Introduction

lel

orem

Social welfare

Connectors and mavens

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

Economics of Networks Lecture 2: Law of the Few

Sanjeev Goyal University of Cambridge

March 17, 2016

Introduction

Model

Theorem

Social welfare

Connectors and mavens

References

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Law of the few says:
 - 1. In social groups a great proportion of individuals get most of their information from a very small subset of the group, *viz.* the influencers or opinion leaders.
 - 2. This small set has many more connections than the average of the group.
 - 3. Few individuals acquire as well convey information to others; sometimes they act as pure connectors.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- In their classical work, Lazarsfeld, Berelson, and Gaudet (1948) and Katz and Lazersfeld (1955) found that in voting decisions and in purchase decisions, individuals relied on the information they received from a small group of others.
- Marketing: Fieck & Price (1987) study of market mavens.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Popular press: Michael Galdwell, The tipping point.
- Statistical Physics: Barabasi (2000): Linked
- On-line social communities: Twitter, Gnutella, Java. Patterns of contribution and use. Goyal (2010)

Introduction

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Origins: Introduction

- Why do social communities exhibit the law of the few?
- A natural explanation: individual heterogeneity, some people are good at collecting information, while others are better at networking. Research suggests no significant observable difference between the observable attributes of opinion leaders and others.
- We ask: can this form of differentiation and social communication arise due to **strategic interaction** among similar individuals?

Introduction

Background Literature

Theory of Networks:

Network formation: Individuals have *exogenously* given information. E.g., Goyal (1993), Bala & Goyal (2000), Jackson & Wolinsky (1996).

Games on networks: players located in networks choose actions. Ballester et al (2006), Goyal & Moraga (2001), Bramoulle and Kranton (2007).

Contribution: endogenize information gathering and link formation. Resolve important open problems in existing research.

• **Theory of public goods**: E.g., Bergstrom, Blume & Varian (1986). Classic results on endowment inequality and contribution in global public goods. *Contribution:* Endogenize "locality" of public good.

Model: Galeotti and Goyal (2010, AER)

- $N = \{1, ..., n\}, n \ge 3$, set of players.
- Strategy of player *j* is s_j = (x_j, g_j): x_j ∈ X is the level of *j*'s investment while g_j = {g_{j,k}}_{k∈N\{j}, g_{j,k} ∈ {0, 1} specifies the linking decision of *j*. Links are formed unilaterally. The sponsor of the link pays for it.
- A strategy profile *s* = (*x*, *g*) specifies an effort profile and a (directed) network of relations.
- For a given s = (x, g) let y_j = x_j + ∑_{i∈N(j;g̃)} x_i, i.e. the sum of effort of j's direct cohort.

A D F A 同 F A E F A E F A Q A

• The payoffs to player *i* under strategy profile s = (x, g) are

$$\Pi(\boldsymbol{s}) = f(\boldsymbol{x}_i + \sum_{j \in N(i;\bar{\boldsymbol{g}})} \boldsymbol{x}_j) - \boldsymbol{c} \boldsymbol{x}_i - \eta_i(\boldsymbol{g}) \boldsymbol{k}, \quad (1)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where c > 0 is cost of effort and k > 0 is cost of linking.

- Assumption: f(y) is twice continuously differentiable, increasing, and strictly concave in y. And: f(0) = 0, f'(0) > c and $\lim_{y\to\infty} f'(y) = 0$.
- There exists ŷ > 0 s.t., ŷ = arg max_{y∈X} f(y) cy. For expositional simplicity, we will set ŷ = 1.

Model: Example of price search

- Agents want to know the lowest price. Prices are distributed according to a distribution *F*. x_i is the number of *i*'s draws.
- Each agent observes the outcome of own draws plus the draws of their direct neighbors. Suppose draws are independent.
- The expected benefit of *i* in network *g* is the expectation of the lowest price given *y_i* trials. The benefits are then increasing and concave in *y_i*.
- The efforts of a player and his neighbors are *substitutes*.

(ロ) (同) (三) (三) (三) (○) (○)

Model: Equilibrium and efficiency

A Nash equilibrium is a strategy profile s^{*} = (x^{*}, g^{*}) such that:

 $\Pi_i(\boldsymbol{s}_i^*, \boldsymbol{s}_{-i}^*) \geq \Pi_i(\boldsymbol{s}_i, \boldsymbol{s}_{-i}^*), \forall \boldsymbol{s}_i \in \boldsymbol{S}_i, \forall i \in \boldsymbol{N}.$

- An equilibrium is strict if the inequalities are strict for every player.
- For profile *s*, social welfare is given by:

$$W(s) = \sum_{i \in N} \Pi_i(s, g)$$
(2)

(日) (日) (日) (日) (日) (日) (日)

• A profile s^* is socially efficient if $W(s^*) \ge W(s), \forall s \in S$.

Core-periphery networks

- A *core-periphery* network is one in which some players are linked to everyone while the rest of the players only form links with these players.
- There are two groups of players, $N_1(g)$ and $N_2(g)$, with the feature that $N_i(g) = N_2(g)$ for $i \in N_1(g)$ and $N_j(g) = N \setminus \{i\}$, for all $j \in N_2(g)$.
- Star is a special case of this architecture, with |N₂(g)| = 1 and |N₁(g)| = n − 1.
- Nodes with n 1 links are central nodes/hubs, while the complementary set of nodes are peripheral nodes/spokes.

(日) (日) (日) (日) (日) (日) (日)

Figure: Core Periphery Networks

Main Theorem (Galeotti and Goyal (2010)

Theorem

- 1. Total information acquired is \hat{y} .
- 2. Every equilibrium network has a core periphery architecture, hub players exert positive effort and the spokes choose zero effort.
- 3. In large societies, fraction of individuals who acquire information is negligible.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Given a profile s = (x, g), define l(s) = {i ∈ N|x_i > 0} as the set of players who choose a positive effort.

Lemma

(i) In any equilibrium s = (x, g), $y_i \ge 1$, for all $i \in N$. Moreover, if $x_i > 0$ then $y_i = 1$. (ii). If $k < c\hat{y}$, then in any equilibrium s = (x, g), if $x_i = \hat{y}$, then $x_j = 0$, for all $j \ne i$.

Intuition: concavity of function and linearity of costs.
 Second part: reflects the coordination problem aspect of game.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Preliminaries

Proposition

If $k > c\hat{y}$ then there $x_i = \hat{y}, \forall i \in N$, and network is empty. If $k < c\hat{y}$ then two types of equilibria:

(1). $\sum_{i \in N} x_i^* = \hat{y}$: Hubs choose positive efforts and spokes choose 0 effort.

(2). $\sum_{i \in N} x_i^* > \hat{y}$. (2.i) Equal Positive efforts: Every $i \in I(s^*)$ has $\Delta \in \{1, ..., n-2\}$ links with $k \in I(s)$, and chooses $x_i^* = \frac{\hat{y}}{\Delta + 1} = \frac{k}{c}$. For $j \notin I(s^*)$ there are $\Delta + 1$ links with $k \in I(s)$; note that $|I(s)| > \Delta + 1$. (2.ii). Two unequal positive efforts: High effort players choose $\bar{x}^* = \frac{k}{c}$ and low effort player chooses η links with high effort players and effort $\underline{x}^* = \hat{y} - \eta \frac{k}{c}$, where $\frac{\hat{y}c}{k} - 1 < \eta < \frac{\hat{y}c}{k}$. No links between low effort players.

Introduction	Model	Theorem	Social welfare	Connectors and mavens	References
0000					

Panel B: Nash Equilibria where aggregate social effort exceeds 1

Figure: Nash equilibrium networks

Ideas about Nash equilibrium

- Step 1: Total effort is ŷ, every player accesses all positive effort players, who form a core. Zero effort in the periphery.
- Step 2: If aggregate effort greater than \hat{y} then no positive effort player accesses all positive effort players. Lemma 1 above.
- Step 3: in any such equilibrium positive efforts 0 < x_i < ŷ.
 Every positive effort player must access some others but not all others. So k = cx.
- Each *i* ∈ *l*(*s*) is indifferent between additional effort and link.

(ロ) (同) (三) (三) (三) (○) (○)

Main Theorem (Galeotti and Goyal (2010)

Theorem

Suppose payoffs are given by (1) and suppose that $k < c\hat{y}$. In every strict equilibrium $s^* = (x^*, g^*)$:

$$1. \quad \sum_{i \in N} x_i^* = \hat{y}.$$

- 2. Every equilibrium network has a core periphery architecture, hub players exert positive effort and the spokes choose zero effort.
- 3. For given c and k, with $k < c\hat{y}$, the ratio $|I(s^*)|/n \to 0$ as $n \to \infty$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Figure: Core Periphery Networks

Proof of Theorem: step 1

- Observe that when aggregate effort exceeds ŷ, then k = cx, and players indifferent between effort and links. So an equilibria with aggregate efforts more than ŷ is not strict.
- This is not true of equilibrium with aggregate effort equal to \hat{y} . E.g., in the equilibrium where one player chooses \hat{y} and forms no links, while all others form a single link with this player. If $k < c\hat{y}$ then this is a strict equilibrium.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof of Theorem: step 2

- Bounds on number of contributors.
- If *i* links with *j* then $cx_j \ge k$, or $x_j \ge k/c$.
- Suppose there are |*I*(*s*)| contributors; since ∑ *x_i* = ŷ, it must be the case that all positive effort players are accessing each other. So at least |*I*(*s*)| − 1 players have incoming links: |*I*(*s*)| − 1 players have an effort in excess of *k*/*c*.
- So |*I*(*s*)| is bounded above by [*ŷc*]/*k* + 1, which is independent of *n*.
- It follows that |I(s)|/n can be made arbitrarily small by suitably increasing *n*.

(日) (日) (日) (日) (日) (日) (日)

Size & composition of hubs

- Theorem 1 does not pin down the number or identity of hub players. In empirical literature: mavens and influencers are similar in characteristics but they like/enjoy gathering information. See e.g., Feick and Price (1987) and Gladwell's *Tipping Point*.
- Suppose all players except player 1 have costs *c*, while player 1 has costs c₁ = c − ε, where ε > 0 is small. Define Let ŷ₁ = arg max_y f(y) − c₁y.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem 2: Galeotti and Goyal (2010, AER)

Theorem

Suppose payoffs are given by (1), $c_i = c$ for all $i \neq 1$ and $c_1 = c - \epsilon$, $\epsilon > 0$. If $k < f(\hat{y}_1) - f(\hat{y}) + c\hat{y}$ then in every strict equilibrium $s^* = (x^*, g^*)$:

- 1. $\sum_{i \in N} x_i^* = \hat{y}_1.$
- 2. The network is a periphery sponsored star and player 1 is the hub.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3. $x_1^* > x_i^* = \tilde{x}$, for all $i \neq 1$ and $\tilde{x} \to 0$ as $\epsilon \to 0$.

Periphery sponsored star

Figure: The Periphery sponsored star

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Steps in the proof.

- First, for the low cost player the optimal information level $\hat{y}_1 > 1$. If 1 chooses \hat{y}_1 then it is optimal for other players to link with player 1 and choose zero effort.
- Suppose effort of 1, $0 < x_1 < \hat{y}_1$. In any equilibrium, $x_1 + y_1 = \hat{y}_1$. However, since $x_1 + y_1 = \hat{y}_1 > 1 = x_i + y_i$, there exists a player *j* whom $\bar{g}_{1j} = 1$ but $\bar{g}_{ij} = 0$.
- The key step: for two such players *i* and *j* no other links with positive effort players.
- This implies $x_i + x_1 = 1 = x_j + x_1$. So $x_i = x_j = x$. Moreover, player $g_{1i} = 0$: otherwise, *j* would strictly gain by doing likewise. In other words, $x_1 > x_i$, and players *i* and *j* form the link with player 1. The result now follows.

Social welfare: Efficient equilibrium

 Two results: First, the star network with all efforts by the hub is an efficient form of organization, second, level of effort as well as linking is inadequate in equilibrium.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Figure: Efficiency versus equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Figure: Mavens, connectors and others

- 1. Baetz, O. (2015), Social Activity and Network Formation, *Theoretical Economics*.
- 2. Bala and Goyal (2000) A non-cooperative model of network formation. *Econometrica*
- 3. Bramoulle, Y. and R. Kranton (2007), Public goods in networks, *Journal of Economic Theory*.
- 4. Galeotti, A. and S. Goyal 2010, Law of the few. *American Economic Review*.
- 5. Katz, E., and P. F. Lazarsfeld (1955), *Personal Influence: The Part Played by People in the Flow of Mass Communications.*

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@