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Introduction I

In Lectures 1 and 2 we considered preference aggregation and discussed
several social choice functions and social welfare fuctions.

We saw that using the Borda rule we can assign to every preference profile
a unique weak (social) preference relation by ordering the alternatives by
their Borda score.
The same can be done for any scoring rule.

We also considered the Condorcet rule that uses the majority relation.

This majority relation can also be considered as a social preference
relation, but it need not be transitive.

Question: How would you choose when the majority relation is not
transitive?
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Introduction II

In this lecture we apply score functions for directed graphs (digraphs)
which assign real numbers to every node in a digraph.

Using these score functions we define social choice functions and social
welfare functions by simply ranking the nodes according to their score in
an associated digraph.

Score functions for digraphs have many applications:

ranking alternatives in a preference relation (our main application in
this course)

ranking teams in a sports competition (based on the results of the
matches)

ranking web pages (based on their links)

ranking positions in a network by their importance, centrality, ...
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Introduction III
To stress the general use, we discuss score functions and ranking methods
for digraphs.
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Directed graphs I

1. Directed graphs
Let A = {a1, a2, . . . am} be a fixed finite set of alternatives.

A directed graph or digraph on the set of alternatives A is a collection of
ordered pairs D ⊆ A× A, where (a, b) ∈ D can be interpreted as ‘a
weakly defeats b’.

The ordered pairs (a, b) ∈ D are called arcs.

Remark: If (a, b) ∈ D and (b, a) 6∈ D then we say that ‘a (strictly)
defeats b’.
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Directed graphs II
Remark: Usually, the set A is called a set of nodes, but since we will
mainly apply this to social choice situations, we refer to the set A as a set
of alternatives.
But notice that A also can be a set of ‘teams in a sports competition’,
‘web pages on the www’, ‘positions in a network’, etc.

Remark: Since in this lecture we take the set of alternatives A fixed, we
represent a digraph (A,D) just by its binary relation, and speak about
digraph D.
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Directed graphs III

Applications:

Individual or Social choice:
For two alternatives a, b ∈ A, (a, b) ∈ D means that a is weakly
preferred to b.

Sports competition:
For two teams a, b ∈ A, (a, b) ∈ D and (b, a) /∈ D means that team
a has won the match it played against team b.
For two teams a, b ∈ A, [(a, b) ∈ D and (b, a) ∈ D ] means that
teams a and b played a draw.

Web page ranking:
For two web pages a, b ∈ A, (a, b) ∈ D means that there is a link
from webpage a to webpage b.
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Directed graphs IV

Hierarchical networks
In a hierarchical network (a, b) means that a is dominant over b. For
example, if the hierarchy is a firm structure, then (a, b) ∈ D can be
that manager a is the direct boss of employee b.

Assumption We assume the digraph D to be reflexive, i.e. (a, a) ∈ D for
all a ∈ A.
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Score functions I

2. Score functions

Definition
A score function on a set of alternatives A is a function σ that assigns a
real number σa(D) to every alternative a in any digraph D on A.

So, σ(D) = (σ1(D), σ2(D), . . . , σm(D)) ∈ IRm where σa(D) is a measure
of the ‘power’or ‘strength’of alternative a ∈ A in digraph D.

For preference relations it can be a measure of ‘desirability’.
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Score functions II
For digraph D on A and alternative a ∈ A, the alternatives in the set

Succa(D) = {b ∈ A \ {a} | (a, b) ∈ D}

are called the successors of a in D. These are the alternatives that ‘are
weakly defeated’by a.

The alternatives in the set

Preda(D) = {b ∈ A \ {a} | (b, a) ∈ D}

are called the predecessors of a in D. These are the alternatives that
‘weakly defeat’a.

Question: Suppose that you know Succa(D) for all a ∈ A. Do you know
Preda(D) for all a ∈ D? And do you know D?
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Score functions III

The outdegree and β-scores
The outdegree of alternative a is the number of other alternatives that are
weakly defeated by a.

Definition
The outdegree of alternative a ∈ A in digraph D is the number of
successors of a in D:

outa(D) = #Succa(D)

Note that the outdegree does not take account of ‘who’are the successors
of a. Only the number of successors matters.
You can say that an alternative gets ‘1 point’for every alternative it
weakly defeats.
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Score functions IV
A disadvantage of the outdegree is that, in determining the score of an
alternative, it does not take account of the ‘strength’of the alternatives it
defeats.
We can take account of this by assigning for every alternative b that is
weakly defeated by a, 1

#Predb (D )
point to a.

This yields the following score function.

Definition
The β-score of alternative a ∈ A in digraph D is given by

βa(D) = ∑
b∈Succa(D )

1
#Predb(D)
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Score functions V

The outdegree and β-score can give very different outcomes and rankings
of the alternatives.

One way to understand score functions, or understand the difference
between different score functions, is to find axiomatizations.
That means finding properties (axioms) that are satisfied by a score
function, and only by this score function.
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Properties of score functions I

3. Properties of score functions

Dummy property For every digraph D on A and alternative a ∈ A with
Succa(D) = ∅, it holds that σa(D) = 0.

Interpretation: If an alternative has no successors then its score is zero.

Symmetry For every digraph D on A and alternatives a, b ∈ A such that
Succa(D) = Succb(D) and Preda(D) = Predb(D), it holds that
σa(D) = σb(D).

Interpretation: If two alternatives have the same successors and
predecessors, then they have the same score.

Question: Suppose D represents a preference relation. Can you consider
σ(D) as a utility function? If yes, how do you interpret the two properties
above?
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Properties of score functions II

For digraph D on set of alternatives A = {a1, . . . , am}, and alternative
ak ∈ A, the loss graph of alternative ak is the digraph

Dk = {(b, a) ∈ D | a = ak}.

Dk is the digraph that consists of all arcs where alternative ak is the
successor.

Property

Additivity over loss graphs For every digraph D on A = {a1, . . . , am}, it
holds that

σ(D) =
m

∑
k=1

σ(Dk ).
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Properties of score functions III
Remark: Remember that σ(D), and thus also all σ(Dk ), k ∈ {1, . . . ,m},
are m-dimensional vectors.

Proposition
The outdegree and β-score satisfy the dummy property, symmetry and
additvity over loss graphs.

These two scores satisfy a different normalization.
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Properties of score functions IV
Score normalization For every digraph D on A, it holds that

∑
a∈A

σa(D) = #D.

According to score normalization the total number of points to be
allocated is the number of ‘pairs’(‘matches‘) in D.

Dominance normalization For every digraph D on A, it holds that

∑
a∈A

σa(D) = #{b ∈ A | Predb(D) 6= ∅}.

According to dominance normalization the total number of points to be
allocated is the number of weakly defeated alternatives.
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Properties of score functions V
Proposition
The outdegree satisfies score normalization

The β-score function satisfies dominance normalization.
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Properties of score functions VI
Theorem
(i) The outdegree is the unique score function that satisfies the dummy
property, symmetry, additvity over loss graphs and score normalization.

(ii) The β-score is the unique score function that satisfies the dummy
property, symmetry, additvity over loss graphs and dominance
normalization.

Remark: The difference between the outdegree and β-score is only in the
normalization, i.e. the total number of points that is allocated over the
alternatives.
Just deciding how many ‘points‘to allocate is not as innocent as it seems
in ranking alternatives (sport teams, web pages, etc.).
It can lead to different rankings, even to a different ‘winner‘.
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Properties of score functions VII
As we have seen, a disadvantage of the outdegree of an alternative is that
it does not take account of the ‘strength‘of the alternatives it defeats.
The β-score takes this into account.

However, a disadvantage of the β-score is that alternatives can get higher
in the ranking by ‘losing‘instead of ‘winning‘a pairwise comparison
(match).

Question: Do you see why this might happen?

This disadvantage of the β-score can be ‘repaired‘by letting every
alternative also weakly defeat itself, yielding the following score function.
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Properties of score functions VIII
Definition
The modified β-score of alternative a ∈ A in digraph D is given by

βmoda (D) = ∑
b∈Succa(D )∪{a}

1
#Predb(D) + 1
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Properties of score functions IX

Proposition
Consider digraph D and alternatives a, b ∈ A such that
βmoda (D) ≥ βmodb (D), and alternative c ∈ A \ {a}.

If D ′ = D ∪ {(a, c)} then βmoda (D ′) ≥ βmodb (D ′).

If D ′ = D \ {(c , a)} then βmoda (D ′) ≥ βmodb (D ′).

Interpretation: If alternative a wins one more match (instead of losing it)
then it will not do worse in the ranking of the alternatives.
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Eigenvector scores I

4. Eigenvector scores
The β- and modified β-score of an alternative a depend on the number of
predecessors of its successors.

In this way, we take account of the ‘strength’of alternative b that is
weakly defeated by a, in determining the score of alternative a.

But if we want to take account of the strength of a’s successor b, then the
score of b should appear in the score of a.

This can be done using eigenvectors.
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Eigenvector scores II
Definition
Let A be a set of alternatives. The transition matrix of digraph D on A,
is the #A×#A matrix ΠD with entries given by

πDab =

{
1

#Predb (D )+1
if (a, b) ∈ D or a = b

0 otherwise.

Then βmod (D) = ΠD1A, with 1A ∈ IRm the unit vector given by
(1A)a = 1 for all a ∈ A.

Question: What are the entries in the column corresponding to alternative
a in matrix πD? What are the entries in the row corresponding to
alternative a?
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Eigenvector scores III
Proposition
Let D be a digraph on A. Then the matrix ΠD has eigenvalue 1.

Question: How would you use this proposition to define a score function?
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Eigenvector scores IV
Let λ ∈ IRm be an eigenvector of digraph D corresponding to eigenvalue 1,
i.e.

ΠDλ = λ.

Written differently, for every alternative a ∈ A,

λa = ∑
b∈Succa(D )∪{a}

λb
#Predb(D) + 1

.

Question: How do you interpret such a vector λ?
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Eigenvector scores V

Unfortunately, the eigenvector λ need not be unique. (It is unique upto
normalization if the digraph has only one top cycle, see later in Application
to social choice functions).

We can single out one of these eigenvectors by the following iterative
procedure.

Start with the modified β-score βmod :

β1(D) = βmod (D)

Then, for t ∈ {2, 3, . . .}, we can define the tth-order β-score βta of
alternative a ∈ A in digraph D on A, iteratively, as

βta(D) = ∑
b∈Succa(D )∪{a}

βt−1b (D)
#Predb(D) + 1

.
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Eigenvector scores VI

Proposition
For every digraph D on set of alternatives A, the limit

lim
t→∞

βt (D)

exists and is unique.
Moreover, it is an eigenvector corresponding to eigenvalue 1.

This gives the following definition.

Definition
The λ-score function of digraph D on A is given by

λ(D) = lim
t→∞

βt (D).
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Eigenvector scores VII

Remark: This iterative process can be seen as a Markov process.

Remark: Also the famous Google Page Rank method to rank web pages is
based on a limit and eigenvector approach.
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Application to Social Choice I

5. Application to Social Choice
Consider a finite set of alternatives A, and finite set of agents N.

Short summary of previous lectures 1

A preference relation %i on A represents preferences of agent i ∈ N over
set of alternatives A.

a %i b means that agent i considers alternative a ‘at least as good’as
alternative b.
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Application to Social Choice II
Preference relation %i on A is

complete if a %i b or b %i a, a 6= b
transitive if a %i b and b %i c implies that a %i c .
anti-symmetric if [a %i b and a 6= b] implies that b 6%i a,
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Application to Social Choice III

A preference profile is a tuple p = (%i )i∈N of individual preference
relations on A.

A triple (N,A, p) is a social choice situation.

Since we take the set of agents and set of alternatives fixed, we represent
a social choice situation just by its preference profile p.

A social choice function C assigns to every preference profile p a
non-empty subset of alternatives: C (p) ⊆ A.

Given a social choice function C and a preference profile p, we call C (p)
the corresponding social choice set.
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Application to Social Choice IV
Let np(a, b) = #{i ∈ N | a �i b} be the number of agents that consider
a to be better than b in profile p.

The majority relation of preference profile p is the preference relation %p
given by

a %p b ⇔ np(a, b) ≥ np(b, a).
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Application to Social Choice V
A social choice function is majoritarian if the social choice set assigned to
each preference profile p only depends on the majority relation %p .

A Condorcet winner in preference profile p is an alternative a ∈ A such
that a %p b for all b ∈ A \ {a}.

A Condorcet winner is a best element in the majority relation.

A social choice function is a Condorcet social choice function if it
chooses the Condorcet winner in any preference profile that has a
Condorcet winner.

End of Summary 1
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Application to Social Choice VI
Majoritarian social choice functions based on score functions
Assumption: All individual preference relations %i are complete and
transitive.

For every preference profile p = (%i )i∈N , we define the majority digraph
Dp by

(a, b) ∈ Dp if and only if a %p b.

Given a score function σ, we define the corresponding social choice
function C σ as the social choice function that chooses the alternatives
with the highest scores according to σ:

C σ(p) = {a ∈ A | σa(Dp) ≥ σb(D
p) for all b ∈ A}.
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Application to Social Choice VII
Two special cases
The (modified) β-rule is the majoritarian social choice function C βmod

given by

C βmod (p) = {a ∈ A | βmoda (Dp) ≥ βmodb (Dp) for all b ∈ A}.

The λ-rule is the majoritarian social choice function Cλ given by

Cλ(p) = {a ∈ A | λa(Dp) ≥ λb(D
p) for all b ∈ A}.
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Application to Social Choice VIII
Short summary of previous lectures 2
Let % be the transitive closure of preference relation %, i.e., a % b if and
only if there exist a sequence a1, . . . , at ∈ A such that

a1 = a,

ak % ak+1 for all k ∈ {1, . . . , t − 1},
at = b.
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Application to Social Choice IX
Definition
A subset of alternatives T ⊂ A is a Top cycle in preference profile p if

a, b ∈ T , a 6= b ⇒ a %p b, and
a 6∈ T , b ∈ T ⇒ a 6%p b.

For preference profile p, we define the Top set TOP(p) as the union of all
Top cycles in p.

Remark: If the majority relation %p is a complete and anti-symmetric
relation on A, then p has exactly one Top cycle.
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Application to Social Choice X
Definition
An alternative b is covered by alternative a in preference profile p if

a %p b, and

b %p c ⇒ a %p c for all c ∈ A.

The uncovered set UNC (p) is the set of alternatives that are not covered
by some other alternative in p.

End of Summary 2
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Application to Social Choice XI
Theorem
Consider the preference profile p. Then

C βmod (p) ⊆ UNC (p).

If %p is complete and anti-symmetric, then C βmod (p) ⊆ TOP(p).

Theorem
For every preference profile p it holds that Cλ(p) ⊆ TOP(p), and thus
Cλ(p) ⊆ UNC (p).
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Application to Social Choice XII

Remarks: C βmod is a refinement of the uncovered set for every social
choice situation, but not a refinement of the Top Cycle for every social
choice situation.

Cλ is a refinement of the uncovered set and the Top cycle for every social
choice problem.

In this way, Cλ seems looks better then C βmod .

Next, we discuss an advantage of C βmod over Cλ.
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Application to Social Choice XIII
Two properties of social choice functions
Definition
A social choice function satisfies Pareto optimality if for every preference
profile p = (%i )i∈N and alternatives a, b ∈ A such that

b %i a for all i ∈ N, and

there is an i ∈ N such that b �i a,
it holds that a 6∈ C (p).

Interpretation: If all agents consider b at least as good as a, and at least
one agent considers b better than a, then a cannot be in the choice set.

Remark: Notice the difference with Pareto optimality of social welfare
functions discussed in Lecture 2.
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Application to Social Choice XIV
Definition
A social choice function satisfies monotonicity if for every two preference
profiles p = (%i )i∈N and p′ = (%′i )i∈N , and alternative a ∈ A such that
for every i ∈ N

a %i b ⇒ a %′i b for all b ∈ A \ {a}, and

b %i c ⇔ b %′i c for all b, c ∈ A \ {a}, b 6= c .

it holds that a ∈ C (p) implies that a ∈ C (p′)

Interpretation: If alternative a is in the choice set, and the individual
preference relations change only by a getting ‘more prefered’, then a is still
in the social choice set.
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Application to Social Choice XV

Theorem
The social choice function C βmod is a Condorcet social choice function
which satisfies Pareto optimality and monotonicity.

Theorem
The social choice function Cλ is a Condorcet social choice function which
satisfies Pareto optimality.

Remark: Cλ is not monotone.

Remark: Comparing C βmod with Cλ, the disadvantage of C βmod is that it
is not a refinement of Top for every social choice problem.
A disadvantage of Cλ is that it is not monotone.
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Social welfare functions I

Social welfare functions
Obviously, score functions can also be used to define social welfare
functions which assign tot every digraph a complete, transitive relation.

Given a score function σ, we can define a corresponding social welfare
function that ranks the alternatives according to σ:

a %σ b ⇔ σa(Dp) ≥ σb(D
p) for all a, b ∈ A.
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Conclusion I

In this lecture we discussed several ranking methods for digraphs, and
applied them to define social choice and welfare functions.
These ranking methods can be used to derive a complete and transitive
preference relation from any social or individual preference relation.

Besides social choice, ranking methods are also used in, for example, to
ranking teams in sports competitions or ranking WWW web pages, one of
the most famous being Google Page Rank.
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