G 7). (5 78) (e 7)) E "

Noisy Labeled Data

T
Crowdworkers
@ annotation plan m := (my, my,....,my)

@ error rate of h:= PrP(c;Ah)
@ c-bad hypothesis := PrP(c;Ah) > ¢
@ PAC Bound := Pr"(PrP(c;Ah) > ¢) < §
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Binary Labeling: Problem Setup

Finite Concept Class C

Requester /Learner m
Ta:sk Allocation {xd xh, e xk ) 5
(o]
(Random Sampler D) ©

Classifier h

Al tion Rul — — i
sgregetionte (k). (. 98). . (b, i)} } g

Noisy Labeled Data

Payment Mechanism

T
Crowdworkers

@ annotation plan m := (my, mo,...., my)
@ error rate of h:= PrP(c;Ah)

@ c-bad hypothesis := PrP(c;Ah) > ¢

@ PAC Bound := Pr"(PrP(c;Ah) > ¢) < §

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for
the learned classifier h at (3) Minimum Cost.

[1] L.G. Valiant, “A Theory of Learnable”, Communications of the ACM, 27:1134-1142, 1984,
Dinesh Garg (IBM Research) Learning from a Strategic Crowd March 17, 2016 8 /36



(1) Aggregation Rule: Minimum Disagreement Algorithm

Input: Labeled examples from n annotators.
Output: A hypothesis h* € ¢
Algorithm:
Q Let {(xj’,yj’) i=1,2,...,n j=1,...,m;} be the labeled
examples.

@ Ouput a hypothesis h* that minimally disagrees with the
given labels (use any tie breaking rule). That is,

h*EargmanZI(h 7éyj

i=1 j=1

Properties of the MDA
@ Does not require the knowledge of annotators’ noise rates n; (Analysis would require !!)

@ Does not require the knowledge of sampling distribution D
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(2) Annotation Plan for MDA [Complete Info. Setting]
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(2) Annotation Plan for MDA [Complete Info. Setting]

| Learner’s Problem: “Which annotation plan would guarantee me (¢,4) PAC bound?” |

Assumption: Learner precisely knows the noise rate 7); of every annotator i
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(2) Annotation Plan for MDA [Complete Info. Setting]

| Learner’s Problem: “Which annotation plan would guarantee me (¢,4) PAC bound?” |

Assumption: Learner precisely knows the noise rate 7); of every annotator i
Theorem (Feasible Annotation Plan for MDA)
The MDA will satisfy PAC bound if the annotation plan m = (m17 mo, ..., m,,) satisfies:

log(N/5) < Z mip (1) (1)

where concept class is finite, i.e. N = |€| < co and Vi =1,2,...,n, we have
@ 0<n <1/3
@ (n) = —log[l—e(1—exp(3L1))].

D. Garg, S. Bhattacharya, S. Sundararajan, S. Shevade, “Mechanism Design for Cost Optimal PAC Learning in the
Presence of Strategic Noisy Annotators”, Uncertainty in Artificial Intelligence (UAI), 275-285, 2012.
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Proof Sketch

Probability of an e-bad hypothesis h having lower empirical error than c;

[

Annotator i; i=12---,n;

delivers a

)

random and independent sample (X, y)

h(x) =y h(x) =y h(x) =y h(x) =y
c(X)#y () =y c(X)#y
Leaf ‘A’ Leaf ‘B’

Leaf 'C’

Dinesh Garg (IBM Research)

Leaf ‘D’
Pr(m-ma)[[ () < Le(cr)] = Pr{# samples under leaf A > # samples under leaf B}
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(3) Cost of Annotation

Assumptions:

@ Each annotator i incurs a cost of c¢(7;) for labeling one data point
@ The cost function c(-) is the same for all the annotators
@ ¢(-) is bounded, continuously differentiable, and strictly decreasing function

@ Function c(-) is a common knowledge

C(n; .. .
(n') @ A more competitive annotator /i means low 7;
@ He can earn more by selling his services (time)
@ It means his internal cost of annotation is high
\
0.0 1/3 12

n —
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:

@ Learner is using MDA as an aggregation rule to learn a binary classifier

@ Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator i
@ Learner wants to ensure PAC learning with parameters (e, )
o

Learner wants to minimize the cost of a feasible annotation plan
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:
@ Learner is using MDA as an aggregation rule to learn a binary classifier
@ Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator i
@ Learner wants to ensure PAC learning with parameters (e, )
@ Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

n

Minimize Z c(ni)m;

my,mp,...mp .
i=1

subject to  log(N/68) < Z¢(ni)mi

i=1
0 S mj Vi
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner's Problem:

Learner is using MDA as an aggregation rule to learn a binary classifier

Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator |

Learner wants to ensure PAC learning with parameters (e, d)

Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

n

Relaxed Dual Problem

Minimize c(ni)m; N
MLM25:Mn ; Maximize Alog (—)
X 0

n

subject to  log(N/¢§) < Zw(n;)m,- subject to A< c(ni) Vi
i=1 P(mi)

0< mVi 0< A
Dinesh Garg (IBM Research) Learning from a Strategic Crowd March 17, 2016

13 / 36



(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:

@ Learner is using MDA as an aggregation rule to learn a binary classifier

@ Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator i
@ Learner wants to ensure PAC learning with parameters (e, )
o

Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

Relaxed Dual Problem
n

Minimize Z c(ni)m; N
R —) Maximize Alog (—)
X 0
n
subject to  log(N/¢§) < Zw(n;)m,- subject to A< c(ni) Vi
i=1 ¥(ni)
0< mVi 0< A

Definition (Near Optimal Allocation Rule - NOAR)

Let i* be the annotator having minimum value for cost-per-quality given by c(n;)/1(n;). The
learner should buy [log(N/§)/¢(ni=)] number of examples from such an annotator.
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(1-2-3) Putting It All Together [Complete Info Setting]

Theorem

Let COST be the total cost of purchase incurred by the Near Optimal Allocation Rule.
Let OPT be the optimal value of the ILP. Then,

OPT < COST < OPT (1 + i)

mo

where my = log (115)

Proof:

COST

c(ni=)[log(N/6) /¥ (ni-)]
log(N/8)c(ni=) /¢ (mi=) + c(ni)
OPT + c(ni+)

OPT + moc(n,-* )/mo

OPT + OPT /mo

VAN VAN VAN VAN
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Back to Binary Labeling Problem: Incomplete Info Setting
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Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

> Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

> Learner can not compute the PAC annotation plan because 1/(7;) is required
for this: log(N/6) < >°7, w(ni)mi
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Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

> Learner does not know the cost (equivalently, noise rate) of any annotator

So What?
> Learner can not compute the PAC annotation plan because 1/(7;) is required
for this: log(N/6) < >°7, w(ni)mi

Options Available with Learner
» Estimation
- Overestimation = Excess examples procured by NOAR = Higher COST
- Underestimation = Pr(e-bad hypothesis gets picked by NOAR) > §
» Elicitation
- Invite annotators to report (bid) their costs (equivalently, noise rates)
- Setup an auction to decide the work (contract) size and payment for annotators

- Challenge: If annotators misreport noise rates, we are back to square one!!

| Goal: Design a Truthful & Cost Optimal Auction for PAC Learning via MDA.
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Prior Work

Goal: Whom to hire?
PAC Constraints + Solicit Bids:
[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Each agent reports his
assessment TRUTHFULLY

Budget Constraint + Online+ Solicit Bids:
[Goel-Nikzad-Singla-14], [Singla-Krause-13],
[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:
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Each agent puts in his
BEST EFFORT.
Although, noise rates
could be different for
them while operating
at his best effort level

Noise rates of the
agents are KNOWN to
the learner

Goal: Encourage agents
to report truthfully
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[Witkowski-Parkes-11]
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Prior Work

Goal: Encourage putting more efforts ?

Each agent reports his
assessment TRUTHFULLY

[Dasgupta-Ghosh-13]

Noise rates of the
agents are KNOWN to
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Auction Framework for Incomplete Info Setting

@ Bids
> Annotator i bids b; (could be different than his true cost ¢;)

» Bids are translated into equivalent noise rates: f; = ¢~ *(b;) € I; = [0,1/3]
> letl=hxb...xl,

> The bid vector is given by § = (1, fj2,...,Mn) € |

P E—
00 hom 13 12
n—
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Auction Framework for Incomplete Info Setting

@ Task Allocation Mechanism a(-)
> Learner uses an allocation rule a: / — Nj to award the contracts

@ Payment Mechanism p(-)
> Learner uses a payment rule p : | — R" to pay the annotators

@ Mechanism M

> A pair of allocation and payment mechanisms is called mechanism
M = (a,p)

@ Utilities
> Annotator i accumulates following utility when bid vector is 7
ui(f;ni) = pi(f) — ai(A)c(n:)

» To compute this utility, annotator / must know the bids of others

Dinesh Garg (IBM Research) Learning from a Strategic Crowd March 17, 2016
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Common Prior Assumption and Expected Utility

Assumptions (IPV Model):

@ Noise rate 7; gets assigned via an independent random draw from interval [0, 1/3]
@ ¢;(:) and ®;(-) denote the corresponding prior density and CDF respectively

@ The joint prior (¢(-) = [17_; ¢i(+)) is a common knowledge

@ Expected Allocation Rule «;(+)

a,-(ﬁ,-)z/ _af(ﬁf,ﬁ_f)¢-;(ﬁ-f)df;_f

—i

@ Expected Payment Rule mi(-)

mi(h) = /IlPi(ﬁnﬁ—iM—i(ﬁ—i)dﬁ—i

@ Expected Utility Uj(+)
Ui(ii; mi) = mi(1i) — ai(dji)e(mi)
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Optimal Auction Design for Incomplete Info Setting

Minimize
a(-),p(+)

. r1/3
M(a,p) = Zi:l/o mi(t)@i(ti)dti (Procurement Cost)

Subject to  log(N/d) < Z ai(ni,n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)

(a, p) satisfies BIC (BIC Constraint)
mi(ni) > ai(ni)e(ni) Vi € 1;,Vi (IR Constraint)

A Mechanism is said to be

@ Bayesian Incentive Compatible (BIC) if for every annotator i, U;(-) is maximized
when 7 = n;, i.e., Ui(ni;mi) > Ui(fi; mi) Vi € 1.

@ Individually Rational (IR) if no annotator loses (in expected sense) anything by
reporting true noise rates, i.e., mi(n;) — ai(ni)c(ni) >0V n; € I.
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BIC Characterization: Myerson’s Theorem

An allocation rule a is said to be Non-decreasing in Expectation (NDE) if

we have a;(n;) > ai(7;i) Yni > 7

Theorem (Myerson 1981)

Mechanism M = (a, p) is a BIC mechanism iff
@ Allocation rule a(-) is NDE, and
@ Expected payment rule satisfies:

Ui(mi)

Ui(0) — /O’h' ai(t)c' (t)dt;

= (1)

ai(m)e(m) + Ui(0) — / " () (6)dt

v

[1] R. B. Myerson. Optimal Auction Design. Math. Operations Res., 6(1):58 -73, Feb. 1981.
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Back to Optimal Auction Design

R 1/3
Minimize M(a,p) = / mi(ti)oi(t:)dt; (Procurement Cost
imimize  N(a,p) =37 [ m(e)oi(e)ae )

Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
n;
wi(ni) = ai(ni)e(ni) + Ui(0) — / ai(ti)c'(t)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)
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Back to Optimal Auction Design

R 1/3
Minimize M(a,p) = / mi(ti)oi(t:)dt; (Procurement Cost
imimize  N(a,p) =37 [ m(e)oi(e)ae )

Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
n;
wi(ni) = ai(ni)e(ni) + Ui(0) — / ai(ti)c'(t)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)

Insights:
@ If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff U;(0) > 0
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Back to Optimal Auction Design

R 1/3
Minimize M(a,p) = / mi(ti)oi(t:)dt; (Procurement Cost
imimize  N(a,p) =37 [ m(e)oi(e)ae )

Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
ni
mi(ni) = ai(ni)e(ni) + Ui(0) — / ai(t)c'(t:)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)

Insights:
@ If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff U;(0) > 0

@ Because our goal is to minimize the objective function, we must have U;(0) =0
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Back to Optimal Auction Design

L3
Minimize  MM(a, p) = Z 1/ mi(ti)¢i(ti)dt; (Procurement Cost)
=*Jo

a(-),p()
Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
ni
mi(ni) = ai(ni)e(ni) + Ui(0) — / ai(ti)c'(t)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)

Insights:
@ If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff U;(0) > 0

@ Because our goal is to minimize the objective function, we must have U;(0) =0
@ Using (BIC Constraint 2), objective becomes [(a, p) = [, < vi(xi a,(x)) o(x)dx
i=1

@ vi(ni) == c(ni) — 1(—;&7["(_7)7;)(_./(77’,) is virtual cost function (Note vi(n;) > c(ni))
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Reduced Problem

Overall Problem

Minimi)ze M(a,p) = /,(Z:;l v,-(x;)a;(x)) ¢(x)dx (Procurement Cost)

a(+),p(-
Subject to  log(N/§) < Z ai(ni,n—i)Y(ni) Y(ni,n-i) € I (PAC Constraint)

aj(+) is non-decreasing (BIC Constraint 1)

Insights:
@ Keep aside (BIC Constraint 1) for the moment
@ It suffices to solve following problem for every possible profile n

Instance Specific ILP

Minimize Z vi(ni)ai(n)(Procurement Cost for profile 7)

a1(n)s---,an(n) Py

Subject to  log(N/§) < Z<w(n,~)a,~(n) V(ni,n-i) € I (PAC Constraint)
3,‘(77) € Ng Vi
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Solution Via Instance Specific ILP

@ Instance specific ILP is similar to Primal Problem in complete info setting (replace
c(ni) with vi(ni))

@ Instance specific ILP can be relaxed and solved approximately just like NOAR

Definition (Minimum Allocation Rule)

Let /* be the annotator having minimum value for cost-per-quality given by vi(n;) /¢ (7).
The learner should buy [log(/N/d)/w(ni=)] number of examples from such an annotator.

v

Theorem

Let COST be the total cost of purchase incurred by the Minimum Allocation Rule. Let
OPT be the optimal procurement cost. Then,

OPT < COST < OPT + c(ni-) < OPT(1 + 1/mo)

where mo = log[1 — €] !
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What About (BIC Constraint 1) ?

| Regularity Condition: v;(-)/4(+) is a non-increasing function.

If Regularity Condition is satisfied, then under the minimum allocation rule

@ As 7; increases, the annotator i remains the winner if he/she is already the winner
(with an increased contract size) or becomes the winner

@ The allocation rule satisfies ND property (hence, NDE)

@ The payment of annotator i is given by

i
1) = almn)e(n) — [ aitn-)e (6)ds
0
@ Winning annotator gets positive payment and others get zero payment
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Near Optimal Auction Mechanism for PAC Learning

Under regularity condition of v;(-)/() being a non-increasing function of 7;
. [log(N/8)/w(n)] i ) < J, )i
ai(n) /
0 : otherwise
log(N/9) -‘ c(qi . for winner
oy = 1[G cat) |
0 : otherwise
inf 4 Vi) i)
qi(n-i) = inf {nf | % < Vj#i
V(i) ~ ()
= smallest bid value sufficient to win the contract for annotator i
Theorem

Suppose Regularity Condition holds. Then, above mechanism is an approximate optimal
mechanism satisfying BIC, IR, and PAC constraints. The approximation guarantee of
this mechanism is given by ALG < OPT + v=(n;<) < OPT(1 + 1/mo).
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Conclusions

Analyzed the PAC learning model for noisy data from multiple annotators

Analyzed complete and incomplete information scenarios

Essentially, we identify the annotator whose (cost/quality) ratio is the least

Surprisingly, greedily buying all the examples from such an annotator is near
optimal
Future Extensions
@ What if the cost function ¢(-) is not a common knowledge?
@ What if the cost function c(-) is different for different annotators?
@ Annotators having a capacity constraint and/or learner having a budget constraint
@ Work with general hypothesis class (e.g. linear models of classification)

@ Other learning tasks - multiclass/multilabel classification, regression

@ What about sequentially deciding the tasks assignments?
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Aspects of Crowdsorcing Systems

p
- Fixed/Vary over
Qualities Domain/Time
Availability Sleeping /Awake
Annotators Strategic in
- Reporting
- Strategic/Non Labels/Bid/Both
Strategic
L Strategic in
Annotator Lead/ Exerting Efforts
Task Assignment Learner Lead/
Random
[ Minimize Cost,
Goals Maximize Quality,
Hybrid
Learner
Budget Finite/Unbounded
s
Labeling Blnary/MqucIass/
Regression
Nature of Task ~
Prediction
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Aspects of Crowdsorcing Systems

P —

) One Shot/
- Inductive Sequential ’
Aggregation
Rule one shot/
) ne Sho
Transductive Sequential ’
Inaccessible
Oracle Instantaneous

Accessibility (By Paying)

Time Shifted
(No Extra Cost)

Posted Price
Payment )
Mechanism

Auction Based
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Proof Sketch

Events

@ Ei(h,my,...,m,): The empirical error of a given hypothesis h € € is no
more than the empirical error of the true hypothesis c;, i.e. Lo(h) < Lo(ct).

@ Ey(h,my,...,m,): The empirical error of a given hypothesis h € € is the
minimum across all hypotheses in the class €, i.e. Le(h) < Le(W) VW € €.

@ Es(h,my,...,m,): MDA outputs a given hypothesis h.

@ E4(e,my,...,m,): MDA outputs an e-bad hypothesis.
Observations

@ Es(h,my,...,m,) C Ex(h,my,...,m,) C Es(h,my,...,m,)

(mla“"mn) _ max (ml)'“vmn)
e Pr [Es(e)] < (N —1) x [ he@. his ebad Pr [E1(h)]
@ If annotation plan (my, ..., m,) satisfies the following condition, then MDA
will satisfy PAC bound.
maXx (m1,ye..,mp)
PR COIEET @
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Proof Sketch

Probability of an e-bad hypothesis h having lower empirical error than c;

[

Annotator i; i=12---,n;

delivers a

)

random and independent sample (X, y)

h(x) =y h(x) =y h(x) =y h(x) =y
c(X)#y () =y c(X)#y
Leaf ‘A’ Leaf ‘B’

Leaf 'C’

Dinesh Garg (IBM Research)

Leaf ‘D’
Pr(m-ma)[[ () < Le(cr)] = Pr{# samples under leaf A > # samples under leaf B}
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Special Case: Single Annotator
When n =0
@ Easy to show that sample complexity mg satisfies mg < log(N/§)/ log[l — €] !
@ The range of n; in previous theorem can be extended to include n; = 0 by having
(0) = log[L — ] 1
When n=1/3
@ Angluin and Laird proposed following bound for single annotator, for 0 < n < 1/2
() = log [1— ¢ (1~ exp (~(1 = 21,)2/2))] !

@ The range of n; in previous theorem can be extended to include 7; = 1/3 by having
¥(1/3) = log[L — (1 — exp(~1/18))] !

10°
— Philip Laird's Bound [N 1000000
—Proposed Bound | epsilon=0.01
-=-Noise Rate=1/3 | delta=0.01

Upper Bound on Sample Complexity

005 01 015 02 025 03 035 04 045 05
Noise Rate (n)

[1] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /0 ai(ti)d [e(t)]

ni
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni

a;(m)

(0,0) c(1/3) c(0)
c(n) —
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

o,(113)

I

a;(n)

o (0)

ni

(0.0
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni
a,(1/3)
a;(n)
2;(0)
0,0 c(1/3) c(0)

c(n) —
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Understanding Myerson’s Theorem

0
7r,-(77,-) = a;(n;)c(n;) + U,'(O) + / Oz,'(t,')cl(ti)dt‘,'
i
0
=mi(ni) = ai(ni)c(ni) + mi(0) — ai(0)c(0) + / ai(ti)d [c(t)]
ni
o;(1/3)
a;(n)
a;(m;)
(0)
a; (mi)e(m;)
0.0 c(1/3) c(m) c(0)
c(n) —
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni
o,1/3)
a;(n)
o (m;)
(0
() (0)c(0)
_(_Y0,0 m—c(+c(m,

c(m) —
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Understanding Myerson’s Theorem

0
m(m) = ai(m)e(m) + Ui(0) + / ai(8)< (t)dt

i

=mi(n) = ai(m)e(n) +mi(0) — i(0)c(0) + /0 ai(ti)d [c(t)]

ni

a,1/3)

] a;(7,)c(,) — 2, (0)c(0) = A - A,

0,0 c(1/3) C(;li) 6(6)
c(n) —
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ni
a,(1/3)
a;(n)
o;(m)
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

o, (113)

ni

[ () =m0)+ A+ A

a;(m)

o (m;)

«(0)

(0,0) c(1/3) ()
c(n) —
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ni
o;(1/3)
| () =m0)+A+A
a;(m) o)
a\1;
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Understanding Myerson’s Theorem
mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni

o,(1/3)

o LAGDREAUD)

©0) c(1/3) () <) c(0)
c(n) —
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Understanding Myerson’s Theorem
mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni

o,(1/3)

___— Utility Loss

©0) c(1/3) () <) c(0)
c(n) —
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni
o, (1/3)
I U, (Wi) =A+A
a;(n)
a;(m)
«(0) -
A
(0.0 c(1/3) c(m) c(0)
c(n) —
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