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Introduction

» Maynard Smith and Price([1, 2]) initiated the use of game
theory to study animal conflicts.

» The strategies available to the population can be finite or
infinite.

» We deal with evolutionary games with infinite pure strategy
space.

» First studied by Bomze and Potscher in [3] through
“generalized” mixed strategy games.

» Results available regarding the stability of population states
are restrictive in nature.



Evolutionary Games with Continuous Strategy Spaces

» Game: G =(S,u)

» Pure strategy set: (S, d) Polish space

» Payoff function: u:S xS — R

» Payoff to z € S against w € S is u(z,w).

» Measurable space: (S, B)

» Population states in the game: Probability measures on (S, 5)

» Average payoff of population P against population @ is given
by:

E(P, Q):/S/Su(z, w) Q(dw) P(dz)
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Let A be the set of all population states.
Various metrics on A
Strong or Variational norm

For P € A,

/ fdP‘
S

f S — R are measurable functions bounded by 1.

1P|l = sup
f

Variational distance: For P, Q € A

IP = Q| =2sup |[P(B) — Q(B)].
BeB



Static Stability Concepts

Evolutionarily Stable Strategy (ESS)

A population state P is called an evolutionary stable strategy if for
every “mutation” Q # P, there is an invasion barrier ¢(Q) > 0,
that is, for all 0 < n < €(Q),

E(P,(1=n)P+nQ) > E(Q,(1—n)P+nQ). (1)
Uninvadability

A population state P is called uninvadable if, in the above
definition, €(Q) can be chosen independent of Q € A, Q # P.



Strong Unbeatability
A population state P is called strongly unbeatable if there is an
€ > 0 such that for all population states R # P with ||[R — P|| <,

we have
E(P,R) > E(R,R).

Strong Uninvadability
A population state P is called strongly uninvadable if there is an
€ > 0 such that for all population states R # P with ||[R — P|| <,

we have
E(P,R) > E(R,R).



Replicator Dynamics

Basic ldea:
The relative growth rate in the frequency of strategies in a set B,
is given by the average success of strategies in B.

Success (or lack of success) of a strategy z € S against w € S is
given by:
o(z,w) = u(z,w) — u(w, w).

Average Success (or lack of success) of a strategy z € S, if the
population state is Q, is given by:

o(z,Q) = / u(z, w) Q(dw) // diw) Q(dz)

= E(62, Q) — E(Q,



Replicator Dynamics
For all B e B

Q’(t)(B)Z/U(Z, Q(t)) Q(t)(dz) (2)

B
with the initial condition Q(0).

Remark
If there is a measure R such that P as well as Q(t) for every t > 0
are absolutely continuous w.r.t R, then we have

o) - Pl = ||| - | o=

dR

» Strong convergence of Q(t) to P can be studied through
convergence of the densities in L!(R), the set of all
R-integrable functions on S.



Density Form of Replicator Dynamics

v

Fix a population state P € A.
Let (P) ={Q e AlQ= P} C A

v

v

Q ~ P: @ is absolutely continuous w.r.t P and vice-versa.

Let Q(0) € X(P) and

o(z) = df/)/(am z) ae. z(P).

v

v

Q(t) = Q(0) for every t > 0 by Lemma 2 in [5].
Q(t) € X(P) for all t > 0.

v
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Let o(z, t) be the Radon-Nikodym derivative of Q(t) w.r.t P,

o(z,t) = dgl(f) (2)  ae z(P). (3)

When there is no confusion we write g(z, t) as o(t).
Let D(P) C L'(P) be defined as

D(P)ZZ{fELl(PHf>Oa.e.Pand /fdP:l}_
s

¢ € D(P) and p(t) € D(P) for all t > 0.
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Consider the map A : X(P) — D(P) defined by

dQ

N@) =25

N\ is a one-one and onto map.

From Theorem 5 in [6], for every Q € £(P) we have,

1Qll = /S A(Q) dP.

Differentiability of Q(t) (in variational norm) implies
differentiability of o(t) (in LY(P)) and

do

S2() € L(P).

J(t) =



Theorem

The density function o(t) satisfies the integro-partial differential
equation

d'(t) = o(t)I(o(t)), 0(0)=¢ (6)

where forz € S,

Io(t))(2) = / u(z, w) o(w. ) P(dw)

S
_ / / u(z,w) o(z,t) o(w,t) P(dw) P(dz).
SJS
(7)



Stability of Polymorphic Population States

» Monomorphic population state: dx, x € S.

Theorem (J. Oechssler and F. Riedel, 2001)

If Q* = 6« is an uninvadable, monomorphic population state, then
Q* is Lyapunov stable.

Moreover, if u is continuous then Q* is weakly attracting.

> Natural to see the extension of this result for a population
with finite support.



Polymorphic States

» We consider the polymorphic population state:
P* = a15X1 =+ Oz25x2 —+ -+ ak5Xk~ (8)
> We will study the stability of P*.

Lemma
The population state P* is a rest point of the replicator dynamics
if and only if the sum ZJI-‘ZI aju(x;, x;j) is independent of i.



Dynamic Stability Concepts

Lyapunov Stability
Rest point P is called Lyapunov stable if for all € > 0, there exists
an 17 > 0 such that,

|Q(0) = P|| <n = [|Q(t) — P|| < eforall t >0.

Strongly Attracting

P is called strongly attracting if there exists an 1 > 0 such that
Q(t) converges to P strongly as t — oo, whenever
1Q(0) — Pl <.

» P is called asymptotically stable if it is Lyapunov stable and
strongly attracting.



» We take the initial population state, Q(0) from an arbitrarily
small neighbourhood of P*.

» The replicator dynamics trajectory Q(t) is of the form

k+1

k

Q(t) = Bi(t)ox + Brra()R(t) ; with > Bi(t) =1
j=1 j=1

Bj(t) are the solution of the following differential equations:

Bi(t) = Bi(t) o0, Q1))+ Bi(0) =B V=12, ,k (9)

and R(t) € A with R(t)({x1,x2,--- ,xk}) = 0.



Lyapunov Stability of P*

Theorem
Let P* be the polymorphic population state as in (8). If P* is
strongly unbeatable then P* is Lyapunov stable.

Idea of Proof

» Let Q={Q e A:||Q— P*|| < min{e,d}}.
> )< 2min{a1,a2,--- ,ak}.
» Define V:Q — R by

V(Q):/Sln<dp*> dP* = Za, <> (10)

» V(Q) is a Lyapunov function and by Theorem 3.1 in [8], we
can conclude that P* is Lyapunov stable. O




Asymptotic Stability of P*

Theorem
Let P* be the polymorphic population state as in (8). If P* is
strongly uninvadable then P* is asymptotically stable.

Idea of Proof

» Consider and fix a population state @ € €.

> Let G be a (k +1) x (k + 1) matrix game with the pure
strategy set S = {0y,,0x,," -+ ,0x,, R} and payoff matrix at
time t as,

u(x1, x1) u(x1, xk) E(6x, R(t))

u(t) =
U(Xk,Xl) U(Xk,Xk) E(5Xk7R(t))

E(R(t):0x) -+ E(R(t),0x) E(R(t),R(t))



Note that the equations for ﬂj’-(t) are equivalent to the
continuous-time replicator dynamics equations for the game
G.

@ in the game G is equivalent to the strategy

/B — (ﬁ17ﬂ27"' 7/Bk+1)T in (_;

P* in the game G is equivalent to the strategy
a=(ap,a,-,a,,0)7 in G.
Define V1 : Q1 — R by

Wo) = X ain( ) Zw( ) (11)

Jj€supp(a)

V; is a Lyapunov function with positive definite —Vl(-).
Thus, « is asymptotically stable in the game G.

Therefore, the polymorphic population state P* is
asymptotically stable in the game G. O
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