# INDIA DEVELOPMENT REPORT 2008



# INDIA DEVELOPMENT REPORT 2008

edited by R. RADHAKRISHNA





YMCA Library Building, Jai Singh Road, New Delhi 110 001

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trademark of Oxford University Press in the UK and in certain other countries

Published in India By Oxford University Press, New Delhi

© Oxford University Press and Indira Gandhi Institute of Development Research 2008

The moral rights of the author have been asserted Database right Oxford University Press (maker)

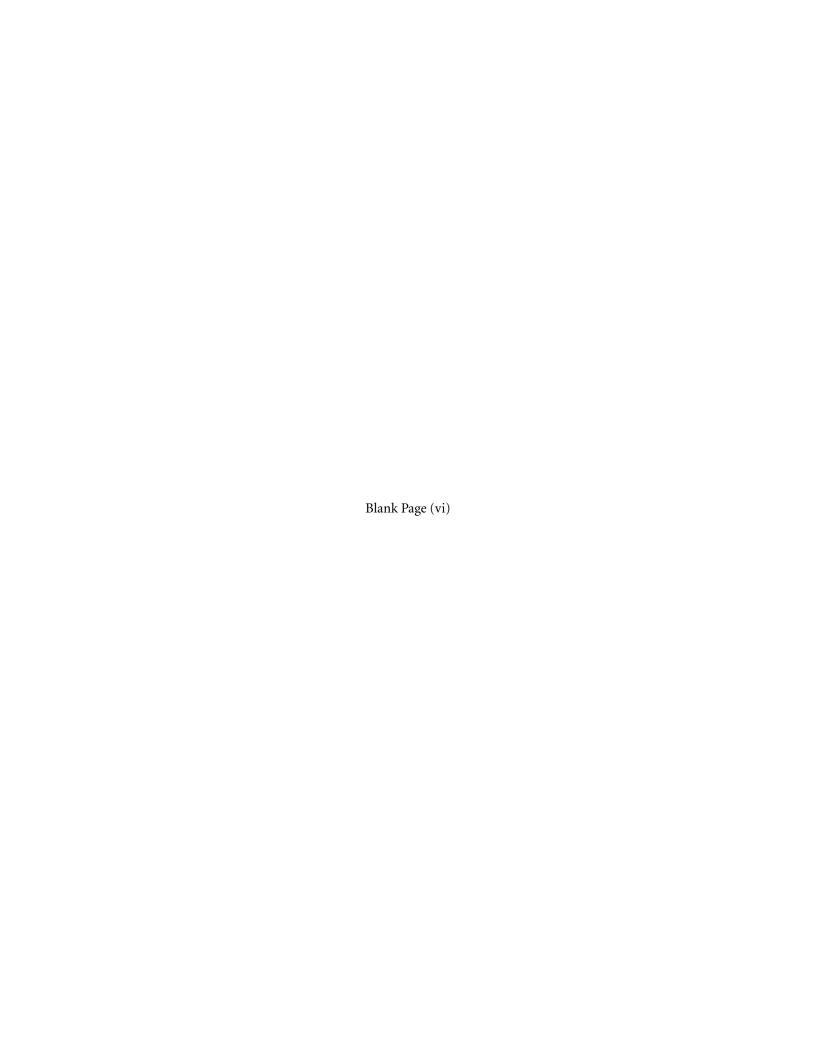
First published 2008

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from Oxford University Press. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer

> ISBN-13: 978-0-19-569351 5 ISBN-10: 0-19-569351 5

Typeset in Minion in 10.5/12.5
by Excellent Laser Typesetters, Pitampura, Delhi 110 034
Printed by ......
published by Oxford University Press
YMCA Library Building, Jai Singh Road, New Delhi 110 001


## Preface

The Indian economy has been one of the fastest growing economies of the world since 2003–4 and there are signs that it is on its way to emerging as a major economic power. At the same time it has experienced severe agrarian crises which have manifested in farmer suicides. There has been a growing recognition among policy makers that achieving high growth is one issue, but making it pro-poor is another. In recent years, there has been a decisive shift in policy in favour of inclusive growth. However, it is to be seen how far policy pronouncements translate into concrete action.

The IDR series provides a comprehensive view of the contemporary problems faced by the Indian economy. The IDR 2008 (the fifth in the series), prepared mostly by the faculty and researchers of the Indira Gandhi Institute of Development Research (IGIDR), focuses on inclusive growth and carries forward the debate initiated in IDR 2004–5. It analyses issues associated with sustaining high growth, achieving macroeconomic stability, quality, and adequacy of higher education, employment, agrarian crisis, implications of globalization, and so on. The statistical appendices contributed by S.L. Shetty of Economic and Political Weekly Research Foundation (EPWRF), constitute a comprehensive database on the Indian economy. The report is lucid and written keeping the general reader in mind. The views expressed here are those of the individual authors.

I would like to thank Sheila Bhalla, Nirmal Chandra, S.R. Hashim, Amitabh Kundu, D. Narasimha Reddy, Mihir Rakshit, V.M. Rao, C. Ravi, J.C. Sandesara, and K.K. Subramanian for acting as peer reviewers and S. Chandrasekar, Rohit Mutatkar, and Shovan Ray for their editorial support. Patrick Lewis has ably co-ordinated the production and Lavina D'Souza has provided considerable secretarial assistance. I am also grateful for the editorial support and help provided by Oxford University Press, New Delhi.

R. RADHAKRISHNA



# Contents

X

|    | List of Figures                                                                                                                                                                                                                                                | xiii |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | List of Boxes                                                                                                                                                                                                                                                  | XV   |
|    | List of Statistical Profile                                                                                                                                                                                                                                    | xvi  |
|    | List of Abbreviations                                                                                                                                                                                                                                          | xix  |
|    | List of Contributors                                                                                                                                                                                                                                           | xxii |
| 1. | Overview: Growth: Achievements and Distress                                                                                                                                                                                                                    | 1    |
|    | R. Radhakrishna • S. Chandrasekhar                                                                                                                                                                                                                             |      |
|    | Performance of the Indian Economy 1 Emerging Indian Economy 2 Growth and Well-being 5 Employment 9 Agrarian Crisis 12 Higher Education 13 Emerging Issues in the Financial System 14 India in a Globalizing World 17 Concluding observations 18                |      |
| 2. | Macroeconomic Overview  Manoj Panda                                                                                                                                                                                                                            | 20   |
|    | Introduction 20 National Income Growth 20 Other Macroeconomic Developments 27 Asian Economic Integration 32 Poverty and Distribution 34 Conclusion 38                                                                                                          |      |
| 3. | Crisis in Agriculture and Rural Distress in Post-Reform India  D. Narasimha Reddy • Srijit Mishra                                                                                                                                                              | 40   |
|    | Introduction 40 Agrarian Structure on the Eve of Economic Reforms 41 Reforms and Impact on the Farming Community in Agriculture 41 Rural Distress and Farmers' Suicides 47 Reform-led Growth, Small Peasant Adjustment Cost, and The Need for State Support 50 |      |

List of Tables

| 4. | Employment and Unemployment Since the Early 1970s  T.N. Srinivasan                                                                                                                                                                                                                                                                                                                                                                     | 54  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Introduction 54 Trends in Employment and Unemployment Rates 56 Conclusions 63                                                                                                                                                                                                                                                                                                                                                          |     |
| 5. | State of Higher Education in India S.R. Hashim                                                                                                                                                                                                                                                                                                                                                                                         | 71  |
|    | Changing Perception about Value of Higher Education 72 Education and Earning 74 Household Expenditure on Education 75 Growth of Higher Education 76 Investment in Higher Education 79 Using the Existing Research Infrastructure for Teaching at Higher Levels 81 The Rural–Urban Gap in Education 83 Summary and Conclusion 84                                                                                                        |     |
| 6. | Exploring Intra Urban Differences in Economic Well-Being in India S. Chandrasekhar • Tesfayi Gebreselassie                                                                                                                                                                                                                                                                                                                             | 87  |
|    | Introduction 87 Data 88 Extent, Distribution, and Characteristics of Slum Population 89 Heterogeneity in Slum Population 91 Intra Urban Differences in Economic Condition of Households 92 Conclusion 95                                                                                                                                                                                                                               |     |
| 7. | Macroeconomic Policy and the Exchange Rate: Working Together  Ashima Goyal                                                                                                                                                                                                                                                                                                                                                             | 96  |
|    | Introduction 96 India's Changing Exchange Rate Regime 97 Stability of Forex Markets 98 Internal and External Balance 101 Inflation and the Labour Market 106 Structure, Monetary, and Fiscal Policy 109 Conclusion 110                                                                                                                                                                                                                 |     |
| 8. | Emerging Policy Regime for Bank Credit Delivery and Tasks Ahead: A Critical Review S.L. Shetty                                                                                                                                                                                                                                                                                                                                         | 112 |
|    | Introduction: Importance Assigned to Finance for Development 112 Post-nationalization and Post-reform Banking Developments 113 Micro-credit Movement in India 124 Disappointing Ground Reality After the 1990s 126 More decisive evidence from AIDIS and Other Field Studies 128 New Initiatives for Expanding Credit Flow to Agriculture and Other Priority Sectors 129 New Policy Regime for Better Credit Delivery: Tasks Ahead 131 |     |
| 9. | Non-Perfoming Assets in Indian Banking: Magnitude, Determinants, and Impact of Recent Policy Initiative  Kausik Chaudhuri • Rudra Sensarma                                                                                                                                                                                                                                                                                             | 134 |
|    | Introduction 134                                                                                                                                                                                                                                                                                                                                                                                                                       |     |

|     | Indian Banking System and its NPA Problem 135 Prudential Norms and Regulatory Response to NPAs 138 Empirical Methodology and Data 140 Empirical Results 140 Impact of Policy Response 142 Policy Implications and Concluding Remarks 143                                             |     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10. | India and China: Changing Patterns of Comparative Advantage?  C. Veeramani                                                                                                                                                                                                           | 145 |
|     | Trade Policy Reforms 146 Growth of Exports 147 Structure of Exports and Changing Comparative Advantages 148 Conclusion and Implications 155                                                                                                                                          |     |
| 11. | Indian Textile and Apparel Sector: Performance, Employment, and Demand G. Badri Narayanan                                                                                                                                                                                            | 157 |
|     | Introduction 157 Indian Textile Sector in the International Market 158 India's Organized Textile Sector: Performance and Employment 161 Performance of India's Unorganized Textile Sector 166 Domestic Consumption of Textiles in India 172 Conclusions 175                          |     |
| 12. | Globalization, Employment, and Labour Market Flexibility: The Case of India K.V. Ramaswamy                                                                                                                                                                                           | 178 |
|     | The Issues 178 Globalization and Employment 179 Aggregate Employment 179 Job Security Regulations: Impact on Labour Markets 180 Empirical Studies 182 Manufacturing Employment in India: Past Trends and the Debate 183 Trade and Manufacturing Employment in India in the 1990s 183 |     |
|     | A Statistical Profile of India's Development                                                                                                                                                                                                                                         | 189 |
|     |                                                                                                                                                                                                                                                                                      |     |

Literature Review

135

# Tables

| 2.1  | Average Annual Growth Rates in Real GDP                                                 | 21 |
|------|-----------------------------------------------------------------------------------------|----|
| 2.2  | Index Number of Agricultural Production, Area, and Yield                                | 23 |
| 2.3  | Growth in Index Number of Industrial Production by Use-based Sectors                    | 25 |
| 2.4  | Savings and Capital Formation                                                           | 28 |
| 2.5  | Fiscal Parameters of Central Government                                                 | 30 |
| 2.6  | Fiscal Parameters of State Governments                                                  | 30 |
| 2.7  | Fiscal Parameters of Central and State Governments Combined                             | 31 |
| 2.8  | Major Foreign Trade Parameters                                                          | 31 |
| 2.9  | Direction of India's Exports                                                            | 32 |
| 2.10 | HCR of Poverty for Major Indian States                                                  | 35 |
| 2.11 | Urban–Rural Differences in MPCE                                                         | 37 |
| 3.1  | Important Measures of Economic Liberalization in Indian Agriculture                     | 43 |
| 3.2  | Capital Formation and Plan Expenditure in Agriculture                                   | 44 |
| 3.3  | Per Worker Income in Agriculture and Non-agriculture Sectors in india                   | 45 |
| 3.4  | Number of Poor and Undernourished Persons in Various Farm Categories in Rural India     | 46 |
| 3.5  | Trends in CDR and SMR in India, 1981–2003                                               | 47 |
| 3.6  | Age-adjusted Male SMRs in India and Selected Indian States                              | 48 |
| 3.7  | Age-adjusted SMRs for Male Population and Male Farmers                                  | 49 |
| A3.1 | Returns Per Hectare and Expenses as Per Cent of Value of Output, 2002–3                 | 53 |
| 4.1  | Employment Rates                                                                        | 58 |
| 4.2  | Unemployment Rates                                                                      | 59 |
| 4.3  | Employment Status                                                                       | 60 |
| 4.4  | Labour Force Participation Rates                                                        | 61 |
| 4.5  | Within Reference Week Distribution of Labour Force, 1999–2000                           | 62 |
| 4.6  | Change in Employment Rate                                                               | 64 |
| 4.7  | Per 1000 Distribution of Usually Employed by Broad Groups of Industry for               |    |
|      | Various Rounds, All India                                                               | 65 |
| A4.1 | Employment Rates: Number of Persons (person-days) Worked Per 1000 Persons (person-days) |    |
|      | According to US, CWS, and CDS Approaches for Different Rounds                           | 69 |
| A4.2 | Unemployment Rates: Number of Persons (person-days) Unemployed                          |    |
|      | Per 1000 Persons (person-days) in the Labour Force for Different Rounds                 | 69 |
| A4.3 | Employment Status: Per 1000 Distribution of Usually Employed by Status of               |    |
|      | Employment for Different Rounds                                                         | 70 |
| A4.4 | Labour Force Participation Rates: Number of Persons (person-days) Employed and          |    |
|      | Unemployed Per 1000 Persons (person-days) for Different Rounds                          | 70 |
| 5.1  | Incidence of Poverty by Landholding Groups, 1993–4                                      | 72 |
| 5.2  | Percentage Share of Number and Area under Marginal Holdings                             | 73 |

|      |                                                                                     | TABLES | xi  |
|------|-------------------------------------------------------------------------------------|--------|-----|
| 5.3  | Sectoral Share in GDP                                                               |        | 74  |
| 5.4  | Percentage Distribution of Households and Income by Education Level of the          |        |     |
|      | Head of the Household                                                               |        | 74  |
| 5.5  | Household Income by Head's Education and Age                                        |        | 75  |
| 5.6  | Income Elasticity of Household Expenditure on Education                             |        | 75  |
| 5.7  | Per Capita Consumption Expenditure on Education by Income Group                     |        | 75  |
| 5.8  | Educated Youth in the Labour Force, Middle Level of Schooling, and Above            |        | 76  |
| 5.9  | All India Growth of Student Enrolment (Higher Education), 1982–3 to 2001–2          |        | 77  |
| 5.10 | Expenditure on Education in Five Year Plans                                         |        | 79  |
| 5.11 | Growth in Public Expenditure on Education in India                                  |        | 79  |
| 6.1  | Differences Across Slum and Non-slum Households                                     |        | 90  |
| 6.2  | Variation in the Characteristics of Slum Population Residing in Different Wards of  |        |     |
|      | the Same Municipal Corporation                                                      |        | 91  |
| 6.3  | Mean of Assets by Resident Type                                                     |        | 93  |
| 6.4  | Scoring Factors based on the First Principal Component and Summary Statistics       |        | 94  |
| 7.1  | Depreciation or Appreciation, End December                                          |        | 98  |
| 7.2  | Yearly Volatility of the Exchange Rate                                              |        | 98  |
| 7.3  | Taking Account of the Trade Basket and Inflation                                    |        | 106 |
| 8.1  | Spread of Bank Branch Network in India                                              |        | 114 |
| 8.2  | Population Group-wise C-D Ratio as per Sanction and Utilization                     |        | 115 |
| 8.3  | Regional Scenario of C–D Ratios                                                     |        | 115 |
| 8.4  | C–D Ratios for Selected States                                                      |        | 115 |
| 8.5  | State-wise Classification of Districts by Size of C-D Ratios, March 2005            |        | 116 |
| 8.6  | District-wise Aggregate Deposits and Bank Credit for Maharashtra and Andhra Pradesh |        | 117 |
| 8.7  | Number of States and UTs in Different Ranges of C-D Ratio, March 2003               |        | 118 |
| 8.8  | Region-wise CDR and C+I/D Ratio of Scheduled Commercial Banks                       |        | 118 |
| 8.9  | Region-wise Credit Plus Investment Plus RIDF to Deposit Ratio                       |        | 118 |
| 8.10 | Outstanding Credit of SCBs Against Agriculture and SSIs                             |        | 119 |
| 8.11 | Direct and Indirect Finance for Agriculture and Allied Activities by SCBs           |        | 120 |
| 8.12 | Flow of Total Institutional Credit for Agriculture by Institution                   |        | 120 |
| 8.13 | Agency-wise Break-up of Term Credit flow                                            |        | 121 |
| 8.14 | Flow of Institutional Credit for Agriculture by Category                            |        | 122 |
| 8.15 | Data Reported on Agricultural Advances of Public Sector Banks                       |        | 122 |
| 8.16 | Trends in the Number of Small Borrowal vis-à-vis Other Bank Loan Accounts           |        | 123 |
| 8.17 | NABARD: Bank-SHG Credit Linkage Programme Cumulative Progress upto 2004–5           |        | 125 |
| 8.18 | Progress under SIDBI Foundation for Micro Credit (SFMC)                             |        | 125 |
| 8.19 | Cumulative Growth in SHG-Linkage in Priority Status                                 |        | 125 |
| 8.20 | Relative Share of Borrowing of Cultivator Households from Different Sources         |        | 129 |
| 8.21 | Indebtedness of Farm Households Classified According to Land Possessed              |        | 129 |
| 9.1  | Asset Structure of Indian Commercial Banking System                                 |        | 135 |
| 9.2  | Incidence of Gross and net NPAs of SCBs                                             |        | 137 |
| 9.3  | Cross-country Comparisons of Gross Non-performing Loans to Total Loans              |        | 138 |
| 9.4  | Nature and Strength of Impact of Various Factors on NPAs                            |        | 141 |
| 9.5  | Nature and Strength of Impact of Policy Responses on NPAs                           |        | 142 |
| 10.1 | Average Import Tariff Rate                                                          |        | 146 |
| 10.2 | Average Annual Growth Rate of Exports                                               |        | 147 |

149

10.3

Structure of Exports by Commodity Group

#### xii TABLES

| 10.4  | Composition of Exports by Factor Intensity                                                     | 150 |
|-------|------------------------------------------------------------------------------------------------|-----|
| 10.5  | Patterns of Comparative Advantage According to Factor Intensity                                | 151 |
| 10.6  | Patterns of Comparative Advantage According to Commodity Group                                 | 152 |
| 10.7  | Shares of India and China in World Exports by Commodity Group                                  | 153 |
| 10.8  | Expansion of Trade by Products, 1980–4 to 2000–3                                               | 153 |
| 10.9  | Structural Change of Exports and Comparative Advantage Across Products                         | 154 |
| 11.1  | Annual Growth Rates of Textile and Apparel Exports                                             | 161 |
| 11.2  | Average Annual Growth Rates in the Organized Indian Textile Sector                             | 162 |
| 11.3  | Trends in Some Ratios of Capital (K), Output (Y), and Employment (N)                           | 162 |
| 11.4  | Trends in Effective Rates of Protection for Different Sub-sectors in the Indian Textile Sector | 163 |
| 11.5  | Salient Features of the Organized Textile and Apparel Sector in India: Recent Trends           | 165 |
| 11.6  | Shares of Various Sub-sectors in Different Sectors, 2000–1                                     | 166 |
| 11.7  | Annual Average Growth Rates in Unorganized Textile Sector                                      | 168 |
| 11.8  | Trends in Partial Productivity Measures in Unorganized Textile Sector in India                 | 169 |
| 11.9  | Growth Trends of Partial Productivity Measures in Unorganized Textile Sector in India          | 170 |
| 11.10 | Trends in Per capita Consumption Expenditures and Shares on Clothing in Rural India            | 172 |
| 11.11 | Trends in Per Capita Consumption Expenditures and Share of Clothing in Urban India             | 173 |
| 11.12 | Indian Textile and Apparel Sector—Trends in Growth of Supply and Demand                        | 173 |
| 11.13 | Trends in Excise Structure of Various Textile Staple Fibres in India, 1992–2005                | 173 |
| 11.14 | Trends in Excise Structure of Various Textile Yarns Based on Filaments and                     |     |
|       | Staple Fibres in India, 1992–2005                                                              | 174 |
| 11.15 | Trends in Excise Structure of Various Textile Fabrics in India, 1992–2005                      | 174 |
| 11.16 | Elasticities of Various Textile Commodity Groups to their Prices and Textile Expenditure       | 175 |
| 11.17 | Credit Applications that were Received and Disbursed under TUFS                                | 176 |
| 12.1  | Distribution and Growth of Non-agricultural Employment, 1994–2000                              | 179 |
| 12.2  | Key Industries in Six Industry Groups                                                          | 184 |
| 12.3  | Employment in Six Industry Groups, 2001–2                                                      | 184 |
| 12.4  | Employment Growth Rates in Indian Manufacturing, 1989–2001                                     | 184 |
| 12.5  | Employment Elasticity in Indian Manufacturing by Industry                                      | 184 |
| 12.6  | Organized Sector Jobs by Industry, 1994–2000                                                   | 185 |
| 12.7  | Growth of Contract Labour in Factories                                                         | 185 |
| 12.8  | Distribution of Factories by Employment Size and Trade Orientation, 2000-1                     | 186 |
|       |                                                                                                |     |

# Figures

| 1.1  | All-India and Statewise Incidence of Poverty (Rural + Urban)                   | (          |
|------|--------------------------------------------------------------------------------|------------|
| 1.2  | Percentage Share of States in All India Poor (Rural + Urban)                   | $\epsilon$ |
| 1.3  | Index of Average Monthly Per Capita Expenditure in the Rural Sector            | 7          |
| 1.4  | Incidence of Malnutrition among Children in All India and Selected States      |            |
|      | (Rural + Urban)                                                                | Ç          |
| 1.5  | Trends in Unemployment, 1987–8 to 2004–5                                       | 11         |
| 2.1  | Real GDP Growth on Annual Basis and 3-year Moving Average Basis                | 21         |
| 2.2  | Composition of GDP by Major Sectors (per cent)                                 | 22         |
| 2.3  | Average Annual Growth Rates in Index Number of Agricultural Production         | 23         |
| 2.4  | Gross Capital Formation in Agriculture (at 1993–4 prices)                      | 23         |
| 2.5  | Annual Growth in Index Number of Industrial Production                         | 24         |
| 2.6  | Average annual growth rate of service sectors, 2000–5                          | 26         |
| 2.7  | Growth in Monetary Variables (per cent)                                        | 28         |
| 2.8  | Inflation Rate for WPI and CPI                                                 | 29         |
| 2.9  | Average Annual Growth Rate in Per Capita GSDP Across States                    | 36         |
| 2.10 | Coefficient of Variation in Per Capita GSDP among Major States                 | 36         |
| 3.1  | Indices of FBI and CPIAL                                                       | 45         |
| 3.2  | SMR for Male Farmers and Non-farmers in India, 1995–2004                       | 48         |
| 5.1  | Percentage Distribution of Households and Income                               | 74         |
| 5.2  | Per Household Income by Head's Education and Age                               | 75         |
| 5.3  | All India Growth of Student Enrolment (Higher Education), 1982–3 to 2001–2     | 78         |
| 5.4  | Expenditure on Education in Five Year Plans                                    | 79         |
| 5.5  | Growth in Public Expenditure on Education in India                             | 80         |
| 6.1  | Share of India's Slum Population                                               | 89         |
| 6.2  | Distribution of Households Based on Asset Index Quantiles by Location          | 94         |
| 7.1  | Post-reform Exchange Rates                                                     | 97         |
| 7.2  | Recent Daily Fluctuations in Spot Exchange Rates                               | 99         |
| 7.3  | Shrinking the Impossible Trinity                                               | 104        |
| 8.1  | Trends in Agriculture Credit: Number of Borrowal Accounts                      | 126        |
| 8.2  | Trends in Credit for SSI Sector: Number of Borrowal Accounts (For SCBs)        | 127        |
| 8.3  | Percentage Shares of Agriculture and SSI Credit in Total Bank Credit (By SCBs) | 127        |
| 8.4  | Number of Small Borrowal Accounts (For SCBs)                                   | 127        |
| 8.5  | Preentage Share of Credit of Small Borrowal Accounts to Total Credit (By SCBs) | 128        |

#### xiv FIGURES

| 9.1   | Gross NPAs to Gross Advances, 2001–5 Public Sector and Private Sector Banks | 136 |
|-------|-----------------------------------------------------------------------------|-----|
| 9.2   | Gross Non-performing Loans to Total Loans, 2001–5                           | 138 |
| 10.1  | Trends in India's Exports, Imports, and Trade Balance                       | 147 |
| 10.2  | Comparative Export Performance, 1950–2004                                   | 148 |
| 11.1  | Exports of Silk and Silk Products at Constant Prices                        | 159 |
| 11.2  | Exports of Wool and Wool Products at Constant Prices                        | 159 |
| 11.3  | Exports of Cotton and Cotton Products at Constant Prices                    | 159 |
| 11.4  | Exports of Products from Manmade Filaments at Constant Prices               | 159 |
| 11.5  | Trends in Percentage Shares of Exports of some Non-cotton                   |     |
|       | Textile Products in Total Exports from India.                               | 160 |
| 11.6  | Trends in Percentage Shares of Exports of some Cotton Textile and all       |     |
|       | Apparel Products in Total Exports from India                                | 160 |
| 11.7  | Employment Trends in Non-mill Textile Sector                                | 164 |
| 11.8  | Employment Trends in Different Sub-sectors of Textile Wet Processing Sector | 164 |
| 11.9  | Employment Trends in Textile Wet Processing Sector                          | 165 |
| 11.10 | Employment Trends in Sub-Sector in Textile Sector                           | 165 |

# Boxes

| 2.1 | Long-term Scenarios for Asian Growth: Need for Asian Economic Integration          | 33  |
|-----|------------------------------------------------------------------------------------|-----|
| 2.2 | National Rural Employment Guarantee Act, 2005                                      | 37  |
| 5.1 | Pressure of Competition for Available Seats in the Institutions of Higher Learning | 72  |
| 5.2 | Farming has Become a Risky Vocation                                                | 73  |
| 5.3 | The Goal of Spending Six Per cent of GDP on Education                              | 78  |
| 5.4 | Need for Regulating Quality of Curricula and Institutions                          | 80  |
| 5.5 | Research Support Structures                                                        | 81  |
| 5.6 | Success Rate by Medium—UPSC Civil Services Main Examination                        | 83  |
| 7.1 | Speculation versus Hedging                                                         | 99  |
| 7.2 | Forex Markets and Central Bank Intervention                                        | 100 |
| 7.3 | Monetary Policy Shocks                                                             | 101 |
| 7.4 | The Road to Full Capital Convertibility                                            | 102 |
| 7.5 | The impact of Monetary Policy in an EME: The Mundell–Fleming Model                 | 103 |
| 7.6 | The Difference Between Indian GDP and GNP                                          | 105 |
| 7.7 | Strategies to Absorb Foreign Inflows                                               | 107 |
| 0.1 | Major Reforms in China                                                             | 146 |
| 0.2 | Major Reforms in India                                                             | 146 |
| 0.3 | Contribution of FDI to Export Growth in China and India                            | 148 |
| 0.4 | Market Seeking vs Export Promoting FDI                                             | 148 |
| 2.1 | Introducing Flexibility: The Case of Spain                                         | 182 |
| 2.2 | Fixed-term Contract in Indian Industry                                             | 185 |
| 2.3 | Job Security Regulations in India                                                  | 186 |
|     |                                                                                    |     |

# A Statistical Profile

#### REAL SECTOR

| A1 | National Income |                                                                                                                                  |            |  |  |  |
|----|-----------------|----------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
|    | A1.1<br>A1.2    | Key National Accounts Aggregates (at Constant Prices) Gross and Net Domestic Savings by Type of Institutions (at Current Prices) | 191<br>195 |  |  |  |
|    | A1.3            | Gross Capital Formation by Type of Institutions at Current Prices                                                                | 197        |  |  |  |
|    | A1.4            | Net Capital Stock By Type of Institutions and Capital-Output Ratios                                                              | 201        |  |  |  |
|    | A1.5            | Rank of States in Descending order of Per Capita State Domestic Products in Real Terms                                           |            |  |  |  |
|    |                 | (Three-yearly Annual Averages)                                                                                                   | 203        |  |  |  |
| A2 | Produ           | Production                                                                                                                       |            |  |  |  |
|    | A2.1            | Production Trends in Major Agricultural Crops                                                                                    | 205        |  |  |  |
|    | A2.2            | Trends in Yields of Major Crops                                                                                                  | 207        |  |  |  |
|    | A2.3            | Horticulture and Live Stock Production                                                                                           | 208        |  |  |  |
|    | A2.4            | Value of Output from Agriculture, Horticulture, and Livestock                                                                    | 209        |  |  |  |
|    | A2.5            | Structural Changes in Indian Industry and Decadal Growth                                                                         | 211        |  |  |  |
|    | A2.6            | Index of Industrial Production with Major Groups and Sub-groups                                                                  | 212        |  |  |  |
| A3 | Budge           | Budgetary Transactions                                                                                                           |            |  |  |  |
|    | A3.1            | Budgetary Position of Government of India                                                                                        | 216        |  |  |  |
|    | A3.2            | Consolidated Budgetary Position of State Governments at a Glance                                                                 | 218        |  |  |  |
| A4 | Mone            | Money and Banking                                                                                                                |            |  |  |  |
|    | A4.1            | Money Stock Measures                                                                                                             | 219        |  |  |  |
|    | A4.2            | Selected Indicators of Scheduled Commercial Banks Operations (Year-End) (Outstandings)                                           | 220        |  |  |  |
|    | A4.3            | Trends in Statewise Bank Deposits and Credit and Credit-Deposit Ratios                                                           |            |  |  |  |
|    |                 | (For Scheduled Commertial Banks)                                                                                                 | 221        |  |  |  |
|    | A4.4            | Trends in Districtwise Deposits and Credit (as per Utilisation) and Credit-Deposit Ratios                                        | 223        |  |  |  |
|    | A4.5            | Distribution of Outstanding Credit of Scheduled Commercial Banks According to Occupation                                         | 224        |  |  |  |
|    | A4.6            | Resources Mobilisation from the Primary Market                                                                                   | 226        |  |  |  |
| A5 | Capita          | l Market                                                                                                                         |            |  |  |  |
|    | A5.1            | Trends in Resource Mobiliation by Mutual Funds                                                                                   | 228        |  |  |  |
|    | A5.2            | Trends in Resource Mobiliation by Mutual Funds                                                                                   | 230        |  |  |  |
|    | A5.3            | Trends in FII Investments                                                                                                        | 231        |  |  |  |
|    | A5.4            | Business Growth of Capital Market Segment of NSE                                                                                 | 232        |  |  |  |
|    | A5.5            | Settlement Statistics of Capital Market Segment of National Stock Exchange of India (NSE's)                                      | 233        |  |  |  |
|    | A5.6            | Business Growth Of The Futures and Options Market Segment, NSE                                                                   | 234        |  |  |  |
|    | A5.7            | Settlement Statistics In Futures and Options Segment, NSE                                                                        | 235        |  |  |  |
|    | A5.8            | Business Growth On The WDM Segment, NSE                                                                                          | 235        |  |  |  |

|     |                | A STATISTICAL PROFILE                                                                                                                                  | xvii       |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | A5.9<br>A 5.10 | Business Growth and Settlement of Capital Market Segmen, BSE<br>Secondary Market Turnover in Financial and Commodities Market                          | 236<br>237 |
| A6  | Investr        | nent                                                                                                                                                   |            |
|     | A6.1<br>A6.2   | Trends in Total Investment and Investment Under Implementation by Industry Trends in Total Investment and Investments Under Implementation by States & | 238        |
|     |                | Union Territories                                                                                                                                      | 240        |
| A7  | Prices         |                                                                                                                                                        |            |
|     | A7.1<br>A7.2   | Wholesale Price Index: Point-to-Point and Average Annual Variations<br>Cost of Living Indices                                                          | 241<br>243 |
| ЕХТ | ERNAI          | L SECTOR                                                                                                                                               |            |
| A8  | Balanc         | e of Payments                                                                                                                                          |            |
|     | A8.1           | Foreign Exchange Reserves (End Period)                                                                                                                 | 246        |
|     | A8.2           | Balance of Payments 1990–1 to 2005–6                                                                                                                   | 247        |
|     | A8.3           | Invisibles Account on Balance of Payments                                                                                                              | 251        |
| A9  | Exchar         | ige Rate                                                                                                                                               |            |
|     | A9.1           | Exchange Rate for the Indian Rupee vis-à-vis Some Select Currencies                                                                                    |            |
|     |                | (Indian Rupee per Currency)                                                                                                                            | 253        |
|     | A9.2           | Indices of Real Effective Exchange Rate (REER) and Nominal Effective Exchange Rate (NEER)                                                              |            |
|     | 10.2           | of the Indian Rupee                                                                                                                                    | 255        |
|     | A9.3           | Weighing Diagrams for RBI's NEERs and REERs.                                                                                                           | 256        |
| A10 | Foreign        |                                                                                                                                                        |            |
|     |                | Changing Scenerio in Foreign Trade                                                                                                                     | 257        |
|     | A10.2          | Foreign Trade with Major Trading Partners                                                                                                              | 259        |
| A11 | Foreign        | n Investment and NRI Deposits                                                                                                                          |            |
|     |                | Foreign Investment Inflows                                                                                                                             | 260        |
|     |                | NRI Deposits - Outstandings as at the End Period                                                                                                       | 261        |
|     | A11.3          | FDI Inflows: Year-wise, Route-wise, Sector-wise Break-up and Country-wise Break-up                                                                     | 262        |
| DEN | MOGRA          | APHY AND SOCIAL SECTOR                                                                                                                                 |            |
| A12 | Popula         | tion                                                                                                                                                   |            |
|     | •              | Statewise Population 1951–2001                                                                                                                         | 264        |
|     | A12.2          | Statewise: Rural and Urban Population of India: 1951–2001                                                                                              | 265        |
|     |                | Statewise: Sex Ratio                                                                                                                                   | 266        |
|     |                | Statewise—Literacy Rate: 1951 to 2001                                                                                                                  | 267        |
|     | A12.5          | Statewise Infant Mortality Rate: 1961, 1981, 1991, 2001, 2002, and 2003                                                                                | 268        |
| A13 | Humai          | n Development Indices                                                                                                                                  |            |
|     |                | Human Development Index for India by State 1981, 1991, and 2001                                                                                        | 269        |
|     | A13.2          | State-wise Poverty Estimation HCR                                                                                                                      | 270        |
| A14 | Emplo          | yment                                                                                                                                                  |            |
|     | A14.1          | Total Population, Workers and Non-Workers as Per Population Censuses                                                                                   | 271        |
|     | A14.2          | Number of Persons Employed per 1000 Persons according to Usual Status and                                                                              | c == -     |
|     |                | Current Weekly Status Approaches                                                                                                                       | 272        |

#### xviii A STATISTICAL PROFILE

|     | A14.3   | Per 1000 distribution of the Usually Employed by Status of Employment for All              |     |
|-----|---------|--------------------------------------------------------------------------------------------|-----|
|     |         | (Principal and Subsidiary Status Workers)                                                  | 273 |
|     | A14.4   | Unemployment Rate                                                                          | 274 |
|     | A14.5   | State-wise Labour Force and Work Force Participation Rates by Place of                     |     |
|     |         | Residence and Sex: 1983 to 1999–2000                                                       | 275 |
|     | A14.6   | State-wise Sectoral Distribution of Usual (Principal + Subsidiary)                         |     |
|     |         | Status Workers: 1983 to 1999–2000                                                          | 276 |
|     | A14.7   | State-wise Composition of Rural and Urban Usual (Principal + Subsidiary)                   |     |
|     |         | Status Workers: 1983 to 1999–2000                                                          | 277 |
|     | A14.8   | Trends in Number and Employment of Agricultural (excluding crop production and plantation) |     |
|     |         | and Non-Agricultural Enterprises,1980-2005 and growth                                      | 278 |
|     | A14.9   | Percentage Distribution of Gainfully Employed Persons                                      |     |
|     |         | ( ie by usual status for all workers ie PS+SS), by Industry                                | 282 |
| A15 | Housel  | nold Indebtedness                                                                          |     |
|     | A15.1   | Household Indebtness A Profile                                                             | 288 |
| A16 | Interna | tional Comparison                                                                          |     |
|     | A16.1   | Development Characteristics of Some Selected Countries                                     | 290 |
|     |         |                                                                                            |     |

## **Abbreviations**

ADB Asian Development Bank
AFTA ASEAN Free Trade Agreement
AoA Agreement on Agriculture

ASEAN Association of South East Asian Nations

ASI Annual Survey of Industries
BSE Bombay Stock Exchange
BSR Basic Statistical Returns
CAD Current Account Deficit
CAR Capital Adequacy Ratio

CB Central Bank
C-D Credit-Deposit
CDR Crude Death Rate

CDR Corporate Debt Restructuring

CDS Current Daily Status
CPI Consumer Price Index
CPIAL CPI for Agricultural Labour

CRAR Capital to Risk-Weighted Assets Ratio

CRR Cash Reserve Ratio

CSO Central Statistical Organization

CV Coefficient of Variation
CWS Current Weekly Status

DFI Development Finance Institution

DGET Directorate General of Employment and Training

DHS Demographic Health Survey

DME Directory Manufacturing Establishment

DRT Debt Recovery Tribunal
EME Emerging Market Economy
EMI Employment Market Information

EO Export Oriented ES Enterprise Survey EU European Union

EUS Employment and Unemployment Surveys

FBI Farm Business Income FDI Foreign Direct Investment

ffr Federal Fund Rate
FI Financial Institution

FRBM Fiscal Responsibility and Budget Management

FSU First Stage Unit GCC General Credit Card

#### xx ABBREVIATIONS

GCF Gross Capital Formation

GDCF Gross Domestic Capital Formation
GSP Generalized System of Preferences

HCR Head Count Ratio
HYV High Yielding Variety
IC Import Competing

ICT Information and Communication Technology
IGIDR Indira Gandhi Institute of Development Research

IIT Indian Institute of Technology
IMF International Monetary Fund
IT Information Technology
JSR Job Security Regulations
KCC Kissan Credit Card
LR Labour Reserve

MCPS Monopoly Cotton Procurement Scheme

M–F Mundell-Fleming
 MFA Multi-fibre Agreement
 MFI Microfinance Institutions
 MOF Ministry of Finance

MPCE Monthly Per Capita Consumption Expenditure

MSP Minimum Support Price MTFR Medium Term Fiscal Reform

NABARD National Bank for Agriculture and Rural Development

NAFTA North American Free Trade Agreement

NAS National Account Statistics

NCAER National Council for Applied Economic Research

NCL National Commission for Labour NCRB National Crime Records Bureau

NDME Non-directory Manufacturing Establishment

NEER Nominal Effective Exchange Rate

NFA Net Foreign Assets

NGO Non-governmental Organization NIC Newly Industrialized Countries

NPA Non-performing Asset

NREG National Rural Employment Guarantee NSSO National Sample Survey Organization

NTC National Textile Corporation

OAME Own Account Manufacturing Enterprise

OCR Operating Cost Ratio

ODL Open and Distance Learning

OECD Organization for Economic Co-operation and Development

OEM Open Economy Macroeconomics

OGL Open General Licensing
OTS One Time Settlement
PC Population Census
PPP Purchasing Power Parity
PSU Public Sector Unit
QR Quantitative Restrictions
RBI Reserve Bank of India

RCA Revealed Comparative Advantage REC Regional Engineering College REER Real Effective Exchange Rate RFAS Rural Finance Access Survey
RIA Regional Integration Agreements

ROA Return on Assets ROW Rest of the World RRB Regional Rural Bank

RTA Regional Free Trade Agreement
SAFTA South Asia Free Trade Agreement
SAP Structural Adjustment Programme
SCB Scheduled Commercial Bank

SEZ Special Economic Zone

SFMC SIDBI Foundation for Micro Credit

SHG Self-Help Group

SIDBI Small Industries Development Bank of India

SLR Statutory Liquidity Ratio SME Small and Medium Enterprise SMR Suicide Mortality Rate

SMR Suicide Mortality Rate
SSI Small Scale Industry
TFP Total Factor Productivity
TFR Total Fertility Rate

UGC University Grants Commission

US Usual Status

VRS Voluntary Retirement Scheme

WPI Wholesale Price Index

WPR Work Force Participation Rate
WTO World Trade Organization
WUA Water Users Association

### List of Contributors

S. Chandrasekhar Assistant Professor, Indira Gandhi Institute of Development Research, Mumbai

Kausik Chaudhuri Associate Professor, Indira Gandhi Institute of Development Research, Mumbai

Tesfayi Gebreselassie MEASURE DHS, Macro International Inc., Calverton, MD, USA

Ashima Goyal Professor, Indira Gandhi Institute of Development Research, Mumbai

S.R. Hashim Director, Institute for Studies in Industrial Development, Delhi

Srijit Mishra Associate Professor, Indira Gandhi Institute of Development Research, Mumbai

G. Badri Narayanan Research Economist, Center for Global Trade Analysis, Purdue University, USA

Manoj Panda Professor, Indira Gandhi Institute of Development Research, Mumbai

K.V. Ramaswamy Associate Professor, Indira Gandhi Institute of Development Research, Mumbai.

At present Visiting Senior Research Fellow, Institute of South Asian Studies,

National University of Singapore, Singapore

D. Narasimha Reddy Professor of Economics (Rtd), University of Hyderabad. At present Visiting Professor,

Institute for Human Development, Delhi

Rudra Sensarma Maxwell Fry Research Fellow in Finance Birmingham Business School, UK

S.L. Shetty Director, Economic and Political Weekly Research Foundation, Mumbai

T.N. Srinivasan Samuel J. Park, Jr Professor of Economics, Economic Growth Center, Yale University, CT,

USA

C. Veeramani Assistant Professor, Indira Gandhi Institute of Development Research, Mumbai

### Overview

### Growth: Achievements and Distress

R. Radhakrishna • S. Chandrasekhar

# PERFORMANCE OF THE INDIAN ECONOMY GDP Growth

The Indian economy has emerged in recent years as one of the fastest growing economies of the world. The Indian market along with that of China is considered as one of the major engines of growth for the global economy. Domestic factors have led to the recent robust economic growth. The key factors that underpin the transition from moderate to high growth are the favourable supply side factors as well as continuous strong domestic demand. These include the savings surge resulting from improvement in corporate and household savings; and more importantly, high investment rates aided by easy liquidity. The major contributors of growth other than savings and investment are a spurt in exports, resurgence of the manufacturing sector, and substantial flow of foreign direct investment (FDI) that has complemented the domestic investment. Many observers of the Indian economy argue that India can achieve a still higher growth rate and sustain it over a longer period. However, future growth would depend on sustaining the growth of investible resources, achieving widespread productivity improvement on the supply side, and maintaining macroeconomic stability on the demand side. In the medium term, infrastructure bottlenecks, shortage of skilled manpower, and poor performance of agriculture will be the major constraints to rapid growth. Sluggish agricultural growth will also be a major constraint in achieving

inclusive growth. There is a fear that excessive dependence on crude oil imports—that account for about 70 per cent of domestic consumption—may become a limiting factor.

There has been a significant improvement in macroeconomic stability. This is reflected in the lower year-to-year variations in the gross domestic product (GDP) growth rate; the standard deviation of growth rate of GDP is observed to be declining steadily over time. The improvement in macroeconomic stability could be due to macroeconomic policies. While the prospects for achieving high growth are good, the prospect of maintaining macroeconomic stability must be rated low. The Indian economy is likely to be susceptible to periodic shocks originating from the global economy such as those related to global financial crises and volatility in crude oil prices. As India moves towards full convertibility of the rupee, it is likely to be vulnerable to the contagion effect flowing from any major global financial crisis. Business expectations are governed not only by the macro fundamentals of the economy, but also by the outcomes of the global markets.

A distinct acceleration in GDP growth has occurred between the Ninth and Tenth Plan periods that reversed the deceleration observed between the Eighth and Ninth Plans. The annual growth rate averaged 6.5 per cent during the Eighth Plan period (1992–7), slipped to 5.5 per cent during the Ninth Plan (1997–2002), but accelerated to 7.6 per cent during the Tenth Plan period (2002–7). The growth performance in recent years is even more impressive. The growth

rate rose to 9 per cent in 2005-6, 9.4 per cent in 2006-7, and is projected to grow at close to 9 per cent in 2007-8. A recent assessment of the economy attributes the better performance to better capital utilization and a turnaround in the total factor productivity (TFP) in manufacturing since 2002-3, and a steady improvement in productivity growth in services (RBI 2007a). The long-term growth has, however, been intercepted by periodic cycles (Figure 2.1). Arguably, the recent high growth witnessed since 2003-4 might be a cyclical phase—the GDP growth rate may peak soon and then fall as was seen in the past between the two periods 1993-7 and 1997-2003. Concerns have been raised about overheating in certain sectors as manifested in the full utilization of their capacities, rapid expansion of credit, surge in asset and commodity prices, and rising inflation rates. For instance, during the past three years, capacity utilization in all industries exceeded 80 per cent. And what is more, it exceeded 90 per cent in electricity. The tight monetary policy being adopted reflects the need for caution. However, recent high investments may augment the capacities with a lag, and to some extent relieve the pressure and restore macroeconomic stability.

#### Sectoral Performance

The industrial sector GDP grew by 8 per cent in 2005-6 and 11 per cent in 2006–7. The revival of industrial growth that began in 2002-3 has entered the fifth consecutive year of high growth. The industrial sector, in which the manufacturing sector played a critical role, has become very competitive at home and abroad. The growth of the manufacturing sector which was for long stuck at modest annual rates of 7 to 8 per cent, accelerated to 9.1 per cent in 2005–6, and further to 12.3 per cent in 2006–7. This has been achieved despite infrastructural bottlenecks and competitive pressures. The acceleration in manufacturing growth has been triggered by investment and consumption demand. Within the manufacturing sector, capital goods production registered an impressive increase of 15.8 per cent in 2005-6 and 18.2 per cent in 2006-7. The growing investment demand was met partly through imports of capital goods which increased by more than 40 per cent in 2005-6 and 2006-7. The high growth of capital goods production as well as the spurt in capital goods imports was due to fresh investment in automobiles, power equipment, metals, oil and gas, and petrochemicals (Naik 2006). Restructuring, better capacity utilization, and better inventory management seem to be the factors that contributed to the recovery of the capital goods sector that faced stiff competition from imports in the 1990s due to a reduction in customs duties (Panda, Chapter 2). Infrastructure bottlenecks and shortage of skilled manpower are likely to constrain the manufacturing growth. If the falling demand for consumer durables (recorded in the recent period), persists, it may affect future overall industrial growth (IEG 2007). Despite favourable growth of the global economy at about 5 per cent per annum, growth of exports started slowing down much before the recent appreciation of the Indian rupee. These factors may have an adverse effect on the future prospects of industrial growth.

The services sector has sustained its high growth and contributed substantially to overall growth. In 2006–7, this sector grew by 11 per cent, slightly up from 10.3 per cent in 2005-6, and contributed to 71.5 per cent of the increase in overall GDP (RBI 2007b). Communications has been the fastest growing sub-sector of services sector. Removal of monopoly and adoption of cost-reducing technologies contributed to its growth (Panda Chapter 2). Sub-sectors such as trade, hotels, restaurants, transport, storage, and communication contributed to more than one third of the overall growth rate of GDP (RBI 2007b). There has been a spurt in the growth of travel and tourism as a result of expansion in business and trading activities. Foreign tourist arrivals increased from 2.65 million in 2000 to 4.43 million in 2006 and foreign exchange earnings from \$ 3.2 billion to \$ 6.6 billion over the period (EPWRF 2007).

Agriculture has been experiencing deceleration since the mid-nineties, with no recovery in sight (GOI 2007b). The annual agricultural GDP increased at 2.7 per cent in 2006-7, 6 per cent in 2005-6, and was stagnant in 2004-5. In the post-reform period, high GDP growth accompanied by low agricultural growth has brought about a distinct shift in the sectoral distribution of GDP, which is skewed against agriculture. The share of agriculture in GDP declined by 10 percentage points between 1993-4 and 2004-5 whereas its share in employment declined by 7 percentage points. These trends have further worsened income disparities. In 2004-5, the share of agriculture in total workforce was 56.5 per cent but it accounted for only 20.2 per cent of total GDP. In contrast, services constituted less than one-fourth of the total workforce, but accounted for more than half of GDP. What is even more disquieting is the fact that the ratio of worker productivity in agriculture to that in non-agriculture declined from 28 per cent in 1993–4 to 20 per cent in 2004–5. Clearly, this growing disparity may bring to naught the efforts at achieving inclusive growth (Reddy and Mishra Chapter 3). Year-to-year fluctuations in agricultural production may not affect the aggregate growth to the same extent as in the past, but such fluctuations would put at risk the livelihood of about 60 per cent of the population.

#### EMERGING INDIAN ECONOMY

#### Growth Projections

India's potential GDP growth rate has been estimated to be about 7 per cent per annum over two decades (Rodrik and

Subramanian 2004). Growth accounting exercises reveal that TFP contributed 21 per cent of GDP growth during 1961-81, 38 per cent during 1981-91, and 40 per cent in 1991-2000 (Acharya et al. 2003). Moreover, TFP accounted for more than half of per worker GDP growth during 1981-2000 (Rodrik and Subramanian 2004). Endogenous growth theory and evidence suggest that a number of factors—research and development, human capital, FDI with technological spillovers, trade openness, competition, economic policies, and institutions—play a major role in increasing TFP. Their relative contribution, however, varies across countries and also between different growth phases in a country. India has put in place most of the drivers of productivity growth. It is not clear why the contribution of TFP to GDP growth remained the same for the 1980s and 1990s despite the introduction of economic reforms in the 1990s. However, annual growth rate of TFP increased marginally from 2 to 2.6 per cent between 1980s and 1990s (Acharya et al. 2003). Little is known about the underlying factors of TFP growth between pre- and post-reform periods. In all probability, India can better its growth, provided the recent higher investment rate and TFP improvement are sustained.

The Planning Commission has set a growth target of 9 per cent per annum for the duration of the 11th Five Year Plan starting from April 2007. The Planning Commission estimates that the investment rate would need to be stepped up to 32 and 35.1 per cent corresponding to 8 and 9 per cent growth targets, respectively. Higher growth rates and reduction in population growth rate will imply a significant improvement in per capita GDP growth over time. In order to achieve higher growth rates, there is a need to increase not only the savings and investment rates but also to improve efficiency. The real challenge, however, will remain in achieving a target growth rate of 4 per cent per annum set for agriculture.

#### Growth Drivers

India has the advantage of a relatively large size of population in the working age group. However, this advantage has not been exploited fully so far. Some of the East Asian countries including Japan, South Korea, and China have already started facing the problem of lesser number of persons of working age to retired persons—a phenomenon being experienced by the developed countries. India has yet to face this problem and hence, has the advantage of increasing relative proportion of working age population. If employment opportunities can be created and persons of working age are equipped with knowledge and skills, India is ideally poised to reap the benefits of demographic dividend given the bulge in the working age population. Moreover, a side effect is likely to be an increase in savings rate and this would finance higher levels of investment (GOI 2007a). These factors are favourable for achieving high GDP growth. There are, however, some major obstacles to be addressed if India is to benefit from demographic advantages. These include widespread malnutrition and illiteracy. For example, in 2004-5, about 40 per cent of adults suffered from chronic energy deficiency, 35 per cent of workers were illiterate, and 20 per cent of workers were in the households below the poverty line. These factors underlie the low productivity of labour.

The gross domestic savings (investment) as a percentage of GDP has increased from 23.4 per cent (24 per cent) in 2000-1 to 34.3 per cent (35.1 per cent) in 2006-7. Higher levels of investment aided by higher efficiency could reinforce the confidence in sustaining high growth. New growth sectors, beyond information technology (IT) and IT-enabled service industries, could bolster the belief of sustainability of the high growth phase. An example of a sunrise sector industry would be tourism that has shown a double digit growth rate in the last three years. The emerging middle class which is expected to increase from an estimated 220 million people in 2000 to about 370 million by 2010 (NCAER 2002) would expand the demand for consumer goods as also the supply of skilled labour.

The prevailing environment is conductive for the growth of the manufacturing sector. The investment boom—supported by increased savings as well as increased flow of credit, and improvement in TFP—underlies the growth of the manufacturing sector. It is widely believed that India will emerge as a base for global production in sectors such as auto-components, electronic hardware, and pharmaceuticals (Naik 2006). In line with the optimistic predictions, the National Strategy for Manufacturing released by the National Competition Council suggests a growth rate target of at least 12 to 14 per cent per annum for manufacturing sector and an increase of its share in GDP from the present 17 per cent to 23 per cent by 2015.

Outward FDI from India is expected to grow rapidly as restrictions on India's foreign investments are relaxed by the government. In recent years, India's outward FDI has been in the manufacturing and service sectors. Outward FDI increased from \$701 million in 2000-1 to \$1.6 billion in 2004–5, \$4.5 billion in 2005–6, and further to \$11 billion in 2006–7. The numbers for the current year are expected to be much higher. In 2005-6, 57 per cent of outward FDI was on account of manufacturing, 6 per cent for financial services, 20 per cent for non-financial services, and 8 per cent for trading. Indian companies are acquiring companies abroad, some examples being Tata Motors Limited's takeover of Daewoo Commercial Vehicles Company (Republic of Korea), Tata Tea's takeover of Tetley Tea (United Kingdom), and Tata Steel's takeover of Corus. Outward FDI can be utilized to reduce pressure on some scarce domestic resources if they are complemented by the products of outward FDI. For instance, it is argued that India can benefit from outward FDI in the oil fields of sub-Saharan Africa and Central Asia. The outward FDI can also contribute to the promotion of exports.

FDI into India started increasing after the opening up of the economy, including relaxing of the restrictive policy towards FDI. It has risen substantially in recent years, from \$4.3 billion in 2003-4 to \$5.7 billion in 2005-6 and further to \$19.5 billion in 2006–7. FDI inflows into India originated mainly from Mauritius, the United States, and United Kingdom and had flowed into manufacturing, financial services, banking services, IT services, and construction (RBI, Macroeconomic and Monetary Development in 2006-7, 24 April 2007). Studies suggest that, overall macroeconomic growth, growth of domestic investment, revival of industrial growth, availability of skilled manpower, and FDI global flows contributed to the growth of FDI flows into India. It is pertinent to note that the overall impact of FDI on investment and growth depends crucially on whether it crowds out or crowds in domestic investment, its positive externalities particularly in technology, management practices etc., and linkages with domestic industry. The East Asian experience suggests FDI inflows would have a positive impact on economic growth under a specific policy regime—which is situation specific. Given its strong private sector and entrepreneurial base, India can gain from FDI if it flows into capital and knowledge intensive sectors and foreign enterprises get vertically integrated with domestic labour intensive enterprises.

#### Risk Factors and Constraints

Certain risk factors, however, cannot be overlooked. There are apprehensions about the lopsided growth patterns and the underlying regional imbalances. During the 1990s and beyond, inter-state inequalities in per capita state domestic product (SDP) worsened and the laggard states, Bihar, Orissa, and Uttar Pradesh, recorded low growth rates (Figure 2.9). If these states continue to grow slow, the overall GDP growth rate will be pushed down. It is critical that adequate investments and credit are made available towards meeting the growth requirements of these backward states. Some of the backward states are also faced with severe governance problems. Concerns have also been raised over the state of higher education and the employability of the graduates who are joining the workforce. While the situation on the infrastructure front appears to be improving, there is substantial scope for further improvements. Energy sufficiency remains an area of concern and the adverse impact of rising crude oil prices on industry cannot be underplayed.

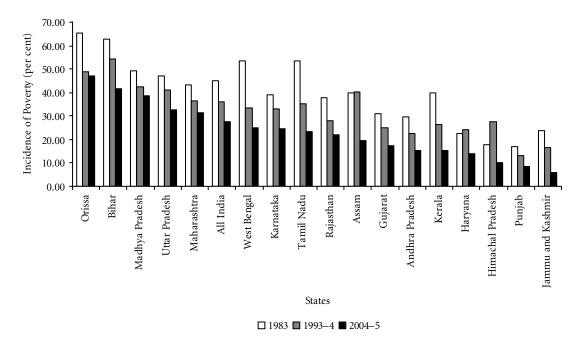
The declining share of consumption in aggregate demand caused by the slowdown in the growth of domestic household consumption would make effective demand susceptible to greater volatility since investment is prone to greater risks than consumption. This could push the economy towards a path of instability. Moreover, household consumer demand—driven by growth of income, urbanization and more importantly, tastes and changing lifestyles of the rich has been experiencing substantial diversification, calling for continuous adjustment by the producers. Such adjustments involve huge costs. Besides, the liberalization of trade is also likely to increase producers' risks. It is clear then that the domestic economy will face problems of effective demand associated with both demand deficiency as well as diversification of consumer demand. To some extent, demand deficiency can be overcome by adjusting investment and export components of the effective demand. It is imperative that India put in place proper instruments to fine-tune the effective demand. Increasing capital flows as well as better integration of India's financial markets with the global financial markets would make the choice of instruments extremely difficult over time. It is important to recognize that growth biased in favour of lower income groups would ensure stability since their consumption patterns are likely to be more stable. Such a growth process would also revive the stagnating per capita food consumption that co-exists with widespread undernutrition witnessed in recent years.

While India can sustain high GDP growth and improve its position in the world GDP ranking, the moot question is whether this growth would be inclusive. Inclusive growth is not only desirable from the equity point of view, but is also important for ensuring stable growth. For inclusive growth, it is not enough to achieve high growth; nor should it mean simply income transfers through a plethora of government schemes. The experience, by and large, is that countries which achieved rapid reduction in poverty are those which combined rapid growth with equity-promoting growth. In such a strategy, public policies influence both the distribution of income and the process of income generation. Neither a strategy which focuses primarily on growth nor one that concentrates on reducing inequality through redistribution of assets is likely to succeed in reducing poverty. Excessive focus on redistribution while ignoring growth may undermine the incentive system and also impose constraints on finding resources required for financing the targeted antipoverty programmes in the absence of growth. Therefore, growth needs to be rapid enough to significantly improve the condition of the poor. Also, for maximum impact, there should be an improvement in the relative position of the poor, and the share of poor in the incremental income should be greater than their share in the average.

It is widely held that acceleration of both growth and poverty reduction cannot be achieved without increasing growth rates in the laggard states such as Bihar, Madhya Pradesh, Orissa, and Uttar Pradesh. These states are also worse-off in terms of the non-income dimensions of poverty. What is even worse, the deprived social groups are concentrated in these states. Of particular importance for poverty reduction are policies that would increase both agricultural productivity and rural non-farm employment. Faster growth of the rural non-farm sector can provide jobs to the labour force released from agriculture. Public intervention should be holistic and tailored to the specific and heterogeneous needs of the poor.

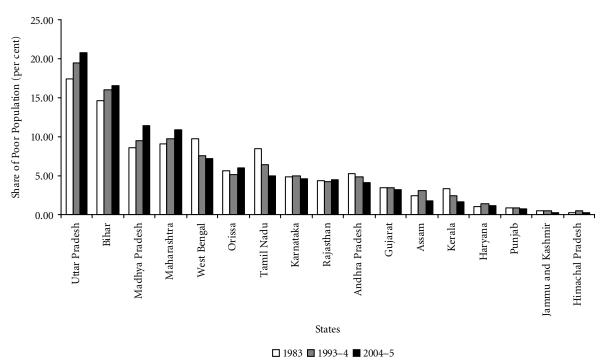
#### GROWTH AND WELL-BEING

#### Poverty Trends


The process of poverty reduction has been modest over the past two decades. The incidence of poverty as measured by the head count ratio (HCR) declined at 0.85 percentage point per annum during 1983-94 and at 0.7 percentage point per annum during 1994-2005. The decline in terms of annual compound growth rate works out to 2.3 per cent and 2.4 per cent, respectively. The decline in poverty has not been smooth. Poverty increased during the early years of the 1990s, before it started declining in the latter years. The absolute number of poor declined by 5.4 million between 1983 and 1993-4 and by 17.8 million between 1993–4 and 2004–5. The growth process could uplift a mere 23.2 million persons out of poverty over a span of two decades and has left an unacceptably high level of 303 million poor in 2004-5. The reduction in the absolute number of poor was slightly faster in the latter period because of lower population growth. A slow process of urbanization of poverty is also taking place. The number of rural poor declined by 31.4 million between 1983 and 2005 and, in contrast, the number of urban poor increased by 8.3 million. The worsening situation in urban areas was due to their high population growth attributed to natural growth as well as rural-urban migration.

#### Growth and Poverty Nexus

The strength of the relationship between growth and poverty is usually measured by the poverty elasticity with respect to per capita GDP. Our estimate of poverty elasticity is in the range of -0.86 to -0.77. The trickle-down effect of growth is rather weak. Moreover, preliminary analysis suggests further weakening of the relationship in the postreform period. This is supported by the fact that there has been no significant acceleration in the process of poverty reduction during 1980-2005 despite an acceleration in the growth of per capita GDP. Empirical studies reveal that lack of assets such as land, human capital, and skills constrain the poor from participating in, and benefiting from, growth. There is now a growing consensus that the poverty reduction strategy must also rely on direct measures since the present high growth, given its sectoral composition and degree of inclusiveness, may not eradicate poverty completely even by 2015. The National Rural Employment Guarantee (NREG) Scheme which came into force in 2006, and is being implemented in 330 districts across the country can make a difference to the lives of those who have thus far been excluded from the growth process (Panda, Chapter 2). Also relevant for poverty reduction are the programmes such as the self-employment programmes (Swarnajayanti Gram Swarozgar Yojana), rural housing for the houseless, and social assistance to the aged and disadvantaged.


#### What do Recent Poverty Studies Reveal?

A reading of the poverty situation in India reveals some disturbing facts. Issues relating to equity and growth and the rate of poverty reduction in rural and urban areas have been under the microscope. It is disquieting that there has been no acceleration in the pace of poverty reduction in the states where it matters the most. The poorer states of Bihar, Madhya Pradesh, Orissa, and Uttar Pradesh have not exhibited any significant increase in the rate of reduction of poverty over the two periods 1983-93 and 1993-2005 (Figure 1.1). Poverty has increasingly become concentrated in these states (Figure 1.2). While 46 per cent of India's poor lived in the states of Bihar, Madhya Pradesh, Orissa, and Uttar Pradesh in 1983, over 54 per cent lived in these states in 2004-5. Moreover, rural poverty has also become concentrated in these four states which accounted for 56 per cent of all-India rural poor in 1983 and 61 per cent in 2004-5. These trends indicate tendencies towards economic apartheid. It is politically risky to ignore this problem as it could potentially become a source of social conflict. North-western states (Punjab, Haryana, Himachal Pradesh, and Jammu and Kashmir) had made substantial progress in poverty reduction even by the early 1980s and their combined share in all-India poor was 2.7 per cent in 1983; this further declined to 2.2 per cent in 2004–5. These states have comparatively low rural-urban disparity in per capita expenditure (Panda, Chapter 2). Further, they had higher wage rate for workers engaged in agricultural operations and lower gender disparity in wage rates. Contrary to expectations, the highest per capita income state of Maharashtra had a disproportionately larger share in poverty which increased from 9 per cent in 1983 to 9.7 per cent in 1993-4 and further to 10.4 per cent in 2004-5. It had higher rural-urban disparity, low wage rate for workers engaged in agricultural operations, and high gender disparity in wage rates.



*Note:* Bihar, Madhya Pradesh, and Uttar Pradesh refer to the undivided states. *Source:* C. Ravi, Centre for Economic and Social Studies (CESS), personal communication.

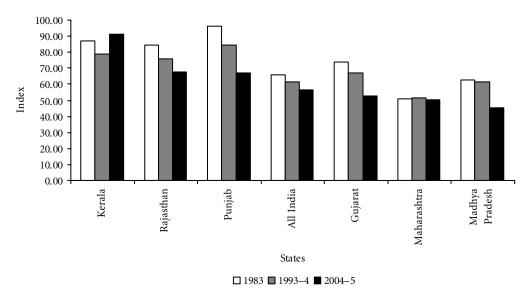
Figure 1.1: All-India and Statewise Incidence of Poverty (Rural + Urban)



*Note*: Bihar, Madhya Pradesh, and Uttar Pradesh refer to the undivided states. *Source*: C. Ravi, Centre for Economic and Social Studies (CESS), personal communication.

Figure 1.2: Percentage Share of States in All India Poor (Rural + Urban)

More than half of India's urban poor lived in the states of Maharashtra, Madhya Pradesh, Uttar Pradesh, and Tamil Nadu. The first three states also had larger shares of rural poverty. Larger population size accompanied by higher urbanization rates as well as higher incidence of urban poverty explains the large share of Maharashtra in all-India urban poor; and higher urbanization explains the large share of Tamil Nadu. Though urbanization rate was low, the large size of the urban population as well as high incidence of urban poverty explains the larger share of Uttar Pradesh and Madhya Pradesh in all-India urban poor.


There is no evidence for convergence in the incidence of poverty across the states of India. The states of Kerala, Tamil Nadu, and West Bengal achieved reduction in the incidence of poverty faster than for All India (Figure 1.1) and reduced their share of all-India poor (Figure 1.2) in both the periods. The states of Bihar, Madhya Pradesh, Maharashtra, and Uttar Pradesh experienced slower rate of poverty reduction and higher share of all-India poverty in both the periods. As expected, the coefficient of variation (CV) of poverty reveals widening inter-state inequalities in poverty reduction. The CV of estimates of rural poverty by state declined from 41 in 1983 to 36 in 1993–4. However, it increased to 54 in 2004-5. The CV of estimates of urban poverty by state increased from 32 per cent in 1983 to 46 per cent in 1993-4 and further to 57 per cent in 2004-5. The reduction in inter-state inequality in rural areas between 1983 and 1993 could be due to the better reach of agricultural growth during the 1980s. The widening inequalities in the later period could be attributed to the worsening inter-state income inequalities, growing rural-urban disparities in per capita expenditure (Figure 1.3), and worsening inequalities within rural as well as urban areas.

#### Chronic Poverty

Chronic poor (poor persons/households who have been poor for a long duration) were 14 per cent of all-India rural households and 11 per cent of all-India urban households; and comprised about half of the poor in both rural and urban areas (Radhakrishna et al. 2006, 2007) in the late 1990s. The incidence of rural [urban] chronic poverty was high in Orissa (28 [26] per cent), Uttar Pradesh (12 [18]), Madhya Pradesh (19 [25]), West Bengal (19 [6]), and Bihar (19 [19]) but low in Jammu and Kashmir (2.7 [5.6]) and Punjab (4.8 [3.2]).

The incidence of chronic poverty varied significantly across social and occupational groups, and is among social groups, the highest for scheduled castes (SCs) (21[19] per cent) in rural [urban] areas. In some of the states, chronic poverty was more of a social problem than an economic one. For example, in rural areas, the share of SCs in chronically poor households was as high as 84 per cent in Punjab and 66 per cent in Haryana and the corresponding percentages in urban areas were 61 and 58, respectively. This suggests that economic instruments may not be sufficient for eradicating poverty and their efficacy tends to reduce with poverty reduction in states with high incidence of poverty among social groups.

The incidence of chronic poverty was higher among rural casual labour households (19 per cent), urban casual labour households (24 per cent), and urban self-employed households (12 per cent). It is noteworthy that in rural



Note: Madhya Pradesh refers to the undivided state.

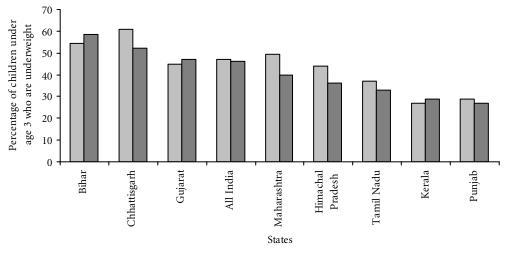
Source: C. Ravi, Centre for Economic and Social Studies (CESS), personal communication.

Figure 1.3: Index of Average Monthly Per Capita Expenditure (1993-4 prices) in the Rural Sector (Urban = 100)

areas, agricultural labour households accounted for 45 per cent of the chronic poor households; and in urban areas, chronic poverty was spread among self-employed and casual labour households with self-employed households accounting for 36 per cent urban chronic poor and casual labour accounting for 29 per cent.

It is essential to recognize that the poor are heterogeneous and the strategies for elimination of poverty should be specifically designed to address the chronic poor and other poor. Safety nets have to be designed to remove chronic poverty and to free this population from the multiple deprivations so as to enable them to become more responsive to development opportunities. These programmes must strengthen the livelihood base and gradually make them productive. In the case of chronic poor, external support should play a major part in the beginning.

# Comparison of India and China in terms of Poverty Reduction


India's record in poverty reduction pales before the achievements of China, which has been far more effective in reducing poverty. The incidence of poverty in China declined by a staggering 45 percentage points in two decades: from 53 per cent in 1981 to 8 per cent in 2001 (Ravallion and Chen 2004). In contrast, India could reduce poverty by a mere 17 percentage points in two decades. India fares badly even on non-income dimensions of poverty. For instance in the recent period, the incidence of malnutrition in India was four times more than that in China, the infant as well as underfive mortality rate in 2002 was double that in China and maternal mortality rate was ten-fold higher in India (UNDP 2003). Though China managed to reduce poverty rapidly, the progress has been uneven across its regions (Ravallion and Chen 2004). In China too, there are concerns about whether all sections of society have benefited equally from the growth process. Whether the poor benefit from economic growth or not, depends on the country's geographic spread and the sectoral composition of growth. In India a similar concern emerges with apprehensions over its lopsided growth marked by its lagging agricultural sector, worsening rural urban disparity, and growing regional imbalances. However, it is noteworthy that India fared better than China in achieving lower inequality. This is reflected in the higher income shares of the bottom groups. For instance, the share of the poorest 20 per cent in income (expenditure) was 8.1 per cent in India whereas it was only 5.9 per cent in China (UNDP 2003).

#### Non-income Poverty Dimensions

Data from the National Family Health Survey (NFHS-3) carried out in 2005–6 and District Level Household Survey

on Reproductive Health (RCH) carried out during 2002-4 show the worst forms of deprivation in India. As high as 46 per cent of children under 3 years of age (NFHS-3) and 49 per cent children under 6 years (RCH) suffered from malnutrition; and 79 per cent of children from anaemia (NFHS-3). These unfavourable child health outcomes could be, inter alia, attributable to failures in health care. For instance, 56 per cent of children were not fully immunized and 79 per cent did not receive Vitamin-A dose in the last 6 months prior to the survey (NFHS-3). The position was equally dismal for adolescent girls (10-19 years) and women-33 per cent of evermarried women suffered from chronic energy deficiency, 58 per cent suffered from anaemia, 59 per cent deliveries did not take place in institutional agencies (NFHS-3), and 76 per cent of adolescent girls suffered from severe and moderate anaemia (RCH). The access of households to basic amenities was equally poor. According to NFHS-3, 32 per cent of households did not have electricity, 58 per cent did not have piped drinking water, 55 per cent did not have toilet facility, and 59 per cent did not live in pucca houses. These data suggest that the incidence of nonincome poverty is much more alarming than the incidence of income poverty. Studies suggest that even if income poverty is eliminated in India, other forms of poverty may persist. NFHS-3 data also reveal rural-urban and intrahousehold inequalities in nutritional outcomes. For example, the incidence of chronic energy deficiency in rural (urban) women was 38.8 (19.8) per cent among evermarried women and 33.1 (17.5) per cent among men. The performance of India in terms of nutritional outcomes is worse than that of less developed African countries in recent years (UNDP 2003).

The national averages mask the huge variations in the incidence of child malnutrition across the states of India (Figure 1.4). In 2005–6, the incidence of child malnutrition varied among the major states from 27 per cent in Punjab and 29 per cent in Kerala and Jammu and Kashmir to 60 per cent in Madhya Pradesh (NFHS-3). It is to be noted that the nutritional status of children and adults in some of the middle-income states such as Kerala and Tamil Nadu was better than that in higher income states such as Maharashtra and Gujarat. This could be attributed to public interventions in the nutrition and health sectors. Factors such as public provision of safe drinking water and health care are also important determinants of nutritional wellbeing. Analysis of inter-household variations in child nutrition shows that the risk of malnutrition decreases with an improvement in household income, mother's nutritional status, her education, and access to health care during child delivery. The mother's present nutritional status, in turn, depends on her childhood nutritional status.



■ Nutritional Status (1998–9) ■ Nutritional Status (2005–6)

*Note:* Bihar excludes Jharkand. *Source:* NFHS-2 and NFHS-3.

Figure 1.4: Incidence of Malnutrition among Children in All India and Selected States (Rural + Urban)

Malnutrition is seriously retarding human development and is hampering further reduction in child mortality. Adults who survived malnutrition in their childhood are less healthy, physically less productive, and have poor intellectual abilities. The economic costs of the current scale of malnutrition are enormous. Improvements in incomes of the poor and supply of environmental and health services are the long-term solutions for the eradication of malnutrition. However, in the short run, direct nutrition intervention should be the priority.

Despite legislative orders passed in 2001, the coverage and progress of the Integrated Child Development Scheme (ICDS) has been tardy. In response to a petition on the 'nonimplementation of the directions' given by Supreme Court relating to ICDS, the Supreme Court in its order in December 2006 issued the following directive: 'Government of India shall sanction and operationalize a minimum of 14 lakh AWCs in a phased and even manner starting forthwith and ending December 2008. In doing so, the Central Government shall identify SC and ST hamlets/habitations for AWCs on a priority basis. The universalisation of the ICDS involves extending all ICDS services (supplementary nutrition, growth monitoring, nutrition and health education, immunization, referral and pre-school education) to every child under the age of 6, all pregnant women and lactating mothers and all adolescent girls'. The Central Government has recently sanctioned 173 ICDS projects, 107, 274 Anganwadi centres, and 25,961 mini-Anganwadi centres. The budgetary allocation for ICDS has been raised from Rs 4087 crore in 2006-7 to Rs 4761 crore in 2007-8. The impact of these

initiatives depends largely on reforming the delivery system. Hopefully, lessons can be drawn from the success of Kerala and Tamil Nadu in reducing the incidence of malnutrition.

#### Urban Slums

Projections show that over 534 million people, constituting 38 per cent of India's population are likely to be living in urban areas by 2026. Concomitant with higher levels of urbanization would be a growth in the slum population. Intra-urban differences (slums versus non-slums) in economic outcomes are expected to get even more stark in the coming years and may become a source of urban conflicts. If there is a pick up in the rate of migration it would swell the slum population further. It has been well documented that individuals living in the slums are worse-off in terms of nonincome poverty dimensions and do not have access to many public services. There is growing empirical evidence lately, that suggests huge disparities in health outcomes even within urban areas. It also shows substantial heterogeneity within both slums and non-slum urban areas. It is evident from the discussion in Chapter 6 that India has a long way to go before it meets the Millennium Development Goal of achieving 'a significant improvement' in the lives of slum dwellers.

#### **EMPLOYMENT**

#### Employment Growth

The provision of gainful employment for all in the labour force is essential for reducing poverty and achieving inclusive growth. Accelerating productive employment is important because wage income is the main source of income for the poor. It is well-recognized that employment generation by itself is not enough to lift people out of poverty as poverty is widespread even among the employed. What is required is the growth of productive employment. Expansion of productive employment, employment security, and favourable working conditions are imperative for poverty reduction. According to the regional profile document of the South Asian Association for Regional Cooperation (SAARC), employment growth rate should be equal to labour force growth rate in the first instance and surpass it later (Bhalla 2007). The most favourable situation for India is one in which labour demand outpaces its supply and food supply outpaces its demand.

During the last two decades, employment expansion, more or less, kept pace with labour supply growth; both grew at 2 per cent per annum. Between 1983 and 1993-4, employment (by usual principal status) increased at 2.09 per cent per annum and labour force at 2.02 per cent per annum, and between 1993-4 and 2004-5, employment increased at 1.98 per cent per annum and labour force at 2.02 per cent per annum (GOI 2007a). However, because of cyclical behaviour, short-term growth rates deviated from the long-term growth rates. For example, employment (labour force) growth rate fell to 1.57 (1.60) per cent per annum from 1983 to 1999–2000, and then rose to 2.48 (2.54) per cent per annum from 1999–2000 to 2004–5. This raises a question about the validity of inferring long-term trends from short-period growth rates. However, many economists inferred the slowdown of employment growth by comparing the growth rates of the two periods, viz. 1987–8 to 1993– 4 and 1993-4 to 1999-2000. On the basis of a rigorous econometric analysis, Srinivasan (Chapter 4) shows that there was no such slowdown in employment growth and observes 'that the pronouncements on slowdown in employment growth since 1993-4 are based on inappropriate measurement and invalid employment elasticity analysis and that the long-term trends in usual status and current weekly status employment rates do not support the same'. However, it is a fact that employment growth did not accelerate in consonance with GDP growth. Srinivasan sees barriers to accelerating employment growth in labour laws and regulations and suggests a reform of labour laws. It is important to recognize that the real issue in the Indian context is whether the accelerated growth generated decent work. There is a need to differentiate between effort-intensive work, associated with drudgery and long hours, and decent work.

#### Quality Dimension of Employment

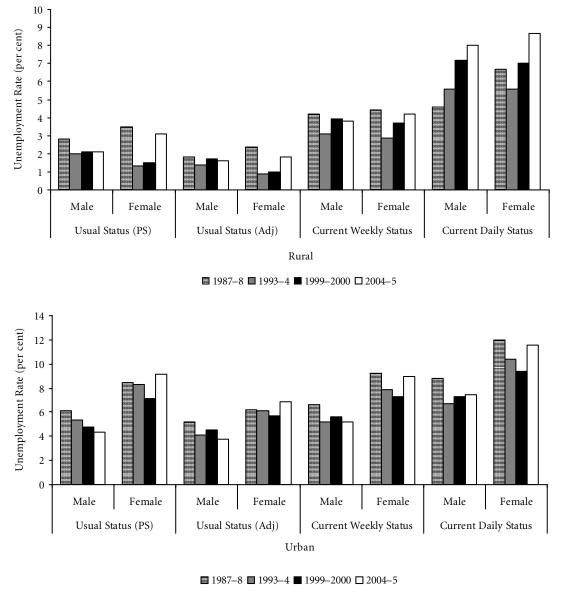
Out of the 60.7 million workers absorbed between 1999–2000 and 2004–5, 52.3 million (86 per cent) were absorbed in the informal economy and the rest in the organized

sector (NCEUS 2007). In fact, the entire additional employment in the formal sector was of informal type and did not have employment security or social security. In this context, two questions arise: What proportion of informal employment was decent? And has it been increasing? The available data show that in 1999–2000, about 65 per cent of the informal workers were in agriculture; 45 per cent of the non-agricultural employment was in rural areas and most of the informal workers did not have either employment and income security let alone health insurance (NCEUS 2006).

There has been increasing casualization of the labour market without a safety net, increasing feminization of agricultural labour with low wages, persistence of child labour (about 12.6 million in 2001), and increasing flow of interstate distress rural migrant workers (for example, every year 200,000 workers migrate from Bihar for livelihood). It is pertinent to note that despite the ban on child labour, its incidence was high in hazardous activities. The conditions of the long distance distress migrants also was bad. They were engaged in work associated with drudgery and long hours. They were also subject to social hostilities. For example, it is reported that in the North-eastern Assam, militants recently killed nearly 90 Hindi-speaking migrants, mostly from Bihar, some of whom migrated decades earlier. However, migrants faced less hostility in prosperous Punjab during the green revolution period or in northern Ladakh where tourism had fuelled a construction boom. Clearly, social conflict would be lower in situations where migrant labourers do not compete with local labourers or in situations with severe local labour shortage.

#### Employment Structure and Status

Over the years, there has been a slow change in the composition of the workforce in rural India, with an increasing tendency to move out of the agriculture sector. The dependency of rural male (female) workers on agriculture declined from 81 (88) per cent in 1977–8 to 71 (86) in 1993–4, and further to 67 (83) per cent in 2004–5. Despite the decline, India continues to have a relatively large rural population dependent on agriculture and allied activities. In urban areas, there has been a slight increase in the share of industrial sector in the total urban workforce from 31.6 (28.5) per cent in 1993–4 to 33.5 (32.2) per cent in 2004–5. The share of the tertiary sector remained almost unchanged during the above-mentioned periods.


The employment status (self employment, regular salaried employment, and casual employment) has also been changing. In rural areas, while self-employment is on the decline, casual employment is on the rise for both males and females. In urban areas, for males, the relative sizes of self-employment and casual employment have been on the rise and that of regular salaried has been on the decline;

and in contrast, for females, regular and salaried employment has been on the rise and self-employment has been on the decline. In 2004–5, in rural areas, 58 (64) per cent male (female) usual status workers (principal plus subsidiary) were self-employed, 33 (33) were causal labour; and in urban areas, 45 (47) per cent were self-employed and 15 (17) per cent were casual labour (NSSO 2006). It is important to recognize that self-employed and casual workers who constitute more than 90 per cent of the rural work force and more than 60 per cent of the urban workforce are not covered by effective social security and are, therefore, likely to be exposed to the risks originating from various shocks.

What is worse, employment insecurity, particularly in rural areas, is on the rise. The National Employment Guarantee Scheme has the potential to reduce the risks associated with the labour market and thereby contribute to the protection of rural casual wage labour from transient poverty.

#### Unemployment

The unemployment situation has not improved, but among the four measures of unemployment, only current daily status (CDS) unemployment rate shows a worsening of the unemployment situation between 1993–4 and 2004–5 (Figure 1.5).



*Notes*: PS—primary status; adj—adjusted; for concepts of employment, see Srinivasan (Chapter 4). *Source*: NSS 2006.

Figure 1.5: Trends in Unemployment, 1987–8 to 2004–5

The CDS unemployment rate for rural males (females) increased from 5.6 (5.6) per cent in 1993–4 to 8 (8.7) per cent in 2004–5 and for urban males (females) from 6.7 (7.9) per cent in 1993–4 to 7.5 (11.6) per cent in 2004–5. Although the CDS unemployment rate indicates some worsening of unemployment in the post-reform period, its long-term trend does not reveal any worsening situation (Srinivasan, Chapter 4). It is important to note that when the employment rates follow a cyclical pattern, inferences about long-term trends based on two period comparisons would be misleading (Srinivasan, Chapter 4). Much of the debate on India's progress on the employment front is based on such two-period comparisons.

A high level of unemployment was evident in West Bengal, Kerala, and Tamil Nadu (NSSO reports). In urban areas, levels of unemployment were, in general, lower than those observed in rural areas. Kerala and Tamil Nadu reported relatively higher levels of urban unemployment. A better measure of underemployment (invisible) would be the percentage of currently employed persons seeking additional or alternative work. The percentage of usually employed persons seeking alternative/additional work was very significant in 1999–2000 (19.6 per cent for males and 14.3 per cent for females). The incidence of underemployment was widespread in both developed and backward states.

#### Wages

Recent studies on rural agricultural wage rates show that these continued to increase in the 1990s but at a reduced rate than in the 1980s (Himanshu 2005). However, nonagricultural wage rates increased at a faster rate in the 1990s (Himanshu 2005). There is a growing body of empirical evidence which suggests that an improvement in agricultural wages would reduce not only rural poverty but also urban poverty. Normally, the wage rate of the unskilled agricultural labour usually acts as a reservation wage for the rural non-agricultural worker and as well as for the urban unskilled informal worker. However, improvement in agricultural productivity is a prerequisite for wage improvement; otherwise wage increases cannot be sustained over time.

There are substantial inter-state variations in the wage rates (in rural labour households in agricultural operations), even within a state. In 1999–2000, the male worker wage rate varied from Rs 94.52 (Kerala) to Rs 26.31 (Chhattisgarh) among major states (Rural Labour Enquiry Report 1999–2000). For female workers, the range was Rs 73.98 (Punjab) to Rs 22.31 (Orissa). In general, wage rates as well as their growth rates were lower in the laggard states of Bihar, Madhya Pradesh, Orissa, and Uttar Pradesh. At the all-India level, the average wage rate for female casual workers was 60 per cent of the wage rate of male workers. Interstate differences were higher than gender differences.

#### Challenges for Employment Generation

The problem of low wage rates, particularly in laggard states, lack of employment opportunities in agriculture, increasing casualization of employment, gender disparities in wage rates, and high levels of underemployment among those employed, continue to remain formidable issues that need to be addressed. The declining employment opportunities in agriculture and slow employment growth in the organized sector suggest that the policy focus for the promotion of employment should be on the development of the unorganized sector including allied activities of agriculture. It is important to recognize the need for massive rural and peri-urban industrialization. Further, small enterprise clusters could emerge as hubs of economic activities. With necessary policy and infrastructure support, such clusters could emerge as engines of industrial growth in the peripheral economies. Simultaneously, efforts should be made to develop demand based skills. NCEUS recommended that 25 growth poles (cluster of clusters) be supported during the Eleventh Plan period. If implemented, this would facilitate labour-intensive industrialization, with strong forwardbackward linkages. However, the key tasks would remain to be capacity building and creation of effective support systems. It is useful to learn about the role of state and local institutions from some of the successful clusters in India such as the Tirupur Knitwear cluster. It would also be a challenge to provide social security cover to all the unorganized workers, many of whom are covered neither by any formal system of social security nor regulation of conditions of work (see NCEUS 2006).

#### **AGRARIAN CRISIS**

The disquieting trends in Indian agriculture that have persisted since the mid-1990s include: declining profitability of agriculture, increasing risks, degradation of natural resources, steep fall in technological innovations in agriculture, and collapsing agricultural extension. Agricultural growth has hardly been 2.2 per cent per annum, falling short of the targeted 4 per cent growth in the Tenth Five Year Plan. The crop sector has witnessed a marked decline in its growth rate. Livestock and horticultural crops which provided the lead during the first half of the 1990s have been experiencing deceleration in their growth since 1995-6. The slowdown in agricultural growth has been accompanied by a slowdown in agricultural credit and in agricultural investment (especially public investment)—the most powerful drivers of agricultural growth. Private investment in agriculture has been increasing but could not compensate for the fall in public investment. Growing evidence shows declining TFP in the 1990s. The large number of farmers' suicides reported in states such as Andhra Pradesh, Karnataka, Kerala, Maharashtra, and Punjab in recent years is symptomatic of the deep-rooted crisis in agriculture.

The Report of the Expert Group on Agricultural Indebtedness (GOI 2007b) has highlighted the twin dimensions of the current widespread agricultural crisis—an agricultural development crisis and an agrarian crisis. The root cause of the agricultural development crisis is the neglect of agriculture in designing development programmes and in effective implementation of agricultural programmes at the micro level. On the other hand, the agrarian crisis is characterized by the high dependence of rural population on farm incomes which are too meagre to withstand weather and price shocks and are also vulnerable to technological risks. In addition to low growth and declining productivity, the failure of growth in creating adequate productive employment outside agriculture underlines the agrarian crisis.

There is a consensus that growth of irrigation, a major driver of growth, has slowed down owing to a decline in public investment in irrigation infrastructure. Despite the fact that 40 per cent of the irrigation potential (140 million hectares) remains untapped, only 0.8 million hectares per annum was added during the 1980s and 1990s. This is in contrast to 2.5 million hectares annual additions to irrigated area during the Green Revolution. Over 400 major and medium projects were in the pipeline at various stages during the Ninth Plan Period and the situation might not have changed since then. Poorer states such as Bihar, Madhya Pradesh, Orissa and Uttar Pradesh account for more than half of the unfinished major and medium irrigation projects. Poor maintenance of the existing system of surface irrigation has contributed to low efficiency in water use (water use efficiency was less than 40 per cent, much below the attainable 65 per cent). The situation with respect to minor irrigation has been relatively better but there is overexploitation of ground water by rich farmers.

Public expenditure on agricultural research and extension was low at 0.49 per cent of GDP (on average developing countries spend 0.7 per cent and developed countries 2 to 3 per cent). It is important to recognize that the research requirements are high in view of substantial variations in agro-climatic conditions that warrant region-specific and crop-specific technologies, compatible with the endowments of the farm community. Needless to say, efforts in this direction are grossly inadequate. It is worrying that no technological innovations are in the offing which could make decisive impact on agricultural productivity, particularly in dry land agriculture. What is worse, in many states the agricultural extension system has virtually collapsed.

A major area of concern is the sluggish growth of institutional credit (Shetty, Chapter 8). Agriculture's share of about 10-11 per cent in the institutional credit was way below the stipulated target of 18 per cent. Half of the farmers had no access to institutional finance in 2003; institutional agencies accounted for 57.7 per cent of the outstanding loan amount of farmers, followed by money lenders (25.7 per cent) and traders (5.2 per cent). These data suggest heavy dependence of farmers on informal sources of finance. The picture is even worse for small and marginal farmers. Interest rates charged by informal sources are not affordable given the low productivity levels in agriculture. For instance, about 40 per cent of the cash debt from informal sources outstanding in 2003 was at interest rates of 30 per cent or more. In contrast, the interest rate was less than 20 per cent for 99 per cent of the debt from institutional sources. A field survey conducted in Punjab showed that farmers incurred 3 to 8 per cent of the loan amount over and above the interest to obtain institutional credit (GOI 2007b). Inadequacy of formal credit, enormous delays in obtaining credit from scheduled commercial banks (SCBs), and cumbersome documentation have compelled farmers to avail of high-cost credit from informal sources. Recent decisions to reduce the interest rate to 7 per cent and double the amount of rural credit are welcome steps. However, given the weaknesses of the formal credit institutions, these measures may not yield the expected outcomes.

The agricultural deceleration has had differential impact on small holders with limited resources and the relatively better-off large farmers, as also between rain-fed and irrigated regions. Reddy and Mishra (Chapter 3) pose a pointed question, viz. whether small-marginal farming is sustainable without substantial public infrastructure support and comprehensive social security including health, education, employment, and old age support? The Indian farmer is under severe stress. Water is becoming a scarce resource and the absence of adequate irrigation facilities has meant that farmers in dry regions incur large debts by investing in unstable groundwater resources. There has been a steep increase in the costs of farming across the country. Faced with multiple risks, a number of farmers have committed suicide under duress. Reddy and Mishra point out that this is probably due to the sequencing of the reform process. The twin issues of cost of cultivation and depletion of water resources need to be tackled on a war footing.

#### HIGHER EDUCATION

India's achievements in higher education in the postindependence period have been significant in view of the slender base from which it started (Hashim, Chapter 5). From 1950-1 to 2004-5, the number of universities increased from 28 to 348, and colleges from 578 to 17,625. Enrolment in higher education increased from 0.17 million to 10.48 million. By March 2006, India had 20 central universities, 217 state universities, 102 deemed universities,

10 private universities, 13 institutions of national importance, and 5 universities established under the State Legislature Act. The quantum jump in numbers, however, hides the great disparities that exist between institutions, between states and regions, and among central and state universities.

India has one of the largest stock of trained and educated manpower, equipped with considerable scientific and technical capabilities. And yet the country's capacity and capabilities are inadequate to meet the growing demand that is being made on our educated youths and managers in various disciplines of higher education. The pace of expansion of higher education has been very slow and the quality by and large uneven across the spectrum. For instance, hardly a third of universities and 10 per cent of colleges meet the minimum standards of quality of educational services. To a great degree, this has been the consequence of the state having a considerably diminished role in higher education (Hashim, Chapter 5). One important result is the lack of reach and equity in higher education even as the demand on the system is huge; excellence cannot be evenly distributed when the base is slender (Hashim, Chapter 5).

Severe capacity constraints have emerged, particularly in those segments of higher education where demand has increased sharply with the changing competitive edge of the Indian economy. This has resulted in huge premium on specific skills and, consequently, there has been a great competitive rush to cash in on the opportunities offered. In the face of niggardly allocation of public resources in the last two decades, the spread of education in these spheres has been inadequate and iniquitous. The entry of the private sector has met a part of this supply constraint but with undesirable consequences on several fronts in terms of both excellence and equity. It is not surprising that private players are cashing in on this market with products that are not altogether high class. India's main competitors are investing heavily in higher education as we seem to pedal the excuse of resource crunch in meeting the required budget. This being the state of affairs, the quality of students' training has been disappointing. The quality of training can be gauged from the following example. Out of six lakh engineering graduates produced by the engineering colleges, a mere one lakh get hired through on-campus interviews, another 2.5 lakh graduates manage to get jobs after some waiting period, and the rest are considered unemployable and end up in odd jobs. Most of the IT companies are compelled to recruit diploma holders and graduates and subject them to rigourous training by incurring huge costs. There is also an associated problem of quality teachers as the market is driving out some of the best talent into industry and to greener pastures abroad. This will accentuate the problem for the next generation of students.

India is committed to allocating 6 per cent of GNP to education since the mid-1960s when the Education Commission went into the issue and the target has been accepted by all subsequent policy pronouncements. This target is far from achieved throughout the period. Expectedly, the largest share goes to elementary (primary and secondary) segment and an inadequate part is left for higher and technical education. The combined share of higher and technical education is not only inadequate but has also declined since the 1990s—as a share of both GNP and public expenditure. In 1990–1, they together accounted for 0.61 per cent of the GNP but declined to about 0.46 per cent in 2004–5. As share of the budget, it declined in the same period from 2.09 per cent to 1.60 per cent. It fluctuated around the declining trends in the intervening period.

In the age group of 18–24 years for higher education, the gross enrolment ratio in 2003–4 was 9.2 per cent, up from 1.0 per cent in 1950–1. The enrolment rate, however, needs to be raised to at least 15 per cent to meet the target of a competitive economy in the global context. This requires a substantial step up of resources, for which serious concerns have been expressed, and ways and means need to be explored to garner the requisite resources. At the same time, meeting the challenge of equity, access, and competitive efficiency is also an issue of importance.

Chapter 5 argues that it is imperative to bridge the supply-demand gap in high quality manpower if India is to retain its competitive edge in the world market. The chapter suggests some measures to enhance quality of education and also addresses equity concerns. Expansion of higher education not only has intrinsic value of its own, it also plays a significant role in facilitating economic development and bringing about social change. It is important to note that the neglect of this sector acts as a drag on India's development in the context of its opening up to globalizing forces.

#### EMERGING ISSUES IN THE FINANCIAL SYSTEM

#### Monetary and Fiscal Situation

The avowed objective of the monetary policy is to maintain price stability and promote economic growth. However, the serious task of exchange rate management in the wake of large, two-way capital flows continues to complicate the conduct of monetary policy. The Reserve Bank of India has been saddled with the problems of rising real estate prices, increasing inflationary expectations, and appreciating rupee. There are apprehensions in certain quarters over the current level of asset prices. The quantum of funds garnered by companies via primary issues has increased, buoyed by the sentiments in the stock markets. A sum of Rs 17,721 crore was raised by primary issues during the three years 2000–1 to 2002–3. In the next three years, a whopping

sum of Rs 78,910 crore was raised and the figure for April-January 2006–7 was Rs 28,143 crore. While stock prices have remained buoyant, real estate prices have moved northward. With inflation rearing its head and concerned by the rising asset prices, RBI took indirect measures following which interest rates hardened. To moderate the effect of the large capital inflows on the exchange rate, the RBI has been accumulating foreign exchange reserves, which crossed the level of \$ 230 billion. This has resulted in rapid growth of money supply. The measures taken by the RBI to moderate the growth of money supply tended to increase the interest rates. Contrary to expectations, the rising interest rate has so far had no effect on industrial activities (IEG 2007).

The government has been making concerted efforts to reduce the fiscal and revenue deficits by increasing revenues as well as improving the allocative and technical efficiencies of public expenditure. However, the burden of fiscal adjustment during the 1990s mostly fell on capital outlays. This distorted the structure of government expenditure and there was a shift away from public investment. The wide fiscal deficit and skewed government expenditure towards salaries, pensions, and interest payments provided limited scope for the government to allocate resources towards investment expenditure for physical and social infrastructure. Against this backdrop, the government enacted the Fiscal Responsibility and Budget Management Act in July 2004. This act requires that the Central Government's fiscal deficit be not more than 3 per cent of GDP by 2008–9 and that the Central Government should have a zero revenue deficit by 2008-9. Responding to the debt relief package offered in return for fiscal correction, 24 of the 29 states enacted fiscal responsibility acts which require reducing fiscal deficit to 3 per cent of GSDP and revenue deficit to zero by 2008-9.

There has been a reduction in the combined revenue and fiscal deficits of the Central and state governments in recent years, consistent with legislative commitments on fiscal reforms over the medium run. The fall in revenue deficit from 6.6 per cent of GDP in 2000-1 to 3.1 per cent in 2005-6 is thus a significant change. It further declined to 2.1 per cent of GDP in 2006–7 (budgetary estimate). In the same period, the gross fiscal deficit declined from 9.4 per cent in 2000–1 to 7.4 per cent in 2005–6. It is estimated to be 6.3 per cent of GDP in 2006-7. Tax receipts of the Central and state governments (combined) increased from 13.8 per cent of GDP in 2001-2 to 16.6 per cent of GDP in 2005-6. In 2006-7, the tax receipts are estimated at 16.8 per cent. The reduction in the gross deficit has been attributed to the harmonized fiscal policies followed by the Central as well as the state governments. According to Economic Advisory Council to the Prime Minister (EAC), while fiscal deficit is on the course to achieve the target set for 2008–9, it would be difficult to phase out the revenue deficit. Improving the tax revenues by widening tax base and improving tax compliance and pruning wasteful expenditure would be needed not only for maintaining macroeconomic stability but also for providing resources for pro-poor public programmes. Concerns have been expressed about the growing off-budget liabilities of the Centre and states (EAC 2007). Quite a few state-level public sector undertakings (PSUs) have raised finances in the domestic market with an 'unconditional and irrevocable guarantee' from state governments. These borrowings are kept outside the purview of the budget and do not need the approval of the legislature. Consequently, the actual revenue and fiscal deficits are much higher than the official figures. Also, an increasing proportion of the growing budget deficit is being financed by funds from various public accounts, some of which are reserve funds in poverty reduction schemes. State governments have created special purpose vehicles (SPVs) in recent years. Debt charges—interest and principal—of these SPVs are not from the state government budgets, but they are actually part of government borrowings.

# Trade and Balance of Payment (BOP)

The Indian financial system has come a long way since the onset of the reform process. The reforms have had a far-reaching impact on the domestic financial system and BOP management. The globalization of capital markets has been faster than that of commodity markets. This is manifested in substantial increase in FDI and non-FDI capital inflows. Capital flows have emerged as a major determinant of money supply and domestic inflation is being influenced more by global supply-demand imbalances than domestic ones. There is a belief that India has benefited more from globalization of capital markets than the globalization of commodity markets.

The critical question is whether India has become resilient to domestic and external shocks. On the external front, in 2005-6, the current account deficit was at a manageable level of 1.1 per cent of GDP. India's exports stood at \$44.56 billion in 2000-1 and had increased to \$102.72 billion by 2005–6. In 2006–7, exports grew at 36.3 per cent, up from 23.4 per cent in the previous year. The days of the foreign exchange crisis seem to be a distant memory as foreign exchange reserves have crossed \$230 billion.

# Exchange Rate

Goyal (Chapter 7) reviews the behaviour of the Indian exchange rate and its interactions with the macroeconomic cycle over the past few years. The chapter examines the extent to which exchange rate policy has been able to contribute to lowering the probability of currency and banking crises, ensuring sustainable internal and external balance, and containing inflation. The chapter makes the case for limited volatility in exchange rates that improves the structure of incentives, thus contributing to four objectives. First, external balance: a real exchange rate that follows its trend competitive value can stimulate the real sector, so that eventual current account surpluses follow initial deficits. Steady progress on the road to full convertibility can also contribute to absorbing excess foreign exchange reserves. It requires reduction of instability of markets along with releasing their strengths. As controls disappear, incentive structures have to be in place to induce responsible behaviour to ensure that both policy and individual responses do not amplify shocks. Second, smoother and more counter-cyclical interest rates can stimulate activity. Higher activity allows more inflows to be absorbed. Third, an appreciation is an antidote to price shocks coming from food, oil, and other intermediate inputs—typical temporary supply shocks faced by an economy. These affect aggregate inflation through the wageprice process. For example, whatever the underlying trend, a steeper short-term appreciation can counter the supply shock, contributing to control of inflation, thus allowing interest rates to be tuned to the macroeconomic output cycle. Fourth, limited two-way movement of the exchange rate creates incentives to hedge, reduces noise trader entry, and contributes to the deepening of forex markets.

The impossible trinity implies a loss of autonomy in monetary policy-making in a more open economy. But there are a number of deviations from the simple case, some of which are valid for the Indian economy. In the context of the political economy, the structural wage-price processes, and the degree of backward and forward looking behaviour, monetary policy can have considerable impact. Using structure, combined with openness, can increase the degree of freedom and impact of monetary policy. India's labour market structure implies an elastic aggregate supply curve, but one which is subject to frequent shocks. One such shock is a rise in food prices, which triggers off a rise in wages. Goyal feels that more openness can contribute to stabilizing food prices; so can changes in the nominal exchange rate, thus giving the Central Bank more weapons to fight inflation, as well as maintain demand. Policy transparency as in an inflation targeting regime gives sufficient discretion to allow flexible response to market signals; but the transparent constraints on the discretion may be sufficient to prevent inflation expectations from setting in, even without monetary tightening.

# Banking Sector—Non-performing Assets

Growing competition from foreign banks and private sector banks has meant that the market share of public sector

banks as measured by their share of total assets declined from 84.4 per cent in 1995–6 to 72.3 per cent by 2005–6. The effect of competition is also captured in the decline in interest spread from 3.13 to 2.78 per cent during this period. The next phase of banking reforms will see Indian banks with foreign operations complying with the Basel II norms (by March 2008).

An important development in the last the decade relates to the decline of non performing assets (NPAs) of all SCBs from 15.7 per cent of gross advances in 1995–6 to 3.3 per cent in 2005–6. A similar decline was evident in NPAs as a percentage of total assets. Even though Indian banking has done reasonably well in controlling NPAs, there is little room for complacency. Low incidence of NPAs is a crucial precondition for ensuring financial stability in any economy.

Chaudhuri and Sensarma (Chapter 9) provide a comprehensive review of the problem of NPAs in Indian banking. The authors assess the magnitude of the problem in India by presenting the prudential norms with respect to classifying assets and NPAs. They also review the policy responses that have been implemented to address the problem. The authors identify the financial, microeconomic, and macroeconomic determinants of the level of NPAs of banks. They find that the impact of priority sector lending on NPA levels is ambiguous. They also show that setting up of debt recovery tribunals, implementing the Corporate Debt Restructuring and passing of the Securitization and Reconstruction of Financial Assets and Enforcement of Security Interest (SARFAESI) Act have resulted in lowering NPAs in Indian banking.

# Bank Credit Delivery

The SCBs' credit flow to agriculture, small-scale industries, and other small borrowers was sluggish in the 1990s and thereafter till 2003. This is reflected in the declining shares of bank credit for agriculture, small-scale industries, and small borrowal accounts in total bank credit. More significantly, drastic reduction has taken place in the number of borrowal accounts for all these informal sector categories. Also, there has been no expansion of SCB branches in rural areas.

Shetty (Chapter 8) shows the worsening of inter-regional disparities and disparities within states in the credit from SCBs including regional rural banks, which were getting corrected in the post-nationalization period but deteriorated in the 1990s. For instance, in the 1990s there were just about 20–8 out of 401–78 districts which had credit–deposit ratios of less than 20 per cent but in March 2000, the number of such districts had risen to 105 out of 565 districts. Lately, the role of co-operatives in farm credit has been on the decline. Their share of total farm credit has steadily declined from about 40 per cent in 1999–2000 to

24 per cent in 2005–6. As a result, the traditional role of cooperatives in providing term credit suffered considerably.

Concerned at the glaring agrarian crisis and crisis in the status of non-farm informal sectors, the authorities have taken a series of measures to mitigate the situation. Arrangements for the revitalization of the co-operative credit system were put into place. RRBs are being consolidated. To supplement the branch banking infrastructure, the concept of 'agency banking' has been introduced, with two models, namely, 'business facilitator' model and 'business correspondent' model, being commended to banks for adoption. With greater focus on the micro-finance system, the self-help group (SHG)-bank linkage programme is proposed to be expanded. Apart from thus strengthening the institutional structure, the government has adopted the policy of doubling of bank credit to agriculture in three years and for small and medium enterprises in five years. As a measure of 'financial inclusion', the issuance of a general credit card (GCC) has been adopted for bank customers in rural and semi-urban areas. A 7 per cent rate of interest has been prescribed for crop loans as a short-term measure.

Recent data show substantial increase in the flow of credit to agriculture (since 2002). However, the growing proportion of the credit was in favour of large-size loans. Shetty argues that the system of 'agency banking' can only supplement the branch network. Further spread of bank branches is necessary along with adequate qualified personnel. While micro-finance is extremely useful for meeting the credit needs of poor households, it cannot fully meet the credit needs of the extremely large number of small enterprises.

# INDIA IN A GLOBALIZING WORLD

# Asian Economic Integration

There is a growing feeling that India should expand its trade with other Asian countries. It is possible that outward FDI could lead trade patterns in the future. An Asian Development Bank study concluded that Asian economic integration could be the main stimulus for future growth in the region (see Chapter 2). The study notes that Asian Free Trade Agreement (AFTA), with steady improvements in trade facilitation, would help regional income growth to a larger extent than global free trade.

# India—China

There is considerable interest in the engagement of India and China with the rest of the world, apart from India-China trade. Veeramani (Chapter 10) analyses the emerging patterns of comparative advantage in India and China in a comparative perspective. He finds that the comparative advantage of both the countries lies primarily in unskilled labour-intensive goods. At the same time, a gradual improvement of comparative advantage in human capital and technology-intensive goods is being seen in both the countries. India's share in world exports is much lower than that of China even in those products where we have a comparative advantage. China's exports and comparative advantage had undergone a greater degree of structural change over the years than India's. The findings indicate that China's gain of market share (or comparative advantage) in a given product does not necessarily mean India's loss of market share (or comparative advantage) in the same product and vice versa. The two countries have been expanding their exports by specializing in different product lines within each of the product categories. Overall, Veeramani's findings indicate the growing significance of intra-industry specialization in both the countries. The resource reallocation process under trade liberalization is not causing a polarization wherein certain industries are forced to vanish while certain other industries gain prominence. In a liberalized environment, domestic industries and firms are able to survive and compete through specialization in narrow product lines. The apprehension that import liberalization would lead to a large-scale demise of domestic industries (the fear of de-industrialization) is unwarranted. The chapter shows that certain bottlenecks (such as poor physical infrastructure) and policy-induced rigidities in the factor markets (such as those in the organized labour market) stand in the way of the resource reallocation process as well as rapid export growth in India.

# Textile Industry in the International Market

India and China would be competing in the textile market following the phasing out of the Multi Fibre Arrangement (MFA). Narayanan (Chapter 11) gives an overview of the current state of, and recent developments in, the Indian textile sector, with an emphasis on international trade, employment, performance of the supply and demand sides, with a developmental perspective. Though Indian textile and apparel exports rose during the last stage of the gradual phasing out of MFA quotas, the increase has not been sustained after 2004-5. In fact, the export shares of all textile products in total exports have been falling since 2000-1 and those of apparel exports are on the decline after 1999–2000. Given that the development of emerging economies in the past such as newly industrialized countries in South East Asia and Japan was heavily dependent on exports from labourintensive sectors such as textiles and apparel, this is a worrisome trend. The organized apparel sector has performed quite well in terms of employment in recent years, showing a recovery from the decline in the past. The same is not true in the case of the textile sector, barring some signs of recovery. Promotion of huge investment requires not only good credit disbursement schemes, but also ensuring awareness about these among the entrepreneurs. In the unorganized textile sector, urban and larger enterprises have been performing better than rural and smaller ones. Policies are required to facilitate equity in the performance of unorganized textile firms. There is also a domestic demand constraint in Indian textile sector. Since the own-price demand elasticities of synthetic fibres are higher than those of cotton, and cross-price demand elasticities are negligible, a tariff cut in synthetics may help in removing this demand constraint.

#### Globalization and the Labour Market

There is increasing interest in the impact of globalization on domestic labour markets. Ramaswamy (Chapter 12) discusses the issue of globalization and employment in India with a focus on labour regulations. Three major reasons for anxiety are: the loss of good jobs in industries that are losing competitiveness, technological change biased against unskilled workers, and the informalization of workforce. In the Indian context, formal sector jobs in the non-agricultural sector have grown by just 0.6 per cent per annum in the 1990s. The IT sector is an exception. The Indian economy needs to create a large number of jobs for the unskilled workers. The high rate of job creation in the IT sector will be for college educated (skilled) workers with specific skills. In this situation, the pressure is on the manufacturing sector to absorb unskilled labour. Here the role of job security regulations (JSR) is emphasized as a constraint as it increases the expected cost of workforce adjustment. This reduces the incentive for firms to hire regular workers. Labour regulations have restricted the size expansion of factories to take advantage of economies of scale. Ramaswami provides evidence that there is a greater concentration of factories in the size group less than 100 employees across industry groups. According to the author, policy initiatives are required to create incentives for firms to absorb workers by simplifying procedural requirements for worker retrenchment in the future due to changes in market conditions. This calls for a constructive social dialogue between the three stakeholders, namely, the state, the corporate sector, and the workers.

# CONCLUDING OBSERVATIONS

Growth in the near future, given the business expectations, and the macroeconomic management, is likely to be driven by investment. Even if it is sustained through appropriate policy measures, the social consequences of higher growth assume much greater importance. In this context, the following questions are relevant. Will the higher growth result in an increase in the demand for labour and eventually tighten the labour market? Will the growth, per se, improve the level of living of the poorer groups and integrate them

with the development process? Answers to these questions would depend not merely on the quantum of growth but also on the structure of growth. While the performance of the Indian economy in achieving and sustaining higher growth is laudable, much is left to be desired in achieving equitable growth.

The stability of growth in the short run would depend on the efficacy of macroeconomic management in maintaining macroeconomic balances and in the long run on both the maintenance of macroeconomic balances and location of effective demand. Macroeconomic management has largely been successful in reversing the progressive worsening trends in macroeconomic balances during the pre-reform period. Moreover, it has been overcoming fresh problems that arise from opening up of the economy, particularly the integration of the domestic financial markets with the global financial markets. However, India has, so far, not been successful in locating the effective demand in a desirable manner. It is important to recognize that if effective demand is located away from wage income and into the non-wage income of the upper strata, it would be susceptible to greater risks of uncertainty since the consumption patterns of the upper strata change fast. The other components of effective demand viz., investment and exports are prone to a greater degree of volatility. Clearly, growth will be more stable if it is skewed in favour of the poor.

The trickle-down process of growth has been weak, since growth is not located in sectors where labour is concentrated (for example, agriculture) and in states where poverty is concentrated (for example, Bihar, Orissa, Madhya Pradesh, and Uttar Pradesh). There is now a greater appreciation of the fact that if inequality increases beyond a limit, social disarticulation would set in that may become a major barrier to higher growth. The present pattern of growth has the potential for widening inequality. The recent policy emphasis on inclusive growth is a step in the right direction. To achieve inclusive growth, it is imperative that agriculture is revived, the rural non-farm sector is accelerated, and the poor are integrated with the dynamic sectors of growth. These are challenging tasks but by no means formidable. The solutions are also well-known, however, problems lie in their implementation.

# References

Acharya, Shankar, Isher Ahluwalia, K.L. Krishna, and Ila Patnaik (2003), *Indian Economic Growth 1950–2000*, Indian Council for Research on International Economic Relations, New Delhi. Bhalla, Sheila (2007), 'Inclusive Growth? Focus on Employment' (mimeo), Institute of Human Development, New Delhi.

EAC (2007), *Economic Outlook for 2007–08*, Economic Advisory Council to the Prime Minister, July.

- EPWRF (Economic and Political Weekly Research Foundation) (2007), Monthly Economic Review, EPWRF, July.
- GOI (2007a), Economic Survey, 2006-07, Ministry of Finance, Government of India, New Delhi.
- (2007b), Report of the Expert Group on Agricultural Indebtedness, Ministry of Finance, Government of India, New Delhi, July.
- Himanshu (2005), 'Wages in Rural India: Sources, Trends and Comparability', The Indian Journal of Labour Economics, Vol. 48, No. 2, April-June.
- IEG (2007), Monthly Monitor, Institute of Economic Growth, New Delhi, July.
- International Institute for Population Sciences (2000), National Family Health Survey (NFHS) 2, 1998-9, Mumbai.
- (2006), District Level Household Survey on Reproductive Health Survey, 2002-4, Mumbai.
- (2007), National Family Health Survey (NFHS) 3, 2004– 5, Fact Sheets, Mumbai.
- Naik, S.D. (2006), 'Manufacturing Needs a Policy Crack Up', Business Line, Mumbai, 20 September.
- NCAER (2002), The Consuming Class, National Council for Applied Economic Research, New Delhi.
- NCEUS (2006), Report on Social Security for Unorganised Workers, National Commission for Enterprises in the Unorganized Sector, Government of India, May.
- (2007), Report on Conditions of Work and Promotion of Livelihood in the Unorganised Sector, NCEUS, July.

- National Manufacturing Competitive Council (2007), National Strategy for Manufacturing, New Delhi.
- NSSO (2006), Employment and Unemployment Situation in India, 2004-5, Report Nos 515 (61/10/1), Parts I and II, National Sample Survey Organization.
- Radhakrishna, R., K. Hanumantha Rao, C. Ravi, and B. Sambi Reddy (2006), 'Estimation and Determinants of Chronic Poverty in India, An Alternative Approach', Working Paper No. WP-2006-7, Indira Gandhi Institute of Development Research, Mumbai.
- (2007), 'Estimation and Determination of Chronic Poverty in India, An Alternative Approach', Working Paper No. 90, Chronic Poverty Research Centre, Manchester, United
- Ravallion, Martin and Shaohua Chen (2004), 'Learning from Success: Understanding China's (uneven) Progress against Poverty', Finance and Development, December.
- RBI (2007a), Annual Report, 2006-7, Reserve Bank of India, Mumbai.
- (2007b), Macroeconomic and Monetary Development, Reserve Bank of India, Mumbai, July.
- Rodrik, Dani and Arvind Subramanian (2004), 'Why India Can Grow at 7 per cent a Year or More: Projections and Reflections', IMF Working Paper, WP/04/118, International Monetary Fund, Washington D.C.
- UNDP (2003), Human Development Report 2003, United Nations Development Programme, New York.

# Macroeconomic Overview

Manoj Panda

#### INTRODUCTION

There have been several interesting developments in the Indian economy in recent years. Substantial market friendly reforms initiated in 1991 created a favourable economic environment for high rates of growth in the economy. Real gross domestic product (GDP) has grown between 7.4 and 9.4 per cent for four successive years in a row since 2003-4 and its growth in 2007-8 is likely to be along the same trajectory. This fascinating aggregate growth makes India currently the second highest growing economy in the world, next only to China. The pessimism that prevailed during the period 1997-2002 about the economy's growth rate being stuck at a moderate level of 5-6 per cent has been replaced by a new optimism for a higher growth. Exports have surpassed the target and foreign demand has contributed substantially to the GDP acceleration—reflecting greater integration of the Indian economy with the world economy. Despite the strong upward pressure in international oil prices, inflation has been moderate but for certain short periods and the balance of payment position has remained comfortable. New policy initiatives have been undertaken to introduce fiscal discipline, specially at the state level. Another major step has been the enactment of the Rural Employment Guarantee Act which, if implemented properly, could substantially benefit the poor. Yet, there is a disquieting feeling that the growth process has not benefited all sections of the people. In line with the tradition of viewing growth and social justice as the twin major objectives of economic policy formulation, the Approach Paper to the

Eleventh Plan advocates for a 'more inclusive' growth process to bridge the current 'divides' even as it targets for a faster growth rate of 9 per cent. It is against this backdrop that the chapter reviews the macroeconomic developments in India from a medium term perspective.

We start with a discussion of the GDP growth by broad sectors in the section 'National Income Growth' followed by other macroeconomic developments such as fiscal and trade scenes in the next section 'Other Macroeconomic Development'. The section 'Asian Economic Integration' discusses a specific policy agenda on Asian economic integration to promote trade and growth further. 'Poverty and Distribution' relates to recent developments in the poverty and distribution fronts. Finally, the last section makes concluding remarks.

#### NATIONAL INCOME GROWTH

Table 2.1 gives the average annual growth rates in national income for three broad sectors—agriculture, industry, and services—for various periods spanning over 1951–2006. The Indian economy grew at an average rate of 3.5 per cent per annum for about three decades till 1980. It witnessed a breakthrough around 1980 and moved onto a higher growth trajectory of above 5.5 per cent during 1980–2000. In per capita terms, this meant a jump from about 1.5 per cent to 3.5 per cent per annum. National income has accelerated further, resulting in per capita income growth of 5–6 per cent per annum since 2000. A sustained increase in the average level of living of about 4 per cent per annum for

| Table 2.1                               |
|-----------------------------------------|
| Average Annual Growth Rates in Real GDP |

|                | 1951–2 | 1981–2 | 1991–2 | 2000-1 | 2002-3  |
|----------------|--------|--------|--------|--------|---------|
|                | to     | to     | to     | to     | to      |
|                | 1980-1 | 1990-1 | 1999-  | 2006-7 | 2006-7  |
|                |        |        | 2000   |        | (Tenth  |
|                |        |        |        |        | Plan    |
|                |        |        |        |        | Period) |
| Agriculture    | 2.6    | 3.8    | 3.0    | 2.5    | 2.2     |
| Industry       | 5.3    | 7.0    | 5.7    | 7.8    | 9.1     |
| Service        | 4.6    | 6.7    | 7.9    | 8.5    | 9.4     |
| GDP (total)    | 3.6    | 5.6    | 5.8    | 6.9    | 7.6     |
| Per capita GDP | 1.4    | 3.4    | 3.6    | 5.2    | 6.0     |
|                |        |        |        |        |         |

*Note:* The last two columns relate to data with new 1999–2000 base. The sector 'agriculture' includes other primary sectors such as livestock, forestry, fishing, and mining and quarrying.

Source: National Account Statistics (various issues), Central Statistical Organization.

a quarter of a century marks a break from the previous historical trends of several centuries.

The acceleration of the economy during the decade of the 1980s was essentially triggered by an expansionary fiscal policy with limited reforms in the mid-1980s. Substantial control on trade and industrial activities continued; fiscal deficit was high and trade performance was weak. A balance of payment crisis occurred in 1991 in the wake of the Gulf war and rise in international oil price. The crisis led to the realization by policy makers of the need for wide ranging economic reforms which were initiated in 1991 and have continued at varied pace till now. One major component of the reform process related to trade liberalization through a

gradual abolition of import quotas, reduction of tariff rates to moderate levels, and market determined exchange rate. Another component related to the promotion of private enterprises through abolition of the system of industrial licencing, encouragement of foreign investment including majority share holding in several industries, interest rate deregulation, and disinvestment of government equity in several public sector enterprises.

During the post-reform period, the Indian economy has, in fact, witnessed two phases of strong average growth of 7.5 per cent during the triennium 1995–6 to 1997–8 and of 8.5 per cent more recently during 2003–4 to 2006–7 (as seen from Figure 2.1). The high and moderate growth phases are clearly evident from the 3-year moving average line in Figure 2.1. Note that both the downward and upward phases were of longer duration during the last decade. The average growth in the economy during the Tenth Five Year Plan (2002–3 to 2006–7) was 7.6 per cent, the highest growth recorded during any plan period, although it falls short of the target of 8 per cent. Per capita GDP has expanded by 6 per cent per annum during the Tenth Plan. Available evidence indicates that the high growth phase is likely to continue in 2007–8 as well.

More importantly, however, the average growth rate achieved during the post-reform era appears to be sustainable in the long term. The economy has developed sufficient resilience to short term fluctuations such as drought and international oil price rise. The post-reform period has witnessed macroeconomic stability—evident from low to moderate inflation, reasonably stable exchange rate, adequate foreign exchange reserves, and sufficient food grains

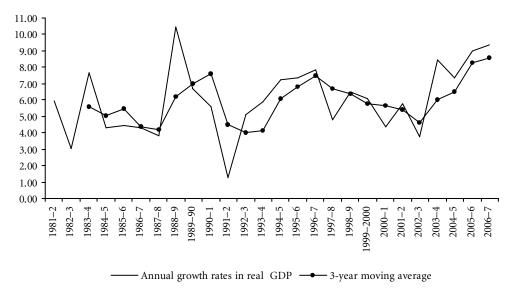



Figure 2.1: Real GDP Growth on Annual Basis and 3-year Moving Average Basis

<sup>&</sup>lt;sup>1</sup> While the balance of payment crisis was the immediate cause, the reform measures were influenced by several other factors including the success of the outward oriented East Asian economies, end of the cold war, and collapse of the Soviet Union.

stocks on a medium-term basis. Using a growth accounting framework, Rodrik and Subramanian (2004) estimate India's growth potential to be about 7 per cent over the next two decades. There is optimism about an even higher growth potential in the medium run as reflected in the growth target of 9 per cent per annum fixed by the Planning Commission for the 11th Five year Plan which began in April 2007.

It is being recognized in international circles that India is steadily progressing on the path to become a major economy in the world in aggregate income terms. The annual income generation in the country was valued at US\$ 793 billion in 2005. In per capita terms, its income is low at \$720 (in 2005) compared to the world average of \$6280 based on the market exchange rate. When adjusted for purchasing power parity (PPP) to reflect command over commodities, per capita income works out to \$PPP 3450. The level of living as reflected in purchasing power of an average Indian is roughly one-third of the world average and one-tenth of the developed high-income countries.

# Composition of GDP

The structure of the Indian economy has undergone substantial changes with a steady fall in the share of agriculture and rise in share of services sector. Agriculture accounted for about 55 per cent of GDP in 1950–1. Its share in GDP has fallen to about 20 per cent of GDP in 2006–7. The share of industry (including construction), which was only about 14 per cent in the early 1950s, rose to 27 per cent in 1990–1. Industry's share has virtually stagnated since then. The composition of GDP has been continuously moving in favour of services, which now accounts for about 55 per cent of GDP. The structural change away from agriculture is broadly

consistent with the international experience. The economy is no longer as much driven by agriculture and has been able to absorb shocks in rainfall more smoothly in recent decades. Indeed, annual growth rate in real GDP has exceeded 3.5 per cent in all the years since 1992–3. This new lower limit on annual growth rates reflects the dynamism and strength of the economy.

# Agriculture

The index number of agricultural production has increased by about 120 per cent since 1970–1 (Table 2.2). This increase in output can be attributed mostly to rise in yield per hectare rather than to expansion of area. Table 2.2 reveals that total area under principal crops has changed very little in recent decades, though area allocation within agriculture has changed from foodgrain crops in favour of nonfoodgrain crops. Foodgrain output growth in recent decades is almost entirely due to increase in yield per hectare. Area under non-foodgrain crops increased by about 50 per cent in 2005–6 over 1970–1 while the yield per hectare of these crops increased by 70 per cent over the same period.

The deceleration in agricultural production for both foodgrains and non-foodgrains crops since 1990 is shown in Figure 2.3. The deceleration is more evident for foodgrains. The relative shift in cropping pattern is largely driven by the changing demand pattern. Huge buffer stocks of cereals built up by the government—reaching above 60 million tonnes for several months in  $2002^2$ —points to the limited future consumption growth potential for cereals and the need for further agricultural diversification. Gross production of foodgrains has increased from 130 million tonnes in 1980–1 to 209 million tonnes in 2006–7. The implied

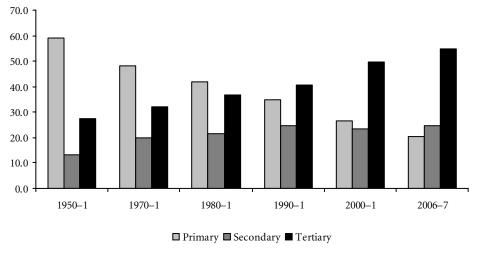



Figure 2.2: Composition of GDP by Major Sectors (per cent)

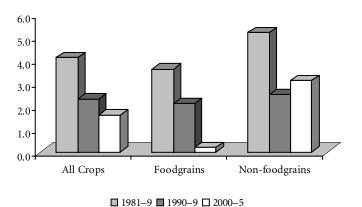
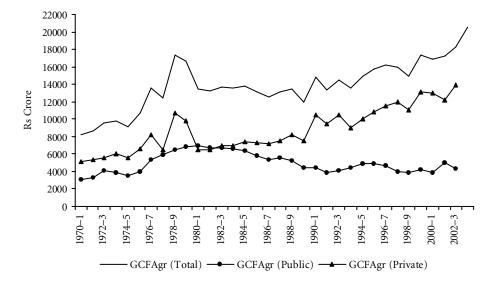

<sup>&</sup>lt;sup>2</sup> The agricultural year 2002–3 turned out to be a drought year and the peak level of foodgrains stock of 64.7 MT in June 2002 came down sharply to 32.8 MT in April 2003 due to lower procurement, higher offtake for relief operations, and some exports. Further depletion in stocks, particularly of wheat below the buffer stock norm, prompted the government to import 5.5 MT of wheat in 2006–7.

TABLE 2.2 Index Number of Agricultural Production, Area, and Yield

(1981-2=100)

|                 | 1970–1 | 1980-1 | 1990-1         | 2000-1      | 2002-3 | 2003-4 | 2004-5 | 2005-6 |
|-----------------|--------|--------|----------------|-------------|--------|--------|--------|--------|
|                 |        | A      | gricultural Pr | oduction    |        |        |        |        |
| Foodgrains      | 87.9   | 104.9  | 143.7          | 158.4       | 140.4  | 172.0  | 159.9  | 168.6  |
| Non-foodgrains  | 82.6   | 97.1   | 156.3          | 178.2       | 167.2  | 201.0  | 205.7  | 224.4  |
| All Commodities | 85.9   | 102.1  | 148.4          | 165.7       | 150.4  | 182.8  | 176.9  | 189.3  |
|                 |        | Are    | a Under Prin   | cipal Crops |        |        |        |        |
| Foodgrains      | 97.9   | 99.8   | 100.7          | 95.4        | 89.7   | 97.3   | 94.6   | 96.1   |
| Non-foodgrains  | 91.1   | 99.4   | 120            | 127         | 115.6  | 125.4  | 137.5  | 139.9  |
| All Commodities | 96.3   | 99.7   | 105.2          | 102.7       | 95.7   | 103.8  | 104.8  | 106.2  |
|                 |        | Yi     | eld Of Princi  | pal Crops   |        |        |        |        |
| Foodgrains      | 93.2   | 105.1  | 137.8          | 152.8       | 143.2  | 165.3  | 156.5  | 161.4  |
| Non-foodgrains  | 91.4   | 99.2   | 128            | 133.2       | 126.3  | 151.3  | 147.6  | 157.5  |
| All Commodities | 92.6   | 102.9  | 133.8          | 144.4       | 135.7  | 159.2  | 152.5  | 159.7  |


Source: Economic Survey, 2006-7, Ministry of Finance, Government of India.



**Figure 2.3:** Average Annual Growth Rates in Index Number of Agricultural Production

long-term growth rate of about the same as 1.8 per cent per year is just about the same as the population growth rate. Per capita net availability of foodgrains has been fluctuating around 450 grams per day. Given the very low income elasticity, domestic demand for foodgrains is likely to grow slowly in the future, mostly in response to population pressure. Growth potential in non-foodgrains sectors, on the other hand, is large and its realization would require stronger linkages with agro-processing sectors.

The fall in public investment in agriculture during the 1980s and subsequent near stagnation in the post-reform period has been a matter of concern (Figure 2.4). Chadha (2003) points out that the public sector accounted for 54 per cent of agricultural total gross capital formation in



Source: Based on NAS, Back Series 1950-1 to 1992-3 and NAS (2005).

Figure 2.4: Gross Capital Formation in Agriculture (at 1993–4 prices)

1980–1, but this share fell to about 30 per cent in 1990–1 and further to a quarter by the end of 1990s. He points out that this has led to the net irrigated area remaining stagnant at around 53-5 million hectares since mid-1990s. Agricultural public investment in the National Account Statistics (NAS) mostly covers expenditure on medium and major irrigation systems. Chand (2002) constructs a broad series of rural investment by extending it to include investment in rural roads, markets, storage, and rural electrification which are important for agricultural development. He finds that this broad series also indicates a declining trend. Figure 2.4 shows that total capital formation in agriculture has picked up in recent years primarily due to the private investment component. Despite this investment increase, agricultural growth has stagnated; this reflects rising capital intensity of agricultural production due to factors such as rising cost of land development and depletion of water table in areas dependent on ground water.

The Government provides a large fertilizer subsidy by way of meeting the difference between administered selling price and the cost of production. The same stood at about Rs 16000 crore in 2004–5—that is, about 3 per cent of agricultural GDP. Public irrigation is also highly subsidized and irrigation charges are not able to recover even the operating costs. There is a growing realization that the fall in agricultural public investment is partly due to a diversion of a growing volume of resources to input subsidies. Overall, the agricultural sector would benefit by a reallocation of public expenditure from input subsidies to public investment. In recent years, the Government has initiated measures to streamline and control subsidies.

Indian farmers have traditionally tried to supplement their crop income with earnings from livestock produce, which also safeguards them against large year-to-year fluctuations in crop income. India has become the largest producer of milk in the world in recent years and per capita availability of milk has increased from 128 grams per day in 1980–1 to 241 grams in 2005–6. Accounting for about a quarter of GDP in agriculture and allied sectors, livestock has recently emerged as the most important sub-sector within this broad category. The income generated in this sector gets more equitably distributed since livestock ownership is skewed in favour of small farmers in India. Further, women account for a majority of the workforce in livestock.

Given the large variability in climate and soil conditions in the country, India is well-suited for producing a wide range of high value and employment-intensive horticulture crops including floriculture. Commercial horticulture, targeting the exports markets with good profit opportunities, could attract educated entrepreneurs to agriculture and change the nature of agricultural operations. It is necessary to develop modern infrastructure such as cold storage for preservation, refrigerated transportation, grading, and quality control for these emerging sectors.

# Industry

Industrial deregulation and trade reforms introduced considerable changes in the overall environment and organizational structure in Indian industry. Competition has forced Indian firms to accord priority attention to improvements in product quality, reliability, and durability. Induction of foreign technology has expanded significantly through the equity-linked technology collaboration route.

Growth in the industrial sector remained sluggish for several years after 1997–8 to reach the bottom in 2001–2 with less than 3 per cent growth in the index number of industrial production. An upturn occurred in 2002–3 and the overall industrial growth has been fairly good in the range of 8–11 per cent since 2004–5 (Figure 2.5). The manufacturing sector has been the prime driver in this revival

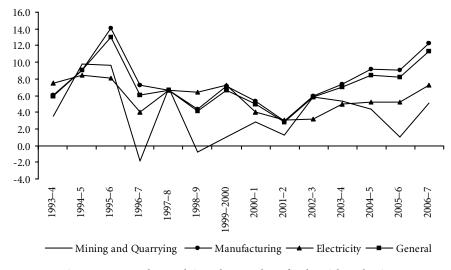



Figure 2.5: Annual Growth in Index Number of Industrial Production

process. Production in the mining and quarrying sector has decelerated since 2003–4. Growth of the electricity sector of about 5 per cent is a matter of concern since it is in the nature of a universal intermediate good. Its supply is not keeping pace with the growing demand, forcing power cuts in several parts of the country.

Industrial growth in recent years has spread over all usebased sectors (Table 2.3). The capital goods sector was a major contributor to the growth process during the 1980s. It saw the largest tariff reduction during the reforms and its growth reduced during the 1990s to about half of pre-reform growth, partly due to expansion of imports. Its recovery in recent years, to meet the strong investment demand, indicates its inherent strength to compete in an open environment. The fast growth of consumer durables is explained by several factors such as disposable income growth, access to a range of imported goods, and easy availability of credit. Although the average manufacturing growth during the post-reform period has remained somewhat lower than that during 1980s, the manufacturing sector has slowly but surely revealed, during the last decade, its strong ability to compete in both domestic and external markets in several spheres.

The construction sector has grown at 8.2 per cent per year during 2000–5, reflecting increased investment activity and priority assigned to road connectivity in public

investment in recent years. Accounting for 6.5 per cent of GDP, higher than average growth of this labour intensive sector, helps in better income distribution as well.

# Services

Figure 2.6 depicts the average growth rates for various components of the services sector during 2000–5. Most segments of the services sector have been growing at 6 per cent or more, led by communications and non-railway transport. Communication continues to be the fastest growing component within the services sector with an average growth rate of about 24 per cent per annum. Its contribution to GDP (at constant 1999–2000 prices) has more than doubled over six years (1999–2000 to 2004–5) from 1.6 to 3.5 per cent. As a result of falling prices, however, its share in GDP in nominal terms has increased very little from 1.6 to 1.8 per cent during the same period. Consumers have obviously benefited not only from high growth, but also from the steep price fall due to the removal of state monopoly and fast technological changes.

Trade, which is the largest segment in the services sector and accounts for one-seventh of GDP, has been showing strong performance with an average growth of 8 per cent. Similarly non-railway transport, real estate, and personal services have been growing above the overall growth rate of the economy and thus helping the services sector to increase

TABLE 2.3
Growth in Index Number of Industrial Production by Use-based Sectors

(per cent per annum)

| Year      | Basic<br>Goods | Capital<br>Goods | Intermediate<br>Goods | Consumer<br>Goods | Consumer<br>Durables | Consumer<br>Non-durables | General<br>Manufacturing |
|-----------|----------------|------------------|-----------------------|-------------------|----------------------|--------------------------|--------------------------|
| 1990–1    | 6.9            | 16.0             | 4.7                   | 6.8               | 10.7                 | 5.8                      | 8.9                      |
| 1991–2    | 6.5            | -8.5             | -2.1                  | 1.0               | -10.9                | 4.0                      | -0.8                     |
| 1992-3    | 2.6            | -0.1             | 5.4                   | 1.8               | -0.7                 | 2.4                      | 2.2                      |
| 1993-4    | 9.4            | -4.1             | 11.7                  | 4.0               | 16.1                 | 1.3                      | 6.1                      |
| 1994–5    | 5.5            | 24.8             | 3.7                   | 8.7               | 10.2                 | 8.4                      | 9.1                      |
| 1995–6    | 10.7           | 5.4              | 19.3                  | 12.8              | 25.8                 | 9.8                      | 14.1                     |
| 1996-7    | 3.0            | 11.4             | 8.1                   | 6.2               | 4.6                  | 6.6                      | 7.3                      |
| 1997-8    | 6.8            | 5.8              | 8.0                   | 5.5               | 7.8                  | 4.9                      | 6.6                      |
| 1998–9    | 1.7            | 12.6             | 6.1                   | 2.2               | 5.6                  | 1.1                      | 4.4                      |
| 1999-2000 | 5.5            | 6.9              | 8.8                   | 5.7               | 14.1                 | 3.2                      | 7.1                      |
| 2000-1    | 3.6            | 1.7              | 4.7                   | 8.0               | 14.6                 | 5.8                      | 5.3                      |
| 2001-2    | 2.7            | -3.4             | 1.6                   | 6.0               | 11.5                 | 4.1                      | 2.9                      |
| 2002-3    | 4.8            | 10.5             | 3.9                   | 7.1               | -6.3                 | 12.0                     | 6.0                      |
| 2003-4    | 5.5            | 13.6             | 6.4                   | 7.2               | 11.6                 | 5.8                      | 7.4                      |
| 2004-5    | 5.5            | 13.9             | 6.1                   | 11.7              | 14.3                 | 10.8                     | 9.2                      |
| 2005-6    | 6.7            | 15.7             | 2.5                   | 12.0              | 15.2                 | 11.0                     | 9.1                      |
| 2006–7    | 10.2           | 17.7             | 11.7                  | 10.0              | na                   | na                       | 12.3                     |
|           |                |                  | Ave                   | erages            |                      |                          |                          |
| 1982-90   | 7.5            | 12.0             | 6.2                   | 5.9               | 14.2                 | 4.5                      | 7.6                      |
| 1991–9    | 5.7            | 6.0              | 7.7                   | 5.3               | 8.1                  | 4.6                      | 6.2                      |
| 2000-6    | 5.6            | 10.0             | 5.3                   | 9.0               | 10.2                 | 8.3                      | 7.5                      |

Source: RBI, Annual Report (various issues).

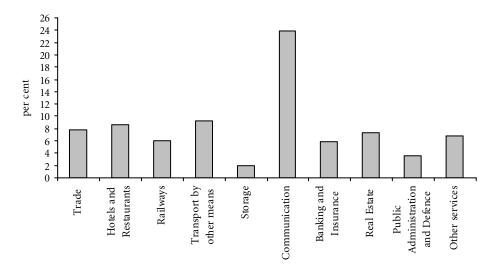



Figure 2.6: Average Annual Growth Rate of Service Sectors, 2000-5

its share in GDP. Railways and banking have maintained their share in GDP, posting a growth of about 6 per cent. Storage and public administration are two segments in the service sector where growth is relatively low. Downsizing of public administration reflects restructuring of government expenditure through reduction of excess staff and containing non-developmental expenditure. More attention, however, needs to be given to the storage sector in the future. A countrywide network of storage facilities would complement road connectivity in integrating the rural areas to the mainstream of economic activities.

Questions have been raised about the sustainability of service-led growth in India. The shift in composition of GDP away from agriculture has been a natural feature of the growth process. Historical experience of Europe and USA reveals that the falling share of agriculture was accompanied by a near-compensating shift in favour of industry and the service sector growth followed at a later stage of development. More recently, China and East Asia too had a similar experience with fast expansion of labour-intensive manufacturing activities. The Indian experience differs from this classical pattern since the share of industry has remained nearly unchanged for more than two decades (as noted earlier).

Virmani (2004) examines whether the share of services in Indian GDP is excessively high compared to other countries at similar stages of development. He undertakes a cross-country regression of the average share of services during 1992 to 2000 on the average per capita GDP (at constant PPP) and derives a normative value of the service share corresponding to different income levels. His finding is that India's actual share of service sector in GDP is almost normal in relation to the predicted value; it was just one percentage more during this period. Though historically

atypical, India's experience thus seems to be in line with the current international experience. If the current pattern is influenced by, inter alia, emerging international comparative advantage, India should take advantage of its complementary role.

# Sources of Growth

Expansion in the volume of production can take place either by increasing the quantum of inputs used in the production process or by increasing the productivity of the inputs used. Productivity growth is recognized as a major source of economic growth in various economies. Total output growth can be decomposed into contributions of changes in inputs and changes in total factor productivity (TFP). When the contribution of changes in various inputs to change in output is accounted for, the residual is attributed to change in TFP.

Dholakia (1992) and Rosengrant and Evenson (1995) show that TFP growth contributed to as much as 40-50 per cent of total growth in the agricultural sector in India during the Green Revolution era. For the organized manufacturing sector, on the other hand, Ahluwalia (1991) found that there was hardly any growth in TFP during 1959-86. Her sub-period analysis of TFP growth revealed a turnaround in the positive direction in the early 1980s. In a recent study, Sivasubramonian (2004) estimated the sources of economic growth in India using NAS data during 1950-1 to 1999-2000 for agriculture and nonagriculture (excluding dwelling). He found an increase in TFP for both agriculture and non-agriculture during the 1980s, but virtually no change between 1980s and 1990s, the pre- and post-reform decades. There has been a big fall in the utilization of labour input in both agriculture and non-agriculture during the 1990s.

The conventional growth accounting framework does not distinguish between technological progress (shift in production frontier) and technical efficiency (efficiency with which factors are used given the technical frontier). Recognizing importance of this distinction, Kalirajan et al. (2000) decomposed output growth into technical efficiency change, technological progress, and input growth. They found that input utilization was the dominant source of agricultural output growth during 1985-95 in all major states in India. While the contribution of technical efficiency to output growth continued to be in the range between 20–35 per cent during 1985-90 to 1991-5, contribution of technical progress was low at about 12-15 per cent during 1985-90 and fell further to 5-9 per cent for most states during 1991-5. The dynamism generated during the Green Revolution era has been lost.

# OTHER MACROECONOMIC DEVELOPMENTS<sup>3</sup>

# Savings and Investment

Gross domestic savings rate rose from 22.1 per cent of GDP in 1991-2 to 25.1 per cent in 1995-6. This trend got reversed during the second half of 1990s and the savings rate of the economy fell to 21.5 per cent in 1998-9, driven by the fall in savings from the public sector from 2 per cent of GDP in 1995-6 to -1 per cent in 1998-9. Aggregate savings rate has improved since then, despite the negative contribution of the public sector during 1998-9 to 2002-3. Improved contributions from both private and public sectors helped gross domestic savings rate to reach a record level of 32.4 per cent of GDP in 2005-6. Savings by the household sector, which accounts for the bulk of the total savings in India, had declined to 17 per cent of GDP in 1996-7.4 It showed a rising trend since then to reach a peak of 23.5 per cent in 2003–4 but fell to 22.3 per cent in 2005–6.5 Savings by the private corporate sector increased from less than 3 per cent of GDP prior to 1990-1 to 4.9 per cent in 1995–6. It exhibited a downward trend till 2001–2 but has improved since then and stood at 8.1 per cent in 2005-6. Fiscal discipline undertaken by Central and state governments as well as the tax buoyancy have led to a turnaround

in public sector savings from -2.0 per cent in 2001-2 to 2.0 per cent in 2005-6. Public sector savings behaviour would be crucial for financing the higher investment that is needed for the acceleration of the economy.

Along with the savings rate, gross domestic capital formation (GDCF), adjusted for errors and omissions, has also witnessed a substantial jump from 22.9 per cent in 2001-2 to 33.8 per cent in 2005-6. While both private and public sectors have contributed to the improvement in investment rate, it is the private sector that has played a major role in the revival process. The net capital outflows during 2001-2 to 2003-4 kept the investment rate lower than the savings rate. However, there was a turnaround in 2004-5 and investment has again exceeded savings, the gap being bridged by net capital inflows. Net capital inflows or outflows have ranged between 0.5 to 1.5 per cent of GDP.

India's savings and investment rates are still lower than those of East Asian economies. Achievement of a higher growth target of 8-9 per cent on a medium-term basis would depend upon the economy's ability to raise the savings and investment rates even further. Starting from a baseline scenario of 29.1 per cent investment rate for 7 per cent GDP growth, the Planning Commission estimates the required investment rate to be 32.0 and 35.1 per cent of GDP corresponding to 8 and 9 per cent growth targets, respectively.<sup>6</sup>

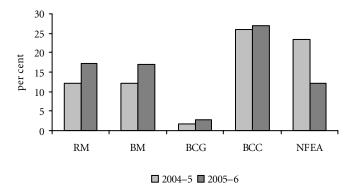
# Money and Credit

Both reserve money and broad money grew by about 17 per cent during 2005-6 compared to about 12 per cent in the previous year (Figure 2.7). This was mainly due to the Reserve Bank's liquidity injection operations in the face of redemption of India Millennium Deposits of about \$8 billion. The reserve money growth in 2005-6 was driven largely by net domestic assets while it was mostly driven by foreign exchange reserves in the previous year. Demand for bank credit remained relatively strong during 2005-6 due to expanding economic activities. This led to liquidation by commercial banks of some of their excess holdings of government securities, which reduced to 31 per cent of net demand and time liabilities by the end of 2005-6 from a

<sup>&</sup>lt;sup>3</sup> Behaviour of several macroeconomic variables has been discussed below by normalizing their size with respect to nominal GDP. The Central Statistical Organization has brought out the new national income series with 1999-2000 base for 1999-2000 onwards. GDP data prior to 1999-2000 are with 1993-4 base. Thus, the figures for post-1999-2000 period are not strictly comparable with those for the earlier period. Current price GDP for 1999-2000 in the new series is 1.1 per cent higher than that in the old series. As far as possible, we have relied on recent issues of Economic Survey and RBI Annual Reports for updating the data.

<sup>&</sup>lt;sup>4</sup> Savings and investment estimates for 'household' sector are obtained as residual and include those of private non-corporate enterprises and non-profit institutions (see, EPWRF 2004, p. 51).

<sup>&</sup>lt;sup>5</sup> Preliminary estimates of household financial savings for 2005–6, given in RBI Annual Report 2005–6, indicate a rise to 11.5 per cent of GDP from 10.1 per cent in the previous year.


<sup>&</sup>lt;sup>6</sup> Planning Commission (2006). Note that China's growth rate of 9.5 per cent during 1990–2003 has been accompanied by an investment rate of 40-2 per cent.

| Table 2.4                     |
|-------------------------------|
| Savings and Capital Formation |

| Year      |                     | Gross Domestic              | Savings          |                | Gross Capital Formation |               |      |  |
|-----------|---------------------|-----------------------------|------------------|----------------|-------------------------|---------------|------|--|
|           | Household<br>Sector | Private Corporate<br>Sector | Public<br>Sector | Total Savings  | Private Sector          | Public Sector | GDCF |  |
| 1990–1    | 19.3                | 2.7                         | 1.1              | 23.1           | 14.7                    | 9.4           | 26.3 |  |
| 1991-2    | 17.0                | 3.1                         | 2.0              | 22.1           | 13.1                    | 8.8           | 22.6 |  |
| 1992-3    | 17.5                | 2.7                         | 1.6              | 21.8           | 15.2                    | 8.6           | 23.6 |  |
| 1993-4    | 18.4                | 3.5                         | 0.6              | 22.5           | 13.0                    | 8.2           | 23.1 |  |
| 1994-5    | 19.7                | 3.5                         | 1.7              | 24.9           | 14.7                    | 8.7           | 26.0 |  |
| 1995–6    | 18.2                | 4.9                         | 2.0              | 25.1           | 18.9                    | 7.7           | 26.9 |  |
| 1996–7    | 17.0                | 4.5                         | 1.7              | 23.2           | 14.7                    | 7.0           | 24.5 |  |
| 1997-8    | 17.6                | 4.2                         | 1.3              | 23.1           | 16.0                    | 6.6           | 24.6 |  |
| 1998-9    | 18.8                | 3.7                         | -1.0             | 21.5           | 14.8                    | 6.6           | 22.6 |  |
| 1999–2000 | 20.9                | 4.4                         | -1.0             | 24.2           | 16.7                    | 6.9           | 25.3 |  |
|           |                     | N                           | ew Series with   | 1999–2000 base |                         |               |      |  |
| 1999-2000 | 21.1                | 4.5                         | -0.8             | 24.8           | 17.9                    | 7.4           | 25.9 |  |
| 2000-1    | 21.0                | 4.3                         | -1.9             | 23.4           | 16.5                    | 6.9           | 24.0 |  |
| 2001-2    | 21.8                | 3.7                         | -2.0             | 23.5           | 16.3                    | 6.9           | 22.9 |  |
| 2002-3    | 22.7                | 4.2                         | -0.6             | 26.4           | 18.4                    | 6.1           | 25.2 |  |
| 2003-4    | 23.8                | 4.7                         | 1.2              | 29.7           | 19.4                    | 6.3           | 28.0 |  |
| 2004-5    | 21.6                | 7.1                         | 2.4              | 31.1           | 21.3                    | 7.1           | 31.5 |  |
| 2005-6    | 22.3                | 8.1                         | 2.0              | 32.4           | 23.6                    | 7.4           | 33.8 |  |

Notes: GDCF total includes (i) errors and omissions and (ii) valuables (introduced in the new series); 'valuables' covers expenditure made on acquisition of items such as precious metals and stones but excludes works of arts and antiques.

Source: RBI, Annual Report (various issues).



Notes: RM-reserve money; BM-broad money (M3); BCG-net bank credit to government; BCC-bank credit to commercial sector; NFEA-net foreign exchange assets of banking sector

Figure 2.7: Growth in Monetary Variables (per cent)

level of 38 per cent in the previous year. The reduced level is still in excess of the statutory minimum limit of 25 per cent. Credit to the government by the banking sector as a whole, however, rose due to the liquidity injection operation.

# Inflation

International crude oil prices have more than doubled during the last two years, generating inflationary pressures at the global level. The Central government permitted partial pass through of price hike in imported oil to the domestic

economy. Simultaneously, the Reserve Bank of India (RBI) adopted a pre-emptive monetary tightening policy to contain inflationary expectations. The current phase of inflation started in the second half of 2005 (Figure 2.8). On an annual basis, the rate of inflation, measured by wholesale or consumer price, has been moderate in the range of 4–5 per cent during 2005–6. On a monthly basis, the consumer price indices (CPI) have indicated a higher inflation rate of more than 7 per cent for several months in the half of 2006. Expectedly, fuel prices have been the major source of inflation with mineral oils contributing to more than 40 per cent of aggregate price rise, though their weight in wholesale price index (WPI) is only 7 per cent.

#### Public Finance

The combined total expenditure of the government was 28.6 per cent of GDP in 2005–6. The government collected tax revenue of 16.8 of GDP (5.7 per cent direct tax and 11.1 per cent indirect tax) and non-tax revenue of 4 per cent. The balance between expenditure and revenue is met by capital receipts most of which are borrowings constituting the fiscal deficit. The combined gross fiscal deficit of the Central and state governments stood at 7.5 per cent of GDP in 2004–5 and revised estimates for 2005–6 indicate no change from the previous year. Imbalance of this magnitude is not a sign of a healthy fiscal position, although it is

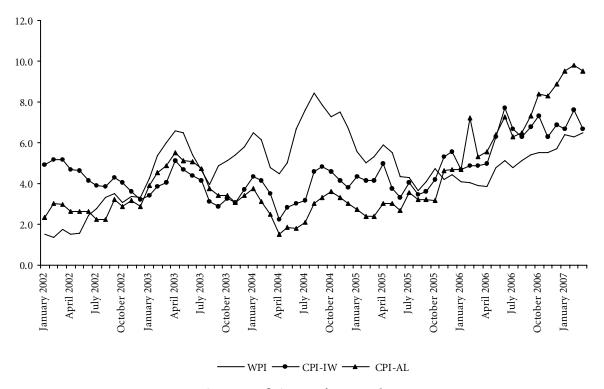



Figure 2.8: Inflation Rate for WPI and CPI

an improvement over the deteriorating situation noticed for five years till 2002–3 when it reached a peak of 10 per cent of GDP. This level of fiscal deficit was similar to the level that prevailed during the 1991 crisis, yet it did not get precipitated in an external crisis. Ahluwalia (2002) explained that this was due to a neutralizing shrinkage in demand effect from the private sector, which witnessed only a marginal rise in investment–GDP ratio while savings of the private sector rose substantially by 4–5 percentage points of GDP during the 1990s.

Other deficit indicators such as revenue deficit and primary deficit too have improved. The most significant change has been in the revenue deficit—defined as the excess of revenue expenditure over revenue receipt. It indicates a situation where the government borrows to meet those expenditures which do not directly support the income generation process. A revenue balance, on the other hand, provides resources for capital expenditure. The fall in revenue deficit from 6.6 per cent of GDP in 2000–1 to 3.1 per cent in 2005– 6 is thus a welcome sign. The governments have undertaken time-bound legislative commitments to eliminate the fiscal deficit. Larger volume of tax and non-tax revenue receipts due to higher growth, widening of the tax base to the service sector, and steps to contain revenue expenditure have all contributed to this improvement. Tax collection rise by 1 per cent of GDP in 2005–6 is particularly noteworthy. The burden of fiscal adjustment during the 1990s fell mostly on capital outlays and distorted the structure of government expenditure away from investment. The rise in salary and pension payments consequent upon the Fifth Pay Commission recommendations further distorted the structure in favour of current expenditure for several years.

Non-tax revenue receipts of both Central and state governments increased in the first half of the 1990s, but have stagnated after that at around 4 per cent of GDP. Price rationalization in utilities such as power, transport, and irrigation and other public sector units (PSUs) needs to occur on a continuous basis through independent and credible regulatory authorities to ensure that users do not pay for increasing inefficiency of the utilities.

While social sectors such as health and education with large expenditures mostly fall under state jurisdiction under the Indian constitution, the tax base of the state governments has remained narrow, resulting in a heavy dependence of the states on the Centre for grants and shareable taxes. The Eleventh Finance Commission had recommended the creation of a Fiscal Reform Facility by the Central government during 2000–1 to 2004–5 to provide incentives to state governments for undertaking medium term fiscal reform (MTFR). The Twelfth Finance Commission, covering the period 2005-6 to 2009-10, also laid emphasis on a time-bound fiscal restructuring path to eliminate revenue deficit by 2008-9 and fiscal deficit to 3 per cent of GDP by 2009–10, even as it recognized the need for restructuring of expenditures by state governments in favour of capital outlay and social sector. In order to reduce the debt burden and interest payments by the states, it recommended an incentive linked debt relief scheme provided the states enact fiscal responsibility legislation with specific targets. Adoption of such legislation by most state governments has helped to reduce fiscal distortions at the state level.

Public debt of the Centre and the states rose sharply from 61.3 per cent of GDP in 1995–6 to 82.5 per cent in 2004–5, though revised estimates for 2005–6 show a fall by 3 percentage points. The average interest rate on outstanding loans of the Centre has fallen from 13 per cent in 2000–1 to 8.8 per cent in 2005–6 reflecting a fall in market rate over the years. Total interest payment is still large at about 6 per cent of GDP; it has fallen slowly and continues to pre-empt

about a fourth of total revenue. A primary surplus on a sustained basis would be needed to reduce the debt–GDP ratio in the liberalized context. The outstanding government guarantees to loans raised by other agencies such as PSUs continue to be large at about 10 per cent of GDP. Two-thirds of these contingent liabilities are by state governments.

The wide fiscal deficit and skewed government expenditure towards salaries, pensions, and interest payments provides limited scope for the government to allocate resources for developmental and productive activities. Notwithstanding this constraint, the government did play an important role in arresting adverse welfare effects of the drought in 2002–3 by provision of adequate relief measures. To a lesser

TABLE 2.5
Fiscal Parameters of Central Government

(as percentage of GDP)

|                       | 1980–91 | 1990–1 | 1996–7 | 2001–2 | 2002-3 | 2003–4 | 2004–5 | 2005–6 (RE) | 2006–7 (BE) |
|-----------------------|---------|--------|--------|--------|--------|--------|--------|-------------|-------------|
| Total Expenditure     | 17.70   | 17.2   | 14.69  | 15.88  | 16.87  | 17.07  | 15.94  | 14.40       | 14.27       |
| Revenue Expenditure   | 11.70   | 12.9   | 11.62  | 13.21  | 13.83  | 13.12  | 12.31  | 12.47       | 12.35       |
| Interest Payments     | 2.80    | 3.8    | 4.35   | 4.71   | 4.81   | 4.50   | 4.07   | 3.68        | 3.54        |
| Subsidies             | 1.70    | 1.7    | 1.13   | 1.37   | 1.78   | 1.61   | 1.40   | 1.33        | 1.17        |
| Capital Disbursements | 6.00    | 4.4    | 3.08   | 2.67   | 3.04   | 3.95   | 3.63   | 1.94        | 1.92        |
| Capital Outlay        | 2.51    | 2.1    | 1.04   | 1.16   | 1.19   | 1.24   | 1.66   | 1.61        | 1.69        |
| Total Tax             | 10.00   | 10.1   | 9.40   | 8.2    | 8.8    | 9.2    | 9.8    | 10.5        | 11.2        |
| Direct Tax            | 2.00    | 1.9    | 2.80   | 3.0    | 3.4    | 3.8    | 4.3    | 4.8         | 5.3         |
| Indirect Tax          | 7.90    | 7.9    | 6.60   | 5.2    | 5.4    | 5.4    | 5.5    | 5.7         | 5.9         |
| Non-Tax Revenue       | 2.40    | 2.11   | 2.38   | 2.97   | 2.95   | 2.78   | 2.60   | 2.10        | 1.93        |
| Gross Fiscal Deficit  | 6.80    | 6.6    | 4.11   | 6.18   | 5.92   | 4.47   | 4.01   | 4.14        | 3.76        |
| Gross Primary Deficit | 3.90    | 2.8    | -0.24  | 1.47   | 1.11   | -0.03  | -0.06  | 0.46        | 0.22        |
| Revenue Deficit       | 1.90    | 3.3    | 2.39   | 4.39   | 4.40   | 3.56   | 2.51   | 2.60        | 2.14        |

Source: RBI, Annual Report (various issues).

TABLE 2.6 Fiscal Parameters of State Governments

(as percentage of GDP)

| YEAR                          | 1990–1 | 2002–3 | 2003–4 | 2004–5 | 2005–6 (RE) | 2006–7 (BE) |
|-------------------------------|--------|--------|--------|--------|-------------|-------------|
| Total Expenditure             | 16.0   | 17.2   | 18.7   | 21.7   | 19.5        | 16.7        |
| Developmental Expenditure     | 11.1   | 9.2    | 9.9    | 9.4    | 10.3        | 9.7         |
| Social Sector Expenditure     |        | 6.0    | 6.0    | 5.4    | 6.0         | 5.8         |
| Non-developmental Expenditure | 4.0    | 6.1    | 6.0    | 6.0    | 5.8         | 5.8         |
| Revenue Expenditure           | 12.6   | 13.5   | 13.4   | 13.1   | 13.3        | 13.0        |
| Interest payments             | 1.5    | 2.8    | 2.9    | 2.8    | 2.5         | 2.5         |
| Capital outlay                | 1.16   | 1.5    | 1.8    | 2.0    | 2.4         | 2.4         |
| Total revenue Receipt         | 11.7   | 11.4   | 11.2   | 11.9   | 12.9        | 13.0        |
| Tax Revenue (own)             | 5.3    | 5.8    | 5.7    | 6.1    | 6.4         | 6.4         |
| Non-Tax Revenue (own)         | 1.6    | 1.4    | 1.3    | 1.5    | 1.3         | 1.3         |
| Central Transfers             | 4.7    | 4.1    | 4.1    | 4.3    | 5.2         | 5.3         |
| Grants                        | 2.2    | 1.8    | 1.8    | 1.8    | 2.6         | 2.5         |
| Shareable Taxes               | 2.5    | 2.3    | 2.4    | 2.5    | 2.6         | 2.7         |
| Gross Fiscal Deficit          | 3.3    | 4.2    | 4.4    | 3.5    | 3.2         | 2.7         |
| Gross Primary Deficit         | 1.8    | 1.3    | 1.5    | 0.7    | 0.7         | 0.2         |
| Revenue Deficit               | 0.9    | 2.2    | 2.2    | 1.17   | 0.49        | 0.05        |

Source: RBI, Annual Report (various issues).

TABLE 2.7 Fiscal Parameters of Central and State Governments Combined

(as percentage of GDP)

|                               | 1990–1 | 1995–6 | 2001–2 | 2002-3 | 2003-4 | 2004-5 | 2005–6 (RE) | 2006–7 (BE) |
|-------------------------------|--------|--------|--------|--------|--------|--------|-------------|-------------|
| Revenue Receipts              | 18.6   | 18.3   | 17.5   | 18.5   | 18.8   | 19.7   | 20.8        | 21.1        |
| Tax Revenue                   | 15.4   | 14.7   | 13.8   | 14.6   | 15.0   | 15.8   | 16.8        | 17.4        |
| Direct Tax Revenue            | 2.5    | 3.5    | 3.6    | 4.1    | 4.6    | 5.0    | 5.7         | 6.1         |
| Indirect Tax Revenue          | 12.9   | 11.2   | 10.2   | 10.5   | 10.5   | 10.8   | 11.1        | 11.4        |
| Non-tax Revenue               | 3.2    | 3.6    | 3.8    | 3.9    | 3.7    | 3.9    | 4.0         | 3.7         |
| Total Disbursements           | 28.7   | 25.4   | 28.3   | 28.8   | 28.9   | 27.9   | 28.6        | 27.9        |
| Developmental Expenditure     | 17.1   | 13.9   | 14.6   | 14.6   | 14.9   | 14.3   | 15.5        | n.a.        |
| Social Sector Expenditure     | 6.8    | 6.4    | 7.7    | 7.8    | 7.5    | 7.4    | 8.1         | 7.8         |
| Non-developmental Expenditure | 11.6   | 11.5   | 13.5   | 13.9   | 13.6   | 13.6   | 12.8        | n.a.        |
| Interest payments             | 4.4    | 5.0    | 6.2    | 6.5    | 6.4    | 6.2    | 5.8         | 5.7         |
| Gross Fiscal Deficit          | 9.4    | 6.5    | 9.9    | 9.6    | 8.5    | 7.5    | 7.5         | 6.5         |
| Gross Primary Deficit         | 5.0    | 1.6    | 3.7    | 3.1    | 2.1    | 1.4    | 1.6         | 0.8         |
| Revenue Deficit               | 4.2    | 3.2    | 7.0    | 6.7    | 5.8    | 3.7    | 3.1         | 2.2         |

Source: RBI.

extent, government policies also helped in the revival of industrial activities through extensive road construction activities.

#### International Trade

The world economy has witnessed significant growth of about 5 per cent per annum since 2003 led by more than 7 per cent growth in the emerging market economies. The world trade volume too expanded considerably at 10.4 and 7.3 per cent in 2004 and 2005, respectively. Taking advantage of world trade growth, India's merchandise exports have nearly doubled from US\$ 54 billion in 2002-3 to \$105 billion in 2005-6. The average annual growth in exports has been as high as 24 per cent during 2003-4 to 2005-6. Imports grew even more sharply from \$64.5 billion in 2002–3 to \$156 billion in 2005-6 due to rise in international oil prices and in non-oil imports attributable to domestic

growth. Trade deficit rose to \$51.6 billion in 2005-6 or 6.5 per cent of GDP. Current estimates for 2006-7 show that trade flows have expanded by 20-5 per cent with export and import levels reaching about \$125 and \$180 billion. Merchandise exports and imports respectively accounted for 13.1 and 19.6 per cent of GDP in 2005-6 (Table 2.8). With the current shares, the additional 10–12 per cent export growth over and above the trend has thus roughly contributed to more than 1 percentage point of GDP growth. In this sense, one might say the acceleration noticed in GDP since 2003–4 is largely export driven.

Invisible earnings too have been rising steadily to reach 11.5 per cent of GDP in 2005-6 thanks to substantial expansion in two components: (i) transfers (remittances) from abroad and (ii) service exports in information technology and business process outsourcing. In absolute terms, remittances were of the order of about US\$ 25 billion while

**TABLE 2.8** Major Foreign Trade Parameters

(as percentage of GDP)

|                                      | 1990–1 | 1995–6 | 2000-1 | 2001–2 | 2002-3 | 2003–4 | 2004–5 | 2005–6 |
|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Export                               | 5.8    | 9.1    | 9.9    | 9.4    | 10.6   | 11.0   | 11.8   | 13.1   |
| Import                               | 8.8    | 12.3   | 12.6   | 11.8   | 12.7   | 13.3   | 17.1   | 19.6   |
| Trade balance                        | -3.0   | -3.2   | -2.7   | -2.4   | -2.1   | -2.3   | -5.3   | -6.5   |
| Invisible receipts                   | 2.4    | 5.0    | 7.0    | 7.7    | 8.3    | 8.9    | 10.3   | 11.5   |
| Invisible payments                   | 2.4    | 3.5    | 4.9    | 4.5    | 4.9    | 4.3    | 5.8    | 6.4    |
| Net invisibles                       | -0.1   | 1.6    | 2.1    | 3.1    | 3.4    | 4.6    | 4.5    | 5.1    |
| Current receipts                     | 8.0    | 14.9   | 16.8   | 16.9   | 18.8   | 19.8   | 22.0   | 24.5   |
| Current account balance              | -3.1   | -1.7   | -0.6   | 0.7    | 1.3    | 2.3    | -0.8   | -1.3   |
| Foreign investment                   | 0.03   | 1.4    | 1.5    | 1.7    | 1.2    | 2.6    | 2.1    | 2.5    |
| Debt–GDP ratio                       | 28.7   | 27.0   | 22.4   | 21.1   | 20.4   | 17.8   | 17.3   | 15.8   |
| Debt–Service ratio                   | 35.3   | 24.3   | 16.6   | 13.4   | 16.4   | 16.3   | 6.1    | 10.2   |
| Import cover of reserves (in months) | 2.5    | 6.0    | 8.8    | 11.7   | 14.2   | 16.9   | 14.3   | 11.6   |

Source: RBI, Annual Report (various issues).

software exports were close to US\$ 18 billion. India ranks first as a remittance recipient and second as a software related exporter in the world.

Invisible payments too have risen to 6.4 per cent of GDP in 2005-6 due to liberalization of travel, transport, dividends, and other service related payments. The net surplus on the invisibles account has been about 5 per cent of GDP which helped the overall balance of payments to remain comfortable with a deficit of 1.3 per cent of GDP. The economy had witnessed a surplus in current account balance for three years during 2001–2 to 2003–4, but is back to the deficit phase because of the rise in oil prices. While the ratio of merchandise trade (imports and exports together) to GDP has increased to 32.7 per cent, current account transactions (including invisibles) to GDP ratio has jumped above 50 per cent. These ratios are clear indicators of India's steady movement towards integration with the global economy.

Foreign direct investment (FDI) and portfolio investment flows have increased to \$7.7 and \$12.4 billion in 2005-6 reflecting liberalized policy changes as well as an improved investment climate. FDI could play a critical role in manufacturing export promotions, market diversification, technology transfer, and productivity increase. India needs to increase the share of high technology manufactured products in its export basket.

Following phased liberalization in the capital account, a significant recent development has been overseas investment by Indian companies which has picked up recently from \$ 0.7 billion in 2000-1 to 2.7 billion in 2005-6. Such investments have flown to sectors such as iron and steel, information technology (IT), pharmaceuticals, and petroleum. Indian companies have acquired controlling shares in some of the global giants in recent months. This would open up global business opportunities for Indian entrepreneurs and provide new means of economic co-operation for India with other countries.

India's outstanding external debt stood at \$125 billion or 15.8 per cent of GDP at the end of fiscal 2005-6. Of this, about \$9 billion was in the nature of short-term debt. Debt services of about \$20 billion as a ratio of total current receipt was 10.2 per cent.

The overall surge in capital flows exceeded the current account deficit and led to a further build up of RBI's net foreign assets (NFA) of \$10.1 billion in 2005-6. Foreign exchange reserves reached US\$ 151 billion by March 2006 and have recently crossed the \$200 billion mark. The reserves were adequate to pay for import bill of 11.6 months in 2005-6 as against the import cover of 16.9 months in 2003–4. This fall in reserves relative to imports in the face of increase in world oil prices serves as a caution against world market price volatility.

India continues to have among the highest tariff rates across developing countries. The import weighted average basic tariff rates turn out to be 18 per cent for all commodities in the year 2004-5.8 India has recently announced its intention to align its tariff structure with those of Association of South East Asian Nations (ASEAN) countries.

The direction of India's exports has undergone considerable change in recent years. Share of Eastern Europe and Organization for Economic Co-operation and Development (OECD) countries has been going down and getting replaced by that of Asian countries (Table 2.9). In fact, Asia and ASEAN together accounted for as much as 48 per cent of India's exports in 2005-6.9 The movement towards a stronger intra-Asian trade linkage in recent years is evident for other Asian countries too. China is the largest market for Asian exports with a share of 10 per cent. Though India's trade linkage with China has historically not been strong, it has been expanding fast in recent years. China has become the second biggest trading partner of India with a share of 7 per cent in total Indian trade in 2005-6 next to USA (10.6 per cent). Some influential think tanks in Asia have been advocating the need for a stronger integration of the Asian economies and we turn to this issue in the next section.

**TABLE 2.9** Direction of India's Exports

|                                 |        | (percent | tage share) |
|---------------------------------|--------|----------|-------------|
|                                 | 1990-1 | 1995–6   | 2001–2      |
| OECD                            | 53.5   | 55.7     | 49.3        |
| OPEC                            | 5.6    | 9.7      | 12.0        |
| Eastern Europe                  | 17.9   | 3.8      | 2.3         |
| Asia (excluding Japan and OPEC) | 14.3   | 21.3     | 22.4        |
| Rest of world                   | 8.7    | 9.5      | 14.0        |
| Total                           | 100.0  | 100.0    | 100.0       |

Source: Economic Survey 2004-5, Government of India.

# ASIAN ECONOMIC INTEGRATION

There has been a strong move towards regional economic integration in recent decades following the successful experimentation of the European Union (EU) and the North American Free Trade Agreement (NAFTA). The EU has gradually expanded to become a 25-member large unified market with free flow of trade, capital, and labour among

<sup>&</sup>lt;sup>7</sup> Note that these are accounting ratios that indicate openness in relation to size of the economy and do not by any means imply relative position of trade in the domestic production structure.

<sup>&</sup>lt;sup>8</sup> See Mathur and Sachadeva (2005) who report the weighted average basic import duty rates of 29 per cent, 5 per cent, 50 per cent, 19 per cent, and 18 per cent for agriculture, mining, consumer goods, intermediates, and capital goods, respectively in 2004-5.

<sup>&</sup>lt;sup>9</sup> Data for recent years are not reported by *Economic Survey* in the same format as shown in Table 2.9.

the members and a common currency for a large part of the Union. It currently accounts for about a quarter of world income and a third of world exports. Similarly, NAFTA contributes to about 35 per cent of world income and 20 per cent of world exports. Co-operative arrangements in Asia, however, have been weak till now and are limited to sub-regional levels as evident from the ASEAN Free Trade Agreement (AFTA) and the South Asia Free Trade Agreement (SAFTA).

Developing Asia accounted for 52 per cent of world population and 25 per cent of world income in PPP terms in the year 2004 (IMF 2005). Developed Japan and the newly developed Asian economies (Hong Kong-China, Korea, Singapore, and Taiwan) contribute another 3 per cent of world population and 10 per cent of world income. The developing and developed Asian economies together generate income of \$8 trillion in nominal terms and \$18 trillion in PPP terms which are 23 and 35 per cent of the respective world totals (in 2003). On a comparative perspective, the size of Asian economy is comparable to that of the EU and NAFTA.

Several Asian countries such as China, Indonesia, Hong Kong-China, Korea, Singapore, and Thailand have been among the fastest growing countries in the world for more than two decades. They opened up their economies to foreign trade and investment in the 1970s and early 1980s and reaped the benefits of the globalization process. 10 Exports and imports expanded faster than overall income growth. Foreign trade flows as a proportion of GDP rose from 47 per cent in 1990 to 61 per cent in 2001 in East Asia and from 32 per cent to 44 per cent in China during the same period. FDI accounting for 3-5 per cent of GDP, also played a major role in the growth process of the East Asian economies.

India has been a latecomer in Asia to the globalization process, but is moving fast. It accounts for 18 per cent of Asia's income in PPP terms and 6 per cent of trade (2004). In recent years, India has joined several bilateral or sub-regional trade agreements with other Asian countries and adopted the Look East policy in the early 1990s. Its economic relation with other Asian countries has progressed considerably. Recent initiatives have resulted in a free trade area (FTA) agreement with the SAARC countries, dialogue partnership with ASEAN, a protocol with Thailand to implement the Early Harvest Scheme under the FTA framework. It is engaged in negotiations for Regional Trade and Investment Agreement (TRIA) with ASEAN and a comprehensive economic co-operation agreement with Singapore. Sen et al. (2004) note that the mindset of Indian policy makers has changed considerably in favour of East Asia and adequate reciprocation would help progress in overall cooperation.

A recent study by the Asian Development Bank (ADB) concludes that Asian economic integration could be the main stimulus for future growth in the region (see Box 2.1).

#### Box 2.1

# Long-term Scenarios for Asian Growth: Need for Asian Economic Integration

A recent research project undertaken by the ADB highlights the critical role of Asian economic integration for stimulating future growth in the region (Ronald-Holst et al. 2005). Improvements in intra-Asian trade efficiency would help to expand as Asian income to a greater extent as compared to global trade liberalization.

The study develops a baseline scenario for growth and trade movements for major countries in Asia till 2025 and then examines the potential for raising this baseline growth using international trade enhancing instruments. The baseline forecast is obtained by means of calibration of a dynamic computable general equilibrium model to average consensus growth rates from several macroeconomic projections. Such a 'business as usual' scenario is optimistic about the continuation of the good growth performance of the Asian regions seen in the past decade or so. In order to examine the prospects for trade-induced higher growth rate for Asia, the papers have developed scenarios related to: (i) trade liberalization at the global and continental levels and (ii) trade facilitation measures that reduce transportation, distribution, and transit costs captured by 2 per cent annual increase in intra-Asian trade efficiency.

The first set of results indicates that income growth from Asian trade liberalization per se is rather small for various Asian countries and ranges between 0.6 to 17.3 per cent over a period of two decades. China seems to be deriving the maximum gains from Asian trade liberalization. India's equivalent income gain is about 9 per cent from both Asian trade liberalization and global trade liberalization over the baseline projection in the year 2025—implying an average income rise of about 0.5 per cent per annum.

The second set of results relating to trade facilitation, on the other hand, indicates relatively large gains ranging between 22 and 62 per cent for various Asian countries. India's income gain from trade facilitation is about 25 per cent in 2025. This would mean India's GDP growth could accelerate further by I per cent per year. Thus, the most interesting result from this analysis is that an AFTA with slow but steady improvements in trade efficiency could help regional income growth to a larger extent rather than global free trade alone.

The study argues that the benefits need not be seen as those due to classical trade diversification as the detailed regional trade pattern indicates that the volume of trade flows of each region expands not only with other Asian regions but also with the rest of the world (ROW) except for a minor fall in South Asia's trade with ROW. Thus, diversion would take place in incremental trade volumes rather than in existing trade volumes. Realization of these potential gains from intra-Asian trade requires a fresh look by Asian countries on the evolution of their policies and institutions.

<sup>&</sup>lt;sup>10</sup> Admittedly, the nature and speed of opening up varied from country to country and the governments did play an active role in several cases.

The study notes that Asian Free Trade Agreement (AFTA)—with steady improvements in trade facilitation—helps regional income growth to a larger extent than global free trade. There has been substantial progress on the removal of formal trade restrictions by means of tariffs and quotas all over the world in recent decades and as such liberalization of remaining tariffs or tariff equivalent of quotas would provide only limited gains in the future. Current attention is getting shifted to trade facilitation and institutional issues. It has been recognized that trade facilitation could substantially enhance world income and issues related to this have been on the WTO negotiation agenda since the Singapore Ministerial Meeting in 1996.

Trade facilitation measures refer to expedition of the movement and clearance of goods, greater transparency, and procedural uniformity of cross-border transportation of goods. Transport and communication is a major element of costs associated with trade, and efficiency in their provision could reduce trade margins considerably. Border formalities for clearance of inter-country movement of goods have improved but still continue to be tedious and wasteful. Adoption of standardized customs compliance forms would avoid duplication and international norms could be followed to complete the formalities. An agreement on product standard is another major area to facilitate trade within an RTA.

Formation of regional integration agreements (RIAs) has caused significant changes in the pattern of world trade due to faster rise of trade and investment flows within the RIAs. There is general agreement that a multilateral trade arrangement across the globe is the first best option from the global welfare point of view. Yet, the trend towards RIAs seems to continue unabated<sup>11</sup> as a second best option and to improve bargaining strength in international negotiations.<sup>12</sup> In such an environment, Asia would lose its relative strength in the world economy unless it moves as a strong block through a fast track economic integration process. Asian economies can reduce cost, enhance competitiveness, and accelerate overall regional growth by making use of the opportunity of a continent-wide expanded market.

Regional economic co-operation in Asia need not involve a classic South–South type trade. The level of development among the Asian countries varies a lot; for example, one could look at the contrast between Japan and Korea on the one hand, and India and Pakistan on the other. There is sufficient diversity in relative factor endowments, capital, labour, technology, and skills among Asian countries. Several papers in Kumar (2004) discuss prospects of Asian economic integration from various angles and find that there

is sufficient scope for viable integration among the Asian countries. They provide examples of potential areas of cooperation and it may be appropriate to state some of them here, involving India as a partner. Korea and Singapore have underutilized capacity in construction which could be fruitfully used to develop infrastructure in India. East Asia can make use of India's well developed R&D infrastructure in biotechnology, pharmaceuticals, and space research. India is seen as having relative advantage in the services sector, while it is manufacturing in China and East Asia. In the newly developed ITC sector, India specializes in software development while East Asia's focus has been on hardware manufacturing.

The current trend for formation of RTAs seems to be strong and all but a few countries in the world have signed one or more RTAs. In such an environment, there is a strong feeling that Asia would lose its long-term bargaining power and face adverse terms of trade effects unless it moves as a strong block by adopting a fast track economic integration process. A pan-Asian market would be large enough to derive sufficient economies of scale and enhance regional growth. The large size of the market would hopefully avoid a situation where a single enterprise drives away others in the same product line due to economies of scale. It is necessary to guard against creation of monopoly that could effectively kill competition. As World Bank (2000) states, the success of RTAs would lie in increasing scale as well as competition in the integrated market compared to the pre-RTA scenario.

Asian integration calls for a fresh look by the Asian countries on the evolution of their policies and institutions. The ADB study advocates a 'policy coherence' approach to Asian integration similar to the OECD type arrangement, which is less binding in nature than the 'policy harmonization' approach in the EU type arrangement. An Asian co-operative arrangement could have adequate bargaining power with EU or NAFTA and could bring about a tripartite balance on global negotiation tables. By representing views of a wide cross-section of nations at different stages of development, such a forum could play a significant role in further advancement of the globalization process.

#### POVERTY AND DISTRIBUTION

We now turn to current concerns on the poverty and distribution side. Given the widespread and intense poverty among a large section of the population, poverty reduction has been a major goal of economic policy in India along with aggregate income growth. Low per capita growth

<sup>&</sup>lt;sup>11</sup> Nearly 200 RIAs/FTAs have been notified to the GATT/WTO.

<sup>&</sup>lt;sup>12</sup> A country can join an RIA without necessarily compromising on its commitment to the multilateral trading regime. But, whether formation of RIA would complement or conflict with the multilateral liberalization process has been a matter of debate.

coupled with near invariance of the distribution parameter led to little improvement in the level of living of the poor for about three decades after independence. The incidence of poverty did not show any declining trend in India till the mid-1970s and started to fall only when the economy moved up to a phase of higher economic growth of 5 per cent or more. Hence, policy makers and analysts have advocated the need for higher GDP growth to facilitate poverty reduction. Trade liberalization can reduce poverty through sustained economic growth. International evidence indicates that poverty effects of growth, including trade led growth, are very much circumstance specific. <sup>13</sup>

Poverty estimates by the Planning Commission show that the percentage of population below the poverty line, also known as head count ratio (HCR), has fallen from 55 per cent in 1973–4 to 36 per cent in 1993–4 and further to 27 per cent in 2004–5 for rural and urban areas taken together. <sup>14</sup> The absolute number of total poor stood at 302 million in 2004–5—accounting for about a quarter of the poor in the world. India thus would pose a major challenge for meeting the first Millennium Development Goal which aims at reducing poverty to half the 1990 level by 2015.

Accelerated economic growth has not led to as fast a fall in poverty as expected earlier. Between 1993–4 and 2004–5, HCR fell by only 22 per cent while per capita real income

grew considerably by 62 per cent. The implied elasticity of poverty with respect to per capita income (NNP) is less than 0.40 which is not very encouraging, to say the least. Accentuation of inequality might have partly neutralized the potential poverty reducing effects of growth.

Poverty ratios in Table 2.10 reveal substantial variation across the states in India. Among the major states, Orissa, Bihar, and Madhya Pradesh (including the new states of Jharkhand and Chhattisgarh) have substantially higher HCR than all-India, while Punjab has single digit HCR. Note that the high poverty states are contiguous, lying in the central and eastern parts of India. This leads us to the question of regional disparity.

Figure 2.9 arranges the major states by descending order of their per capita GSDP in 1993–4 and shows the growth rates in per capita GSDP during 1993–4 to 2004–5. Punjab, Maharashtra, Haryana, and Gujarat were among the richest states in India in 1993, while Bihar, Orissa, Uttar Pradesh, and Assam were the poorest. Average level of living in Punjab was about four times that of Bihar in 1993–4. During the post-reform period, states on the low rung of the income ladder had the lowest growth rates too. Thus their divergence from all-India average has widened. States in the middle rung such as West Bengal, Gujarat, Karnataka, and Kerala witnessed above 5 per cent growth in per capita income as

| States         | Ru     | ıral   | Ur     | ban    | Total  |        |
|----------------|--------|--------|--------|--------|--------|--------|
|                | 1993–4 | 2004–5 | 1993–4 | 2004–5 | 1993–4 | 2004–5 |
| Andhra Pradesh | 15.9   | 11.2   | 38.3   | 28.0   | 22.2   | 15.8   |
| Assam          | 45.0   | 22.3   | 7.7    | 3.3    | 40.9   | 19.7   |
| Bihar          | 58.2   | 43.0   | 34.5   | 28.7   | 55.0   | 41.1   |
| Gujarat        | 22.2   | 19.1   | 27.9   | 13.0   | 24.2   | 16.8   |
| Haryana        | 28.0   | 13.6   | 16.4   | 15.1   | 25.1   | 14.0   |
| Karnataka      | 29.9   | 20.8   | 40.1   | 32.6   | 33.2   | 25.0   |
| Kerala         | 25.8   | 13.2   | 24.6   | 20.2   | 25.4   | 15.0   |
| Madhya Pradesh | 40.6   | 37.9   | 48.4   | 41.9   | 42.5   | 39.0   |
| Maharashtra    | 37.9   | 29.6   | 35.2   | 32.2   | 36.9   | 30.7   |
| Orissa         | 49.7   | 46.8   | 41.6   | 44.3   | 48.6   | 46.4   |
| Punjab         | 12.0   | 9.1    | 11.4   | 7.1    | 11.8   | 8.4    |
| Rajasthan      | 26.5   | 18.7   | 30.5   | 32.9   | 27.4   | 22.1   |
| Tamil Nadu     | 32.5   | 22.8   | 39.8   | 22.2   | 35.0   | 22.5   |
| Uttar Pradesh  | 42.3   | 33.7   | 35.4   | 31.0   | 40.9   | 33.1   |
| West Bengal    | 40.8   | 28.6   | 22.4   | 14.8   | 35.7   | 24.7   |
| India          | 37.3   | 28.3   | 32.4   | 25.7   | 36.0   | 27.5   |

TABLE 2.10 HCR of Poverty for Major Indian States

Notes: Based on Uniform Recall Period (URP) consumption in which the consumer expenditure data for all the items are collected from 30-day recall period; Bihar, Madhya Pradesh, and Uttar Pradesh include the new states of Jharkhand, Chhattisgarh, and Uttarakhand, respectively. Source: Government of India.

<sup>&</sup>lt;sup>13</sup> See, for example, a recent review article by Winters et al. (2004).

<sup>&</sup>lt;sup>14</sup> These estimates are based on comparable uniform recall period of 30 days. Estimates based on the 1999–2000 survey data are not used here due to the controversy over the mix-up of the recall period.

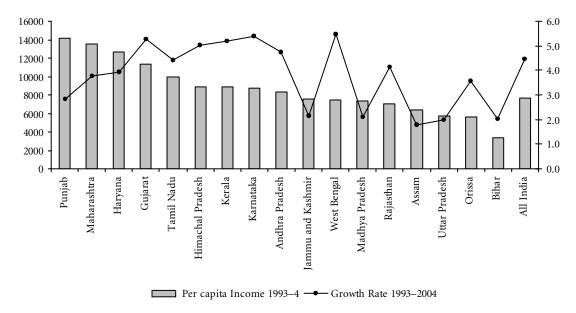



Figure 2.9: Average Annual Growth Rate in Per Capita GSDP Across States (Arranged by 1993–4 Per Capita GSDP)

against all-India growth of 4.4 per cent. The three richest states had lower than average growth, though not as low as some of the poorest states.

Figure 2.10 presents the coefficient of variation (CV) in per capita GSDP among the major states. Disparity in average level of living among states has clearly increased after the reforms, though it remained somewhat stable during the late 1990s. Curiously, it seems that the high growth phases in national income have been accompanied by increase in inter-state inequality.

Along with an accentuation of regional disparity, urbanrural disparity too has widened after the reforms (Table 2.11). All-India urban per capita consumption expenditure was 63 per cent higher than that in rural areas in 1993–4. It has jumped to 88 per cent in 2004–5. The rise in urbanrural disparity has taken place across all the major states in India. Relatively low agricultural growth is one of the factors contributing to the rising urban—rural inequality.

Several other factors too might have led to an increase in inequality during the post-reform period. Pay packages in multinational companies are substantially higher than those for comparable jobs in domestic companies, leading to a widening differential in wage rates. The technical progress in information and communication sectors and consequent large expansion in demand for skilled and semi-skilled labour during the 1990s has contributed to a rise in the relative gap in wages between skilled and unskilled labour. The most intensively used factor of production in these newly emerging sectors strongly linked to the world market is not likely to be provided by the poor households who typically

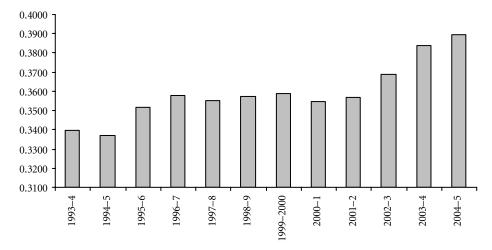



Figure 2.10: Coefficient of Variation in Per Capita GSDP among Major States

| TABLE 2.11                      |   |
|---------------------------------|---|
| Urban-Rural Differences in MPCE | į |

| States         | Urban MPCE as per cent of Rural MPCE |        |  |  |  |
|----------------|--------------------------------------|--------|--|--|--|
|                | 1993–4                               | 2004–5 |  |  |  |
| Andhra Pradesh | 141.5                                | 173.9  |  |  |  |
| Assam          | 177.9                                | 194.8  |  |  |  |
| Bihar          | 161.9                                | 186.2  |  |  |  |
| Gujarat        | 149.8                                | 187.1  |  |  |  |
| Haryana        | 123.1                                | 132.3  |  |  |  |
| Karnataka      | 157.2                                | 203.3  |  |  |  |
| Kerala         | 126.7                                | 127.4  |  |  |  |
| Madhya Pradesh | 161.9                                | 212.0  |  |  |  |
| Maharashtra    | 194.1                                | 202.1  |  |  |  |
| Orissa         | 183.2                                | 189.7  |  |  |  |
| Punjab         | 118.0                                | 156.6  |  |  |  |
| Rajasthan      | 132.0                                | 163.1  |  |  |  |
| Tamil Nadu     | 149.0                                | 179.4  |  |  |  |
| Uttar Pradesh  | 142.0                                | 151.5  |  |  |  |
| West Bengal    | 169.9                                | 200.0  |  |  |  |
| All India      | 163.0                                | 188.2  |  |  |  |

Source: Based on NSSO data.

possess 'unskilled' labour. Of course, as demand for consumer goods by skilled labour households expands, indirect benefits for the poor are generated through the multiplier process.

Since the poor did not gain considerably from the market-driven growth process, the government is expanding the scope of complementary policies to make economic development more broad based. Most of the poor households are endowed with labour power and wage is their most important source of income. Hence, employment has been recognized as an important monitoring variable for public policy, though it has not occupied a central place in the development plans. In the initial decades of development planning, it was thought that economic growth as such would help in substantial reduction of unemployment. But, actual experience turned out to be different. While the structure of income moved rapidly in favour of nonagriculture, the structure of employment changed very slowly. Industries and services did not generate adequate employment to absorb the growing labour force. About 55 per cent of the workforce continues to depend on agriculture, though they produce only 20 per cent of GDP. Thus, the per capita income of a typical worker in agriculture is one-fifth of his counterpart in non-agriculture. Bulk of the rural poor are landless labourers or marginal farmers dependent on wage income for a good part of the year.

It is against this structural background that several public employment programmes, aimed at providing the poor with manual work, were introduced under different names—Swarnajayanti Grameen Rozagar Yojana being the most recent one. The volume of such direct intervention programmes has expanded over time with rising unemployment, but there was no guarantee till recently that employment would be provided to all those who need it. The recent National Rural Employment Guarantee (NREG) Act is a welcome move from this point of view (see Box 2.2). This is an important policy initiative taken by the government that

# **Box 2.2** National Rural Employment Guarantee Act, 2005

The Indian Parliament enacted a law in 2005 making it mandatory for the government to provide at least 100 days of wage employment in a financial year to every household whose adult members are willing to undertake unskilled manual work at the minimum wage rates enacted for agricultural labourers. This act is a recognition by the state of employment entitlement by poor manual workers and constitutes a form of social security measure for them. The new scheme to be implemented in phases throughout the country would subsume other current public employment programmes.

The programme involves both the central and the state administration. The Central government assumes responsibility to provide the required fund to run the programme, while the state governments would be in charge of implementing it. An applicant is entitled to an unemployment allowance of about a third of the wage rate if he is not provided work within 15 days by the state government. This sum would be met by the state government.

There was a heated debate on the merits and demerits of the Employment Guarantee act. Opponents were quick to point out the likely huge additional cost of the programme involving I-2 per cent of GDP and large leakages noticed in other poverty reduction programmes. Advocates, on the other hand, emphasised the 'self-selection' character of public employment programme in so far as only those willing to do manual work at the minimum wage would demand it. Such people normally belong to the lowest income brackets. Evaluation studies have also shown that employment programmes are more cost effective in transferring resources to the poor compared to other poverty alleviation programmes. Besides, public employment programmes have a positive effect on rural wage rate which is an important determinant of poverty.

One lesson from the debate is that a socially acceptable norm may be worked out to devote a certain percentage of national income to programmes directly aimed at benefiting the low income classes. Since the natural growth process may not ensure full employment in a market economy, minimum income or employment entitlement to the people requires government intervention. Minsky (1986) says creation of an 'infinitely elastic demand' for labour could be possible only by government at a floor wage operating at 'a base level during good times and expanding during recession'.

reconciles the poverty reduction objective with the growth objective. Distributional conflict management by the state could play a crucial role in the success of reforms. The state should design innovative instruments that have least conflict with the growth process.

# **CONCLUSION**

Economic policies in India have been formulated with the twin objectives of growth and social justice. The economic reform process has placed the economy on a strong growth path. An average GDP growth of about 8 per cent since 2003–4 is particularly noteworthy. Revival of industry after a transition phase has generated new optimism about its inherent strength to compete in the global market. Growth of the services sector continues to be strong with a near revolution in telecommunication and IT. Growth of exports has played a key role in the current high growth phase.

The agricultural sector, however, has been stagnant and needs a big push to make the development process broadbased. The divergence of income and employment pattern does pose a main problem for India. With the majority of population still depending on agriculture, higher growth of agriculture and agro-based industries is essential for poverty reduction. Another emerging divide is the slow expansion of employment in the organized sector. According to NAS data, as much as 40 per cent of GDP originates in the organized sector which accounts for only about 15 per cent of employment. The need for removal of rigidities in the land and labour markets, consistent with growth and distribution objectives, cannot be overemphasized.

Inflation has been an area of concern in recent months with the CPI rising at above 7 per cent triggered by the rise in world prices of crude oil. There has been a partial pass-through of this price hike to the domestic economy. The RBI has adopted a pre-emptive monetary tightening policy to contain inflationary expectations.

Combined revenue and fiscal deficits of the Central and state governments have reduced in recent years, consistent with legislative commitments on fiscal reforms over the medium term. Reduction in revenue deficit, particularly, has generated positive savings from the public sector contributing to overall savings growth. Composition of government expenditure has improved with a reorientation towards the social sector and capital outlay. Overall fiscal deficit continues to be high at 7.5 per cent of GDP and fiscal distortions need to be further contracted through measures on the revenue and expenditure fronts.

The acceleration noticed recently in the Indian economy is largely driven by strong export growth which has averaged 24 per cent during the last three years. Imports too have grown considerably due to the economic buoyancy effect and international crude price rise. Strong growth in

invisible earnings has helped to keep the current account deficit at a moderate level.

While the upturn in world economy did contribute to the high growth phase, the rising savings and investment ratio is indicative of domestic supply-side response to take advantage of global demand. A move towards faster integration with other Asian countries could potentially contribute to a continuation of the export-led growth process in the medium run.

Given the low growth in employment, the poor do not seem to be benefiting equally from the growth process. Effective implementation of direct intervention measures such as the NREG programme could be important steps towards an inclusive growth process. The targeted schedule to cover the whole country under NREG should not be delayed. Economic acceleration should help us to divert a part of the incremental income to poverty reduction programmes so that those not getting absorbed in productive employment created by the growth process are not left behind. Distributional conflict management by the state could play a crucial role in the success of reforms.

# References

Ahluwalia, Isher J. (1991), *Productivity and Growth in Indian Manufacturing*, Oxford University Press, New Delhi.

Ahluwalia, Montek S. (2002), 'India's Vulnerability to External Crisis: An assessment', in M.S. Ahluwalia, Y.V. Reddy, and S.S. Tarapore (eds), *Macroeconomics and Monetary Policy—Issues for a Reforming Economy*, Oxford University Press, New Delhi.

Brooks, Douglas, David Roland-Holst, and Fan Zhai (2005), 'Growth, Trade and Integration: Long-Term Scenarios of Developing Asia', Asian Development Bank, Manila.

Chadha, G.K. (2003), 'Indian Agriculture in the New Mellennum', *Indian Journal of Agricultural Economics*, Vol. 58, No. 1.

Chand (2002), 'Indian Agriculture', *Indian Journal of Agricultural Economics*, Vol. 56, No. 2.

Dholakia, Bakul H. (2002), 'Sources of India's Accelerated Growth and the Vision of Indian Economy in 2020', *Indian Economic Journal*, Vol. 49, No. 4.

EPWRF (EPW Research Foundation) (2004), *National Account Statistics of India 1950-51 to 2002-03*, Fifth Edition, EPW Research Foundation, Mumbai.

International Monetary Fund (2005), World Economic Outlook, Washington, D.C

Kalirajan, K.P, R.T. Shand, and S. Bhide (2000), 'Economic Reforms and Convergence of Income across Indian States: Benefits for the Poor', in Shubhashis Gangopadhyay and Willima Wadhwa (eds), *Economic Reforms for the Poor*, Konark Publishers Pvt. Ltd., Delhi.

Kumar, Nagesh (ed.) (2004), *Towards an Asian Economic Community: Vision of a New Asia*, Research and Information System for Developing Countries, New Delhi and Institute for Southeast Asian studies, Singapore.

- Mathur, Archana S. and Arvinder S. Sachdeva (2005), 'Customs Tariff Structures in India', *Economic and Political Weekly*, Vol. 39, No. 6.
- Minsky, Hyman P. (1986), 'Stabilizing an Unstable economy', A Twentieth Century Fund Report, Yale University Press, New Haven and London.
- Planning Commission (2006), 'Towards Faster and More Inclusive Growth: An approach Paper to the 11<sup>th</sup> Five Year Plan', (Draft), Government of India, New Delhi.
- Rodrik, Dani and Arvind Subramanian (2004), 'Why India can Grow at 7 per cent a Year or More: Projections and Reflections', *Economic and Political Weekly*, Vol. 39, 17 April.
- Ronald-Holst, David, Jean-Pierre Verbiest, and Fan Zhai (2005), 'Growth and Trade Horizons for Asia: Long Term Forecasts for Regional Change', Asian Development Bank, Manila.
- Rosengrant, Mark W. and Robert E. Evenson (1995), 'Total Factor Productivity and Sources of Long-Term Growth in Indian Agriculture', EPTD Discussion Paper No. 7, International food Policy Research Institute, Washington, D.C.

- Sen, Rahul, Mukul G. Asher, and Ramkishen S. Rajan (2004), 'ASEAN-India Economic Relations: Current Status and Future Prospects', *Economic and Political Weekly*, Vol. 39, No. 29.
- Sen, Abhijit and Himanshu (2004), 'Poverty and Inequality in India', *Economic and Political Weekly*, Vol. 39, 18 and 25 September.
- Sivasubramonian, S. (2004), *The Sources of Economic Growth in India 1950–1 to 1999–2000*, Oxford University Press, New Delhi.
- Virmani, Arvind (2004), 'India's Economic Growth: From Socialist Rate of Growth to Bharatiya Rate of Growth', Working Paper No. 122, Indian Council for Research on International Economic Relations, New Delhi.
- Winters, L. Alan, Neil McCulloch, and Andrew McKay (2004), 'Trade Liberalization and Poverty: The Evidence So Far', *Journal of Economic Literature*, Vol. XLII.
- World Bank (2000), *Trade Blocks*, Oxford University Press, New York.

# Crisis in Agriculture and Rural Distress in Post-Reform India

D. Narasimha Reddy • Srijit Mishra

# INTRODUCTION

After more than half a century of planned economic development and high levels of aggregate growth over the last two decades, the Indian economy still remains predominantly rural. In 1999–2000, 72 per cent of population and 76 per cent of workforce in India were rural. In terms of overall growth, the last two decades have witnessed unprecedented high rates. What is puzzling is that high rates of growth, contrary to expectations, have been accompanied by a marked deceleration in the growth of urban share, from 1.1 per cent during 1981–91 to less than 0.8 per cent during 1991–2001. This is reflected in the slowing down of the growth of urban population from 3.2 per cent in the 1980s to 2.8 per cent in the 1990s (Sen 2003, pp. 479–80).

Rural India, however, was never closed or isolated but had its own dynamism and was on a steady path of articulation with the rest of the Indian economy and the world at large. Much of this transformation, during the post-independence period, was due to a series of development programmes where the state had a dominant protective as well as promotional role. However, during the last two decades, especially since the early 1990s, as a part of the neo-liberal wave of globalization aided by the revolution in information and communication technology (ICT), which has compressed time and space drastically, rural India too, somewhat rudely, has been exposed to the surge towards integration into the global market economy. This exposure, instead of lifting the

rural economy, has been a cause of growing concern. In terms of the share in the national income and in the levels of living there have been growing rural—urban disparities during the 1980s and 1990s (Bhalla 2005). Within rural India, agriculture continues to still be the dominant occupation. There was hardly any substantial increase in the share of rural non-farm sector employment. This paper addresses the nature and causes of the unfolding agrarian crisis and rural distress.

This paper is divided into five sections. The first section brings out the fact that the Indian economy is still predominantly rural, with slow urbanization but growing ruralurban disparities in income and levels of living. Agriculture continues to be the most important economic activity in the countryside with a disproportionate retention of high share in the total workforce, but with a fast declining share in the national product. The second section deals with the structural changes in employment as well as land holdings. The agricultural sector evolves as the one with a preponderance of self-employed small farms in terms of land holdings and growing proportion of hired-casual labour, awaiting the spread of appropriate technology for a breakthrough towards improved productivity. The third section analyses the nature of economic reforms in the Indian agriculture and their impact on the farming community. The fourth section brings out the broad contours of agrarian crisis that manifests in the form of a series of suicides. The fifth section discusses reforms, rural stress and suicides and closes with a few reflections on a possible way out of this existing situation.

# AGRARIAN STRUCTURE ON THE **EVE OF ECONOMIC REFORMS**

To understand the severity of impact of economic reforms on rural India we begin with an analysis of the changes in the basic agrarian structure and the nature of peasantry who are sucked into the vortex of market forces. An analysis of changes in the landholding structure (Reddy 2006a) reveals that: (i) there has been a general tendency of increase in the share of households and the area cultivated by smallmarginal farmers, (ii) there has been a reduction in the share of holdings as well as the area cultivated by the large farmers, and (iii) the average size of holdings in all size-classes is on the decline. There has been a marginal increase, nonetheless, in the concentration ratios. The asset concentration would be much higher if non-land assets such as farm machinery and buildings are included. But, unlike the East-Asian small-farm agrarian structure where there is hardly any landlessness, the Indian situation shows a phenomenal increase in the 'near landless households'. Although rural landless households increased only marginally from about 10 per cent in 1970-1 to 11 per cent in 1991–2, if we include those households with less than about half an acre of land, which are referred to as 'near landless', along with the landless, their proportion has increased from about 30 per cent in 1970-1 to about 48 per cent—nearly half of the rural households by 1990-1 (Sharma 2000). These are the households, which constitute the vast and growing rural underclass.

If we consider all the households with about 10 acres (about 4 hectares) or more (medium and large holdings) as constituting the rich (!) peasantry, it is this class, which has emerged as the 'masters of the countryside'. Until 1970-1, there had been no substantive change either in the share of households or in the share of land operated. They still constituted 15 to 20 per cent of the households and held 60 to 65 per cent of the operational holdings. But in 1970–1, this group of rich peasantry had already emerged as a class which wielded power, not only in the countryside, but also acquired the capability to influence public policy, apparently to appease the masses; and at the same time, to manipulate the implementation of these policies to their own advantage. It is well-known that land reform legislation, particularly relating to land ceilings, had hardly any effect on the landholdings of the rich peasantry till the end of the 1960s. By the 1970s, when considerable political pressure called for effective legislation and implementation, the rich peasant class was well entrenched. Wherever land was emerging as an increasingly productive asset, both because of public investment and new technology, the land reforms were subverted with impunity. The ceiling surpluses were kept to the minimum, and the surplus land surrendered was often of very poor quality. Even with surrenders of sub-standard surplus land, the total ceiling surplus land redistributed to the poorer peasantry hardly constitutes about 2 per cent of the total cultivated land in India, in comparison to about 25 to 40 per cent in the case of East Asian countries. What is retained by the rich peasantry is not only better quality land but also the land, which became a better productive asset because of benefits of state investments in providing infrastructure such as irrigation and power facilities. This was also the land of the rich peasantry that was ready to receive the improved technology along with heavy doses of state subsidies.

Thus, when we refer to the top 15 per cent of the rural households operating about 50 per cent of the land, at the end of the 1960s a substantial proportion of this land was more productive land, while the small-marginal farmers constitute about 80 per cent of the households operating only about 40 per cent of the land, a substantial part of which was relatively low quality land. The gini ratios, or worsening nature of land concentration, in some of the states need to be read along with the qualitative differences in the land operated by the rich and the poor farmers. To return to land reforms, it was not until the 1970s, when the revised land ceiling legislative measures acquired a certain cutting edge, that there appeared a tendency towards a decline in the proportion of households as well as area held under the large peasant category. The tenancy legislation, which apparently had the objective of transferring land to the cultivator (with the exception of tenants under the zamindars and other intermediaries who became owners in 1950s), has never been near reaching this objective. The class character of the entire gamut of agrarian reforms in all its variations is best summed up as a classic instance of how the capitalist farmers were the net beneficiaries of both the ill-implemented and the well-implemented agrarian reform programmes (Rao 1992) till the 1980s. But by late the 1980s, the 'rich peasantry' as a class appears to have developed stakes elsewhere than agriculture. Agriculture for them served only as a political base but no longer as a source of their economic strength which came from contracts, commissions, commerce and speculative activities including real estate. The reform-induced withdrawal of the state in agriculture doesn't hurt this class that matters politically as much as it does those who are powerless. Part of this process is discussed in the next section.

# REFORMS AND IMPACT ON THE FARMING COMMUNITY IN AGRICULTURE

Besides the economic reforms which overwhelmed the peasant stability, the roots of the present all pervading crisis in Indian agriculture can be traced back to the complacency and benign neglect of agriculture since the mid-1980s. Agriculture had fallen from policy priority under the euphoria that the country had left behind the days of shortages and achieved sustainable self-sufficiency in food grain production; that agriculture had reached a level of development where it could respond to the domestic market as well as global prices, if only the market restrictions were reversed; and that preferential and institutional interventions were anachronisms. But the worse deal had to wait till the 1990s when the reforms influenced every measure of public policy including agriculture at the behest of the Central Government, and were carried on with different degrees of zeal at the state level. The unfinished distributive land reforms were seen as obstacles to incentives, and liberal markets were expected to bring about technological breakthroughs. The result is a rapid decline of institutional support to agriculture based on well-deliberated principles of growth with equity. The evidence compiled here, both from the macro and micro levels, suggests that rapid retrogression in the public agricultural support systems is manifesting in unprecedented stress that has been causing the widespread health hazard of farmers' suicides.

Crisis in agriculture was well underway by the late 1980s and the economic reforms beginning in the 1990s have only deepened it. The crisis in agriculture in the post-reform period has become all pervasive. The manifestation of the crisis is felt in different forms in different agro-climatic and institutional contexts. For instance, the absence of irrigation facilities has forced farmers in dry regions to incur serious debts by investing in unstable groundwater resources, the growing pressure on land in command areas has resulted in rapid increase in the highly exploitative tenancy system. The volatile prices of commercial crops, including certain plantation crops, have suffered ruination because of the agricultural trade liberalization. The exposure to externally engineered crops with a hope of very high yields and with very scant regard of their suitability to domestic conditions has resulted in inappropriate technological practices that has meant severe loss of not only livelihoods but also resource degradation.

In 1991, when India officially went along the structural adjustment path and introduced a series of neo-liberal economic reforms, there was apparently not much explicitly by way of reforms in agriculture. But very soon, at least by mid-1990s when the World Trade Organization (WTO) was in place, there did unfold many policy reforms directly addressed to agriculture. Table 3.1 lists some of the important policy changes and measures of reform relating to Indian agriculture. International trade in agriculture has been liberalized. Beginning in 1997, all Indian product lines have been placed under the Generalized System of Preferences (GSP). By 2000, all agricultural products were removed

from quantitative restrictions (QRs) and brought under the tariff system. Canalization of trade in agricultural commodities through state trading agencies was almost removed and most of the products brought under Open General Licensing (OGL). The average tariffs on agricultural products, which stood at over 100 per cent in 1990, were brought down to 30 per cent by 1997 and targeted to come down further.

Internally, the structural adjustment process initiated in 1991 at the behest of the International Monetary Fund (IMF), and pursued with the aid of the World Bank had far reaching implications for Indian agriculture. The singleminded pursuit of fiscal reforms had much greater effect on the agricultural input support system and institutions than even the provisions of the Agreement on Agriculture (AOA) of WTO. Much of the Green Revolution initiated in 1960s in India was built with a system of state-supported incentives or subsidies and public investment in agricultural infrastructure such as irrigation. The National Seed Corporation established in 1963, and later, a network of State Seed Corporations established since 1975 had virtual monopoly and responsibility of developing and distributing better and high yielding variety (HYV) seeds in collaboration with the agricultural universities. Though trade in seeds was opened to private trade in the 1980s, in 1991, 100 per cent foreign equity was allowed in the seed industry in India and restrictions on import of seeds were relaxed.

Fertilizer subsidy, which continues to be the major explicit agricultural incentive system directly funded by the Union Government of India, has been considerably reduced. Fertilizer subsidy, which amounted to 3.2 per cent of GDP and 6 per cent of the Union revenue expenditure in 1990-1, was reduced to 2.5 per cent and 5 per cent, respectively by 1997-8 (Acharya 2004, p. 67). It was further reduced to 0.69 per cent of GDP by 2003-4 (Sen and Bhatia 2004, p. 275). Low electricity charges for agriculture are an incentive system provided through state budgets. Since 1997, several state governments introduced power sector reforms at the behest of the World Bank loans, and increased power tariffs with the ultimate objective of cost recovery. As part of the reforms, the power sector was thrown open to private sector investment. Low water rates for irrigation have been yet another implicit incentive to farmers provided through the state budgets. Many states revised the water rates upwards with the objective of recovering operation and maintenance costs. Some states like Andhra Pradesh had announced a ban on investment in new major irrigation projects, unless the 'stakeholders' also contributed to part of the investment. The irrigation reforms included introduction of participatory water management through water users' associations (WUAs), which did not have much impact on the efficiency of utilization of irrigation water resources. A comprehensive study of the working of the

TABLE 3.1 Important Measures of Economic Liberalization in Indian Agriculture

| A  | rea of Liberalization          | Policy Changes and Measures of Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1. | External Trade Sector          | <ul> <li>a. In tune with the WTO regime, since 1997 all Indian product lines placed in GSP.</li> <li>b. In 1998, QRs for 470 agricultural products dismantled. In 1999, further 1400 agricultural products brought under OGL and canalization of external trade in agriculture almost reversed.</li> <li>c. Average tariffs on agricultural imports reduced from 100 per cent in 1990 to 30 per cent in 1997.</li> <li>d. Though India is in principle against Minimum Common Access, but actually already importing 2 per cent of its food requirements.</li> </ul> |  |  |  |  |  |  |
| 2. | Internal Market Liberalization |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|    | (i) Seeds                      | <ul><li>a. Since 1991, 100 per cent foreign equity allowed in seed industry.</li><li>b. More liberalized imports of seeds.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|    | (ii) Fertilizers               | a. Gradual reduction of fertilizer subsidies since 1991.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|    | (iii) Power                    | <ul><li>a. Since 1997, power sector reforms were introduced at the behest of the World Bank in states such as Andhra Pradesh and power charges increased.</li><li>b. Power sector opened to the private sector.</li></ul>                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|    | (iv) Irrigation                | <ul> <li>a. Water rates increased in some states.</li> <li>b. Participatory water management was sought to be introduced through water users' associations (WUAs).</li> <li>c. States such as Andhra Pradesh made new large irrigation projects conditional on 'stakeholder' contribution to part of investment.</li> </ul>                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|    | (v) Institutional Credit       | <ul><li>a. Khursro Committee and Narasimham Committee (1992) undermining the importance of targeted priority sector landing by commercial banks.</li><li>b. The objectives of regional rural banks' (RRBs) priority to lending to weaker sections in rural areas diluted since 1997.</li></ul>                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|    | (vi) Agricultural Marketing    | <ul> <li>a. Changes in the provisions of the Essential Commodities Act.</li> <li>b. Relaxation of restrictions on the inter-state movement of farm produce.</li> <li>c. Model Agricultural Market Act.</li> <li>d. Encouragement of contract farming.</li> <li>e. Agricultural commodity forward markets.</li> </ul>                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 3. | Fiscal Reforms                 | <ul> <li>Fiscal reforms with an emphasis on tax reduction and public expenditure turned to reducing<br/>fiscal deficit as priority (grave implications for public investment in agriculture and rural<br/>infrastructure).</li> </ul>                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

Sources: Acharya (2004, p. 677); Chand (2006); Dorin and Jullian (2004, p. 206); and Vakulabharanam (2005, p. 975).

WUAs in Andhra Pradesh concludes that though a substantial amount of money was spent on the reform process, money was used mainly for improving the ailing irrigation systems rather than strengthening formal institutional structures. Contrary to the expectations, political involvement dominates their functioning. There is little devolution of powers to WUAs, as most important functions like assessments, collection of water charges, and sanctioning of works remain with the irrigation departments (Reddy and Reddy 2005).

Even at the risk of repetition, it must be emphasized that a substantial proportion of the Indian agriculture is a 'small farm' based economic activity, which is increasingly moving from a system of farmers' own-resource-based subsistence farming to purchased-input-based intensive commercial farming. Further, since small farmers' own resources are much too meager, timely and assured credit at reasonable interest rates has become a critical input in Indian agriculture. In the face of inadequacy or nonfunctioning of agricultural co-operatives, part of the radical banking reforms of the 1960s in the form of 'social control', and later by way of bank nationalization, were aimed at increasing the flow of institutional credit to agriculture by prioritizing lending to this sector. But beginning with 1991, at the behest of pressures from the reform agenda, 'targeted priority lending' or 'directed credit' to agriculture

<sup>&</sup>lt;sup>1</sup> As per the situation assessment survey of farmers, NSS 59th Round (2003), distribution of farmer households by size of land possessed suggests that a little more than one per cent are near-landless (less than 0.01 hectare), 64 per cent are marginal (0.01–1.00 hectare), 18 per cent are small (1.01-2.00 hectares), 11 per cent are semi-medium (2.01-4.00 hectares), 5 per cent are medium (4.01-10 hectares) and the remaining one per cent are large (more than 10.00 hectares).

was put on the back burner. The Narasimham Committee on Financial Reforms (1992) recommended the dilution of priority sector lending, including lending to the agricultural sector by the commercial banks. Though for political reasons, there was no explicit policy of removing priority lending to agriculture, the insistence on adherence to commercial performance placed a severe constraint on bank credit to agriculture, with disastrous consequences. Instead of an expansion in rural bank branches, there was actually closure of such branches, which declined from 34,867 in 1990 to 32,386 in 2003 (Rao 2004b). The regional rural banks (RRBs), which were meant for lending specifically to 'weaker sections', were opened to all on commercial principles, with upward revision of interest rates (Rao 2004a).

The economic reforms in Indian agriculture intensified the process of public as well as private resource crisis brewing from the mid-1980s. Gross capital formation (GCF) in Indian agriculture declined drastically. The public sector GCF in agriculture declined to one-third in 1999-2000, of the level in 1980-1 (Reddy 2006b). Contrary to expectations, the reform measures did not stimulate much increase in private investment. On the contrary there was deceleration of growth of private investment in agriculture (Sen 2003) and as a result, the overall GCF in agriculture as a share of total capital formation in the country, declined by almost half, during the period, from 13.1 per cent to 7.4 per cent. The proportion of Plan expenditure on agriculture and allied activities declined from 6.1 per cent to 4.5 per cent (Table 3.2). Further, there was a drastic reduction in the share of developmental expenditure on rural development from 11.7 per cent of the GDP in 1991–2 to 5.9 per cent in 2000– 1 (Gupta 2005, p. 5). One of the severe consequences of the reforms, as mentioned earlier, was felt in the provision of institutional credit to agriculture.

TABLE 3.2 Capital Formation and Plan Expenditure in Agriculture

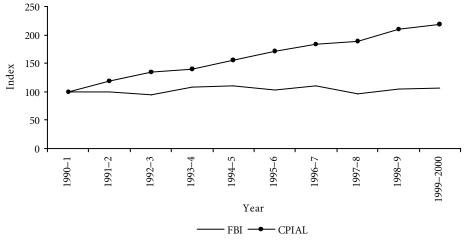
| Year                            | GFCF<br>in agr. as<br>percentage<br>of GDP | GFCF<br>in agr. as<br>percentage<br>of total<br>GFCF | Exp. on<br>agr. and<br>allied as<br>percentage<br>of total<br>plan exp. |
|---------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| 1980-5, Sixth Plan (actuals)    | 3.1                                        | 13.1                                                 | 6.1                                                                     |
| 1985-92, Seventh Plan (actuals) | 2.3                                        | 9.6                                                  | 5.9                                                                     |
| 1992–7, Eighth Plan (actuals)   | 1.9                                        | 7.4                                                  | 5.1                                                                     |
| 1997–2002, Ninth Plan (actuals) | 1.6                                        | 7.4                                                  | 4.5                                                                     |

*Note*: GFCF indicates gross fixed capital formation, GDP indicates gross domestic product at factor cost, Exp. indicates expenditure, Agr. indicates Agriculture.

Source: Mishra (2006a).

Scheduled commercial banks' share of credit to agriculture declined from 18 per cent in December 1987 to 11 per cent by March 2004 (Shetty 2006). A study of credit from formal institutional sources shows that between 1980-1 and 1999–2000, agricultural sector's share of short-term credit declined from 13.3 per cent to 6.1 per cent. During the same period, agriculture's share in terms of lending declined from 16.9 per cent to 8.3 per cent (Rao 2002). The acceleration in the decline in share of much needed long-term credit for investment was witnessed since the early 1990s. The number of agricultural loan accounts in scheduled commercial banks that had reached a peak of 27.7 million by March 1992 declined to 20.3 million by March 2002 and was at 21.3 million by March 2004 (Shetty 2006). The worst sufferers of the formal institutional resource crunch have been the small borrowers, mostly small farmers. Beginning with the early 1990s, especially since 1993, the small borrowers' share in bank credit declined steeply from 21.9 per cent in 1992 to 7 per cent in 2001 (Rao 2002). This doesn't mean that small farmers' needs have gone down or that small farmers were restrained from borrowing. It only means that small farmers were forced to borrow from non-institutional sources such as moneylenders, fertilizer and pesticide dealers and friends and relatives. The interest charges of these informal sources are disproportionately high compared to institutional credit.

A recent nation wide survey (NSS 59th Round, Report 498, 2005) also brings out the grave agrarian situation in terms of farmer indebtedness. Almost 50 per cent of the farming households are indebted, but the proportion is much higher in states like Andhra Pradesh (82.0 per cent), Tamil Nadu (74.5 per cent), Punjab (65.4 per cent), and Kerala (64.4 per cent), which are also states with relatively higher investment. More than 50 per cent of the borrowing is for investment in agriculture, but it is much higher in Andhra Pradesh (77 per cent), Karnataka (73 per cent), and Maharashtra (83 per cent). Institutional sources account for about 50 per cent on an average, but it is much lower at 30 per cent in states like Andhra Pradesh, where the remaining 70 per cent comes from informal sources.


There has been a steep increase in the costs of farming across the country, which is substantially due to the reforms. The fertilizer price index increased from 99 in 1990–1 to 228 in 1998–9 at a compound annual growth rate of 11 per cent (Acharya 2004, p. 73). And one estimate, across the crops and country, suggests that fertilizers presently account for 29 per cent of farmers' input costs (Acharya 2004, p. 78). There have also been increases in the water charges in many states. One of the often cited reasons for agricultural trade liberalization is that it provides access to higher prices in the global markets. However, there has actually been a decline in global prices of some of the agricultural

commodities such as rice and cotton for which India enjoyed comparative advantage. Before 1998-9, the Indian domestic lint prices were lower than world prices and India was an exporter of cotton. With the removal of QRs and with the recent fall in the global cotton prices, India has turned into an importer of cotton, which has depressed domestic prices of cotton and has been the cause of serious losses to cotton farmers (Vakulabharanam 2005). According to one estimate, most of the global agricultural commodity prices in 2002 were lower than those in 1994, and particularly cotton prices were 30 per cent lower (Vakulabharanam 2005). Farm business income (FBI), the difference between the value of output produced and the costs actually paid out, which was on the rise in the 1980s, started declining in the 1990s. The growth of FBI per hectare decelerated from 3.21 per cent in 1980s to 1.02 per cent in the 1990s. The growth of real FBI per cultivator declined from 1.78 per cent in 1980s to 0.03 in 1990s and in actual terms also it seems to have declined in the states of Andhra Pradesh, Bihar, Gujarat, Karnataka, Maharashtra, Orissa, and Rajasthan (Sen and Bhatia 2004).

Figure 3.1 shows the steep rise in cost of living in rural areas as indicated by the CPI for agricultural labour (CPIAL)

while the farmers' income languishes. This is a familiar scissors crisis in agriculture often resulting in pauperization of the peasantry. This has also resulted in widening of disparities between agricultural and non-agricultural incomes (see Table 3.3). The disparities have doubled over the last two and a half decades, leaving agriculture way behind.

In 2002–3, the average returns from cultivation per hectare in India were Rs 6756 in kharif and Rs 9290 in rabi (Appendix 3.1). From the total farmer households, 86 per cent with an average land size of 1.2 hectares and 62 per cent with an average land size of 0.9 hectare cultivated during kharif and rabi, respectively. For all farm households in India, cultivation accounts for 74 per cent of their returns (value of output minus paid out expenses), farm animals contribute 7 per cent, and the remaining 19 per cent is from non-farm business. Overall, there is not much diversification and the income of an average farmer household would hardly suffice to meet basic day-to-day requirements. Paid out expenses as a percentage of value of output are about 44 per cent in kharif and 42 per cent in rabi. This is likely to be higher if one includes imputed family labour or excludes output used for domestic consumption. There is wide inter-state variation. Compared to the national average,



Sources: Government of India (2005) and Sen and Bhatia (2004, p. 241).

Figure 3.1: Indices of FBI and CPIAL

TABLE 3.3

Per Worker Income in Agriculture and Non-agriculture Sectors in India

(1993–4 prices)

| Period            |             | Per Worker<br>pees) | Ratio of<br>Non-agriculture |             | Rates in the ade (per cent) |
|-------------------|-------------|---------------------|-----------------------------|-------------|-----------------------------|
|                   | Agriculture | Non-agriculture     | to Agriculture              | Agriculture | Non-agriculture             |
| 1978–9 to 1983–4  | 9961        | 28,430              | 2.85                        | _           | _                           |
| 1988-9 to 1993-4  | 11,179      | 39,355              | 3.52                        | 1.16        | 3.31                        |
| 1998–9 to 2003–04 | 11,496      | 59,961              | 5.22                        | 0.28        | 4.30                        |

Source: Chand (2006).

one observes relatively lower returns per hectare and greater share of expenses in the states of Andhra Pradesh, Gujarat, Haryana, Karnataka, Maharashtra, Madhya Pradesh, Orissa, Rajasthan, and Tamil Nadu during kharif. This could be indicative of high costs or crop failure. Share of expenses to the value of output is less than 30 per cent in most of the hilly states: Himachal Pradesh, Jammu and Kashmir, Jharkhand, the North-eastern states, and Uttaranchal, indicating that dependence on market based inputs could be much lower here. Besides, some pattern could be hidden because the calculations are aggregated across all crops.

A case study of a farmer owning eight acres of unirrigated land in Yavatmal suggests the following. In 2004, he cultivated cotton on five acres, he had to go in for a second sowing due to delay in rain. This led to an increase in seed expenses, but the expenses incurred in the second instance were reduced by half by using for a different variety and using some leftover seeds.<sup>2</sup> The total expenditure on seed was Rs 7500. After including expenditure on fertilizer (Rs 5000), pesticides (Rs 3000), and labour (Rs 2000) his total costs were Rs 17,500. He got a produce of 15 quintals, which he sold to the Maharashtra State Co-operative Cotton Growers Marketing Federation (MSCCGMF) through the Monopoly Cotton Procurement Scheme (MCPS). At the time of the survey, he had received Rs 1500 per quintal and was expecting another Rs 500 per quintal. After receiving this balance amount his net income will be Rs 12,500. The remaining three acres, used for cultivating crops for consumption purposes, under a deficient rain did not give much return (Mishra 2006a). A good crop (say, 4 quintals of cotton per acre) would have taken this farmer above the poverty line, but now he is below the poverty line.<sup>3</sup> This depicts the transient state of poverty of even a semi-medium farmer household. The situation would be worse for marginal/small farmers who are likely to have lower access to credit from formal sources. A tenant farmer will also have additional costs in the form of rent. Further, because of lower volumes of produce or immediate cash requirement or non-legal status of tenancy, they may end up selling their produce to traders at a price lower than that prevailing in market centres. A slight dip in the price of produce will also have an adverse affect on their income.

Opening up of the economy has led to certain cash crops like cotton and pepper among others being exposed to greater price volatility. Excess international supply of cotton at a lower price is also because of direct and indirect subsidies, leading to dumping by the USA. Domestic policies in India have led to the removal of QRs and the subsequent reduction of import tariff from 35 per cent in 2001-2 to 5 per cent in 2002-3 has increased our vulnerability to the volatility of international prices. It is at this critical juncture when there is a greater need of price stabilization that the MCPS of Maharashtra has become non-functional. Disbanding of this scheme in 2005-6 has in fact led to a reduction of Rs 500 per quintal advance additional price that had in recent years acted as a cushion against the higher costs in the state. The Commission for Agricultural Costs and Prices estimates the cost of production for cotton in Maharashtra at Rs 2303 per quintal, but the all-India minimum support price for the long staple variety of fair average quality is only Rs 1980.

If one goes by the consumption expenditure based headcount estimates of poverty, one may not be in a position to perceive the stress on agricultural communities. However, if one looks at the undernourishment, the stress becomes apparent. Table 3.4 gives data separately on the number of

TABLE 3.4 Number of Poor and Undernourished Persons in Various Farm Categories in Rural India

(in million)

| Year      | Agric | cultural            |                  | Farm Classe         |      |                     |      |                         |      |                     |      |                     |  |
|-----------|-------|---------------------|------------------|---------------------|------|---------------------|------|-------------------------|------|---------------------|------|---------------------|--|
|           |       |                     | Marginal (<1 ha) |                     |      | Small<br>(1–2 ha)   |      | Semi-medium<br>(2–4 ha) |      | Medium<br>(4–10 ha) |      | Large<br>(>10 ha)   |  |
|           | Poor  | Under-<br>nourished | Poor             | Under-<br>nourished | Poor | Under-<br>nourished | Poor | Under-<br>nourished     | Poor | Under-<br>nourished | Poor | Under-<br>nourished |  |
| 1983–4    | 44.6  | 33.7                | 131.2            | 98.0                | 41.1 | 25.8                | 29.5 | 18.0                    | 15.0 | 9.2                 | 2.8  | 1.9                 |  |
| 1987      | 40.0  | 30.2                | 115.1            | 84.0                | 29.6 | 18.8                | 16.6 | 12.3                    | 7.2  | 5.3                 | 1.2  | 0.7                 |  |
| 1993-4    | 39.5  | 39.2                | 123.5            | 105.5               | 26.7 | 24.7                | 15.0 | 12.4                    | 8.4  | 7.4                 | 0.8  | 1.0                 |  |
| 1999–2000 | 36.5  | 42.8                | 95.2             | 122.0               | 16.4 | 28.7                | 8.5  | 18.7                    | 3.2  | 10.3                | 0.0  | 0.7                 |  |

Source: Kumar (2005, pp. 223-4).

<sup>&</sup>lt;sup>2</sup> It is generally the case that for an acre of land, one packet of seeds (910 grams) costing around Rs 450 to Rs 500 for non-Bt varieties and Rs 1600 for legal Bt varieties would suffice (in 2006–7 agricultural season, due to a court judgement, price of legal Bt varieties has come down to about Rs 1250 per packet). However, due to a guaranteed germination rate of 65 per cent only, farmers end up sowing two instead of one seed and thereby increasing the seed requirement. Under assured water, such practices might reduce.

<sup>&</sup>lt;sup>3</sup> Updating the Planning Commission poverty line for rural Maharashtra to 2004 one gets an income of Rs 4037 per person per annum (that is, Rs 336.45 per capita per month).

poor and undernourished persons in various farm categories in rural India. What is of significance is that even as the head-count of persons who are poor is coming down, there has been a spurt in the number of undernourished across all farming classes, especially in the 1990s. This clearly brings out the adverse impact of reforms on the health conditions of the farming community. Unfortunately, we do not have sufficient data that would capture undernourishment in terms of the health status of the farming community.

#### RURAL DISTRESS AND FARMERS' SUICIDES

In addition to the factors that manifest a situation of crisis in agriculture, there has been increasing pressure on the farmers in terms of meeting basic social services such as education and health, which are increasingly being privatized and which are becoming a considerable part of domestic expenditure needs. A combination of these stress factors has been at the root of the unusual phenomenon of farmers' suicides in rural India, especially since 1997. Though there are limitations of data on suicides, an attempt is made here to look into the nature of sources, the nature of data and, to the extent possible, use the same in understanding the crisis.

The main official source of data on suicide deaths is police records made available by the National Crime Records Bureau (NCRB), Ministry of Home Affairs, Government of India. The limitation of the annual data provided by the Bureau is the routine reporting of suicides, which may not reflect the current crisis in agriculture. Further, it is likely to be under-reported because the act is identified with shame and stigma and also because of a legal sanction against it.4 Notwithstanding these limitations, attempts have been made to analyse the trends in mortality, suicide mortality and farmers' suicides at the district, state, interstate, and national levels (Mishra 2006a, b, c, d, and Mohan Rao 2004).

The NCRB data are available from 1975 but professionwise distribution is available only from 1995 onwards. Table 3.5 shows that even as the overall crude death rate (CDR) is coming down, suicide mortality rate (SMR) is on the rise for the country as a whole. Since most of the suicides are among male farmers, it would be interesting to focus on male SMR in India as well as on states reporting high incidence of farmers' suicides. Table 3.6 presents age-adjusted SMRs for India and selected states for the period 1975–2001. The male SMR is much higher than the overall SMR observed in Table 3.5. The rate of growth of male SMR is much higher in the 1990s than earlier. The male SMRs of Andhra

TABLE 3.5 Trends in CDR and SMR in India, 1981-2003

| Year        | CDR  | SMR  |
|-------------|------|------|
| 1981        | 12.5 | 6.0  |
| 1982        | 11.9 | 6.5  |
| 1983        | 11.9 | 6.6  |
| 1984        | 12.6 | 7.0  |
| 1985        | 11.8 | 7.2  |
| 1986        | 11.1 | 7.2  |
| 1987        | 10.9 | 7.6  |
| 1988        | 11.0 | 8.1  |
| 1989        | 10.3 | 8.5  |
| 1990        | 9.7  | 8.9  |
| 1991        | 9.8  | 9.3  |
| 1992        | 10.1 | 9.3  |
| 1993        | 9.3  | 9.6  |
| 1994        | 9.2  | 9.9  |
| 1995        | 9.0  | 9.7  |
| 1996        | 9.0  | 9.5  |
| 1997        | 8.9  | 10.1 |
| 1998        | 9.0  | 10.8 |
| 1999        | 8.7  | 11.2 |
| 2000        | 8.5  | 10.8 |
| 2001        | 8.4  | 10.5 |
| 2002        | 8.1  | 10.5 |
| 2003        | 8.0  | 10.4 |
| Growth rate | -2.1 | 2.6  |

Note: CDR is crude death rate: deaths per 1000 population; CDR estimates exclude Jammu & Kashmir from 1991 to 1995 and in 1997, Mizoram from 1991 to 1996 and Nagaland (rural) from 1995 to 2002; SMR is suicide mortality rate: suicide deaths per 1,00,000 population; Growth rates are linear trend estimates, b in 1nYt=a+bt (where t is time), calculated using CDR/SMR rounded off to the first decimal. Both the growth rates are statistically significant at 95% CI.

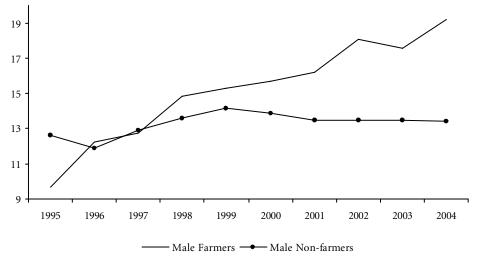
Source: CDR is from www.indiastat.com (accessed 12 June 2006) and SMR is from Mishra (2006d).

Pradesh and Maharashtra which were close to national average till late 1980s, started rising at much faster rates in 1990s. These are two of the four states which have reported the highest incidence of farmers' suicides since early 1990s. The other two states, Karnataka and Kerala which had much higher SMRs than the national average up to 1980s, show further rise in 1990s.

As observed earlier, profession-wise SMRs are available only from 1995. Figure 3.2 shows that SMR for male farmers has been rising steeply since 1995, while SMR for male non-farmers has been more or less stable especially since 1999. Table 3.7 shows the age-adjusted SMRs for all male population as well as SMRs for male farmers for India and the four states under discussion. For India as well as the three states other than Kerala, the gap between male SMRs

<sup>&</sup>lt;sup>4</sup> Attempt to suicide is considered a criminal act as per the Indian Penal Code (IPC) 309. There have been court rulings calling for a humane perspective, but without legislative backing the statute remains.

| TABLE 3.6                                              |     |
|--------------------------------------------------------|-----|
| Age-adjusted Male SMR in India and Selected Indian Sta | tes |


| Year        | India | AP   | Karnataka | Kerala | Maharashtra |
|-------------|-------|------|-----------|--------|-------------|
| 1975        | 9.7   | 9.3  | 19.5      | 30.2   | 8.6         |
| 1976        | 8.7   | 11.3 | 16.4      | 23.9   | 9.0         |
| 1977        | 8.3   | 8.1  | 16.4      | 24.7   | 7.6         |
| 1978        | 8.4   | 7.5  | 18.6      | 24.0   | 7.1         |
| 1979        | 7.8   | 8.5  | 18.1      | 22.6   | 6.8         |
| 1980        | 8.0   | 4.5  | 20.9      | 23.0   | 6.1         |
| 1981        | 7.7   | 6.6  | 13.8      | 24.5   | 6.6         |
| 1982        | 8.4   | 6.9  | 18.9      | 28.2   | 7.6         |
| 1983        | 8.4   | 7.5  | 16.6      | 31.1   | 6.9         |
| 1984        | 8.9   | 7.9  | 16.7      | 33.3   | 7.7         |
| 1985        | 9.0   | 9.0  | 15.5      | 36.5   | 8.2         |
| 1986        | 9.0   | 8.4  | 14.8      | 36.2   | 8.8         |
| 1987        | 9.7   | 9.6  | 18.5      | 38.7   | 8.1         |
| 1988        | 10.4  | 9.8  | 21.2      | 41.4   | 9.8         |
| 1989        | 10.9  | 11.1 | 23.1      | 39.6   | 11.1        |
| 1990        | 11.5  | 11.3 | 24.5      | 43.2   | 12.7        |
| 1991        | 12.0  | 12.5 | 23.2      | 44.2   | 14.2        |
| 1992        | 12.0  | 12.5 | 23.2      | 44.2   | 14.2        |
| 1993        | 12.4  | 14.4 | 23.8      | 43.5   | 15.6        |
| 1994        | 12.8  | 12.8 | 26.0      | 46.3   | 15.2        |
| 1995        | 12.5  | 11.4 | 31.8      | 42.0   | 17.4        |
| 1996        | 11.9  | 13.3 | 24.8      | 40.2   | 16.0        |
| 1997        | 12.9  | 14.8 | 28.1      | 45.7   | 17.7        |
| 1998        | 13.8  | 16.6 | 30.0      | 47.4   | 18.9        |
| 1999        | 14.4  | 18.1 | 33.4      | 49.6   | 18.5        |
| 2000        | 14.2  | 17.4 | 32.2      | 47.4   | 19.6        |
| 2001        | 14.0  | 18.2 | 32.3      | 48.3   | 20.6        |
| Growth rate | 2.4*  | 3.6* | 2.8*      | 3.1*   | 4.7*        |

*Note:* Age-adjusted SMR is suicides per 1,00,000 population of 5 years and above, as suicide is medically not defined for the 0–4 population. *Source:* Mishra (2006c).

in general and male farmer SMRs has been on the rise. There was a decline in this gap in Karnataka in 2004. In Kerala, the gap was very high and it started further widening since 1997, though there was a decline in 2001 and again in 2004.

Regression and correlation results based on cross-sectional data of 1995 for 19 states in the country show that the rate of suicides of farmers is more in areas with favourable ratio of area to holdings among small farmers, higher rate of suicide in the general public, high per centage of deaths due to economic bankruptcy, and higher proportion of area under non-food crops. The results also show that farmer suicides are higher in areas with predominance of small holdings, minor irrigation, low share of bank credit to rural areas, and low share of priority sector advances to agriculture. In this connection, the negative association between area under cotton and share of rural credit in total credit also deserves attention (Mohan Rao 2004).

The second, and more widely used source of data, is press reports, particularly from 1997, which are based on suicides specific to farming related causes. The data based on press reports may have an element of over-emphasizing the failure of institutional facilities because of linking it to all suicide deaths by farmers Nonetheless studies such as the one by Mohan Rao (2004) do provide some insights into this issue. Mohan Rao made a content analysis of 337 media reports and brought out economic causes as the dominant factor for the suicides of farmers in Andhra Pradesh. Among the economic factors, indebtedness, crop failure, and lower prices are prominent though higher rates of interest and liberalization also figured. Among the non-economic causes, harassment from creditors particularly input dealers and



*Note*: SMR for farmers is based on interpolated/extrapolated population for cultivators using 1991 and 2001 census. For details, see Mishra (2006c).

Source: NCRB, Various Years.

Figure 3.2: SMR for Male Farmers and Non-farmers in India, 1995–2004

| Year | India |         | Andhra Pradesh |         | Karnataka |         | Ke   | erala   | Maharashtra |         |
|------|-------|---------|----------------|---------|-----------|---------|------|---------|-------------|---------|
|      | All   | Farmers | All            | Farmers | All       | Farmers | All  | Farmers | All         | Farmers |
| 1995 | 12.5  | 9.7     | 11.4           | 13.6    | 31.8      | 33.7    | 42.0 | 127.6   | 17.4        | 14.7    |
| 1996 | 11.9  | 12.3    | 13.3           | 24.4    | 24.8      | 30.9    | 40.2 | 109.4   | 16.0        | 23.5    |
| 1997 | 12.9  | 12.7    | 14.8           | 17.5    | 28.1      | 31.3    | 45.7 | 138.9   | 17.7        | 23.9    |
| 1998 | 13.8  | 14.8    | 16.6           | 28.8    | 30.0      | 30.1    | 47.4 | 172.9   | 18.9        | 29.0    |
| 1999 | 14.4  | 15.3    | 18.1           | 30.1    | 33.4      | 41.4    | 49.6 | 182.5   | 18.5        | 30.6    |
| 2000 | 14.2  | 15.7    | 17.4           | 22.8    | 33.2      | 43.5    | 47.4 | 184.7   | 19.6        | 37.3    |
| 2001 | 14.0  | 16.2    | 18.2           | 25.6    | 32.3      | 44.5    | 48.3 | 161.8   | 20.6        | 44.1    |
| 2002 | 14.3  | 18.1    | 21.2           | 31.7    | 32.6      | 41.6    | 50.5 | 258.3   | 20.3        | 47.3    |
| 2003 | 14.2  | 17.5    | 20.7           | 28.5    | 33.2      | 48.2    | 48.5 | 297.6   | 20.6        | 50.8    |
| 2004 | 14.4  | 19.2    | 24.7           | 44.5    | 31.2      | 35.4    | 45.8 | 183.0   | 20.3        | 57.2    |

TABLE 3.7
Age-adjusted SMR for Male Population and for Male Farmers

Note: As in Table 3.6.

Source: NCRB, Various Years, as in Mishra (2006c).

moneylenders emerged as a major factor, though spurious inputs, overuse of pesticides, and erratic power supply also figured. Next in order are institutional factors namely the lack of institutional credit, limited purchases by Andhra Pradesh State Co-operative Marketing Federation Limited (MARKFED) and Cotton Corporation of India (CCI). Among the natural factors, inadequate rainfall during sowing season and heavy rainfall at the time of harvest figured prominently.

The third source is the official data released by the state governments, but this suffers from underestimation because it is strictly linked to compensation paid by the government departments. Official scrutiny is often known to treat even genuine instances of suicide as arising out of disease or old age or some other reason, with a view to restricting the payment of compensation. On 10 April 2006, the Union Ministry of Agriculture convened a meeting of Chief Ministers and Agriculture Ministers from the four states that have been reporting high incidence of suicides. Statistics relating to farmers' suicides during five years 2001-2 to 2005-6 were released. Officially the total number of suicides during the period are reported as 5910 in Karnataka (Karnataka disputed it as an overestimate), 1835 in Andhra Pradesh (AP disputed it as underestimate and corrected it to 2035), 981 in Maharashtra, and 201 in Kerala (The Hindu, 11 April 2006), but these are much lower than the NCRB data which indicates that between 2001 and 2004 there were more than 35,000 suicide deaths by farmers in these four states and nearly 70,000 for the country as a whole.

Notwithstanding these limitations, the available data on suicides do indicate their links to the impact of reforms on small-farmer Indian agriculture, and the resulting rural stress. Although, it is not an exemplar methodology for social science researchers to visit the households of the suicide victims with an investigative zeal, particularly when

the households realize that these investigators are not empowered to recommend compensation, still many small sample-based studies of the households of suicide victims do exist, to which we shall return in the next section. Though suicides are reported from many parts of the country, the magnitude varies.

The available evidence thus tends to show that the farming community is passing through a particularly high stress situation during this high growth reform period. Though the specific and immediate triggers may vary from region to region, the overall macroeconomic context is the one of structural adjustment and trade liberalization. The evidence available from the states emphasizes the reform induced stress. In Andhra Pradesh, declining public investment in irrigation and unavailability of credit from institutional sources meant heavy investment in digging of bore-wells by borrowing from informal sources at a higher interest burden (AWARE 1998; Citizen's Report 1998; RSC 1998; Shiva et al. 2000). This search for water led to a fall in the water table and the expected returns from agriculture did not come about, resulting in debt burden that threatened the individual's self-respect. An enterprising hard working farmer is now identified as someone who is reneging on contracts—he cannot repay his loans. It is the government sponsored mission on oilseeds that led to shifts in cropping pattern shifts in expectation of higher returns (Vidyasagar and Chandra 2004). This not only reduced the farm-based risk mitigation available from multiple cropping cultivation in dry regions but the recent developments in liberalizing imports has also led to a crashing of domestic prices and returns even during normal times. The study further notes that 55 per cent of farmers in the state do not get minimum support prices (MSP). The worst affected are the marginal, small, and even medium farmers who do not get the MSP because of their dependence on traders for credit at high rates of interest, along with a system where they are tied up with sale of output to the trader at prices lower than the MSP. A study by Bhushan and Reddy (2004), based on a survey of suicide households, indicates that the households had taken to mono-cropping of input-intensive, non-food, commercial crops and even leased in land, but the crops failed due to inadequate water. Another study (Rao and Suri 2006) points out that increasing costs and low returns add to the crisis and this has come about because of neo-liberal policies which are, in turn, a consequence of loss of power of the farming community resulting in their removal from the policy making process.

The rain dependent cotton growing farmers of Vidarbha in Maharashtra are faced with declining profitability because of dumping of cotton in the global market by the USA, low import tariffs, failure of MCPS, and withdrawal of supporting state investment and subsidies (Mishra 2006a). Another study of suicides of farmers in the same region of Maharashtra in the Durkheimian framework also observes that lower and middle caste peasant smallholders found themselves trapped between enhanced aspirations generated by land reform and other post-1947 measures, and the reality of neo-liberalism reflected in rising debt and declining income (Mohanty 2005).

The global exposure of the plantation-based farmer in Kerala also led to crisis situations because of depressed world prices (Nair and Menon 2004). A study on farmers' suicides in Kerala concludes that farmers' distress over the past one decade is closely linked to the neo-liberal policy regime in the 1990s. 'The association between the two is more in the regions of the state which are heavily dependent on export-oriented crops, such as coffee and pepper' (Mohanakumar and Sharma 2006). In drought prone Karnataka, it is the liberal imports of edible oil, exposure to fluctuating agricultural commodity markets, and decline in public investment and state support systems to agriculture that triggered suicides (Assadi 1998; Deshpande and Nagesh Prabhu 2005; Vasavi 1999; and Vidyasagar and Chandra 2004).

# REFORM-LED GROWTH, SMALL PEASANT ADJUSTMENT COST, AND THE NEED FOR STATE SUPPORT

It would be futile to explain away the manifestation of agrarian distress as psychological aberrations of the farming community. Failure of certain social institutions does serve as a contingent factors to an extent, but does not explain the present distress entirely. There are questions which bring in the social dimensions from the Durkheimian analysis of suicides (Durkheim 2002/1897). The spread of neo-liberal values and highly rationalized individual relations call for attention to the growing alienation and social

disintegration in rural areas. The failure of the village as a social community and the growing disintegration of the joint family as a protective and supportive collective also calls for closer analysis.

But the much larger question is whether small-marginal farming is sustainable without substantial public infrastructure support and comprehensive social security including health, education, employment, and old age support? Even at the early stages of the structural adjustment programme (SAP) there was a clear warning that neo-liberal reforms would face adjustment among poor farmers, which without assistance from the state, would intensify their suffering (Cornia et al. 1987). By and large, the incidence of suicides has been higher among small-marginal farmers moving from subsistence agriculture to the high value crops with a strong motivation to improve their social and economic status. They are indeed risk-taking small agricultural entrepreneurs whose success would be the basic premise for the transformation of rural India towards better and equitable incomes and livelihoods. To sum up, 'farmers' distress is not due to lack of agricultural growth but paradoxically due to enterprising qualities of farmers who pursue growth and even achieve it in good measure. But, drought-prone environment and non-caring policy regime turn those who bring growth into victims' (Rao and Gopalappa 2004).

Recognizing growing disparities between the agricultural and non-agricultural sectors and deterioration of the quality of the public services in rural India, Vaidyanathan (2006) calls for a radically different approach to make the farm sector improve its growth performance. It is a cruel paradox that the state is agriculturally self-sufficient, and the policy makers have designs and dreams about high export growth of agricultural commodities including foodgrains, but farmers who are the architects of these surpluses are allowed to die due to distress. What is needed is a caring policy but what exists is exposure to predatory market forces instead. There is increasing evidence that there cannot be rural development, even in relatively prosperous regions like Andhra Pradesh and Punjab, without high agricultural growth. Nor is there any instance in the world of dry land farmers moving to high productivity agriculture in the face of gross exposure to volatile market forces. There is no instance of small-marginal farmers earning adequate livelihood without appropriate social security and economic support or without succour provided by supplementary non-farm employment. Small-marginal farmers in dry regions are the most vulnerable but least cared for in the economic reforms framework. It is policy neglect that has been forcing these farmers to shoulder all the costs and risks of high investment, including land and water resource development (with borrowed capital at usurious interest rates). They have lifted the states' agriculture to relatively better productivity agriculture at a cost that they can ill afford.

These costs are the costs of transition of agriculture in the state from subsistence levels to higher productivity. These costs are necessarily social costs, which should not be compounded on to the shoulders of the distressed peasantry. The state has to own up to the responsibility for these social costs of investment in the development of land and water (including groundwater) resources, provision of adequate economic support by way of institutional credit, extension, supply of quality inputs, and remunerative prices as well as social sector support of ensuring quality education and health facilities in the countryside. There is incontrovertible evidence that agricultural growth driven by improved productivity of small-marginal farmers would result in much more equitable distribution of income, augmentation of effective demand with its spread effects on non-farm sector, and would be more sustainable as well. The essential condition is the need for a policy shift from the mindless neo-liberal market centred reforms to building of economic and social support systems to make small-marginal farming, especially in dry regions, viable, and to ensure that these farmers are protected against exposure to distress due to vagaries of domestic and global market forces.

#### References

- Acharya, S.S. (2004), 'Fertilizer Subsidy in Indian Agriculture: Some Issues' in Bruno Dorin and Thomas Jullien (eds), Agricultural Incentives in India: Past Trends and Perspective Paths Towards Sustainable Development, Manohar, New Delhi and Centre de Sciences Humains, pp. 67–82.
- Assadi, Muzaffar (1998), 'Karnataka: Farmers' Suicides—Signs of Distress in Rural Economy', Economic and Political Weekly, Vol. XXXIII, No. 14, 4 April, pp. 747-8.
- AWARE (1998), Farmers' Suicides in Andhra Pradesh, AWARE, Hyderabad.
- Bhalla, Sheila (2005), 'India's Rural Economy: Issues and Evidence', Working Paper No. 25, Institute for Human Development,
- Bhushan, Shashi and T. Prabhakar Reddy (2004), 'A Moving into Poverty Syndrome: Debt and Differentiation in Small Farm Economies: A Casual Study of Farmers' Suicides in AP', Poverty and Social Analysis Monitoring Unit (PSAMU-SERP), Hyderabad, November, Mimeo.
- Chand, Ramesh (2006), 'India's Agricultural Challenges and their Implications for Growth and Equity', Paper presented at Silver Jubilee Seminar on Perspectives on Equitable Development: International Experience and What can India Learn? Centre for Economic and Social Studies, Hyderabad.
- Citizen's Report (1998), Gathering Agrarian Crisis—Farmers' Suicides in Warangal District (A.P.) India, Centre for Environmental Studies, Warangal, http://www.artsci.wustl.edu/~stone/ suicide.html.

- Cornia, G., R. Jolly, and F. Stewart (1987), 'Introduction' in G. Cornia, R. Jolly, and F. Stewart (eds) Adjustment with A Human Face, Vol.1, Clarendon Press, Oxford, pp. 1–8.
- Deshpande, R.S. and Nagesh Prabhu (2005), 'Farmers' Distress: Proof Beyond Question', Economic and Political Weekly, Vol. XL, Nos 44–5, 29 October, pp. 4663–5.
- Dorin, Bruno and Thomas Jullien (2004), 'The Product-Specificity of Indian Input Subsidies: Scope and Effects on Equity and Competitiveness' in Bruno Dorin and Thomas Jullien (eds), Agricultural Incentives in India: Past Trends and Perspective Paths towards Sustainable Development, Manohar, New Delhi and Centre de Sciences Humans, pp. 151-94.
- Durkhiem, E. (2002, French 1897), Suicides, Routledge Classics,
- Gupta, Smita (2005), 'The Crisis of Indian Agriculture under Neo-Liberal Policy', Working Paper No. 24, Institute for Human Development, New Delhi.
- Government of India (2005), Economic Survey 2004-5, Ministry of Finance, New Delhi.
- Kumar, Praduman (2005), 'Empowering the Small Farmers Towards a Food Secure India', in Ramesh Chand (ed.), India's Agricultural Challenges: Reflections on Policy, Technology and Other Issues, Centad, New Delhi, pp. 197-225.
- Mishra, Srijit (2006a), Suicide of Farmers in Mahrashtra, Indira Gandhi Institute of Development Research, Mumbai, http:// www.igidr.ac.in/suicide/suicide.htm.
- (2006b), 'Farmers' Suicides in Maharashtra', Economic and Political Weekly, Vol. XLI, No. 16, 22 April, pp. 1538-45.
- (2006c), 'Suicide Mortality Rates Across States of India, 1975–2001: A Statistical Note', Economic and Political Weekly, Vol. XLI, No. 16, 22 April, pp. 1566-9.
- (2006d), 'Suicides in India: Some Observations', in K.S. Bhat and S. Vijaya Kumar (eds), Undeserved Death: A Study on Suicide of Farmers in Andhra Pradesh (2000-5), Allied Publishers, New Delhi, pp. 93-113.
- Mohan Rao, R.M. (2004), Suicides Among Farmers—A Study of Cotton Growers, Concept Publishing Company, New Delhi.
- Mohanakumar, S. and R.K. Sharma (2006), 'Analysis of Farmer Suicides in Kerala', Economic and Political Weekly, Vol. XLI, No. 16, 22 April, pp. 1553-8.
- Mohanty, B.B. (2005), 'We are Like the Living Dead': Farmer Suicides in Maharashtra, Western India', The Journal of Peasant Studies, Vol. 32, No. 2, April, pp. 243-76.
- Nair, K.N. and Vineetha Menon (2004), 'Reforming Agriculture in a Globalizing World—The Road Ahead for Kerala', IP6 Working Paper No. 3, NCCR-North South, Swiss National Science Foundation, Berne.
- NCRB (Various Years), Accidental Deaths and Suicides in India, Ministry of Home Affairs, Government of India, New Delhi.
- NSSO (2005), Situation Assessment Survey of Farmers: Indebtedness of Farmer Households, NSS 59th Round (January-December 2003), Report No. 498 (59/33/1), Ministry of Statistics and Programme Implementation, Government of India, New Delhi.
- Rao, P. Narasimha and K.C. Suri (2006), 'Dimensions of Agrarian Distress in Andhra Pradesh', Economic and Political Weekly, Vol. XLI, No. 16, 22 April, pp. 1546–52.

- Rao, P.S.M. (2002), Regional Rural Banks: Equity goals Versus Commercial Viability, PhD Thesis, CESS and Dr B.R. Ambedkar Open University, Hyderabad.
- ——— (2004a), 'Weaker Sections' Rural Credit in India: A Postreform Scenario', Mimeo.
- ——— (2004b), 'Growing Rural Indebtedness and Increasing Institutional Apathy', Mimeo.
- Rao, V.M. (1992), 'Land Reform Experiences: Perspective for Strategy and Programmes', *Economic and Political Weekly*, Vol. XXVII, No. 26, 27 June, pp. A50–A64.
- Rao, V.M. and D.V. Gopalappa (2004), 'Agricultural Growth and Farmer Distress: Tentative Perspectives from Karnataka' *Economic and Political Weekly*, Vol. XXXIX, No. 52, 25 December, pp. 5591–8.
- Reddy, D. Narasimha (2006a), 'Changes in Agrarian Structure and Agricultural Technology: Is Peasant Farming Sustainable under Institutional Retrogression', in R. Radhakrishna, S.K. Rao, S. Mahendra Dev, and K. Subba Rao (eds), *India in a Globalising World: Some Aspects of Macroeconomy, Agriculture and Poverty, Essays in Honour of C.H. Hanumantha Rao*, Academic Press, New Delhi, 2006.
- ——— (2006b), 'Economic Reforms, Agrarian Crisis and Rural Distress', 4th Annual Prof. B. Janardhan Rao Memorial Lecture, Prof. B. Janardhan Rao Memorial Foundation, Warangal, Telangana.
- Reddy, V. Ratna and P. Prudhvikar Reddy (2005), 'How Participatory is Participatory Irrigation? Water Users' Associations in Andhra Pradesh', *Economic and Political Weekly*, Vol. XL, No. 53, 31 December–6 January.
- RSC (1998), Farmers' Suicides in Andhra Pradesh: Report of the Peoples Tribunal, Raithu Sahaya Committee, Hyderabad, July.

- Sen, Abhijit (2003), 'Globalization, Growth and Inequality in South Asia: The Evidence from Rural India', in Jayati Ghosh and C.P. Chandrasekhar (eds), *Work and Well-being in the Age of Finance*, Tulika Books, New Delhi.
- Sen, Abhijit and M.S. Bhatia (2004), *State of the Indian Farmer:* A Millennium Study—Cost of Cultivation and Farm Income, Vol. 14, Academic Foundation, New Delhi.
- Sharma, H.R. (2000), 'Agrarian Structure and Agricultural Development in Rural India: Emerging Trends and Patterns', Man and Development, Vol. 22, No. 2, pp. 22–38.
- Shetty, S.L. (2006), 'Monetary Policy and Financial Sector Liberalization', in *Macroeconomics of Poverty Reduction: India Case Study*, Report submitted to United Nations Development Programme, Indira Gandhi Institute of Development Research, Mumbai, April.
- Shiva, V. A. H. Jafri, A. Emani, and M. Pande (2000), Seeds of Suicide: The Ecological and Human Costs of Globalisation of Agriculture, Research Foundation for Science, Technology and Ecology, New Delhi.
- Vaidyanathan, A. (2006), 'Farmers' Suicides and the Agrarian Crisis', *Economic and Political Weekly*, Vol. XLI, No. 38, 23 September, pp. 4009–13.
- Vakulabharanam, Vamsi (2005), 'Growth and Distress in a South Indian Peasant Economy During the Era of Economic Liberalisation', *Journal of Development Studies*, Vol. 41, No. 6, August, pp. 971–97.
- Vasavi, A.R. (1999), 'Agrarian Distress in Bidar: Market, State and Suicides', *Economic and Political Weekly*, Vol. XXXIV, No. 32, 7 August, pp. 2263–8.
- Vidyasagar, R and K. Suman Chandra (2004) Farmers' Suicides in Andhra Pradesh and Karnataka, National Institute of Rural Development, Hyderabad.

#### **ANNEXURE 3.1**

TABLE A 3.1 Returns Per Hectare and Expenses as Per Cent of Value of Output, 2002–3

| States           |                                                        | Kha                                                         | ırif                                           |                                                                          |                                                        | Rabi                                                         |                                                |                                                                          |  |  |  |
|------------------|--------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
|                  | Farmer<br>house-<br>holds<br>cultivating<br>(per cent) | Average cultivated land per cultivating household, hectares | Gross<br>returns<br>per<br>hectare<br>(rupees) | Paid out<br>expenses<br>as per cent<br>of value of<br>output<br>(rupees) | Farmer<br>house-<br>holds<br>cultivating<br>(per cent) | Average cultivated land per cultivating household (hectares) | Gross<br>returns<br>per<br>Hectare<br>(rupees) | Paid out<br>expenses<br>as per cent<br>of value of<br>output<br>(rupees) |  |  |  |
| Andhra Pradesh   | 81.7                                                   | 1.2                                                         | 5243                                           | 62.3                                                                     | 39.1                                                   | 0.9                                                          | 7815                                           | 52.8                                                                     |  |  |  |
| Arunachal        | 74.8                                                   | 1.3                                                         | 13909                                          | 13.5                                                                     | 68.4                                                   | 0.8                                                          | 8433                                           | 22.1                                                                     |  |  |  |
| Assam            | 95.9                                                   | 0.8                                                         | 16257                                          | 12.7                                                                     | 84.7                                                   | 0.4                                                          | 16089                                          | 19.0                                                                     |  |  |  |
| Bihar            | 87.0                                                   | 0.7                                                         | 8065                                           | 39.6                                                                     | 95.2                                                   | 0.6                                                          | 10180                                          | 37.8                                                                     |  |  |  |
| Chattisgarh      | 98.6                                                   | 1.3                                                         | 5355                                           | 39.2                                                                     | 26.9                                                   | 0.8                                                          | 4296                                           | 39.4                                                                     |  |  |  |
| Gujarat          | 85.2                                                   | 1.6                                                         | 6005                                           | 46.8                                                                     | 39.3                                                   | 1.2                                                          | 8621                                           | 49.3                                                                     |  |  |  |
| Haryana          | 64.1                                                   | 1.6                                                         | 5832                                           | 56.9                                                                     | 64.0                                                   | 1.6                                                          | 14537                                          | 40.7                                                                     |  |  |  |
| Himachal Pradesh | 97.1                                                   | 0.5                                                         | 16432                                          | 28.2                                                                     | 94.6                                                   | 0.4                                                          | 5377                                           | 50.8                                                                     |  |  |  |
| Jammu & Kashmir  | 94.7                                                   | 0.7                                                         | 28445                                          | 17.7                                                                     | 84.9                                                   | 0.6                                                          | 10833                                          | 26.8                                                                     |  |  |  |
| Jharkand         | 96.9                                                   | 0.7                                                         | 10420                                          | 21.1                                                                     | 41.8                                                   | 0.3                                                          | 14117                                          | 28.1                                                                     |  |  |  |
| Karnataka        | 95.1                                                   | 1.5                                                         | 6522                                           | 46.0                                                                     | 47.1                                                   | 1.3                                                          | 6536                                           | 36.6                                                                     |  |  |  |
| Kerala           | 93.6                                                   | 0.4                                                         | 17724                                          | 38.8                                                                     | 94.5                                                   | 0.4                                                          | 18220                                          | 34.1                                                                     |  |  |  |
| Maharashtra      | 94.4                                                   | 1.6                                                         | 6609                                           | 45.0                                                                     | 45.2                                                   | 1.1                                                          | 5505                                           | 47.9                                                                     |  |  |  |
| Manipur          | 84.3                                                   | 0.6                                                         | 16697                                          | 28.2                                                                     | 51.3                                                   | 0.2                                                          | 6682                                           | 41.9                                                                     |  |  |  |
| Meghalaya        | 99.5                                                   | 1.0                                                         | 22860                                          | 18.1                                                                     | 96.1                                                   | 1.3                                                          | 11082                                          | 17.9                                                                     |  |  |  |
| Mizoram          | 90.9                                                   | 1.0                                                         | 18905                                          | 3.8                                                                      | 89.3                                                   | 1.1                                                          | 14823                                          | 3.5                                                                      |  |  |  |
| Madhya Pradesh   | 77.3                                                   | 1.6                                                         | 3882                                           | 45.3                                                                     | 67.3                                                   | 1.7                                                          | 7305                                           | 35.8                                                                     |  |  |  |
| Nagaland         | 91.2                                                   | 0.5                                                         | 29592                                          | 7.2                                                                      | 96.3                                                   | 0.3                                                          | 17578                                          | 17.1                                                                     |  |  |  |
| Orissa           | 98.1                                                   | 0.8                                                         | 3633                                           | 48.1                                                                     | 25.2                                                   | 0.4                                                          | 5284                                           | 50.9                                                                     |  |  |  |
| Punjab           | 36.9                                                   | 2.5                                                         | 19974                                          | 38.4                                                                     | 27.6                                                   | 2.6                                                          | 20929                                          | 37.5                                                                     |  |  |  |
| Rajasthan        | 91.3                                                   | 1.9                                                         | 271                                            | 89.0                                                                     | 37.0                                                   | 1.4                                                          | 10954                                          | 40.5                                                                     |  |  |  |
| Sikkim           | 98.9                                                   | 0.7                                                         | 11807                                          | 22.3                                                                     | 97.6                                                   | 0.4                                                          | 7275                                           | 33.8                                                                     |  |  |  |
| Tamil Nadu       | 79.1                                                   | 0.8                                                         | 6682                                           | 57.9                                                                     | 44.1                                                   | 0.8                                                          | 8562                                           | 45.1                                                                     |  |  |  |
| Tripura          | 91.3                                                   | 0.5                                                         | 15333                                          | 30.5                                                                     | 62.7                                                   | 0.3                                                          | 17500                                          | 31.0                                                                     |  |  |  |
| Uttar Pradesh    | 81.8                                                   | 0.7                                                         | 7025                                           | 44.1                                                                     | 87.8                                                   | 0.9                                                          | 8490                                           | 46.0                                                                     |  |  |  |
| Uttaranchal      | 93.1                                                   | 0.5                                                         | 36646                                          | 11.9                                                                     | 93.0                                                   | 0.4                                                          | 8914                                           | 28.0                                                                     |  |  |  |
| West Bengal      | 89.7                                                   | 0.5                                                         | 10942                                          | 44.6                                                                     | 71.0                                                   | 0.4                                                          | 10976                                          | 57.2                                                                     |  |  |  |
| Group of UT      | 77.0                                                   | 0.7                                                         | 12528                                          | 35.8                                                                     | 47.4                                                   | 0.6                                                          | 15322                                          | 33.3                                                                     |  |  |  |
| All India        | 86.2                                                   | 1.2                                                         | 6756                                           | 43.9                                                                     | 62.3                                                   | 0.9                                                          | 9290                                           | 42.2                                                                     |  |  |  |

Note: Gross returns equal value of output minus paid out expenses; Expenses exclude imputed expenditure on family labour and value of output includes amount used for domestic consumption.

Source: Calculated from unit level data using 33rd Schedule, 59th round, NSS (2003) on 'Situation Assessment Survey of Farmers'.

# Employment and Unemployment Since the Early 1970s

T.N. Srinivasan

#### INTRODUCTION

An overwhelming majority of India's population depend on their own labour as the dominant source of livelihood, through its productive use, either in self-employment or in work for others. Labour and issues such as employment, productivity, and wages have been at the centre of attention in pre- and post-independence plans for national development. Sadly, the available employment and unemployment data from various sources in India are inadequate to document the trends in employment since planning for national development began in 1950.

Two of the main sources of data on workers and their distribution across economic activities in the economy as a whole are the decennial population censuses (PC) and the Employment and Unemployment Surveys (EUS) of the National Sample Survey Organization (NSSO). Other sources include the Directorate General of Employment and Training (DGET) which publishes data on the organized part of the economy under its Employment Market Information (EMI) Programme. The Annual Survey of Industries (ASI) conducted by the Central Statistical Organization (CSO) is another source of employment data. With some exceptions and changes over time, its coverage is restricted

to the establishments listed as factories under Sections 2m (i) and 2m (ii) of the Factories Act of 1948.

Another important source is the Economic Census, initiated in 1977 as a countrywide census of all economic activities (except crop production and plantation) and followed by detailed sample surveys of unorganized segments of different sectors of the non-agricultural economy in a phased manner during the intervening period of the two successive economic censuses. These 'Economic Census Follow-up Surveys', also called Enterprise Surveys (ESs), produce estimates of production, inputs, employment, factor income, and capital formation, etc.

The definitions used are not the same across all sources and have even varied over time within the same source, as in the PC. Also, some of the sources such as the Economic Census are of recent origin, while the PC goes back to 1881! The EUS was carried out by the NSSO in its 9th round (May—September 1955), also in the 17th–20th rounds for the urban sector, and again for rural and urban sectors in the 27th round (1972–3). Only from the 32nd round (1977–8) has the EUS formally become a part of the national quinquennial household surveys of the NSSO using essentially identical concepts of employment and unemployment. Apart from the large quinquennial surveys, the NSSO also

Samuel C. Park Jr Professor of Economics and Non-resident Senior Fellow, Stanford Center for International Development, Stanford University. I thank Treb Allen for his very able research assistance. Thanks are also due to Sheila Bhalla, S.R. Hashim, Amitabh Kundu, and John Pencavel for their comments on an earlier version. This paper draws extensively from Srinivasan (2006).

collects data annually from a smaller sample of households distributed over the same number of first stage units as its normal socioeconomic survey.

The estimates of employment and unemployment from the rounds other than quinquennial rounds in which EUS is conducted, particularly those meant for ESs, besides being subject to larger sampling errors because of smaller sample size (particularly at the state and regional levels), are suspected to be biased as well. It is suggested that in such rounds:

The selection procedure of first stage units is designed to produce efficient estimates of enterprise-related parameters or other house-holds and individual characteristics. As a result, the workforce estimates based on the data collected in these rounds are not only subject to higher sampling error but are also suspected to be biased owing to the lesser attention paid to the employment—unemployment component of the survey. Nevertheless, from the data collected in these rounds, it is possible to generate distribution of workers over the activity-groups that deserve to be considered, albeit critically. (NAD 2004, p. 10, emphasis added)

Since no concrete evidence has thus far been adduced in support of suspected biases in estimates from smaller-sample rounds, I will assume that there are no biases but only higher sampling errors in these estimates in the trend analysis in the second section. The coverage of sources of data other than PC and EU is limited either in geographical area or sectors or in other ways. The Economic Censuses and ESs exclude crop production and plantation activities in which a large proportion of the rural workforce is employed. Even in the PC and EUS, which are supposedly national in coverage, some states (Jammu and Kashmir and North-eastern states) have been excluded on occasion for various reasons, primarily civil disturbances and insurgencies.

The methods of coverage by PC and EUS differ as well. As noted earlier, the ASI covers only establishments registered under the Factories Act of 1948. DGET

covers all establishments in the public sector (except the defence establishments and armed forces) and those establishments in the private sector that employ 25 or more persons on the last day of the quarter under reference. Apart from this, since 1966, the establishments employing 10 to 24 persons are also covered on a voluntary basis.

(NAS 2004, pp. 11–12)

There are many other sources of partial data on employment, unemployment, wages, and other aspects of labour, which are based on reports required to be submitted by employers under various acts. The report of the National Commission of Labour (NCL) (the Second Labour Commission), has a comprehensive discussion of sources and limitations of labour statistics (NCL 2002). The very first

Royal Commission on Labour in 1931 had already identified the need for reliable and representative data on labour.

There has been significant progress in the 75 years since the Royal Commission first reported the need for better labour market data such as the start of regular EUSs by the NSSO. Yet the NCL (2002) laments, 'We regret to say that the Labour Statistics as it stands today is not dependable. The industries do not have an obligation to submit the returns prescribed under the law. The collectors of data do not have any obligation to publish the data on time. In some cases there is a gap of more than 32 months in the publication of the data. Some state governments have a gap of 3 to 4 years before the data is released. As a result of this poor quality and unreliable frequency of data, policy makers do not find it easy to rely on them or make use of them', (NCL 2002, Chapter XII, Part IV, p. 28). I do not wish to underplay the importance of accurate and timely reporting by public agencies and of the need for incentives and penalties for non-compliance for those who are to provide the agencies with the data. However, many of the conceptual, measurement, and data gathering problems relating to labour statistics arise largely from the complexity of the Indian labour market.

From the employee or worker side, complexities arise from the fact that individuals (particularly females) frequently move in and out of the workforce within a year, and even those who participate in the workforce and are employed throughout the year could move from self-employment on their own farms in one season to wage employment in another season within the same year. Self-employment continues to be the single largest source of employment in the economy. Although the proportion of population living in households whose major source of income is selfemployment declined from 55.6 per cent in 1987–8 to 50.9 per cent in 1999-2000 in rural areas, it increased slightly from 38.9 per cent to 39.2 per cent during the same period in urban areas (NSS 2001, Table 4.2). Also, an individual could be engaged in more than one economic activity at the same time or at different times in a year.

From the employer side, the situation is just as complex. A farmer employs workers not only from his/her own household but also hires agricultural labourers during peak agricultural season. The same farmer could be employed in casual work (or looking for such work) outside the farm during slack agricultural season. Outside of crop production activities, as the data from the latest economic census show, 98.6 per cent of the number of enterprises in existence in 2005 in the economy employed less than 10 workers. In the earlier census of 1998, this proportion was similar at 98.1 per cent, accounting for 76.5 per cent of the number of

<sup>&</sup>lt;sup>1</sup> GOI (2006). Strictly speaking, the data from the economic censuses refer to the *number of positions and not to workers*. Thus the same position could be held by different persons during a year.

usually working persons. A large majority (61.3 per cent) of the enterprises operated in rural areas. Also, 20 per cent of rural and 15.5 per cent of urban enterprises operated with no premises (GOI 2006). It is very unlikely that enterprises employing less than 10 workers would maintain written records of their activities. There is no way one could gather data on their employment, other than by canvassing such enterprises directly though a well-designed survey or census. This is indeed what an Economic Census and its follow up surveys attempt to do. However, as noted earlier, the census excludes a large share of the workforce employed in crop production activities.

Given the wide differences in their concepts and definitions and the extent of coverage among sources it should cause no surprise that it is virtually impossible to adjust for these differences and arrive at comparable estimates. The dissatisfaction with the then available PC and EUS statistics of unemployment led to the appointment by the Planning Commission of a committee of experts under the chairmanship of M.L. Dantwala (known as the Dantwala Committee) on Unemployment Estimates. The Committee submitted its report in 1970. The EUSs of NSSO have since adopted the committee's recommendations regarding concepts of employment and unemployment.

The focus of this paper is the EUS of the NSSO, since it is the only comprehensive source of data using the same concepts and methods of data collection over more than three decades. Importantly, compared to PC, NSSO data are available for many more years. My purpose is two-fold. First, I fit a simple trend regression to the data, from 27th Round (1972–3) to 61st Round (July 2004–June 2005) on persons (person-days) employed per 1000 persons (person-days), unemployed per 1000 persons (person-days) in the labour force, employment status and labour force participation rate per 1000 persons (person-days), taking into account that sample sizes in terms of the number of households of various rounds were different. Observations from each round are weighted by the square root of the sample size, thus placing greater importance on observations from the large quinquennial surveys (see the second section). The time trend analysis is meant to extract the time patterns in the data efficiently. Also, the estimation allows for possible serial correlation in the disturbance term in the regression equation, taking into account that the observations are not evenly spaced over time. It is important to stress that the friend analysis is not equivalent to a structural economic analysis of the labour market based on a model of labour supply and demand that brings in endogenous and exogenous determinants of both, including importantly variables capturing labour market policies and regulations.<sup>2</sup> Thus the trends are best viewed as trends in labour market equilibria in a loose sense. In the second section, it is pointed out that among the 12 regressions (male-female, rural-urban, and usual current weekly, and current daily statuses) on employment rate (that is, number of employed persons (person days) per 1000 persons (1000 person days)) only two, for rural and urban females using usual status, showed a significant downward trend. Six showed no significant trend and four showed a significant upward trend. Unemployment rate regressions also are consistent with these findings, with five showing a significant downward trend and only one (for rural males using usual status) showing an upward trend. These time patterns do not support the widespread belief that the economy has been experiencing what is often called 'jobless growth' since the reforms. Interestingly, the labour force participation rates showed a significant upward trend for rural males only, with significant downward trend in four cases and no significant trends in the remaining six cases.

Second, besides fitting time trends in the second section, I also analyse the time patterns of employment, unemployment, and being out of the workforce 'within the seven day reference period'. The observed time pattern enables an assessment of the belief that there is considerable churning in the labour market because 'the activity pattern of the population, particularly in the unorganized sector, is such that during a week, and sometimes, even during a day, a person, could pursue more than one activity. Moreover, many people could even undertake both economic and non-economic activities on the same day of a reference week' (NSS 2005, Report 506). If this is the case, we should observe that the distribution of the number of days within a week of a given activity status (employed, unemployed, and not in workforce) should be well dispersed. We shall see that this is not what we observe in general,<sup>3</sup> except for females. I offer some concluding remarks in the last section.

## TRENDS IN EMPLOYMENT AND UNEMPLOYMENT RATES

Person and Person-Day Rates

Before describing the trends in employment and unemployment rates, I want to draw attention to the fact that the important distinction between the 'person rate' of usual

<sup>&</sup>lt;sup>2</sup> To the best of my knowledge, no such general equilibrium model is available in the empirical literature. I return to this issue in the last section.

<sup>&</sup>lt;sup>3</sup> In ongoing research in collabouration with Treb Allen, I fit a Markov transition model to the transition in status of employment (employed, unemployed and not in workforce) from one day to the next within the seven day reference period. We had transition data for the quinquennial rounds and not for other quinquennial rounds. Such data were not collected in the annual rounds yet preliminary findings from this research also broadly confirm this finding.

(US) and current weekly (CWS) status and the 'person-day rate' of current daily status (CDS), seems to have been ignored in the discussion of the employment issue in some of the official publications (Planning Commission 2001, 2002, 2005; MOF 2004).

In the EUS, a person could be in one or a combination of the following three broad activity statuses during the relevant reference period (year, week, or day): (i) 'working' (that is, being engaged in economic activity), (ii) 'unemployed' in the sense of not working, but either making tangible efforts to seek work or being available for work if work is available and (iii) 'not working and not available for work'. Statuses (i) and (ii) correspond to being in the workforce and status (iii) to being out of the workforce. It is possible for a person to be in all three statuses concurrently depending on the reference period. Under such a circumstance, one of the three was uniquely identified in the EUS as that person's status by adopting either the 'major time or priority criterion'. The former was used in identifying the 'usual activity status' and the latter for 'current activity status' (NSS 2005). More precisely, the principal usual activity status of a person among the three was determined as follows: first it was determined whether the person spent a major part of the year in or out of the workforce. Next, those who were in the workforce who spent a major part of their time during the 365 days preceding the date of survey in the workforce working (not working) were deemed as employed (unemployed) (that is, major time criterion). In addition to his or her principal activity in which a person spent a major part of his or her time, he/she could have pursued some economic activity for a relatively shorter time during the preceding year. This minor time activity was that person's subsidiary activity.

The CWS of a person during a period of seven days preceding the date of survey is decided on the basis of a 'certain priority cum major time criterion'. The status of 'working' gets priority over the status of 'not working but seeking or available for work', which in turn gets priority over the status of 'not working and not available for work'. A person is classified as 'working (employed)' while pursuing an economic activity, if he or she had 'worked for at least one hour during the seven day reference period'. A person who either did not work or worked for less than one hour is classified as 'unemployed' if he or she actively sought work or was available for work for any time during the reference week, even if not actively seeking work in the belief that no work was available. Finally, a person is classified as not in the workforce if he or she neither worked nor was available for work any time during the reference period. The CDS of a person was determined on the basis of his/her activity status in each day of the reference week using a prioritycum-major time criterion.4

Which of the three rates, namely 'usual status (principal and secondary capacity work combined)', 'weekly status', and 'daily status' should be used estimating the levels and trends in workforce or the number of unemployed? The first two of the three are 'person rates', that is, they refer to persons, for example, the number of persons employed or unemployed per 1000 persons in the population. The third is a person-day rate that is, it refers to the number of person days employed or unemployed per 1000 persondays. Thus, if a person in the sample was deemed to have worked (that is, been employed) for 3.5 days in the reference week, his employed person-days is 3.5 and total person-days is seven so that his employed person-day rate is 0.5, that is, 500 person days of employment in the week per 1000 person days. Averaging this daily rate over all persons and multiplying it by the population figures will yield the total number of person-days of employment per day.

The total number of person-days of employment is not the same as the total number of employed persons. The reason is that a given total number of person-days of employment could be distributed among the same number of persons in many ways so as to lead to different numbers of persons employed. For example, consider a four-person economy in which all four participate in the workforce and together they were employed for ten person-days in the week. This yields a person-day rate of employment of 10 out of 28 or 36 per cent. If the ten person-days are distributed in a way that one person is employed for seven days, another for three days and the remaining two are unemployed, then person-rate of employment is two out of four or 50 per cent. On the other hand, if it is distributed in a way that three persons work for three days each and one person works for just a day, the person rate of employment is four out of four or 100 per cent, given the priority given to the status of employment! Unfortunately, official publications ignore the distinction between persons and persondays, and possible heterogeneity among the population in number of days worked.

For example, MOF (2004, Table 10.7, p. 209) purports to present the number of persons in the workforce, employed and unemployed, using daily status rates that refer to person-days. Interestingly, at the top of the table, the phrase 'person-years' is used, suggesting that the numbers in the table refer not to persons but to person-years. Apparently, MOF wants to have it both ways!

<sup>&</sup>lt;sup>4</sup> See sub-section 'Within reference week Distribution of Employment Status' for details.

Employment, Unemployment, and Employment Status: Time Trend Regressions

The following weighted regression was estimated from the data, taking into account that our data are unequally spaced in time.

$$\sqrt{n_t} E_t = \alpha \sqrt{n_t} + \beta t \sqrt{n_t} + \sqrt{n_t} u_t$$
 (4.1)

with 
$$\frac{u_t}{\sqrt{n_t}} = \frac{\rho u_{t-1}}{\sqrt{n_{t-1}}} + \varepsilon_t$$
 (4.2)

Where  $n_t$ : number of households canvassed in the round of period t;

 $E_t$ : employment rate, unemployment rate, or employment status;

 $u_t$ : random disturbance terms with expectation zero and variance

$$n_t \frac{\delta^2}{-(1-\rho^2)}$$

and  $\varepsilon_i$ : Independent and identically (over time) distributed random terms with mean zero and variance  $\delta^2$ .

Since the various rounds covered different time spans (year, six months, etc.) and also different year types (calendar year, agricultural year (July 1–June 30) etc.), period t has been defined so that the interval between any two consecutive t is a year. Thus the slope coefficient  $\beta$  represents the annual rate of change in the expected value of  $E_t$ . There are only seven observations on person-day rates based on CDS. This fact has to be kept in mind in assessing the CDS regressions.

#### **Employment**

Table 4.1 gives the slopes of the regression (4.1) fitted to data on employment rates in Table A4.1. It is evident from the very high  $R^2$  values that the linear time trend regressions fit the data very well, perhaps too well. The serial correlation coefficients are also generally high, suggesting significant persistence in the rates over time. Also, as expected, the trends for males and females are somewhat different. For males, regardless of the reference period (one year for US, a week for CWS, and a day for CDS) and of the concept (person rate for US and CWS and personday rate for CDS) used, 'there was no statistically significant

TABLE 4.1 Employment Rates

| Type of Labour | Reference<br>Period* | Time trend  | ρ<br>(autocorrelation coefficient) | $\mathbb{R}^2$ |
|----------------|----------------------|-------------|------------------------------------|----------------|
| Rural Male     | US (PS + SS)         | .0225305    | .7789102***                        | 0.9999         |
|                |                      | (0.32)      | (6.67)                             |                |
|                | CWS                  | 0899111     | .8027889***                        |                |
|                |                      | (-0.94)     | (8.46)                             | 0.9999         |
|                | CDS                  | .1134735    | 6083863***                         |                |
|                |                      | (0.51)      | (-41.36)                           | 0.9990         |
| Rural Female   | US (PS + SS)         | 265162*     | .8854497***                        |                |
|                |                      | (-1.79)     | (16.81)                            | 0.9991         |
|                | CWS                  | 1027198     | .6119123**                         |                |
|                |                      | (-0.84)     | (2.60)                             | 0.9990         |
|                | CDS                  | .0537878    | 8159445)*                          |                |
|                |                      | (0.41)      | (0.086)                            | 0.9979         |
| Urban Male     | US (PS + SS)         | .1046882**  | .730777***                         |                |
|                |                      | (2.39)      | (5.10)                             | 0.9999         |
|                | CWS                  | .263721**   | .1979554                           |                |
|                |                      | (2.71)      | (0.28)                             | 0.9998         |
|                | CDS                  | .3261643*** | - <b>.</b> 852007***               |                |
|                |                      | (6.51)      | (-3.97)                            | 0.9999         |
| Urban Female   | US (PS + SS)         | 2151739***  | .8715346***                        |                |
|                |                      | (-6.11)     | (10.05)                            | 0.9992         |
|                | CWS                  | 0793651     | .7725452***                        |                |
|                |                      | (-0.97)     | (4.15)                             | 0.9981         |
|                | CDS                  | .1129917**  | 8494254*                           |                |
|                |                      | (2.80)      | (-2.27)                            | 0.9990         |

*Notes:* Robust *t*-values reported in parentheses. \*\*\* significant at .01, \*\* significant at .05, \* significant at .1

\* US (PS + SS)—Usual Status (Principal and Secondary) per 1000 persons; CWS—Current Weekly Status per 1000 persons; CDS—Current Daily Status per 1000 person-days

trend' in rural employment rate and a statistically significant (at 5 per cent or better levels of significance) upward trend in urban employment rate. These finding are particularly noteworthy since the period of analysis covered the reforms of 1991 and thereafter. According to widely shared assessments, the reforms did not encompass rural areas to any extent and were largely urban oriented and as such, could not have had any impact on employment of rural males. The fact that there was a significant upward trend in the employment rate of urban males but not rural males is consistent with the fact that reforms by and large had no rural components. However, the fact that reforms had a positive impact in employment rates of urban males, though encouraging, certainly does not establish a causal relationship between reforms and employment rates. From an overall employment perspective also there are important findings since males, after all, constituted 51 per cent of the total population and accounted for 74 per cent of total employed person-days in 1999–2000 (according to the NSS).

It is well known that the participation rates of females in the workforce and their employment rates are not only much lower than those of males, but they are also more variable, particularly within short periods of time such as a week. The trends for females in Table 4.1 give a mixed picture: in 'rural' areas, there is a significant (at a 10 per cent level) 'downward' trend in the employment rate according to US and no significant trend in the other two measures. In urban areas there is a significant (at a 1 per cent level) downward trend according to US and a significant (at a 5 per cent level) upward trend according to CDS.

#### Unemployment

Table 4.2 reports the slopes of the trends in unemployment rates documented in Table A4.2. In all regressions,  $R^2$  and serial correlations are again high. The slopes for males are basically consistent with the trends in employment rates: for 'rural' males there is a significant (at a 10 per cent level) upward trend according to US and a significant downward

TABLE 4.2 Unemployment Rates

| Type of Labour | Reference<br>Period* | Time trend            | $\rho$ (autocorrelation coefficient) | $\mathbb{R}^2$ |
|----------------|----------------------|-----------------------|--------------------------------------|----------------|
| Rural Male     | US (PS + SS)         | .0226547*<br>(2.08)   | 7156501***<br>(-4.62)                | 0.9917         |
|                | CWS                  | 0625306<br>(-1.48)    | .8128619***<br>(8.11)                | 0.9876         |
|                | CDS                  | .0765274<br>(0.44)    | .9335281***<br>(12.43)               | 0.9594         |
| Rural Female   | US (PS + SS)         | 1483735<br>(-1.65)    | .6906727***<br>(3.70)                | 0.7858         |
|                | CWS                  | 1702609**<br>(-2.74)  | .8737716***<br>(9.57)                | 0.9787         |
|                | CDS                  | 1538805<br>(-0.74)    | .9577055***<br>(26.38)               | 0.9652         |
| Urban Male     | US (PS + SS)         | 1658847***<br>(-4.83) | .7449245***<br>(4.41)                | 0.9964         |
|                | CWS                  | 2587472***<br>(-6.01) | .8231158***<br>(6.91)                | 0.9950         |
|                | CDS                  | 2282298*<br>(-2.21)   | .631999***<br>(42.51)                | 0.9903         |
| Urban Female   | US (PS + SS)         | 9626916*<br>(-1.95)   | .6161466<br>(1.69)                   | 0.8758         |
|                | CWS                  | 4512313<br>(-1.68)    | .6377532**<br>(2.33)                 | 0.9553         |
|                | CDS                  | 3066979<br>(-1.42)    | .8171305<br>(1.90)                   | 0.9891         |

Notes: Robust t-values reported in parentheses. \*\*\* significant at .01, \*\* significant at .05, \* significant at .1

<sup>\*</sup> US (PS + SS): Usual Status (Principal and Secondary) per 1000 persons in the labour force

CWS: Current Weekly Status per 1000 persons in the labour force

CDS: Current Daily Status per 1000 person-days in the labour force

trend by all measures in urban areas. For females there was a significant downward trend according to CWS in rural areas as well as a significant downward trend according to US in urban areas.

For females, the unemployment picture is very different from that of employment. Both in rural and urban areas, female unemployment rates exhibit either no significant trend or a significant downward trend. It is likely that the divergent picture between trends in unemployment and employment rates arises from the fact that females move in and out of the workforce often.

#### **Employment Status**

Table 4.3 details the slopes of the trends in the proportion of self-employed, employed in regular wage/salaried jobs, and employed as casual labour, among those usually employed (principal and secondary status). The relevant data are in Tables A4.3 and A4.4. They show that self-employment is the dominant mode of employment accounting for more than 50 per cent of usually employed males and females in rural areas even in the 61st round (July 2004–June 2005), and is an important (though not the

dominant) mode in urban areas, accounting for 45 per cent of usually employed males and 48 per cent of usually employed females. Since the shares of the three categories, self-employment, wage/salary employment and employment as casual labour by definition add to 1, the trend coefficients in the regressions for the three categories have to add to zero. However, if we allow the serial correlation coefficient in the residuals for the three regressions to be different, the estimation procedure that takes into account the serial correlation in residuals will result in estimated trend coefficients for the three categories not adding to zero. But if we restrict the serial correlation coefficient to be the same this problem will not arise. The regressions in Table 4.3 were estimated by imposing this restriction. There is a significant increase in the status of employment as casual labour for rural males and a significant decrease in the staus of employment in regular wage/salaried work for urban males. For rural and urban females there is a downward, but insignificant, trend in employment as casual labour. There is a downward, though insignificant trend in selfemployment for rural males and a significant upward trend for rural females Urban females experience a significant

TABLE 4.3 Employment Status

| Type of Labour | Reference<br>Period   | Time trend            | ρ<br>(autocorrelation coefficient) | R <sup>2</sup> |
|----------------|-----------------------|-----------------------|------------------------------------|----------------|
| Rural Male     | Self-employed         | 2170437***<br>(-1.64) | .5593385<br>(2.51)                 | 0.9992         |
|                | Regular wage/salaried | 1447657***<br>(-1.36) |                                    | 0.9847         |
|                | Casual labour         | .3618089*<br>(2.05)   |                                    | 0.9976         |
| Rural Female   | Self-employed         | -1.327904*<br>(-1.94) | .9629305***<br>(52.49)             | 0.9848         |
|                | Regular wage/salaried | 0849406<br>(-0.63)    |                                    | 0.8520         |
|                | Casual labour         | 1.242964<br>(-1.74)   |                                    | 0.9528         |
| Urban Male     | Self-employed         | 3107037*<br>(1.82)    | .6788774***<br>(6.75)              | 0.9986         |
|                | Regular wage/salaried | 3920492***<br>(-4.79) |                                    | 0.9992         |
|                | Casual labour         | .0813463<br>(0.42)    |                                    | 0.9883         |
| Urban Female   | Self-employed         | 1290026<br>(-0.37)    | .8678653***<br>(15.52)             | 0.9903         |
|                | Regular wage/salaried | .9234643***<br>(4.06) |                                    | 0.9909         |
|                | Casual labour         | 7944618<br>(-1.66)    |                                    | 0.9449         |

Notes: Robust t-values reported in parentheses. \*\*\* significant at .01, \*\* significant at .05, \* significant at .1.

increase in employment as wage/salaried workers. Clearly the picture emerging from these trends is complex. It is conceivable, though there is no way of judging this from the trends alone, that casual labour is a transitional status for those who move from self-employment in low productivity activities in rural areas to more productive wage employment in urban areas.

Taken together, Tables 4.1–4.3 paint a more optimistic picture of the Indian labour market than that suggested by official publications.

#### Labour Force Participation Rates

Table 4.4 depicts the time trends of labour force participation rates. Because the NSSO did not regularly publish these statistics, the data are computed using employment rates (which are reported per 1000 people in the general population) and unemployment rates (which are reported per 1000 people in the labour force). The computed labour force participation rates are given in Table A4.4. As noted in the

Introduction, participation rates increased significantly only for rural males. For urban males two measures (US and CDS) showed significant declines while CWS rate showed no trend. For females, either participation rate declined significantly (CWS in rural areas and US in urban areas) or showed no trend at all. In order to interpret these trends, additional analysis of age-specific participation rates is necessary, as one would expect the participation of school-age children in the workforce to decline as the economy grows.

#### Within Reference Week Distribution of Employment Status

The NSS collects data on the time disposition of each member of the household on each day of the reference week.

This involved the recording of different activities pursued by the members along with the time intensity in quantitative terms for each day of the reference week...each day of the reference week was looked upon as comprising either two 'half days' or a 'full' day for assigning the activity status...

TABLE 4.4 Labour Force Participation Rates

| Type of Labour | Reference<br>Period* | Time trend            | ρ<br>(autocorrelation coefficient) | R <sup>2</sup> |
|----------------|----------------------|-----------------------|------------------------------------|----------------|
| Rural Male     | US (PS + SS)         | .0226547*<br>(2.08)   | 7156501***<br>(-4.62)              | 0.9917         |
|                | CWS                  | 0625306<br>(-1.48)    | .8128619***<br>(8.11)              | .09876         |
|                | CDS                  | 0.765274<br>(0.44)    | .9335281***<br>(12.43)             | 0.9594         |
| Rural Female   | US (PS + SS)         | 1483735<br>(-1.65)    | .6906727***<br>(3.70)              | 0.7858         |
|                | CWS                  | 1702609**<br>(-2.74)  | .8737716***<br>(9.57)              | 0.9787         |
|                | CDS                  | 1538805<br>(-0.74)    | .9577055***<br>(26.38)             | 0.9652         |
| Urban Male     | US (PS + SS)         | 1658847***<br>(-4.83) | .7449245***<br>(4.41)              | 0.9964         |
|                | CWS                  | 2587472<br>(0.9950)   | .8231158***<br>(6.91)              | 0.9950         |
|                | CDS                  | 2282298*<br>(-2.21)   | .631999***<br>(42.51)              | 0.9903         |
| Urban Female   | US (PS + SS)         | 9626916*<br>(0.074)   | .6161466<br>(1.69)                 | 0.8758         |
|                | CWS                  | 4512313<br>(-1.68)    | .6377532**<br>(2.33)               | 0.9553         |
|                | CDS                  | 3066979<br>(-1.42)    | .8171305<br>(1.90)                 | 0.9891         |

*Notes*: Robust *t*-values reported in parentheses. \*\*\* significant at .01, \*\* significant at .05, \* significant at .1.

<sup>\*</sup> US (PS + SS): Usual Status (Principal and Secondary) per 1000 persons

CWS: Current Weekly Status per 1000 persons in the labour force

CDS: Current Daily Status per 1000 person-days in the labour force

A person was considered 'working' (employed) for the entire day if he/she had worked for 4 hours or more during the day.

If a person was engaged in more than one of the economic activities for 4 hours or more on a day, he/she was assigned two out of the various economic activities on which he/she devoted relatively longer time on the reference day (for each of those two activities, the intensity was 0.5).

If the person had worked for 1 hour or more but less than 4 hours he/she was considered 'working' (employed) for half-day and 'seeking or available for work' (unemployed) or 'neither seeking nor available for work' (not in labour force) for the other half of the day depending on whether he was seeking/available for work or not.

If a person was not engaged in any 'work' even for 1 hour on a day but was seeking/available for work even for 4 hours or more, he was considered 'unemployed' for the entire day. But if he was 'seeking/available for work' for more than 1 hour and less than 4 hours only, he was considered 'unemployed' for half day and 'not in labour force' for the other half of the day.

A person who neither had any 'work' to do nor was available for 'work' even for half a day was considered 'not in labour force' for the entire day and was assigned one or two of the detailed non-economic activity statuses depending upon the activities pursued during the reference day.

(NSS 2001, Chapter 2)

Table 4.5 presents these data as a distribution of the days within the week (in half-days) of those employed, unemployed, and in the workforce. Thus, the entry corresponding to, say, 7 days in Table 4.5 for the employed, is the proportion of those in the respective column who were classified as employed in the CWS who were employed in 'all seven days of the week'. Analogously, the entry corresponding to zero is the proportion of those who were classified as employed in the CWS who were employed for 'no day of the week'. Since by definition the distribution refers to only those who are classified as employed in the CWS, the entry corresponding to zero is zero in the employed column as well as all other columns.

It is remarkable that the proportion who were employed on all seven days of the week among those classified as employed was very high, exceeding 80 per cent for rural and urban males, and 70 per cent for urban females. Only for rural females was this proportion lower at 58 per cent, which is still fairly high. Thus, the perception that there is a lot of 'churning' within the week in the employment of individuals is not borne out in the aggregate. The picture with respect to unemployment is different—only in urban areas the proportion who were unemployed all seven days of the

TABLE 4.5 Within Reference Week Distribution of Labour Force, 1999–2000

(distribution of labour force in per cent)

| Number of | ]     | Rural Male | s*    | R     | ural Femal | es*   | Ţ     | Jrban Male | es*   | U     | rban Fema | les*  |
|-----------|-------|------------|-------|-------|------------|-------|-------|------------|-------|-------|-----------|-------|
| Days/Week | E     | UE         | WF    | E     | UE         | WF    | E     | UE         | WF    | E     | UE        | WF    |
| 0.0       | 0.00  | 0.00       | 0.00  | 0.00  | 0.00       | 0.00  | 0.00  | 0.00       | 0.00  | 0.00  | 0.00      | 0.00  |
| 0.5       | 0.02  | 0.00       | 0.01  | 0.08  | 0.00       | 0.06  | 0.01  | 0.06       | 0.01  | 0.15  | 0.09      | 0.13  |
| 1.0       | 0.47  | 0.13       | 0.27  | 1.09  | 0.67       | 0.94  | 0.32  | 0.00       | 0.21  | 1.01  | 0.60      | 0.94  |
| 1.5       | 0.14  | 0.04       | 0.10  | 0.86  | 0.54       | 0.81  | 0.04  | 0.04       | 0.03  | 0.56  | 0.03      | 0.51  |
| 2.0       | 1.18  | 0.19       | 0.52  | 3.33  | 0.96       | 2.72  | 0.49  | 0.08       | 0.20  | 2.09  | 1.00      | 1.61  |
| 2.5       | 0.13  | 0.05       | 0.07  | 0.98  | 0.56       | 0.93  | 0.05  | 0.01       | 0.03  | 0.82  | 0.02      | 0.74  |
| 3.0       | 1.88  | 0.11       | 0.72  | 4.03  | 0.81       | 2.97  | 0.81  | 0.09       | 0.29  | 2.56  | 1.04      | 1.88  |
| 3.5       | 0.64  | 0.15       | 0.48  | 12.79 | 4.83       | 12.48 | 0.30  | 0.17       | 0.23  | 8.66  | 3.45      | 8.20  |
| 4.0       | 3.72  | 0.19       | 1.41  | 6.83  | 0.61       | 4.84  | 1.73  | 0.19       | 0.69  | 3.28  | 0.69      | 2.35  |
| 4.5       | 0.23  | 0.07       | 0.13  | 0.67  | 0.26       | 0.64  | 0.09  | 0.05       | 0.05  | 0.35  | 0.40      | 0.37  |
| 5.0       | 4.25  | 0.15       | 2.06  | 6.12  | 0.55       | 4.46  | 2.70  | 0.14       | 1.31  | 3.13  | 0.26      | 2.17  |
| 5.5       | 0.26  | 0.09       | 0.18  | 0.64  | 0.21       | 0.60  | 0.10  | 0.00       | 0.07  | 0.30  | 0.00      | 0.30  |
| 6.0       | 4.06  | 0.10       | 2.74  | 4.06  | 0.30       | 3.15  | 5.69  | 0.25       | 4.16  | 4.65  | 0.22      | 3.52  |
| 6.5       | 0.13  | 0.00       | 2.10  | 0.11  | 0.00       | 0.11  | 0.14  | 0.00       | 0.10  | 0.12  | 0.00      | 0.10  |
| 7.0       | 82.90 | 98.73      | 91.21 | 58.40 | 89.70      | 65.30 | 87.53 | 98.91      | 92.62 | 72.31 | 92.20     | 77.18 |

*Notes:* \* E: Distribution of persons classified as employed (according to CWS) by number of half-days employed during the reference week. Note that persons classified as employed according to CWS by definition have worked at least one-half during the reference week, so the zero days/week cell is necessarily 0%.

UE: Distribution of persons classified as employed (according to CWS) by number of half-days employed during the reference week. Note that persons classified as employed according to CWS by definition have not been employed for any half-day have been actively seeking or are available for worked at least one-half day during the reference week, so the zero days/week cell is necessarily 0%.

LF: Distribution of persons in the labour force (unemployed or employed according to CWS) by number of half-days in the labour force (unemployed or employed) during the reference week. Note that persons reporting 0 days in the labour force are not in the labour force, so the zero days/week cell is necessarily 0%.

week is high, 55 per cent for males and 60 per cent for females. The rural proportions for both sexes is about a third. My interpretation of these results is that people move in and out of unemployment more frequently in rural areas, probably because it is easier to find employment in some activity there. On the other hand, both the unemployed and unemployed statuses are persistent in the sense that once one is employed (or unemployed), he or she is more likely to stay employed (or unemployed) for all seven days.

#### **CONCLUSIONS**

Before turning to policy questions, a few remarks are in order on the vast literature on employment in India. First, the literature based on NSSO data almost always focuses on the quinquennial rounds, virtually ignoring the annual rounds. Second, the distinction between person-rates of employment and unemployment, US and CWS and the person-day-rates of CWS is very often ignored and all three are treated as if they refer to persons. Third, the literature also usually discusses trends in absolute numbers of employed and less often the trends in employment rates. Fourth, in many of the scholarly articles as well as in some official publications the concept of employment elasticity and estimates of its trends play a crucial role. Related concepts of labour absorption per unit of output or per hectare of land used in the cultivation of various crops are also invoked.

Each of the four aspects of the analyses and findings in the literature can be questioned on analytical and empirical grounds. First, the sample sizes (in numbers of rural and urban households) for India as a whole are large in annual rounds although, in the quinquennial rounds, they are much larger. This being the case, there is no reason to ignore the annual or 'thin' round estimates, at least at the all-India level (and possibly at the level of major states) on grounds of small sample size. The argument that because in these rounds the main subject of inquiry is not necessarily employment and unemployment and for this reason there may be biases (due to investigator neglect) in estimates is not persuasive since no concrete evidence has been offered documenting such bias. Further, given that a large majority of Indian labour is employed in agriculture and activities that process agricultural products, employment in years of quinquennial round may be affected by shocks (particularly monsoon) to agriculture in those years, which could unduly influence the trends between such years. For all those reasons, in this paper I have used all the available data from 'thin' (annual) and 'thick' (quinquennial) rounds.

Second, as I argued in the previous section, since a 'given' number of 'person-days' of employment can be distributed differently among 'persons', it is inappropriate to ignore and treat as irrelevant the distinction between 'person-day rates' and 'person rates'.

Third, in official publications as well as in scholarly writings, a concern has been expressed about the growth of employment having declined in the 1990s. To cite only three among many: 'Concern is often expressed that the process of growth in recent years has not generated employment at the pace required for absorbing the additional entrants to the labour force' (Planning Commission 2006, p. 59); 'rate of growth of employment, on CDS basis, declined from 2.7 per cent per annum during 1983 to 1993-4 to 1.07 per cent per annum during 1994-2000' (MOF 2004, p. 208); 'The rate of growth of employment picked up from the 1960s, but declined in the mid-1970s. There appears to have been a second period of higher growth during the 1980s and early 1990s. But during the most recent period (1993-4 to 1999-2000) there is evidence to suggest a significant deceleration... The growth rate of employment increased from 2.2 per cent in 1983-5 to 3.2 per cent in 1988-93 (2.8 per cent during the decade) and then plummeted to 1.5 per cent during 1993-2000... There has been a virtual collapse of rural employment as per the NSS estimates for the latest period' (Srivastava 2006, pp. 1 and 7).

All these statements are based on growth in estimates of absolute numbers of employed persons, derived by multiplying the relevant census-based population totals by the CDS employment rates from the EUS of the NSSO<sup>6</sup> for the relevant category. Thus, the differing growth rates of absolute numbers employed to which the statements quoted in the previous paragraph refer, combine the effect of trends in CDS person-day employment and that of the census-based growth of persons in the relevant category. Unfortunately, the 'plummeting growth rate of employment' and 'the collapse of rural employment' cited by Srivastava (2006) and echoed by MOF (2004) and Planning Commission (2006) also only use data from quinquennial rounds and, in the case of MOF (2004), mistakenly use the CDS person-day rate as if it were a person rate.

The CDS rates are available only for quinquennial rounds. On the other hand, the US (PS + SS) and CWS rates are person rates and are available for thin as well as thick rounds. In the second section, we noted that for males there was no significant trend in employment rates (either US or CWS)

<sup>5</sup> The paper of Srivastava (2006) to which S.R. Hashim drew my attention, cites many of the important contributions to the literature. I found Srivastava's paper extremely helpful both from the perspective of the comprehensiveness of its coverage and of its references to the literature.

<sup>&</sup>lt;sup>6</sup> The procedure of using census-based population figures as multiplicand for NSS employment rates is not innocuous. As I argue in Srinivasan (2006), NSS underestimates the total population relative to the censuses and the extent of underestimation is increasing over time. One cannot rule out the possibility that whatever is causing the increasing underestimation could affect the NSS employment rates as well.

in rural areas and a significant upward trend in urban areas. Only in the cases of rural and urban females are there significant downward trends, and that too only if we use US data. This being the case, the use of longer term trends in person-rates of US or CWS, rather than the inappropriate person-day rates of CDS based only on quinquennial rounds, would reverse the pessimistic conclusion about the collapse of employment for males.<sup>7</sup> As is to be expected, the employment picture is mixed for females.

Even if one ignored thin rounds and used only the quinquennial rounds, one would find that the changes in employment rates according to US, CWS, and CDS are different (see Table 4.6). For example, if we focus on males who constitute the overwhelming majority (in excess of 75 per cent) of those employed, we find, that although the signs of the change of the three (US, CWS, and CDS) employment rates are the same except in one instance, the magnitudes of the change are very different. If instead of using the inappropriate CDS rates, one had used CWS rates, aggregate employment growth between 1983 and 1999-2000 would have been faster in rural areas, slower in urban areas and faster overall. But between 1983 and 1987-8 on the other hand, the use of CWS would lower the growth of employment in both rural and urban areas. The point is that it matters which of the three employment rates is used for projecting aggregate employment.

Not only have official publications and academic writers wrongly concluded that employment growth has slowed, but in attempting to explain the slowdown, they have also identified a fall in 'employment elasticity' as the culprit. For example, MOF (2004, p. 207) suggests that 'In view of the declining employment elasticity of growth, observed during 1994–2000, the Special Group (constituted by the Planning Commission on targeting ten million employment opportunities per year over the Tenth Plan period)

TABLE 4.6 Change in Employment Rate

(per cent)

|                    | R       | ural Are | as    | Urban Areas |      |      |  |  |
|--------------------|---------|----------|-------|-------------|------|------|--|--|
|                    | US      | CWS      | CDS   | US          | CWS  | CDS  |  |  |
|                    | (PS+SS) |          |       | (PS+SS)     |      |      |  |  |
| 1983 to 1987–8     | -0.46   | -0.37    | 3.9   | -1.17       | 0.00 | 0.35 |  |  |
| 1983 to 1993-4     | 1.10    | 3.91     | 4.6   | 1.76        | 3.80 | 4.86 |  |  |
| 1983 to 1999-2000  | -3.10   | -0.19    | -0.82 | 1.18        | 3.45 | 3.59 |  |  |
| 1987-8 to 1993-4   | 2.60    | 5.35     | 0.60  | 2.16        | 3.36 | 3.78 |  |  |
| 1987–8 to 1999–200 | 0 -1.48 | 1.19     | -4.59 | 2.37        | 3.45 | 2.72 |  |  |

Source: Table A4.1.

has recommended (Planning Commission 2002) that over and above employment generated in process of present structure of growth, there is a need to promote certain identified labour intensive activities'. The Planning Commission (2005, Table 8.1) generates its estimates of employment generated during the Tenth Plan using observed employment elasticities and actual GDP growth. Srivastava (2006, Table 18) also computes trends in employment elasticities and comments on their decline.

Unfortunately, such projections and policy pronouncements based on the same have no analytical foundation. Elementary economics would suggest that the observed employment in any period represents equilibrium between labour supply and labour demand. In principle, both supply and demand functions could shift over time. For example, GDP growth, ceteris paribus, would shift the labour demand function outward. Similarly, growth of the number of individuals in the prime working ages due to population growth, ceteris paribus, would shift the supply curve outward. Depending on the relative strengths of these shifts, almost any trend (up, down, or no change) in equilibrium employment is possible. In other words, the so-called 'employment elasticity' is not a deep behavioural parameter and can take on any value.

I conclude that the pronouncements on the slowdown in employment growth since 1993-4 are based on inappropriate measurement and invalid employment elasticity analysis and that the long term trends in US and CWS employment rates do not support such pessimistic pronouncements. However, there is no denying the fact that during the six decades since independence, with the state playing a dominant role in the economy, and a conscious attempt at industrialization, the industrial structure of employment in the economy has changed extremely slowly (see Table 4.7), although the structure of value added (GDP) has changed much more. The shares of agriculture and services in GDP, which respectively were 50 per cent and 30 per cent in 1960 (World Bank 1978, Table 3) changed significantly to 21 per cent and 52 per cent in 2004 (World Bank 2006, Table 4.2). The share of industry increased only modestly from 20 per cent in 1960 to 27 per cent in 2004. Primary activity (mostly agriculture) is still the dominant source of employment (around 66 per cent in the first half of 2004 as compared to 78 per cent in 1977–8) for rural males, the largest single group among the usually employed persons. Additionally, the industrialization strategy that emphasized investment in capital intensive, heavy industry on the one hand and promoted small-scale industry (SSI)

<sup>&</sup>lt;sup>7</sup> Sheila Bhalla comments that my findings are 'unremarkable' and is surprised that I find that the trends that I document paint a more optimistic picture of employment. I am puzzled by her comments, since my quotes from official publications and from Srivastava (2006) amply show that my findings are not shared by them and that the long term trends in US and CWS employment rates do not support such pessimistic pronouncements.

**TABLE 4.7** Per 1000 Distribution of Usually Employed by Broad Groups of Industry for Various Rounds, All India

| Round |     |      | Ma    | ale   |      |       | Female |      |       |       |      |      |  |
|-------|-----|------|-------|-------|------|-------|--------|------|-------|-------|------|------|--|
|       | Pri | mary | Secor | ndary | Tert | iary  | Prin   | nary | Secon | ndary | Tert | iary |  |
|       | ps  | all  | ps    | all   | ps   | all   | ps     | all  | ps    | all   | ps   | all  |  |
| (1)   | (2) | (3)  | (4)   | (5)   | (6)  | (7)   | (8)    | (9)  | (10)  | (11)  | (12) | (13) |  |
|       |     |      |       |       |      | Rural |        |      |       |       |      |      |  |
| 60    | 654 | 659  | 163   | 160   | 183  | 180   | 820    | 841  | 102   | 94    | 78   | 65   |  |
| 59    | 704 | 708  | 143   | 141   | 153  | 151   | 841    | 852  | 99    | 95    | 60   | 53   |  |
| 58    | 685 | 688  | 140   | 138   | 175  | 174   | 834    | 849  | 91    | 87    | 75   | 65   |  |
| 57    | 672 | 678  | 148   | 145   | 180  | 177   | 819    | 840  | 124   | 109   | 57   | 51   |  |
| 56    | 688 | 690  | 137   | 136   | 175  | 174   | 812    | 818  | 139   | 133   | 49   | 49   |  |
| 55*   | 712 | 714  | 127   | 126   | 161  | 160   | 841    | 854  | 93    | 89    | 66   | 57   |  |
| 54    | 755 | 757  | 103   | 102   | 142  | 141   | 876    | 885  | 70    | 66    | 54   | 49   |  |
| 53    | 757 | 758  | 106   | 106   | 137  | 136   | 875    | 885  | 77    | 72    | 47   | 42   |  |
| 52    | 746 | 748  | 115   | 114   | 139  | 137   | 854    | 868  | 87    | 80    | 59   | 52   |  |
| 51    | 752 | 756  | 104   | 103   | 144  | 141   | 862    | 871  | 88    | 83    | 50   | 46   |  |
| 50*   | 739 | 741  | 113   | 112   | 148  | 147   | 847    | 862  | 91    | 83    | 62   | 55   |  |
| 49    | 749 | 750  | 110   | 109   | 141  | 141   | 862    | 872  | 77    | 74    | 61   | 54   |  |
| 48    | 753 | 757  | 106   | 104   | 141  | 139   | 858    | 862  | 78    | 78    | 64   | 60   |  |
| 47    | 748 | 749  | 112   | 112   | 140  | 139   | 859    | 863  | 79    | 79    | 62   | 58   |  |
| 46    | 705 | 710  | 123   | 121   | 172  | 169   | 842    | 849  | 83    | 81    | 75   | 70   |  |
| 45    | 716 | 717  | 120   | 121   | 164  | 162   | 800    | 814  | 130   | 124   | 70   | 61   |  |
| 43*   | 739 | 745  | 123   | 121   | 138  | 134   | 825    | 847  | 112   | 100   | 63   | 53   |  |
| 38*   | 772 | 775  | 102   | 100   | 123  | 122   | 862    | 875  | 78    | 74    | 57   | 48   |  |
|       |     |      |       |       |      | Urban |        |      |       |       |      |      |  |
| 60    | 61  | 63   | 348   | 347   | 591  | 590   | 126    | 161  | 289   | 309   | 584  | 530  |  |
| 59    | 60  | 63   | 338   | 336   | 602  | 601   | 145    | 190  | 299   | 312   | 556  | 497  |  |
| 58    | 69  | 70   | 338   | 337   | 594  | 593   | 156    | 171  | 298   | 315   | 546  | 513  |  |
| 57    | 78  | 78   | 322   | 321   | 601  | 600   | 173    | 211  | 309   | 332   | 519  | 457  |  |
| 56    | 63  | 66   | 359   | 356   | 579  | 578   | 136    | 183  | 342   | 342   | 522  | 475  |  |
| 55*   | 65  | 66   | 329   | 328   | 606  | 606   | 146    | 177  | 293   | 293   | 561  | 529  |  |
| 54    | 90  | 92   | 324   | 322   | 586  | 586   | 187    | 221  | 292   | 280   | 520  | 499  |  |
| 53    | 76  | 78   | 343   | 340   | 582  | 581   | 165    | 200  | 328   | 324   | 507  | 476  |  |
| 52    | 81  | 82   | 335   | 335   | 584  | 583   | 179    | 209  | 310   | 309   | 512  | 482  |  |
| 51    | 86  | 88   | 330   | 329   | 584  | 583   | 154    | 205  | 354   | 343   | 492  | 452  |  |
| 50*   | 87  | 90   | 331   | 329   | 582  | 581   | 193    | 247  | 299   | 291   | 508  | 462  |  |
| 49    | 101 | 102  | 345   | 344   | 554  | 554   | 232    | 258  | 306   | 306   | 462  | 436  |  |
| 48    | 104 | 107  | 345   | 343   | 551  | 550   | 195    | 224  | 304   | 308   | 501  | 468  |  |
| 47    | 95  | 95   | 306   | 307   | 599  | 598   | 217    | 237  | 278   | 282   | 505  | 481  |  |
| 46    | 91  | 92   | 336   | 336   | 573  | 572   | 223    | 249  | 318   | 316   | 459  | 435  |  |
| 45    | 95  | 100  | 323   | 319   | 582  | 582   | 214    | 241  | 297   | 303   | 489  | 456  |  |
| 43*   | 85  | 91   | 343   | 340   | 572  | 569   | 218    | 294  | 324   | 317   | 458  | 389  |  |
| 38*   | 97  | 103  | 344   | 342   | 551  | 550   | 255    | 310  | 307   | 306   | 430  | 376  |  |

Notes: The board group of industries viz., primary, secondary, and tertiary refers to the group of NIC-98 industry divisions 01-05, 10-45, and 50-99, respectively. Industry group 01-05 actually refers to the agricultural sector; \* indicate quinquennial rounds.

Source: NSS (2005), Report No. 506: Employment and Unemployment Situation in India: January-June 2004, Statement II.

through reservation of many products for production by SSI only on the other, has failed to substantially increase employment. This failure is seen from the stagnation in the share of the secondary sector as a source of employment for rural males since 1977-8 and an alarming fall in the share of manufacturing in both rural and urban areas. The only redeeming feature is a slow rising trend in the small share for both males and females in rural areas. As is well known, historically the transformation of less developed economies into developed ones consisted in shifting workforce from employment in lower productivity primary activities to higher productivity secondary and tertiary sectors. Viewed from this perspective, the Indian development strategy has thus far been disappointing. Despite the fact that recent huge growth has been led by huge growth of the services sector rather than manufacturing, any expectation that India can leap-frog the stage of manufacturing growth and shift less educated and unskilled workers employed in agriculture and other primary activities with lower productivity to employment in high productive service activities is extremely unrealistic.

One of the contributors to the dismal performance is the set of labour laws enacted after independence. These laws made it costly for large enterprises to hire workers for long-term employment. Once hired, workers could not, in effect, be dismissed for economic reasons because of the costly and time consuming procedure for dismissal. The potential deleterious effects of these laws on economic growth and income inequalities was noted long ago by no less a person than P.C. Mahalanobis (1969, p. 442 and 1961, p. 157):

... certain welfare measures tend to be implemented in India ahead of economic growth, for example, in labour laws which are probably the most highly protective of labour interest in the narrowest sense, in the whole world. There is practically no link between output and remuneration; hiring and firing are highly restricted. It is extremely difficult to maintain an economic level of productivity or improve productivity ... the present form of protection of organized labour, which constitutes, including their families, about five or six per cent of the whole population, would operate as an obstacle to growth and would also increase inequalities ... it would seem better to try to attain the highest possible efficiency of labour and increasing productivity, and use the additional value obtained in this way to create more employment rather than lower the industrial efficiency by slack or restrictive practices through overstaffing.

Mahalanobis not only made a prescient diagnosis of the detrimental effects of labour laws, but also prescribed an alternative way of assuring the legitimate interests of workers and their families while at the same time preserving the right incentives for efficient employment and increasing productivity. It consisted of creating a labour reserve (LR),

...to absorb such industrial workers as may be considered surplus and be 'laid off' by existing industrial enterprises at their dis-cretion, and also to serve as a pool for other enterprises to draw upon, again, at their own discretion. The Labour Reserve

Service (LR) would then act as a buffer against unemployment and would serve as a (perhaps socially more useful and psychologically more preferable) form of or substitute for unemployment insurance.... The LR would provide training of various kinds and would continually try to use the men for productive purposes. Workers in the LR would have an incentive to find better jobs at the earliest opportunity.

(Mahalanobis 1961, pp. 157–8).

Considerations of efficiency, rightly emphasized by Mahalanobis, appeared to have played no role in the small-scale sector reservation policy. This policy not only failed to deliver its employment objectives but also crippled India's competitiveness in world markets, since many of the reserved products were major export items. Nearly a decade ago, a committee headed by Abid Hussain concluded that '... the case for reservations is fundamentally flawed and self-contradictory... the policy crippled the growth of several industrial sectors, restricted exports and has done little for the promotion of small scale industries' (p. 130, as quoted in World Bank 1998, p. 27). Although some products (including, most importantly garments, which are one of India's major exports) have been recently de-reserved, many still remain in the reserved category.

The fact that Indian labour laws are highly protective of labour, noted long ago by Mahalanobis, has at last received official recognition by the Ministry of Finance (MOF). The latest economic survey (MOF 2006, p. 209) notes, 'these laws apply only to the organized sector. Consequently, these laws have restricted labour mobility, have led to capital-intensive methods in the organized sector and adversely affected the sector's long run demand for labour'. Interestingly, the survey notes that 'perhaps there are lessons to be learnt from China in the area of labour reforms. China, with a history of extreme employment security, has drastically reformed its labour relations and created a new labour market, in which workers are highly mobile. Although there have been many lay-offs and open unemployment, high rates of industrial growth especially in the coastal regions helped their redeployment'. However, the survey fails to point out that in the special economic zones (SEZs) in the coastal areas of China, employers were free to hire and fire workers and 100 per cent foreign ownership was allowed, 8 whereas in India's recently legislated SEZs, the power to exempt them from

<sup>&</sup>lt;sup>8</sup> There are some studies (Roy 2004; Nagaraj 2004; Deshpande, Standing, and Deshpande 1998) which claim that India's labour laws have not adversely affected growth. These are not entirely persuasive for the reason that they either ignore completely or do not carefully account for the fact that the regulations critically affect the entry and exit dynamics of firms. As such, any analysis based on establishments or firms in existence has to allow for selection effects to be valid. The firms in existence represent those who chose to enter at various points of time earlier and have not exited as yet. After all firms that anticipate their being able to either comply with or evade labour laws at a cost would enter if it is profitable for them to do so, taking into the cost of compliance. Having entered they would stay unless unanticipated events, such as, for example, an increase in costs of corruption for evading labour laws or changes in product prices and non-labour costs make staying unprofitable.

labour laws is in the hands of the governments of the states in which they happen to be located.<sup>9</sup>

Given the slow change in the employment structure in the context of faster output growth, and its implications for the poor as noted earlier, it is understandable that an expanded Employment Guarantee Programme is being implemented. N.S.S. Narayana, Kirit Parikh and I (1988) long ago analysed the growth-enhancing and poverty reducing potential of a well-designed (that is, creating productive assets) and well-executed (that is, involving no leakage to the non-poor) rural work programme. I very much hope that the current programme would indeed be well-designed and well-executed. However, it is important to note that even if it is, it can only be a palliative and not one that will eradicate poverty once and for all within a recognizable time horizon (Srinivasan 2005). The latter goal has been the vision of our founding fathers and mothers. Realizing that vision requires, in my mind, not only a deepening, widening, and acceleration of economic reforms, but also a rethinking of our agricultural policies ranging from price supports, input subsidies, and credit to foreign trade.

Developing a foundation for policy that is based upon sound analysis of variations across states and over time is obviously essential for effective policy formulation; crude aggregate projections void of any economic foundation are no substitutes. Projections based on 'employment' elasticities are crude. I am not dismissing valuable and informative studies by scholars cited by Srivastava (2006). However, they do have some limitations. For the reason that a large majority of Indian workers are employed in agriculture and allied activities, a large number of studies are addressed to analysing the determinants of employment in agriculture. Srivastava (2006) also presents a model of such determinants and estimates it econometrically, carefully allowing for the endogeneity of some of the determinants. Yet it must be said that few, if any, of the studies look at the observed employment levels and returns to labour as being determined in an equilibrium between supply and demand, with both supply and demand being shifted by exogenous variables including policy and technology. The analysis of the informal and formal employment outside of agriculture is less extensive. I should say that the scholars in the past were limited by the data available to them that was largely of an aggregate nature. Now that the NSSO has made available the rich household level data from the quinquennial and annual rounds of EUS, it should be possible to analyse the determinants of household labour supply, including occupational choice decisions and of labour demand decisions of producers such as farmers and owners of household enterprises. I very much hope that many such studies will be undertaken in the future.

#### References

- Deshpande, Sudha, Guy Standing, and Lalit Deshpande (1998), Labour Market Flexibility in a Third World Metropolis, Vedams eBooks, New Delhi.
- GOI (2006), 'Provisional Results of Economic Census 2005: All India Report', Government of India, Ministry of Statistics and Programme Implementation, Central Statistical Organization, New Delhi, <a href="http://www.mospi.gov.in">http://www.mospi.gov.in</a>
- Mahalanobis, P.C. (1961), *Talks on Planning*, Indian Statistical Series No. 14, Statistical Publishing Society, Calcutta.
- ——— (1969), 'The Asian Drama: An Indian View', Sankhya: The Indian Journal of Statistics, Series B (31), Parts 3&4.
- MOF (2004), *Economic Survey 2003–04*, Ministry of Finance, New Delhi.
- ——— (2006) *Economic Survey, 2005–06*, Ministry of Finance, New Delhi.
- NAD (2004), Report of the Working Group on Workforce Estimates for Compilation of National Accounts Statistics with Base Year 1978–2000, National Accounts Division, Central Statistical Organization, New Delhi.
- Nagaraj, R. (2004), 'Fall in Organised Manufacturing Employment: A Brief Note', *Economic and Political Weekly*, Vol. 39, No. 30, 24 July.
- Narayana, N.S.S., Kirit S. Parikh, and T.N. Srinivasan (1988), 'Rural Works Programs in India: Costs and Benefits', *Journal of Development Economics*, Vol. 29, No. 2, pp. 131–56.
- NAS (2004), 'Report of the Working Group on Workforce Estimates for Compilation of National Accounts Statistics with Base Year 1978–2000', National Accounts Division, Central Statistical Organization, New Delhi.
- NCL (2002), 'Report of the National Commission on Labour', Ministry of Labour, New Delhi.
- NSS (1997), 'Employment and Unemployment Situation in India, 1993–4, Report No. 409, NSSO, New Delhi.
- ————(2001), 'Employment and Unemployment in India, Parts I and II', Report No. 458 (55/10/2), NSSO, New Delhi.
- ——— (2005), 'Employment and Unemployment Situation in India', January–June 2004, Report No. 506 (60/10/1), NSSO, New Delhi.
- ——— (2006), 'Employment and Unemployment Situation in India, Parts I and II, Report No. 515(61/10/1 and 2), NSSO, New Delhi.
- Planning Commission (2001), 'Report of the Task Force on Employment Opportunities', Planning Commission, New Delhi.

<sup>&</sup>lt;sup>9</sup> The controversy over the use of farm lands for SEZs seems to confound the legitimate issue of ensuring that landowners get the fair market value of their land in selling to the operators of SEZs, with the issue of whether the use of farm land for SEZs is inappropriate. Demands for a ban on farm lands being used for SEZ make no economic sense. In a well-functioning land market, land will be put to its best economic use, be it for farming or for use in an SEZ. If land markets are not functioning well, the failure should be addressed. The proposed ban is no solution to land market failure.

- ——— (2002) 'Report of the Special Group on Targeting Ten Million Employment Opportunities Per Year', Planning Commission, New Delhi.
- ——— (2005), 'Mid-term Appraisal of the 10th Five Year Plan (2002–7)', Planning Commission, New Delhi.
- ———— (2006), 'Towards Faster and More Inclusive Growth: An Approach to the 11th Five Year Plan', Planning Commission, New Delhi.
- Roy, Sudipta Dutta (2004), 'Employment Dynamics in Indian Industry: Adjustment lags and the impact of job security regulations', *Journal of Development Economics*, Vol. 73, pp. 233–56
- Srinivasan, T.N. (2005), 'Guaranteeing Employment: a Palliative?', *The Hindu*, Chennai.

- ——— (2006), 'Trends in Employment, Unemployment and Wages in India Since the Early Seventies', Mahendra Dev (ed.), to be published by Academic Foundation, New Delhi (forthcoming).
- Srivastava, R.S. (2006), 'Trends in Rural Employment in India with Special Reference to Agricultural Employment', forthcoming in the World Bank's *India Employment Report*.
- World Bank (1978), World Development Report, World Bank, Washington, DC.
- ———— (1998), *India: 1998 Macro-Economic Update*, World Bank, Washington, DC.
- ——— (2006), World Development Indicators, World Bank, Washington, DC.

#### **ANNEXURE 4.1**

TABLE A4.1 Employment Rates: Number of Persons (person-days) worked per 1000 Persons (person-days) According to US, CWS, and CDS Approaches for Different Rounds

|                       |                   | Rural |     |                |        |     |                | Urban |     |                |        |     |  |
|-----------------------|-------------------|-------|-----|----------------|--------|-----|----------------|-------|-----|----------------|--------|-----|--|
|                       |                   | Male  |     |                | Female | ·   |                | Male  |     |                | Female |     |  |
| Round (survey period) | Usual<br>adjusted | CWS   | CDS | Usual adjusted | CWS    | CDS | Usual adjusted | CWS   | CDS | Usual adjusted | CWS    | CDS |  |
| 61 (7/04 to 6/05)     | 546               | 524   | 488 | 327            | 275    | 216 | 549            | 537   | 519 | 166            | 152    | 133 |  |
| 60 (1/04 to 6/04)     | 542               | 511   | 471 | 315            | 245    | 190 | 540            | 525   | 504 | 150            | 136    | 118 |  |
| 59 (1/03 to 12/03)    | 547               | 525   |     | 311            | 236    |     | 541            | 528   |     | 146            | 121    |     |  |
| 58 (7/02 to 12/02)    | 546               | 529   |     | 281            | 219    |     | 534            | 523   |     | 140            | 118    |     |  |
| 57 (7/01 to 6/02)     | 546               | 523   |     | 314            | 241    |     | 553            | 542   |     | 139            | 111    |     |  |
| 56 (7/00 to 6/01)     | 544               | 525   |     | 287            | 217    |     | 531            | 519   |     | 140            | 117    |     |  |
| 55 (7/99 to 6/00)     | 531               | 510   | 478 | 299            | 253    | 204 | 518            | 509   | 490 | 139            | 128    | 111 |  |
| 54 (1/98 to 6/98)     | 539               | 524   |     | 263            | 202    |     | 509            | 504   |     | 114            | 99     |     |  |
| 53 (1/97 to 12/97)    | 550               | 535   |     | 291            | 222    |     | 521            | 513   |     | 131            | 114    |     |  |
| 52 (7/95 to 6/96)     | 551               | 538   |     | 295            | 233    |     | 525            | 520   |     | 124            | 109    |     |  |
| 51 (7/94 to 6/95)     | 560               | 541   |     | 317            | 241    |     | 519            | 511   |     | 136            | 117    |     |  |
| 50 (7/93 to 6/94)     | 553               | 531   | 504 | 328            | 267    | 219 | 521            | 511   | 496 | 155            | 139    | 120 |  |
| 49 (1/93 to 6/93)     | 545               | 527   |     | 311            | 232    |     | 509            | 504   |     | 130            | 109    |     |  |
| 48 (1/92 to 12/92)    | 556               | 536   |     | 313            | 244    |     | 507            | 501   |     | 146            | 122    |     |  |
| 47 (7/91 to 12/91)    | 546               | 534   |     | 294            | 238    |     | 516            | 509   |     | 132            | 117    |     |  |
| 46 (7/90 to 6/91)     | 553               | 535   |     | 292            | 230    |     | 513            | 506   |     | 143            | 124    |     |  |
| 45 (7/89 to 6/90)     | 548               | 528   |     | 319            | 230    |     | 512            | 503   |     | 146            | 121    |     |  |
| 43 (7/87 to 6/88)     | 539               | 504   | 501 | 323            | 220    | 207 | 506            | 492   | 477 | 152            | 119    | 110 |  |
| 38 (1/83 to 12/83)    | 547               | 511   | 482 | 340            | 227    | 198 | 512            | 492   | 473 | 151            | 118    | 106 |  |
| 32 (1977 to 1978)     | 542               | 519   | 458 | 331            | 232    | 194 | 508            | 490   | 472 | 156            | 125    | 109 |  |
| 27 (1972 to 1973)     | 545               | 530   | 503 | 318            | 217    | 231 | 501            | 491   | 477 | 134            | 123    | 108 |  |

Source: NSS (1997, 2001, 2005, 2006).

TABLE A4.2 Unemployment Rates: Number of Persons (person-days) Unemployed per 1000 Persons (person-days) in the Labour Force for Different Rounds

|                       |                   |      | Rı  | ural           |        |     |                   |      | Uı  | ·ban              |        |     |
|-----------------------|-------------------|------|-----|----------------|--------|-----|-------------------|------|-----|-------------------|--------|-----|
|                       |                   | Male |     |                | Female |     |                   | Male |     |                   | Female |     |
| Round (survey period) | Usual<br>adjusted | CWS  | CDS | Usual adjusted | CWS    | CDS | Usual<br>adjusted | CWS  | CDS | Usual<br>adjusted | CWS    | CDS |
| 61 (7/04 to 6/05)     | 16                | 38   | 80  | 38             | 52     | 75  | 18                | 42   | 87  | 69                | 70     | 116 |
| 60 (1/04 to 6/04)     | 18                | 47   | 90  | 40             | 57     | 81  | 13                | 45   | 93  | 67                | 90     | 117 |
| 59 (1/03 to 12/03)    | 15                | 28   |     | 40             | 51     |     | 6                 | 16   |     | 35                | 49     |     |
| 58 (7/02 to 12/02)    | 15                | 28   |     | 45             | 55     |     | 6                 | 16   |     | 47                | 57     |     |
| 57 (7/01 to 6/02)     | 11                | 26   |     | 39             | 46     |     | 14                | 26   |     | 38                | 48     |     |
| 56 (7/00 to 6/01)     | 14                | 23   |     | 39             | 48     |     | 4                 | 18   |     | 29                | 39     |     |
| 55 (7/99 to 6/00)     | 17                | 39   | 72  | 45             | 56     | 73  | 10                | 37   | 70  | 57                | 73     | 94  |
| 54 (1/98 to 6/98)     | 21                | 29   |     | 51             | 54     |     | 15                | 27   |     | 68                | 78     |     |
| 53 (1/97 to 12/97)    | 12                | 20   |     | 39             | 43     |     | 7                 | 8    |     | 44                | 58     |     |
| 52 (7/95 to 6/96)     | 13                | 18   |     | 38             | 41     |     | 7                 | 9    |     | 61                | 35     |     |
| 51 (7/94 to 6/95)     | 10                | 18   |     | 34             | 39     |     | 4                 | 12   |     | 34                | 40     |     |
| 50 (7/93 to 6/94)     | 14                | 30   | 56  | 40             | 52     | 67  | 8                 | 30   | 56  | 62                | 84     | 105 |
| 45 (7/89 to 6/90)     | 13                | 26   |     | 39             | 45     |     | 6                 | 21   |     | 27                | 40     |     |
| 43 (7/87 to 6/88)     | 18                | 42   | 46  | 52             | 66     | 88  | 24                | 44   | 67  | 62                | 92     | 120 |
| 38 (1/83 to 12/83)    | 14                | 37   | 75  | 51             | 67     | 92  | 7                 | 43   | 90  | 49                | 75     | 110 |
| 32 (1977 to 1978)     | 13                | 36   | 71  | 54             | 71     | 94  | 20                | 41   | 92  | 124               | 109    | 145 |
| 27 (1972 to 1973)     | 12                | 30   | 68  | 48             | 60     | 80  | 5                 | 55   | 112 | 60                | 92     | 137 |

Source: NSS (1997, 2001, 2005, 2006).

TABLE A4.3
Employment Status: Per 1000 Distribution of Usually Employed by Status of Employment for Different Rounds

|                       |                   |                              | R                | ural              |                              |                  | Urban             |                              |                  |                   |                              |                  |
|-----------------------|-------------------|------------------------------|------------------|-------------------|------------------------------|------------------|-------------------|------------------------------|------------------|-------------------|------------------------------|------------------|
|                       |                   | Male                         |                  |                   | Female                       |                  |                   | Male                         |                  |                   | Female                       |                  |
| Round (survey period) | Self-<br>employed | Regular<br>wage/<br>salaried | Casual<br>labour |
| 61 (7/04 to 6/05)     | 581               | 90                           | 329              | 537               | 37                           | 326              | 448               | 406                          | 146              | 477               | 356                          | 167              |
| 60 (1/04 to 6/04)     | 572               | 93                           | 335              | 615               | 38                           | 347              | 441               | 406                          | 153              | 446               | 362                          | 192              |
| 59 (1/03 to 12/03)    | 578               | 87                           | 335              | 616               | 33                           | 351              | 429               | 415                          | 156              | 454               | 339                          | 207              |
| 58 (7/02 to 12/02)    | 569               | 88                           | 344              | 558               | 36                           | 406              | 443               | 407                          | 150              | 459               | 308                          | 233              |
| 57 (7/01 to 6/02)     | 580               | 81                           | 339              | 589               | 29                           | 382              | 430               | 415                          | 154              | 441               | 298                          | 261              |
| 56 (7/00 to 6/01)     | 589               | 95                           | 316              | 593               | 32                           | 375              | 414               | 411                          | 175              | 444               | 315                          | 241              |
| 55 (7/99 to 6/00)     | 550               | 88                           | 362              | 573               | 31                           | 396              | 415               | 417                          | 168              | 453               | 333                          | 214              |
| 54 (1/98 to 6/98)     | 553               | 70                           | 377              | 534               | 25                           | 442              | 425               | 395                          | 181              | 384               | 327                          | 288              |
| 53 (1/97 to 12/97)    | 594               | 73                           | 333              | 570               | 21                           | 409              | 400               | 415                          | 185              | 397               | 313                          | 290              |
| 52 (7/95 to 6/96)     | 590               | 77                           | 333              | 564               | 24                           | 412              | 410               | 425                          | 165              | 400               | 332                          | 268              |
| 51 (7/94 to 6/95)     | 604               | 68                           | 328              | 570               | 22                           | 408              | 414               | 431                          | 165              | 426               | 301                          | 273              |
| 50 (7/93 to 6/94)     | 577               | 85                           | 338              | 586               | 27                           | 387              | 417               | 420                          | 163              | 458               | 284                          | 258              |
| 49 (1/93 to 6/93)     | 591               | 79                           | 330              | 585               | 23                           | 392              | 389               | 395                          | 216              | 407               | 262                          | 331              |
| 48 (1/92 to 12/92)    | 608               | 83                           | 309              | 591               | 32                           | 377              | 412               | 394                          | 193              | 425               | 288                          | 287              |
| 47 (7/91 to 12/91)    | 595               | 92                           | 313              | 568               | 31                           | 401              | 489               | 399                          | 172              | 470               | 280                          | 250              |
| 46 (7/90 to 6/91)     | 557               | 128                          | 315              | 586               | 38                           | 376              | 407               | 442                          | 151              | 490               | 259                          | 251              |
| 45 (7/89 to 6/90)     | 597               | 98                           | 305              | 609               | 28                           | 363              | 423               | 413                          | 164              | 486               | 292                          | 222              |
| 43 (7/87 to 6/88)     | 586               | 100                          | 314              | 608               | 37                           | 355              | 417               | 437                          | 146              | 471               | 275                          | 254              |
| 38 (1/83 to 12/83)    | 605               | 103                          | 292              | 619               | 28                           | 353              | 409               | 437                          | 154              | 458               | 258                          | 284              |

Source: NSS (1997, 2001, 2005, 2006).

TABLE A4.4 Labour Force Participation Rates: Number of Persons (person-days) Employed and Unemployed Per 1000 Persons (person-days) for Different Rounds

|                          |                   |      | R   | ural              |        |     |                   |      | Uı  | rban              |        |     |
|--------------------------|-------------------|------|-----|-------------------|--------|-----|-------------------|------|-----|-------------------|--------|-----|
|                          |                   | Male |     |                   | Female |     |                   | Male |     |                   | Female |     |
| Round<br>(survey period) | Usual<br>adjusted | CWS  | CDS | Usual<br>adjusted | CWS    | CDS | Usual<br>adjusted | CWS  | CDS | Usual<br>adjusted | CWS    | CDS |
| 61 (7/04 to 6/05)        | 555               | 545  | 530 | 571               | 566    | 561 | 333               | 287  | 237 | 178               | 163    | 150 |
| 60 (1/04 to 6/04)        | 552               | 536  | 518 | 563               | 557    | 548 | 319               | 257  | 209 | 161               | 149    | 134 |
| 59 (1/03 to 12/03)       | 555               | 540  |     | 564               | 556    |     | 313               | 240  |     | 151               | 127    |     |
| 58 (7/02 to 12/02)       | 554               | 544  |     | 559               | 553    |     | 283               | 223  |     | 147               | 125    |     |
| 57 (7/01 to 6/02)        | 552               | 537  |     | 575               | 568    |     | 318               | 247  |     | 144               | 117    |     |
| 56 (7/00 to 6/01)        | 552               | 537  |     | 553               | 545    |     | 288               | 221  |     | 144               | 122    |     |
| 55 (7/99 to 6/00)        | 540               | 531  | 515 | 542               | 539    | 529 | 302               | 263  | 219 | 147               | 138    | 123 |
| 54 (1/98 to 6/98)        | 551               | 540  |     | 536               | 533    |     | 267               | 208  |     | 122               | 107    |     |
| 53 (1/97 to 12/97)       | 557               | 546  |     | 542               | 536    |     | 293               | 224  |     | 137               | 121    |     |
| 52 (7/95 to 6/96)        | 558               | 548  |     | 546               | 542    |     | 297               | 235  |     | 132               | 113    |     |
| 51 (7/94 to 6/95)        | 566               | 551  |     | 537               | 532    |     | 318               | 244  |     | 141               | 122    |     |
| 50 (7/93 to 6/94)        | 561               | 547  | 534 | 543               | 539    | 532 | 331               | 275  | 232 | 165               | 152    | 134 |
| 45 (7/89 to 6/90)        | 555               | 542  |     | 533               | 527    |     | 321               | 235  |     | 150               | 126    |     |
| 43 (7/87 to 6/88)        | 549               | 526  | 525 | 534               | 527    | 523 | 331               | 230  | 222 | 162               | 131    | 125 |
| 38 (1/83 to 12/83)       | 555               | 531  | 521 | 540               | 527    | 521 | 342               | 237  | 218 | 159               | 128    | 119 |
| 32 (1977 to 1978)        | 549               | 538  | 493 | 537               | 527    | 521 | 338               | 242  | 214 | 178               | 140    | 127 |
| 27 (1972 to 1973)        | 552               | 546  | 540 | 526               | 522    | 518 | 320               | 230  | 260 | 143               | 135    | 125 |

Source: NSS (1997, 2001, 2005, 2006).

### State of Higher Education in India

S.R. Hashim\*

India's achievements in higher education in the postindependence period appear to be quite remarkable, given the initial conditions from which we started. We have been able to create a large base of educational institutions and some of them are known to be excellent. We are a country with one of the largest trained and educated manpower with considerable scientific and technical capabilities. Our research in agricultural sciences has contributed significantly to our food security. Our engineers have constructed huge dams, seaports, aerodromes, and power houses. Big industrial plants have been erected and are being run by personnel trained within the country. We have made significant strides in nuclear and space research. We have produced excellent scientists in a number of other fields. We have produced fine practioners of medicine and surgery. Good advances are being made in biotechnology, genetics, and material sciences. We have developed comparative advantages in knowledge-based industries such as pharmaceuticals and IT. We have been able to develop entrepreneurial and managerial skills. And yet, we find today that our capacity and capabilities in higher education are woefully inadequate to meet the needs of a fast growing, knowledge-based economy of 21st century, on the one hand, and the demand from the youth aspiring to enter and be part of this dynamic world of growth and progress, on the other. The pace of

expansion of facilities for higher education has been very slow and the quality has been uneven.

Severe capacity constraints have emerged, particularly in those segments of higher education which are most in demand. This has been mainly due to niggardly allocation of public resources to higher education. This resource crisis has assumed alarming dimensions in the past two decades (Azad 2005). India's main competitors—especially China but also Singapore, Taiwan, and South Korea—are investing much more in large differentiated higher education systems. They are providing access to large numbers of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with world's best institutions (Altbach 2005).

The demand for higher education has surged forward and is growing rapidly as: (i) larger and larger number of students are completing school education, (ii) Indian middle class is expanding, (iii) land-based economic system is declining, (iv) higher education is being looked upon as the means of entry into the dynamic world of growth and progress and as a basis of enduring economic security, and (v) the economy has recorded high growth and is shifting to a still higher growth path with such continuing changes in economic structure as are supported and sustained by higher education inputs. Higher education is no longer the

<sup>\*</sup> The author would like to acknowledge with thanks the assistance received from various sources in preparing this paper. ISID made available its online data-base-clipping-service for reference and rendered the necessary secretarial assistance. The Institute for Human Development (IHD) helped in procuring reference literature and extracting some data from websites. IGDRI invited me to work and stay with them for 10 days and provided secretarial assistance. R. Radhakrishna read an earlier draft of this paper and made valuable suggestions.

#### Box 5.1

#### Pressure of Competition for Available Seats in the Institutions of Higher Learning

The pressure of competition for available seats in the institutions of higher learning is enormous. This can be gauged just from the following example. The top nine institutes of technology which include seven IITs, that is, Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras, and Roorkee and IT BHU at Varanasi and ISM at Dhanbad hold a combined entrance test for selecting candidates for admission to various degree courses. For the year 2006, they held a combined entrance test for a total of 5444 seats that they offered altogether in 108 specializations. The number of seats offered in any one institute in any one discipline is not very large. For example, the highest number of seats offered in the overall matrix of institution and speciality is 77 in civil engineering in IIT Roorkee. The smallest number of seats offered is just 7 in the speciality of naval architecture and ocean engineering in IIT Madras. The only other institute which offers this speciality is IIT Kharagpur, and this institute has only 9 seats. IITs are regarded as the best of the educational institutions for higher studies in technology. It may not be out of place to mention here that last year London Times Higher Education Supplement ranked the world's top 200 universities which included three from China, three from Kong Kong, three from South Korea, one from Taiwan, and one from India, an Indian Institute of Technology. It is well-known in academic circles and particularly among the aspirants that competition for admission to IIT is one of the toughest. A lot of hard work is required even for appearing in the admission test. And hence it would not be wide off the mark to surmise that those aspirants who take the test would be good enough for aspiring for a seat in IIT. For these 5444 seats, 2,99,456 students took the entrance examination. The ratio of aspirants to available seats works out to 55:1. Is it difficult not to believe that if the available seats were 5 to 10 times more, even then one could have got enough students worthy of these institutions? Further, it was recently reported that even a score of 90 per cent does not ensure a student a course in a college of choice in Delhi University this year.

preserve of the elite in the society, but has become a commodity in high demand from the middle and lower middle classes and is aspired to even by the poor.

This chapter attempts to address some of the demand as well as supply side issues pertaining to higher education. On the demand side, the factors responsible for changes in the perception about the value of higher education are examined, particularly with reference to the decline in the land-based economy and shift in the economic structure in favour of services and knowledge-based industries. The relationship between education and earnings is also explored. On the supply side, the expansion and growth of higher education in India is traced over time, particularly with reference to allocation of public funds. Ways of enhancing the capacity of higher education are explored and, in this context, the existing and potential role of private providers and foreign providers of higher education is examined. The possibility of using the excellent faculty and infrastructure that has been built over the years in various research institutes (mostly supported by public funds) for teaching purposes (towards post-graduate degrees) is also explored. Open and distance learning systems and the institution of deemed to be universities are also mentioned in this context. Certain other issues like the rural-urban divide in the quality of education and the question of relevant education are also discussed. Some of these issues were raised by the author on an earlier occasion (Hashim 2005).

#### CHANGING PERCEPTION ABOUT VALUE OF HIGHER EDUCATION

Land has been traditionally perceived by people as the most enduring basis of economic security and social status. In a largely agrarian society, everything revolved around land. Owning a piece of land gave a social identity to the owner, and also made a significant difference in the economic status of the household. Hunger and poverty were extremely high among the landless. Ownership of 5-6 acres of land (to be categorized as 'small' or 'medium' farmer, depending on irrigation status of the land) could keep the farming household mostly above poverty line and could even make some of them relatively prosperous in the rural setting. It may be seen from Table 5.1 that 68 per cent of the landless wage earners and 45 per cent of the marginal farmers were below the poverty line in 1993-4, but only 16 per cent of the small farmers were poor.

Incidence of Poverty by Landholding Groups, 1993-4

| Landholding Group    | HCR (Percentage) |
|----------------------|------------------|
| Landless wage earner | 68               |
| Marginal farmer      | 45               |
| Small farmer         | 16               |
| Large farmer         | 11               |
| Other landless       | 37               |
| All landowners       | 31               |
| All landless         | 52               |
|                      |                  |

Source: Shariff (1999).

Given that the rate of average earning was not very high in other sectors, including the services sector (except for a minutely small proportion of high class earners), one could not build up enough savings in alternative occupations for the type of economic security that the land could provide. No wonder that people clung to land, sometimes putting their lives at stake even for a small holding. Migrants seeking work elsewhere in the country or abroad did not, for generations, give up their village connection if they had a piece of land back home.

Increasing pressure of population on land due to much slower absorption of workforce in non-agricultural occupations resulted in continuing marginalization of farmers. Percentage share of number of marginal holdings in all holdings increased from 50.6 in 1970-1 to 61.6 in 1995-6. The area under marginal holdings increased from 9.0 per cent to 17.2 per cent over the same period (Table 5.2). The green revolution regenerated hopes of a better livelihood even among the small and the marginal farmers as the new technology was acclaimed to be size-neutral. However, the benefits of the green revolution accrued more to those farmers with command over larger resources, since the input intensity of new agriculture was much higher. During the last decade and a half the agricultural growth has declined and the green revolution has lost much of its shine. The burden of structural adjustment and economic reforms fell on agriculture somewhat more severely than on other sectors. Public investment in agriculture had slowed down even earlier, beginning in the early 1980s (Reddy 2006). Input prices started rising since the early 1990s. Withdrawal of subsidies raised the prices of fertilizers and pesticides and seed costs have gone up enormously. There has been a steep fall in the allocation of credit to agriculture. Since agricultural imports and exports have been liberalized, demand for agricultural products has become highly unpredictable. Agriculture has become a highly risky business. 'On account of the resulting decline in output and income, a large number of small and marginal farmers were pushed below the poverty line in the immediate post-reform period' (Rao 2005). Unemployment rates in rural areas (measured on the basis of principal and secondary status as well as weekly status) were significantly higher in the NSS 54th round (1998) and 55th round (1999-2000) than in the past (Kundu et al. 2005). A state like Punjab which gave the lead in green revolution and had achieved the highest rate of growth and was the highest per capita income state, all on the basis of high value and high intensity agriculture, has lost its rank both in terms of growth rate and in terms of per capita income. The phenomenon of farmers' suicides has spread over the states of Andhra, Karnataka, Maharashtra, and now even Punjab. People seem to have lost confidence in land as the enduring basis of economic security.

Percentage Share of Number and Area under Marginal Holdings (less than one hectare)

| Year   | No. of Holdings | Area |
|--------|-----------------|------|
| 1970–1 | 50.6            | 9.0  |
| 1980-1 | 56.4            | 12.1 |
| 1990-1 | 59.0            | 14.9 |
| 1995–6 | 61.6            | 17.2 |

Source: Reddy (2006).

The economy as a whole, on the other hand, has experienced a much higher growth rate during the post-reform period—nearly 6 per cent per annum over the long period of a decade and a half. Agriculture has not contributed much to this growth, as already noted. Even the industrial sector, particularly manufacturing, has made only a modest contribution to the growth, ultimately losing its share in total GDP (Table 5.3). The overall growth rate of the economy is boosted mainly by very high growth rates in the services sector and a few segments of manufacturing such as motor-vehicles etc. This growth is manifested in fast modernizing metro-towns, growth in a variety of 'service' activities, pervading growth and influence of IT, bullish trends in stock exchanges, globalization of retail trade, boom in the construction industry, and unprecedentedly

#### Box 5.2 Farming has Become a Risky Vocation

#### A. Farmers' Suicides in Vidarbha

According to a recent report, in the current kharif season, more than 550 farmers—mostly cotton growers—have chosen the easy way out from the vicious cycle of debt and crop failure in the Vidarbha region of Maharashtra alone; on an average at least three farmers have committed suicide in the region every day. The factors are multiple: crippling debts, pressure from private and unscrupulous money lenders, high interest rates, soaring input costs, low output prices, and corporate seeds supplied by MNCs which perish faster than the homegrown variety (Hindustan Times, New Delhi, 20 May 2006).

#### B. Farming—An Unprofitable Vocation

Recently, the Minister of State for Agriculture stated in the Rajya Sabha—citing figures from NSS—that 27 per cent of farmer households found the vocation unprofitable, eight per cent felt it was risky and five per cent disliked it because of lack of social status and other reasons. Thus 40 per cent of the farmers would like to try out something new for a living (Hindustan Times, New Delhi, 20 May 2006).

TABLE 5.3 Sectoral Share in GDP

| 1 |    |   |    |   |    |     | `  |
|---|----|---|----|---|----|-----|----|
| ( | De | r | се | п | ta | ge. | S) |

| Year   | Agriculture | Manufacturing | Secondary<br>sector | Tertiary<br>sector |
|--------|-------------|---------------|---------------------|--------------------|
| 1997–8 | 26.5        | 17.7          | 27.7                | 45.8               |
| 2001-2 | 24.1        | 16.9          | 26.6                | 49.3               |
| 2002-3 | 21.5        | 17.3          | 27.3                | 51.2               |
| 2003-4 | 21.7        | 17.0          | 26.9                | 51.4               |

Source: Mid-term Appraisal of the Tenth Plan, Planning commission, Government of India, 2005.

high incomes in certain segments of the fast growing economy. This growth is largely urban oriented and is contributing to a fast expansion of urban middle class.

#### **EDUCATION AND EARNING**

The relationship between the levels of education and long earning has been a subject of interest. A more systematic recent study based on household surveys is available from MIMAP India Survey Report, (NCAER 2003). It is based on a survey of 5000 households for the reference period July 1994 to June 1995. A positive correlation is found between average household income and the education level of the head of the household for both rural and urban households. Lack of education is disadvantageous to earnings in rural and urban settings, but more so in the latter. While some education below undergraduate level can help in improving earning levels in rural areas, in urban areas it is education at graduate and higher levels only which makes a real difference in earning levels (Table 5.4). With the thrust and

TABLE 5.4
Percentage Distribution of Households and Income by
Education Level of the Head of the Household

| Educational Level      | Ru    | ıral   | Urban |        |
|------------------------|-------|--------|-------|--------|
| of Head                | HHS   | Income | HHS   | Income |
| No formal Education    | 50.81 | 42.34  | 15.69 | 9.72   |
| Below primary          | 11.41 | 11.08  | 4.93  | 4.45   |
| Below middle           | 14.39 | 15.64  | 12.15 | 8.34   |
| Below secondary        | 8.50  | 9.99   | 10.40 | 7.53   |
| Below higher secondary | 10.14 | 13.41  | 21.88 | 22.31  |
| Undergraduate          | 2.43  | 3.61   | 9.22  | 9.13   |
| Graduate and above     | 2.43  | 3.93   | 25.74 | 38.52  |

Source: MIMAP (2003).

the focus of the economy shifting in favour of more urbanoriented economic activities (mainly in the services sector) it is no wonder that demand for higher education has suddenly gone up and will continue to move upwards. Perhaps people's response to the changing trends is much quicker and sharper than our understanding of these trends.

The data also reveal another interesting feature of the relationship between levels of earning and education. It is generally known that earnings rise with age/experience. The data show that the experience, as reflected in age, matters for earnings only if the educational level is high enough (Table 5.5). Earnings of illiterates and those with lower than secondary level of education initially decline with age, picking up only at later stages though at slow rate. Earnings of the better educated rise sharply with age/experience.

Thus, it is higher education that matters for substantial improvement in earning levels, particularly in the urban

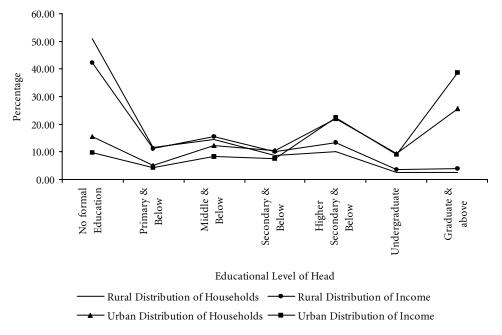



Figure 5.1: Percentage Distribution of Households and Income

TABLE 5.5 Per Household Income (Rs per annum) by Head's Education and Age

(All India)

| Age Group in | Education Level of Head |                 |                 |  |  |  |
|--------------|-------------------------|-----------------|-----------------|--|--|--|
| years        | Illiterate              | Below secondary | Above secondary |  |  |  |
| Below 30     | 20,134                  | 28,422          | 32,871          |  |  |  |
| 30-9         | 18,323                  | 23,755          | 46,729          |  |  |  |
| 40-9         | 21,749                  | 29,898          | 54,065          |  |  |  |
| 50-9         | 26,710                  | 37,972          | 76,085          |  |  |  |
| 60 & above   | 29,950                  | 42,202          | 80,974          |  |  |  |

Source: MIMAP (2003).

Data from the MIMAP Survey on per capita consumption expenditure on education by income groups are presented in Table 5.7. Average per capita expenditure on education in urban areas is 5-6 times higher than that in rural areas. Ninety per cent of the households in urban areas spend Rs 289 and above per capita per annum on education, while only about 10 per cent of households in rural areas spend Rs 173 per capita per annum or more on education. This table reflects strong tendencies. The data presented in Table 5.7 are over ten years old, as they pertain to the year 1994-5. Over these ten years, as the urban-oriented, knowledge-based

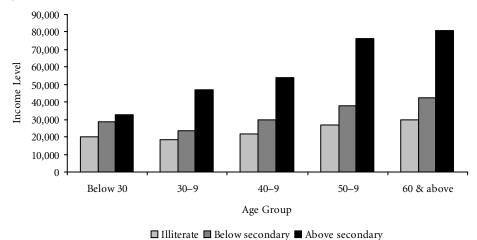



Figure 5.2: Per Household Income by Head's Education and Age

setting which represents the more modern and futuristic economic activity pattern. Higher education is, therefore, is seen as the more enduring basis of economic security and social status.

#### HOUSEHOLD EXPENDITURE ON EDUCATION

The change in perceptions about the value of education, to an extent, is captured in the pattern of household consumption expenditure. Household expenditure on education as per NSS has been generally low since large segments of population have been traditionally dependent on education provided by the government. However, household expenditure on education goes up sharply as income rises.

The income elasticity of expenditure on education (worked out across 12 expenditure classes) is very high for both urban and rural areas (see Table 5.6).

**TABLE 5.6** Income Elasticity of Household Expenditure on Education

| Year      | Rural | Urban |
|-----------|-------|-------|
| 1993–4    | 1.685 | 1.834 |
| 1999–2000 | 1.821 | 1.617 |

Source: Calculated from Household Consumption Expenditure data from NSS 50th and 55th Rounds.

segments of the economy have expanded at a much faster rate and there has been a decline in the land-based segments of the economy, urban attitudes about education have spread fast even to the rural areas.

In this context there is another bit of interesting data. Table 5.8 presents data on educated youth (age group 15-29) in the labour force. 'Educated', here, is defined as those having

TABLE 5.7 Per capita Consumption Expenditure on Education by Income Group

| Income Group (Rs) | Rs Per capita<br>per annum |       |       | ntage of<br>eholds |
|-------------------|----------------------------|-------|-------|--------------------|
|                   | Rural                      | Urban | Rural | Urban              |
| Up to 12,000      | 42                         | 40    | 16.2  | 2.3                |
| 12,001–18,000     | 62                         | 58    | 25.7  | 7.7                |
| 18,001-24,000     | 79                         | 289   | 17.9  | 9.5                |
| 24,001-48,000     | 135                        | 276   | 29.9  | 35.8               |
| 48,001-72,000     | 173                        | 496   | 5.9   | 19.8               |
| 72,001–96,000     | 142                        | 662   | 2.1   | 11.4               |
| > 96,001          | 182                        | 951   | 2.2   | 13.5               |
| All               | 81                         | 455   | 100.0 | 100.0              |

Note: The last two columns of the table have been calculated from the number of households given in the source table. Source: MIMAP (2003).

| Table 5.8                                                            |
|----------------------------------------------------------------------|
| Educated Youth in Labour Force, Middle Level of Schooling, and Above |
| ( +                                                                  |

(as percentage of labour force in relevant age group)

| Sex     | Age    | Rı     | Rural     |        | Urban     |        | All       |  |
|---------|--------|--------|-----------|--------|-----------|--------|-----------|--|
|         | Groups | 1993–4 | 1999–2000 | 1993–4 | 1999–2000 | 1993–4 | 1999–2000 |  |
| Male    | 15–29  | 44.2   | 50.9      | 66.7   | 72.1      | 49.8   | 56.4      |  |
|         | 15-19  | 49.5   | 55.1      | 67.4   | 71.9      | 52.1   | 58.7      |  |
|         | 20–4   | 47.4   | 53.8      | 69.7   | 73.8      | 53.1   | 59.2      |  |
|         | 25–9   | 36.6   | 45.2      | 63.5   | 70.7      | 44.0   | 52.3      |  |
| Female  | 15-29  | 21.7   | 29.0      | 54.5   | 62.5      | 26.5   | 33.5      |  |
|         | 15-19  | 30.6   | 40.6      | 63.6   | 69.7      | 34.7   | 44.3      |  |
|         | 20-4   | 21.1   | 28.9      | 56.0   | 64.6      | 26.2   | 33.9      |  |
|         | 25–9   | 14.2   | 21.3      | 47.0   | 55.9      | 19.6   | 25.9      |  |
| Persons | 15-29  | 36.6   | 43.4      | 64.1   | 70.3      | 42.5   | 49.3      |  |
|         | 15-19  | 43.1   | 50.2      | 66.5   | 71.4      | 47.2   | 54.2      |  |
|         | 20–4   | 38.0   | 45.3      | 66.7   | 72.1      | 44.3   | 51.5      |  |
|         | 25–9   | 29.4   | 36.7      | 60.2   | 68.0      | 36.9   | 44.1      |  |

*Notes*: Data pertain to the 50th and 55th Rounds of NSS. The original table has been re-cast here. *Source*: Planning Commission (2003).

completed middle level of schooling and more. Urban areas, as expected, have a significantly higher proportion of educated youth in the labour force than the rural areas—the percentage of all educated persons in labour force in urban areas is 70.3 while the corresponding percentage for rural areas is 43.4. What is interesting is that the proportion of educated youth in labour force has increased over the five year period 1993—4 and 1999—2000 in all the sub-groups of age and sex in rural as well as in urban areas. What is even more interesting is that those groups which had a smaller proportion of educated youth in the labour force, that is, all groups in rural areas and females in both rural and urban areas, have shown a faster rate of growth of 'educated' in the labour force.

It needs to be noted that higher education in India has been the single most potent means of social mobility, that is, for moving from the poor, the rural, and the downtrodden sections of population to respectable status in society. It was the access to higher education with the help of financial support by way of scholarships, etc., which brought about the social mobility which we have seen so far and which has further raised the aspiration for such transitions. The growth in facilities for higher education has, however, not kept pace with the need and demand for higher education in recent years, making the competition for admissions very tough and thus, almost closing the avenues for higher education for the less privileged, who need it the most.

#### GROWTH OF HIGHER EDUCATION

India has a long tradition in learning and higher education was imparted mostly through family lines or gurukul traditions. Formal institutions of learning such as *Pathshalas*, *Vihars*, and *Madrasas* came into existence and flourished

at various points in history, particularly during the Pre-British period. However, 'barring a few exceptions higher education has been the monopoly of the few. If Manu in his Smriti showed his preferences in this regard, the Great Akbar in his Aine did not show much enthusiasm for providing education to all classes. Indeed he even thought education if made generally available would make the maintenance of law and order difficult' (Singh 1998). British education policy got a clear direction following the minutes of Lord Macaulay in 1835. Lord Macaulay favoured educating the 'elite' and made a vigorous plea for spreading western learning through the English language (Kaur 2003). The British also, at times, appeared to show concern for the education of the masses. But the fact is that education, particularly higher education, remained, by and large, the preserve of the elite.

The involvement of the British in the Indian Education system, particularly from the middle of the nineteenth century led to a rapid growth of schools, colleges, and Universities established by the government as well as by Missionaries and other private agencies for spreading the western system of education. Universities of Bombay, Madras and Calcutta were established in 1857 and Universities of Allahabad and Punjab (at Lahore) in 1887. During 1880-1900, three different agencies came forward to spread education: (i) mission schools and colleges, (ii) educational institutions established by the government, and (iii) private institutions. Thus a westernized education system (through English language) came to be established. The nationalist movement raised the question of education for the masses. Demand for education in the native language and development of Indian languages was raised in the early part of the 20th century. The nationalist view was that education should develop a nationalist character. The need for technical and vocational education was also emphasized (Kaur 2003). However, the overall provision of educational facilities remained extremely inadequate. There was just a little over one person per thousand of population enrolled in higher educational institutions in 1951.

The main thrust of the education policy after independence has been education for the masses, which is quite natural given the woeful state of literacy and elementary education among the people. Recognizing that economic development made growing demands on human resources, and in a democratic set-up it called for values and attitudes for which the quality of education was an important element, the Second Five Year Plan—which was the first elaborate articulation of the philosophy of India's development and its translation into schemes and programmes—provided for a larger emphasis on basic education, expansion of elementary education, diversification of secondary education, improvement of standards of college and university education, extension of facilities for technical and vocational education, and the implementation of social education and cultural development programmes. The Second Plan document expressed concern that the rapid increase in the number of students in universities and colleges had affected the standards of education. The Plan stipulated a number of measures for improving the quality of university and college education and for reducing wastage and stagnation of students who were unable to qualify. These included the institution of three-year degree courses and improvement in the overall environment and infrastructure, etc. The Plan also considered the diversification of courses at the secondary level mainly with a view to checking the rush of students to Arts Colleges. The main concern was that university education should acquire greater purpose and direction. However, the plan had a much more enthusiastic approach toward higher technical education. The IIT at Kharagpur was established during the first Five Year Plan and the establishment of other technological institutions, in a phased manner, was envisaged for different regions of the country. That is how the other IITs and Regional Engineering Colleges (RECs) came into existence. Over the years after independence, a large number of teaching and research institutions/universities have been established, covering almost all the major disciplines in technology, sciences, social sciences, management, and arts. However in terms of priority, as reflected in resources spent on higher education, higher education really had a back seat.

The changes in the post-independence period in terms of absolute numbers, however, have been impressive. By the year 1991, we had 5.8 persons per thousand population enrolled in institutions of higher education and by the year 1998–9 this number had reached 7.5 persons per thousand, marking an almost 11-fold increase over the base of 1951. The number of colleges increased from 750 in 1950-1 to 11,089 in 1998-9, a 15-fold increase. The number of universities increased from 30 to 238 over the same period. The number of students increased from 263,000 to 7,417,000 over the same period, an increase of 28 times. The number of teachers went up from 24,000 to 342,000, that is, 14 times. Thus, over this period the student–teacher ratio has doubled. In 2004, there were 300 universities/deemed universities including 18 medical universities and 40 agricultural universities and more than 15,000 colleges, of which over 5000 were in rural areas (approximate numbers). Enrolment in higher education rose from less than half a million in 1950-1 to over 9 million in 2003. Table 5.9 gives the growth rate of enrolment from 1982-3 to 2001-02. It can be seen that the growth of enrolment has slowed down since 1991-2.

Even with great strides in the expansion of education, the enrolment in higher education today would be less than nine persons per thousand population. Vast numbers of aspiring youth do not have access to higher education. In fact, the constraints on the access to education start right from the primary level and become more acute at the secondary level and even more so at higher levels of education. In the early years after independence, since the literacy rate as well as the rate of schooling was very low, the demand for college education was much less. The demand for college education was mostly from a very small section of urban population. Aspiring students could easily get admission in

**TABLE 5.9** All India Growth of Student Enrolment (Higher Education) 1982-3 to 2001-02

| Year      | Total Enrolment (in thousand) | Percentage increase |
|-----------|-------------------------------|---------------------|
| 1982–3    | 3133                          | 6.1                 |
| 1983-4    | 3308                          | 5.6                 |
| 1984–5    | 3404                          | 2.9                 |
| 1985–6    | 3605                          | 5.9                 |
| 1986–7    | 3757                          | 4.2                 |
| 1987–8    | 4020                          | 7.0                 |
| 1988–9    | 4285                          | 6.6                 |
| 1989–90   | 4603                          | 7.4                 |
| 1990-1    | 4925                          | 7.0                 |
| 1991–2    | 5266                          | 6.9                 |
| 1992-3    | 5535                          | 5.1                 |
| 1993–4    | 5817                          | 5.1                 |
| 1994–5    | 6114                          | 5.1                 |
| 1995–6    | 6574                          | 7.5                 |
| 1996–7    | 6843                          | 4.1                 |
| 1997–8    | 7260                          | 6.1                 |
| 1998–9    | 7706                          | 6.1                 |
| 1999–2000 | 8051                          | 4.5                 |
| 2000-1    | 8399                          | 4.3                 |
| 2001-2    | 8821                          | 5.0                 |

Source: Kaur (2003).

universities/colleges in any subject they liked if they had the necessary minimum schooling. Starting from such a low base, the expansion appears to have been vast. However, the facilities for higher education have not grown in proportion to the demand and in proportion to the growing aspirations among the people for a higher degree or for real higher education. In countries where job opportunities are good and rates of earnings are not so widely different between jobs requiring higher education and other jobs requiring somewhat lower education but particular skills, many young people voluntarily branch off towards skilled jobs requiring school education and vocational skills. However, even in international comparison, the current enrolment ratio in higher education in India is less than the average for lower middle-income countries in the world. The gross enrolment ratio is less than 9 per cent in India, while it is 15 per cent in China, more than 20 per cent in many developing countries such as Mexico, Malaysia, Thailand, Chile and Brazil, and 40 to 50 per cent in most of the developed countries (PROPHE, <a href="http://www.albany.edu/">http://www.albany.edu/</a> dept/prophe/data/data.html>).

As the literacy base of population and the base of schooling is expanding at faster rate now, the demand for higher education will also grow at a faster pace. Literacy rate of the population has increased from 18.33 per cent in 1951 to 65.4 per cent in 2001. Enrolment in high schools and higher secondary schools increased from 15 lakh in 1950–1 to 282 lakh in 1999–2000, nearly 19-fold increase, or an increase from 4.2 persons per thousand of population to 28.5 persons per thousand, that is, a 7-fold increase. The result of slow expansion of capacity and fast increasing demand is, an acute scarcity of access to higher education. In such an

environment of scarcity, the poor are more deprived of access while the unscrupulous private providers flourish extorting huge rentals from the scarcity. Quality of supply too suffers under scarcity.

It is clear from the discussion here that capacity for higher education in India, today, is very inadequate. It has been built up in the past at a very slow rate and needs to be stepped up at a much higher rate in the coming years. Looking at the perception and mood of the people, it appears that if capacity is not enhanced adequately in the next few years, it might even become the cause of a major social unrest. As a target, let us say, we need to double the capacity in the next five years. Towards this goal, we need to explore all the possible ways of adding to capacity through private and public investments and also use more innovatively and more intensively some of the existing research capacities that have already been created.

## Box 5.3 The Goal of Spending Six Per Cent of GDP on Education

The National Policy on Education, 1986 had recommended: 'from the Eighth Plan (1992–7) onwards, it (the expenditure on education) will uniformly exceed 6% of the national income.' How far away we are from this magic figure! The US with its astronomical national income, was spending 5.6 per cent of its GDP on education in 2002. The percentage for France was 5.8 and for Germany 4.6. Even Thailand and Kenya were spending 5 per cent and 6.2 per cent, respectively of their GDP on education in 2002 (J.L. Azad, Higher education: rethink required, Financial Express, 15 January 2005).

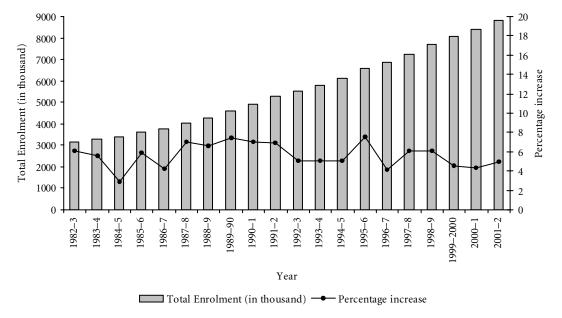



Figure 5.3: All India Growth of Student Enrolment (Higher Education), 1982-3 to 2001-2

#### INVESTMENT IN HIGHER EDUCATION

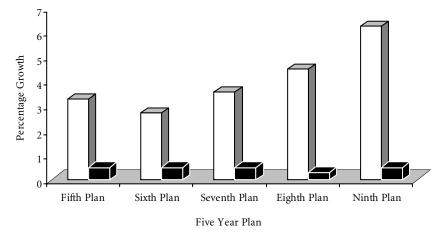
The main constraint to the expansion of higher educational facilities has been the meager public resources allocated to education. Priority within the available resources naturally goes to primary and secondary education (Table 5.10). The Education Commission (1964-6) had recommended that at least 6 per cent of GDP should be spent on education. Many countries, developed as well as developing, spend more than 6 per cent of their GDP on education. Stated as one of the goals of the National Policy on Education, the need to step up expenditure on education towards the goal of 6 per cent of GDP often finds an important place in political statements on education, and has been a persistent demand from those concerned with education. However, we find that in recent years public expenditure on education as a percentage of GDP has declined, and it was only 3.49 per cent in 2004–05 (Table 5.11).

TABLE 5.10
Expenditure on Education in the Five Year Plans
(as percentage of total expenditure in the FY plans)

| Five Year Plan | Total Education | Elementary | Secondary | Higher |
|----------------|-----------------|------------|-----------|--------|
| Fifth Plan     | 3.27            | 0.8        | 0.4       | 0.5    |
| Sixth Plan     | 2.70            | 0.8        | 0.7       | 0.5    |
| Seventh Plan   | 3.55            | 1.3        | 0.8       | 0.5    |
| Eighth Plan    | 4.50            | 2.1        | 0.8       | 0.3    |
| Ninth Plan     | 6.23            | 3.2        | 1.1       | 0.5    |
|                |                 |            |           |        |

*Note:* Other levels and types of education are included in Total. *Source:* Tilak (2006).

Public expenditure on higher education per student was Rs 7676 (at 1993–4 prices) in 1990–1. It came down to Rs 6954 (at constant prices) in 1999–2000 and further to Rs 5522 in the year 2002–3 (Tilak 2004). Also, the ratio of


TABLE 5.11
Growth in Public Expenditure on Education in India

| Year   | Percentage of GDP | Percentage of<br>Budget | Per capita (Rs)<br>(1993–4 prices) |
|--------|-------------------|-------------------------|------------------------------------|
| 1990–1 | 4.07              | 13.97                   | 329                                |
| 2000-1 | 4.26              | 12.23                   | 509                                |
| 2001-2 | 3.82              | 10.80                   | 470                                |
| 2002-3 | 3.97              | 12.60                   | 495                                |
| 2003-4 | 3.74              | 12.31                   | 498                                |
| 2004–5 | 3.49              | 12.27                   | _                                  |

Source: Tilak (2006).

proposed outlay on secondary education in the Tenth Plan to the actual expenditure on secondary education in the Ninth Plan (at current prices) was 1.8. The same ratio for higher education was lower at 1.6. Thus, while the economy is booming and a 6 per cent (per annum) growth rate has been sustained over a decently long period of a decade and a half, and it is well recognized that it is our knowledge base which has largely contributed to this high growth achieved with poor infrastructure and acute shortages of energy, our per capita public expenditure on higher education, in real terms, has not increased. We also need to note, in this context, that whatever knowledge base we have been able to create in the country, public expenditure has almost entirely been the source of it, in spite of its frugality. Even in terms of quality, the best has come from the public supported institutions of higher learning. If we want to press on the advantages that our knowledge base has given us, there is a case for massive additional public investment in higher education.

The recently released Planning Commission's paper on approach to the 11th Plan has shown a promising awareness of the issue. The approach paper states 'It (The 11th Plan)



☐ Total Education ■ Higher Education

Figure 5.4: Expenditure on Education in the Five Year Plans

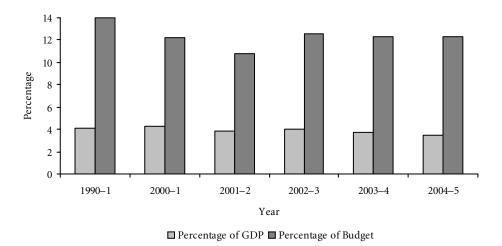



Figure 5.5: Growth in Public Expenditure on Education in India

must address simultaneously the issues of increasing enrolment in universities and colleges especially the high-end institutions like the IITs and IIMs, the problems of varying standards, outdated syllabi, inadequate facilities, and most of all the need to create an environment that will attract top class faculty'. The 'approach' further says, 'Achievement of these objectives will require a substantial increase in resources devoted to this sector and successive annual plans will have to provide rising levels of budgetary support. However, this must be accompanied by internal resource generation by duly and realistically raising fees. Simultaneously, efforts will be made to develop wider merit-cummeans based loan and scholarship programmes through the banking system and other agencies' (Planning Commission 2006).

#### **Private Providers**

In as much as it adds to the much needed capacity, the participation of private providers in higher education is welcome in the given situation of resource crunch. In earlier days, private initiative in education came mainly from religious and charitable endowments, which established 'nonprofit' institutions. Today a new crop of institutions of higher learning has come up to fill in the gap in capacity creation, and most of them are 'for-profit' types. According to some estimates these account for nearly one-third of all the institutions of higher learning. The private providers are still welcome as they do create the much needed and sought after capacity for higher education. But 'for profit' considerations naturally raise the costs to a very high level and put the facilities out of reach for the less privileged. In much sought after branches of education such as medicine, management, or certain branches of engineering, where capacity constraints in publicly provided facilities are very acute, private providers even manage to obtain a very high

#### **Box 5.4**

#### Need for Regulating Quality of Curricula and Institutions

'India's higher education needs policy. The Government has to play the role of facilitator and regulator of quality in curricula and institutions' wrote S. Neogi (*Hindustan Times*, 28 November 2005). Neogi further pointed out, 'The mushrooming of medical and engineering colleges in Karnataka, Andhra Pradesh and Maharashtra is another example of how an overwhelming demand got around an indifferent government. In fact, private sector engineering colleges, which accounted for 15 per cent of the seats in 1960, now account for 84.4 per cent of seats. The proportion of private medical colleges is also rising. From 6.8 per cent seats in 1960 it is 40 per cent now. The irony is that despite UGC affiliations, many of these universities and colleges are no more than education shops'.

rental on each of the seats offered, most of the time in an unaccounted manner. Even the quality of education offered in some of these institutions leaves much to be desired. Among the higher educational institutions in India, one must admit, the best ones in terms of quality of education provided are still those in the public domain, or some of those among the private 'non-profit' providers. The experience so far has been that the profit motive in education dilutes quality. It is no wonder that the most sought-after institutions of higher learning happen to be in the public domain, including the autonomous institutions largely supported by public funds and the level of competition for admission in these publicly provided institutions has become enormously tough.

It is these concerns about privatization which are reflected in the views of some of the eminent educationists. They believe that even while encouraging private investment in education, it must be made clear that such initiative in education cannot be for profit-making purposes in however disguised a form. Further, the entry of the private sector cannot be seen as a solution to all the various problems of quantity and quality. However, in the face of acute capacity constraints in higher education, private providers may be allowed but they should be subjected to a regulatory framework which ensures careful accreditation and monitoring of working of the institutions and quality of education that they provide.

#### Foreign Providers

In order to add to the scarce capacity for higher learning, we need also to encourage the entry of foreign education providers particularly the well-known ones to India. A foreign university/institute may open its branch in India either as its sole subsidiary or in partnership with an Indian university/institute. Investment in infrastructure, design of curricula, faculty recruitment and development will be the responsibility of the providing institution, and the degree is awarded by the providing foreign institutions (Bhushan 2005). A regulatory framework will, of course, be required for the entry and working of the foreign education provider. Apart from creating the much needed capacity, entry of a reputed foreign education provider will bring in quality and may have an indirect impact on the quality of indigenous providers as well. The cost of education in this arrangement will be higher, but certainly not as high as in the indigenous rent-seeking institutions. Moreover, it will also cater to the demand of those who would in any case like to acquire a foreign degree. The number of students going to the USA alone was 47,411 in 2000-1 which rose to 74,603 in 2002-3 (MHRD 2003-4). The total number of students going abroad for education would be more than 100,000 by now. The demand for foreign education is growing at a fast rate. The entry of reputed foreign education providers will also satisfy demand for foreign education for those who cannot afford to go abroad.

There are also other forms of arrangement with foreign providers, that is, twinning or franchising arrangements with Indian partners. Under the twinning arrangement, the foreign institutions in India attract Indian students for a year or two in their own countries. Under the franchise, the foreign institutions permit Indian partner institutions to execute the programme and conduct the examinations. The foreign institution keeps a control over the quality and curriculum design. As per information collected by the National Institute of Educational Planning and Administration (NIEPA), there were over 100 institutions/universities providing foreign courses/programmes in India. It is reported that there has been a spurt in the demand for courses/ programmes offered by Indian institutions working in collaboration with foreign universities. However, in the absence of a simple and transparent approach to recognize, supervise, and monitor foreign education providers in India, students feel uncertain about their career prospects having followed such courses of study (NIEPA 2004). There is a need for a regulatory body to register, approve, and monitor the overall operation of foreign education providers in India.

#### USING THE EXISTING RESEARCH INFRASTRUCTURE FOR TEACHING AT HIGHER LEVELS

There is immense possibility of using the existing research infrastructure for teaching at higher levels, and thus adding to the capacity for higher education within a short period and with marginal additional investments only.

It was understood from the very beginning of the era of planned development that a strong foundation in research in science and technology as well as in social sciences was necessary for building up a self-reliant, modern, industrial society, even though planners were somewhat sceptical about the usefulness of university degree holders in non-technical subjects, generally desiring that university education should acquire greater purpose and direction and fit more closely into plans of economic and social development (Planning Commission 1956). Towards this end a large number of research support structures were created and nurtured through the Plans. Departments were created within the government for focusing on research in science and technology. A number of councils and organizations were created for supporting research establishments (research centres, institutes, laboratories, etc.) Some of these (such as the Indian Council

#### **Box 5.5 Research Support Structures**

Some of the most important research support structures created by the Central Government in the fields of social science and science and technology are listed here:

In the field of Social Science Indian Council of Social Science Research (ICSSR) Indian Council of Historical Research (ICHR) Indian Council of Philosophical Research (ICPR) National Council of Rural Institute (NCRI)

In the field of Science and Technology Department of Science and Technology (DST) Department of Biotechnology (DBT) Department of Oceanography (DO) Council of Scientific and Industrial Research (CSIR) Indian Council of Agricultural Research (ICAR) Indian Council of Medical Research (ICMR) Defence Research and Development Organization (DRDO)

Note: This is not an exhaustive list.

of Agricultural Research, ICAR) have supported teaching institutions/universities also, but most of them have remained involved with research alone. We take up for discussion two of these research support structures, that is, Indian Council of Social Science Research (ICSSR) and Council of Scientific and Industrial Research (CSIR), but the possibilities which exist with these structures, by and large, exist with all the other support structures also. ICSSR supports—by way of part-financing—a number of research institutes in social sciences, while CSIR fully supports and controls a number of institutes/laboratories and research centres in science and technology.

The ICSSR was established in 1969 to promote research in social sciences. It supports 28 research institutes spread over different parts of the country in partnership with state governments. It provides funds for research and also awards scholarships and fellowships. Most of the research institutes supported by ICSSR, have, after passing through some difficult times in respect of financial resources, established themselves well and have been able to mobilize considerable amount of resources on their own which has given them stability and strength. These institutes have, over time, built up excellent faculty, supportive infrastructure, and academic culture and environment. Many of them have been guiding research scholars for PhD in collaboration with some university. Many of them have also undertaken teaching towards a variety of training programmes. The Institute of Economic Growth (IEG), for example, provides training to Indian Economic Service (IES) probationers. Most, or rather all, of these institutes are in an excellent position to take up teaching at the post-graduate level. Experience shows that a combination of post-graduate teaching and research produces best results. There are a number of other well reputed autonomous institutes which are not under the auspices of ICSSR, and some of these have obtained the status of deemed university and have undertaken teaching the at post-graduate level, for example, Gokhale Institute of Politics and Economics (GIPE) at Pune and Indira Gandhi Institute of Development Research (IGIDR) at Mumbai. Results of this venture have been laudable. It is understood that for ICSSR-supported institutions, there are difficulties in obtaining deemed-to-be university status since ICSSR has narrowly interpreted its mandate so as to not support those institutes which obtain deemed to be university status from the University Grants Commission (UGC), while the UGC, though willing to confer deemed- to-be university status on the institutes which qualify as per the laid down norms, is unwilling to takeover the extra financial burden in compensating them for the loss of ICSSR grants. These are minor turf conflicts between two support structures within the same government and can certainly be settled through mutual understanding.

The CSIR has a countrywide network of 40 laboratories and 80 field centres which undertake fundamental and applied research in diverse areas of science and technology. The so-called laboratories are in fact full-fledged research institutes with outstanding scientists on their faculty and having excellent infrastructure. Areas of particular strength in the CSIR, which have won global recognition for excellence are aerospace engineering, drugs and pharmaceuticals, bio-science and bio-technology, chemicals (catalysts and polymers), petroleum (refining and petrochemicals), materials (composites), leather (processing, chemicals and product design), geophysics, and radio-physics (Kaur 2003). CSIR labs also have live interactive linkages with industries. CSIR institutes/labs guide research scholars for PhD in arrangement with universities and undertake a variety of training programmes. As such, each of the CSIR labs/institutes would be an excellent candidate to become a deemedto-be university and undertake post-graduate teaching towards MSc, MTech, and PhD degrees. It was recently announced that the government had taken a decision that CSIR would become a deemed-to-be university (The Economic Times, 5 June 2006). However, it was said that the move would not result in any major structural changes in CSIR. The senior fellows and scientists working in various CSIR labs would double up as faculty. It was also reported that CSIR as deemed university would provide degrees such as MPhil, PhD, and post-doctorate. It is a step in the right direction, no doubt, but our main concern is the capacity constraints in providing education at graduate and postgraduate levels. These research institutions may not be able to bear the burden of undergraduate teaching, but they could certainly be opened up for teaching at MSc/MTech levels in addition to teaching for MPhil and guiding research for PhD. With the resources and expertise at their command they could produce the best quality of post-graduates, comparable with the best from anywhere in the world. Towards this end, it is advisable that instead of CSIR becoming a deemed university, each of the laboratories/institutes under CSIR should become a deemed university. Each of these institutes has developed its own identity and specializations, and deserves a degree of autonomy to develop further as a first-rate research and teaching institution. CSIR would keep performing the role of a support structure, guiding and regulating the work of these various institutes and rendering the necessary financial assistance—similar to the role played by UGC in respect of universities.

Deemed-to-be universities are playing an important role today. There are 102 deemed-to-be universities today, and 62 of them have come up post-2002. There is need to further evolve the accreditation system as well as a system of continuous monitoring of academic standards and proper regulation.

Open and distance learning (ODL) caters to about 10 to 15 per cent of candidates for higher education at present. The mandate in the current Five Year Plan is to raise this figure to around 30 per cent. The ODL system alone can extend the reach of higher education to remote and rural areas. There is a need for diversification of courses, making them job-oriented, and constantly improving the quality of lessons. Forums for close interaction between the ODL system and conventional universities and research institutions need to be evolved and strengthened.

#### THE RURAL-URBAN GAP IN EDUCATION

Higher education is still basically an urban phenomenon. Colleges and universities and other institutions of higher learning are mostly located in urban areas and are accessible mostly to the urban population. No doubt there are a number of degree colleges in rural areas. Out of a total of about 15,000 colleges, only about 5000 were located in rural areas with 72 per cent of the country's population resides. The quality of education in rural colleges is recognizably much lower than what it is in the urban areas. Rural colleges are mostly housed in inferior building structures, have poor libraries and labs, have poorer quality of sports and other facilities, and can afford only low paid teachers. The access to literature, books, journals, and other sources of knowledge is exceptionally poor in rural areas as compared to the average colleges in urban areas. Most of the rural colleges run without even moderately adequate sources of funds. In most cases they pay less than the official salaries to the teachers. All these factors together account for a lower quality of education. The concept in older times was that those few who desired to obtain higher education would go to an accessible urban centre, live in a hostel, and get the desired education. The assumption worked in practice because there were very few who desired higher education while living in rural areas and those who did they usually belonged to the top-most income group in that setting. That concept is no longer true. Today, there is a rising demand for higher education in rural areas. Even if the quality is not available, at least a degree is sought after in the hope that it would lead to some improvement in living standards.

It also appears that the urban-rural gap in the quality of education, over the years, has increased. There was a time, maybe the pre-independence period and a decade or two after independence, when schools in the rural areas were very few, but those few schools used to do a good job of educating students. The few who desired college education, had to migrate to cities, but with their background in schooling they did reasonably well in colleges, sometimes even better than students who came from urban schools. The gap in the quality of education between urban and rural schools was not so huge. One reason could be the resource endowments of the

schools were more or less equal. If urban schools were run by municipal corporations, rural schools were run by district boards. If the schools were run by charitable trusts, again their resource endowments were similar in rural and urban areas. Today, the resource endowments of the schools vary enormously. Even among government schools, there are vast differences in resource endowments. Proficiency in English language among students from well-endowed urban schools gives them a head start. Rural schools have remained poor. Rural colleges get their students from these poor schools.

Students taught in rural colleges, therefore, do not do well in competition for good jobs. Young people who do well in the civil services examinations or other competitive tests for good jobs are largely from urban backgrounds (meaning urban education, and not necessarily urban place of birth). Candidates from amongst those who have had an opportunity of receiving urban education right from the primary or the secondary stage do well. The parents of a typically successful candidate would belong to 'service class'

#### **Box 5.6** Success Rate by Medium-**UPSC Civil Services Main Examination**

Competitive advantage of the English Language can be seen in the Civil Services (Main) examinations conducted by the Union Public Service Commission (UPSC) for recruiting young people to the best and the most sought after Civil Services in the country. The candidates are allowed to take the examinations through the medium of English, Hindi, or any other listed language. Majority of candidates for civil services choose to take the exams through the English medium, and the next largest number choose Hindi; though an overwhelming large majority of students in the country obtain their degree through Hindi medium. Those who choose English as their medium have 3 to 4 times higher success rate than those who choose Hindi, as can be seen from the following table.

Success Rates by Medium: **UPSC Civil Services Main Examination** 

| Year | Medium      | Candidates<br>Appeared<br>(number) | Successful<br>Candidates<br>(number) | Success<br>(per cent) |
|------|-------------|------------------------------------|--------------------------------------|-----------------------|
| 2002 | English     | 1969                               | 238                                  | 12.09                 |
|      | Hindi       | 1270                               | 57                                   | 4.49                  |
|      | All Mediums | 3301                               | 310                                  | 9.39                  |
| 2003 | English     | 3159                               | 342                                  | 10.83                 |
|      | Hindi       | 2469                               | 49                                   | 1.98                  |
|      | All Mediums | 5750                               | 413                                  | 7.18                  |
| 2004 | English     | 2989                               | 346                                  | 11.58                 |
|      | Hindi       | 2192                               | 58                                   | 2.65                  |
|      | All Mediums | 5328                               | 422                                  | 7.02                  |
| 2005 | English     | 2898                               | 340                                  | 12.04                 |
|      | Hindi       | 1880                               | 65                                   | 3.46                  |
|      | All Mediums | 4923                               | 425                                  | 8.63                  |

Source: Union Public Service Commission, New Delhi.

or would be 'professionals such as doctors, lawyers', etc. It does happen but it is rather rare to find a young person coming with a completely rural educational background making it to the list of the successful candidates.

Today, the interactive processes, which contribute to the growth of knowledge, have become universal. Fast communications and virtually unlimited capacities to store and process information have tremendously enhanced our capabilities of learning from global access to knowledge. It is in recognition of these processes and with a desire to take advantage of the global store of knowledge, and with the rejection of the possibilities of being left out of it, that almost all the countries of the world have embarked upon learning of a common language, and that common language today happens to be English. Country after country, such as Russia, China, Japan, which, till only a few decades back, had shunned English altogether, has begun to make vigorous efforts to make learning of English possible for the youth. We, in India, have an inherited advantage in this. Even if only 3 per cent of our population had English education, we have a well-established system of teaching and learning English. It is this advantage that enabled us to a large extent to be able to take early advantage of developments in IT. We should not keep the vast majority of our rural population and also those living in urban areas but not having access to early learning of English, deprived of new opportunities. Mother tongue is no doubt very important—we should be proud of our language and national heritage. But, we should also facilitate early learning of English. The plea is not for making English the medium of instruction necessarily and everywhere, but for facilitating early learning of English in rural as well as in urban areas. The West Bengal Government has just done this. In schools and colleges, proficiency in English gives access to a wide range of books and literature all of which is not available in our own languages. It should not remain the privilege of a few who can afford to send their children to costlier English medium schools. We must participate in the new processes of globalization of knowledge and universalization of education with a new vigour and with full opportunities to all—poor and rich, rural and urban. Approach to rural education has also suffered somewhat from a well-intended but implicitly biased notion that educational needs of the rural population were different from the educational needs of the urban population. The University Education Commission 1948-9 recommended, inter alia, that rural education should evolve its own distinctive pattern and also that it should be administered mainly by persons who have been directly concerned with rural life and with rural education. The commission recommended the establishment of rural universities. Rural institutes were established under the Second Five Year Plan which launched the scheme of rural higher education with a purpose to inculcate among the rural youth 'sprit of service to the community and sympathy for rural way of life'. In fact, Agricultural Universities which got huge support after the launch of the green revolution contributed much more to rural development by developing new agricultural and crop raising technology rather than by sympathizing with the rural ways of life. Educational opportunities and choices available have to be relevant to the available work opportunities and human needs, no doubt. But the argument is sometimes carried to far to imply that if a person is living in a rural household and the occupation of the household is agriculture, the relevant education for that person would be related to rural life and agriculture. The 'relevance' argument is that education should give knowledge which is useful to the immediate surrounding of the pupil. A person from rural areas should be taught about farming, tending animals, or making mud houses. It is difficult to agree with this view. One cannot visualize a situation where a person, born in an agriculture family, has to remain an agriculturist over his lifetime and his children will also remain agriculturists and live in the rural areas. Every person whether he lives in the urban or rural setting has a right to aspire to unlimited boundaries for movement in terms of occupation and place of work. Education is 'universal'. It is only in this sense that the great portals of education are called 'universities'. We do not think education could only be what is relevant to the immediate surrounding of an individual. Education should be relevant to human life and society. Education must contribute to: human development, advancement of science, inventions of techniques, and innovations of new technology. It must aim at making the human mind and human life serene and beautiful. In that sense, it should certainly be relevant to life. Above all, education should facilitate rural-urban, occupational, or social mobility. Today, a rural person would not like to be treated separately. He/she would like to receive the same education and have the same choices that an urban person has.

#### SUMMARY AND CONCLUSION

The higher education system in India has expanded, but at a slow pace. The result is that our capacity and capabilities in higher education today are severely strained and are totally inadequate to meet the growing needs of the economy and the rising aspirations of the youth. There has been a spurt in the demand for higher education as more youth are passing through schools in larger numbers. Land-based economic systems are declining. The Indian middle class is expanding, urban orientation and attitudes are touching even the rural setting and the economy is shifting to a higher growth path with changes in economic structure and activities that are supported and sustained more by higher education inputs.

Agricultural growth has slowed down for more than a decade now. Declining public investment in agriculture and rising costs of inputs have made agriculture unprofitable. Indifferent quality of seeds and pesticides, non-availability of credit, and uncertain harvest prices have made agriculture a highly risky business. As a result, a large number of small and marginal farmers have been pushed below the poverty line and the phenomenon of farmers' suicides has spread over many states, including a state such as Punjab which was at the forefront of green revolution. Thus, even the rural population is increasingly being pushed to seek security in education, particularly higher education. It is seen from the available evidence that it is education at graduate and higher levels only which makes a real difference in earning levels.

It is seen that household expenditure on education goes up sharply as the income/expenditure of the household increases. Income/expenditure elasticity of expenditure on education is high. The proportion of educated youth in the labour force has been increasing, and this change is faster among rural youth and among females in the labour force groups which had a lower proportion of educated in labour force.

The main thrust and priority of the education policy after independence has been the education of the masses spread of literacy, expansion of elementary education, and diversification of secondary education. In the higher education segment, more emphasis was placed on higher technical education. The priority for higher education was rather low in terms of allocation of resources. Even with the apparently impressive growth in the number of colleges and universities and the number of students going in for higher education, enrolment in higher education today is less than 9 per cent of the relevant age-group population. The same ratio in many of the developing countries is around 20 per cent and for developed countries it is around 50 per cent.

The Education Commission (1964–6) had recommended that at least 6 per cent of GDP be spent on education. This target has never been achieved and in recent years expenditure on education as a percentage of GDP has even declined. Expenditure on education as percentage of GDP was 3.49 per cent in 2004–05. Hopefully, the Approach to the 11th Plan stipulates rising levels of budgetary support to education. In spite of its frugality, public expenditure has almost entirely been the basis of the education and knowledge infrastructure in this country. Even in terms of quality, the best has come from public-supported institutions of higher learning.

Participation of private providers in higher education has gone up in recent times—today they account for nearly onethird of all the higher education institutions, majority of them being 'for-profit' type. 'For-profit' considerations raise the costs enormously and do not pay due attention to quality. A well thought out regulatory framework detailing the system of grading, accreditation, and regular monitoring of quality of teaching and academic standards needs to be brought in place for private and foreign providers. Their participation in the system should, however, be welcome in order to ease capacity constraints. Entry of foreign providers of repute (A-grade universities/institutions) may even have a positive impact on the quality of education. Different forms of participation by foreign providers in our educational system need to be facilitated, subject to a well-placed regulatory system.

There is immense possibility of using the existing research infrastructure for teaching at higher levels, and adding to the higher education capacity within a short period and with marginal additional investments only. A large number of research support structures have been created and nurtured through the Five Year Plans in India in the areas of social sciences, sciences, and technology. The ICSSR, for example, supports a number of research institutes in social sciences, while the CSIR fully supports and controls a number of institutes/laboratories and research centres in science and technology. These institutions have over time built up good infrastructure, good faculty, and have a conducive academic and research environment. They are ideal for undertaking post-graduate teaching work in some of the most sought after disciplines. Each one of these institutes/labs could become a deemed university. There is need to further evolve the accreditation system as well as a system of monitoring of academic standards on a regular basis. Th ODL system can also be further expanded to cover the more remote and rural areas.

The urban-rural gap in the quality of education has increased over the years, and this puts those educated in rural areas at a disadvantage while competing for good jobs or higher studies in sought after disciplines. The disadvantage is mainly because of poor infrastructure and poor resources available to rural colleges. Earlier thinking was that those living in rural areas need special education 'relevant' to their surrounding. The 'relevance' question appears to have become irrelevant in today's world—the rural youth would not like to be treated separately.

An acute scarcity of access to higher education is being experienced today. In an environment of scarcity, the poor are more deprived of access. The capacity for higher education needs to be expanded at a much higher rate than in the past and needs to be nearly doubled in the next five years.

Knowledge as the source of growth and development is recognized, however, its full potential still remains to be realized. Our base of higher education is quite narrow and there are limits to the excellence we can achieve on a narrow base. Excellence is like the summit of a pyramid—the larger the base, the higher the summit. We must strive to make education and knowledge the real source of growth and development.

#### References

- Altbach, Philip G. (2005), 'Higher Education in India', *Hindu*, 12 April 2005.
- Azad, J.L. (2005), 'Higher Education: Rethink Required', *Financial Express*, 15 January 2005.
- Bhushan, Sudhanshu (2005), 'Foreign Education Providers in India—Research Study', National Institute of Educational Planning and Administration, New Delhi.
- Hashim, S.R. (2005), 3rd Convocation Address at Indira Gandhi Institute of Development Research, Mumbai, 6 December 2005.
- Kaur, Kuldip (2003), 'Higher Education in India (1781–2003)', UGC, New Delhi.
- Kundu, Amitabh, Niranjan Sarangi, and Bal Paritosh Das (2005), 'Economic Growth, Poverty and Non-Farm Employment: An Analysis of Rural Urban Inter-Linkages', in Rohini Nayyar and Alakh N. Sharma (ed.), Rural Transformation in India— The Role of Non-form Sector, Institute for Human Development, New Delhi.
- MHRD (2003–4), Selected Educational Statistics, 2003–4, Ministry of Human Resource Development, Government of India.
- NCAER, MIMAP (2003), *India Survey Report, The Well-being of Indian Households*, NCAER, Tata-McGraw Hill, New Delhi.
- NIEPA (2004), 'Internationalisation of Higher Education, Issues and Concerns', National Conference, 26–7 August 2004, National Institute of Educational Planning and Administration, New Delhi.

- Planning Commission (1956), Second Five Year Plan, Government of India, 1956.
- ——— (2003), Report of the Task Force on Employment Opportunities, Government of India, 2003.
- ——— (2005), Mid-Term Appraisal of the Tenth Plan, Government of India, 2005.
- ——— (2006), An Approach to 11th Five Year Plan, Government of India, 14 June 2006.
- PROPHE (Programme for Research on Private Higher Education), Weblink: <a href="http://www.albany.edu/dept/prophe/data/data.html">http://www.albany.edu/dept/prophe/data/data.html</a>
- Reddy, Narasimha (2006), 'Prof. B. Janardan Rao Memorial Lecture: Economic Reforms, Agrarian Crisis and Rural Distress', Prof. B. J. Rao Memorial Foundation, Warrangal.
- Rao, C.H. Hanumantha (2005), 'Economic Reforms, Agriculture and Rural Development' (1997), in *Agricultural Growth, Farm Size and Rural Poverty Alleviation in India*, Academic Foundation. New Delhi.
- Shariff, Abusaleh (1999), *Indian Human Development Report: A Profile of Indian States in 1990s*, NCAER and Oxford University Press, New Delhi.
- Singh, R.P. (ed.) (1998), *Indian Universities—Towards Nation Building*, University Grants Commission, New Delhi.
- Tilak, J.B.G. (2004), 'Absence of Policy and Perspective in Higher Education', *Economic and Political Weekly*, March.
- Tilak, J.B.G. (2006), 'Education—A Saga of Spectacular Achievements and Conspicuous Failure', in *Indian Social Development Report*, Council for Social Development, Oxford University Press, New Delhi.
- UPSC, Data compiled by Union Public Service Commission (on request).

# Exploring Intra Urban Differences in Economic Well-being in India

S. Chandrasekhar • Tesfayi Gebreselassie

### INTRODUCTION

Recent estimates by UN–Habitat suggest that there are 900 million slum dwellers in the developing world, accounting for 43 per cent of the urban population. It is important to focus on the slum population for the following three reasons. First, among the Millennium Development Goals, the one that explicitly focuses on urban areas is Goal 7 (Ensure Environmental Sustainability), Target 11: 'By 2020, to have achieved a significant improvement in the lives of at least 100 million slum dwellers'. Second, inadequate access to safe water and sanitation in slums can offset the advantage of living in urban areas, thereby making slum dwellers a disadvantaged group. The problem of poor service provision in the urban slums is well recognized. The Panel on Urban Population Dynamics recognized that slums dwellers 'may face additional health penalties that erase the urban health advantage' (Montgomery et al. 2003). Poor reproductive and child health outcomes in slums can be traced to lack of access to clean water, sanitation facilities, and health care services. Recent research shows that there are stark differences within urban areas and there is substantial heterogeneity within the slums as well as in the non-slum urban areas (Rutstein, Johnson, and Montana 2005, Matthews et al. 2005). Using Demographic Health Survey (DHS) data, Rutstein et al. (2005) show that slum dwellers are more disadvantaged in terms of maternal health services compared to households residing in nonslum urban areas. In addition, the unmet need for contraception among currently married women was higher for slum residents than for non-slum urban residents. Third, population growth rate in slums is higher than in other urban locations. In India, the annual growth rate of urban population is 3 per cent, in the large cities it is 4 per cent and in the slums it is between 5-6 per cent (National Population Policy 2000). The total fertility rate (TFR) is higher in the slums than in non-slum urban areas. For urban Maharashtra (not including Mumbai) the TFR was 2.24 while for metropolitan Mumbai it was 2.13. There are differences within Mumbai with the TFR much higher at 2.69 in the slum areas than in the non-slum areas—1.40 (Human Development Report Maharashtra 2002).

Despite the demographic importance of the slum population, research focusing on intra urban differences and in particular on slum populations has been limited because of lack of disaggregated data in urban areas, that is, separately

An earlier draft of this paper was presented at the IGIDR-CSH conference on 'Multidimensions of Urban Poverty in India', October 2006. We are grateful to Abhiroop Mukhopadhyay, R. Radhakrishna, and M.H. Suryanarayana for comments on an earlier draft. The usual disclaimer applies.

on slum and non-slum households. However, in India, two nationally representative data sets are available. For the first time, nationwide data were collected as part of 2001 Census of India on slum and non-slum urban households. Also, in 2002, the NSSO conducted a nationwide survey of various aspects of housing conditions. The data cover households from rural, slum, and non-slum urban areas. While household specific information (unit data) is available as part of the data made available by NSSO, unit level data are not available from Census 2001. An examination of these two data sets, albeit separately, sheds light on intra urban differences. Given the large data set and the extent of heterogeneity within India, some generalizations about characteristics of slum households and intra city differences should be possible.

This paper is structured is as follows. In the second section, we briefly describe the two data sets and the definition of slums suggested by UN-Habitat and the definitions used by Census 2001 and NSSO for purposes of collecting data. In third section, the focus is on the extent, distribution, and characteristics of slum population. In the fourth section, we describe the extent of heterogeneity within the slum population. Instead of focusing on wards from all the cities we instead choose to focus on four mega cities; viz. Chennai, Delhi, Kolkata, and Mumbai. Thus our analysis covers inter-state and inter-town differences and differences across slums within the same city. In the fifth section, we draw upon NSSO data on housing conditions and monthly consumption expenditure of households to understand the extent of differences in economic conditions across households living in slum and non-slum urban areas. We estimate the extent of relative poverty in urban areas and compare the distribution of monthly per capita consumption expenditure (MPCE) of households across slums and non slum urban areas. We also construct an asset index similar to those constructed by researchers using the Demographic Health Survey (DHS) data. Filmer and Pritchett (2001) have used principal component analysis to create an asset index as a proxy for long-run household wealth and to predict enrollment status of children. Sahn and Stifel (2003) use factor analysis to construct an asset index and find that their index is a valid predictor of child health and nutrition. We examine the distribution of households based on the asset indices and MPCE and also comment on whether these distributions are similar.<sup>2</sup>

#### DATA

The UN-Habitat defines slums as areas characterized by inadequate access to safe water, sanitation, poor quality of housing, overcrowding, and insecure residential status.

In India, for the purposes of census operations, slums were identified according to the following criteria.

- 1. All specified areas in a town or city notified as 'slum' by state/local government and UT administration under any Act including a 'Slum Act'.
- All areas recognized as 'slum' by state/local government and UT administration, housing and slum boards, which may have not been formally notified as slum under any Act.
- 3. A compact area of at least 300 population or about 60–70 households of poorly built congested tenements, in unhygienic environment, usually with inadequate infrastructure and lacking in proper sanitary and drinking water facilities.

On the other hand, NSSO defines a slum as a 'compact settlement with a collection of poorly built tenements, mostly of temporary nature, crowded together usually with inadequate sanitary and drinking water facilities in unhygienic conditions' (NSSO 2003, p. 6).

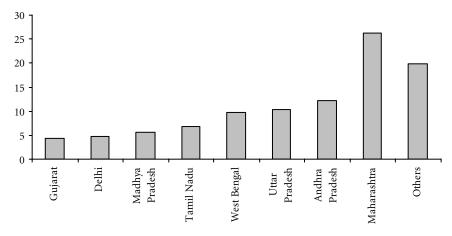
This article provides a description based on three data sets available as part of Census 2001: aggregates on the slum and non-slum urban population in 24 states, information on slum and non-slum urban population in 640 towns and cities from the 24 states, and finally ward-level information on slum households from these 640 town and cities. The estimates of slum population were confined to cities and towns having more than 50,000 population at the 1991 Census since the Directorate of Census Operations decided to identify slum areas in only such towns. In 2001, slum population has been reported from 26 states and union territories. The nine states and union territories not reporting any slum population in their cities or towns are Himachal Pradesh, Nagaland, Mizoram, Sikkim, Arunachal Pradesh, Manipur, Dadra and Nagar Haveli, Daman and Diu, and Lakshadweep. We also use the NSSO 2002 all-India level data set covering a total of 41,916 households from urban areas. Within urban areas, 6138 slum households and squatters, 35,703 households from non-slum urban areas and 75 households without a house were surveyed. Information is

<sup>&</sup>lt;sup>1</sup> In the recent past, there have been disagreements on the appropriate statistical technique for creating an asset index using the dichotomous variables available in DHS data. Montgomery and Hewett (2004) advocate using MIMIC (multiple indicator, multiple cause) models to create a living standards index. Kolenikov and Angeles (2004) have argued that the approach proposed by Filmer and Pritchett (2001) 'is inferior to other methods for analysing discrete data, both simple such as using ordinal variables, and more sophisticated such as using the polychoric correlations'.

<sup>&</sup>lt;sup>2</sup> Since the NSSO data do not have any information on reproductive or child health or schooling outcomes we are unable to check how well the indices do in terms of predicting health or educational outcomes.

available on various aspects including housing conditions, MPCE, and access to credit.<sup>3</sup>

# EXTENT, DISTRIBUTION, AND CHARACTERISTICS OF SLUM POPULATION


India's population stood at 1027 million on 1 March 2001. 72 per cent of India's population lived in rural areas while the remaining 28 per cent lived in the urban areas. In 1991 (1981) less than 26 (24) per cent lived in urban areas. Although the level of urbanization has been rising gradually, and the decadal increase in urban population remains quite high (although slowing), there is still potential for enormous increases in India's urban population. As per the UN projections, if urbanization continues at the present rate, 46 per cent of the total population will be in urban regions of India by 2030 (United Nations 1998).

In the last two decades, growth of slums has become an integral part of urban India. In 1981, nearly 28 million persons lived in the slums, in 1991 there were 45.7 million slum dwellers and as per 2001 Census data, there are 40.6 million persons living in slums.<sup>4</sup> In 2001, the population residing in slums constituted nearly 23 per cent of the total urban population of states or union territories reporting slums. In Maharashtra, 11.2 million people lived in the slums followed by 5.19 million in Andhra Pradesh, 4.4 million in Uttar Pradesh, and 4.12 million in West Bengal. Thus nearly 59 per cent of India's slum population resides in these four states (Figure 6.1). If one includes Tamil Nadu then the top five states account for over 65 per cent of India's slum population (Census of India 2001).

The data have information on the distribution of social groups, viz. scheduled castes (SCs), scheduled tribes (STs), and others. The SCs and STs are minority groups and have been disadvantaged with regard to education and occupation. SCs account for 17.4 per cent of the population in slums all over India. In contrast this group accounts for less than 12 per cent of the non-slum urban population. There is no such variation in the case of ST households. The ST households account for 2.4 per cent of the slum population and the non-slum urban population.

The all-India literacy rate in slum areas is 73 per cent. The male literacy rate is 81 per cent and female literacy rate is 64 per cent. In the non-slum urban areas the overall literacy rate is 80 per cent and the male literacy rate and female literacy rates are 86 per cent and 73 per cent, respectively. As will be discussed in the next section, these averages mask the large differences in the literacy across slums in different wards within the same city.

Since literacy data are not available for different social groups, we computed the pair-wise correlation between the share of SCs in the state's slum population and the slum literacy rate. The correlation coefficient works out to –0.33 and is statistically significant at 10 per cent. Similarly, we computed the pair-wise correlation between the share of SCs in the state's non-slum urban population and the non-slum urban literacy rate. This correlation coefficient works out to –0.21 and is not statistically significant. This suggests that slum literacy rates could possibly be explained by the extent of SC population in the slums. If this conjecture is true, then the question that arises is, what would explain



Source: Calculations based on data from 26 states and union territories.

Figure 6.1: Share of India's Slum Population

<sup>&</sup>lt;sup>3</sup> For details on the sampling methodology and framework see NSSO (2003, 2004).

<sup>&</sup>lt;sup>4</sup> There is reason to suspect that this decline is on account of an underestimation of the number of people living in the urban slums. The latest Census data also reflect the problems inherent in not having an accepted definition of slums and absence of proper listing of slum settlements in the urban offices concerned with slum improvement and civic amenities. The practice of notifying slums under relevant laws is not being followed, especially where the land involved belongs to the government or any of its agencies.

the high levels of illiteracy among the SCs residing in slums. This is an issue that needs to be explored further.

Earlier, we pointed out that the bulk of India's slum population resides in the states of Andhra Pradesh, Maharashtra, Uttar Pradesh, Tamil Nadu, and West Bengal. In 1999–2000, over 55 per cent of India's poor SC households from urban India resided in these five states (Radhakrishna et al. 2004). Also, nearly 56 per cent of India's very poor<sup>5</sup> urban households lived in these five states (Radhakrishna et al. 2004). Based on this, it is possible to conjecture that bulk of the poor households and in particular poor SC households reside in the slums. Though this conjecture cannot be verified since poverty measures are not available for slum and non-slum urban households, the conjecture is not necessarily far-fetched. This has implications for the extent of urban poverty in these states.

There has been a lot of discussion on sex ratios following the release of Census 2001. A total of 6.07 children in the age group 0–6 reside in the slums accounting for 14.3 per cent of the total slum population. Mirroring the distribution of slum population, the bulk of these children (57 per cent) live in the slums of Andhra Pradesh, Maharashtra, Uttar Pradesh, Tamil Nadu, and West Bengal. The sex ratio (0–6 years), that is, girls per 1000 boys, is 919 in the slum population as compared to 906 in the non-slum urban areas. In Punjab and Haryana the sex ratio is 821 and 834, respectively in the slums and 796 and 808 in the non-slum urban areas.

Female literacy rate in slums is 9 percentage points lower than that in the non-slum urban areas. There is evidence in the literature to suggest that maternal education is important for child health and schooling outcomes. Lower levels of female literacy and poor slum infrastructure (water and sanitation) can make slum children particularly vulnerable. It is possible that the positive benefits of growing up in urban areas could bypass them. Godbole and Talwalkar (2000) found that the state of child health in urban slums was in some cases worse than that in rural areas. A survey of 14,500 households from 87 slums in the wards of borough VII revealed that adult female members were the primary decision making authority on issues pertaining to health. What is a of concern is that since a large proportion of females was not educated, it was effectively the uneducated who were taking important decisions on health matters. Maybe it was because of the low levels of literacy and awareness, that the incidence of anaemia in children and adults went unnoticed.

We now turn to the differences in slum population across the 640 cities and towns from the 26 states and union territories reporting slum population. Over 51 per cent of these cities or towns are from the states of Andhra Pradesh, Maharashtra, Tamil Nadu, Uttar Pradesh, and West Bengal.

TABLE 6.1
Differences Across Slum and Non-slum Households

|                                                                  | Mean           | Standard deviation | Min.         | Max.           |
|------------------------------------------------------------------|----------------|--------------------|--------------|----------------|
| Household Size                                                   |                |                    |              |                |
| Slums<br>Non Slum Urban                                          | 5.35<br>5.29   | 0.87<br>0.82       | 3.68<br>3.77 | 9.52<br>8.92   |
| Sex Ratio (0–6 years)                                            |                |                    |              |                |
| Slums<br>Non Slum Urban                                          | 924<br>909     | 74.28<br>57.77     | 636<br>695   | 1700<br>1024   |
| Minority Groups: Slums                                           |                |                    |              |                |
| Percentage of Scheduled Castes<br>Percentage of Scheduled Tribes | 22.50<br>2.92  | 14.48<br>5.66      | 0<br>0       | 100<br>50.80   |
| Minority Groups: Non-slum Urba                                   | n              |                    |              |                |
| Percentage of Scheduled Castes<br>Percentage of Scheduled Tribes | 12.04<br>2.03  | 6.44<br>3.83       | 0<br>0       | 49.18<br>50.88 |
| Literacy: Slums                                                  |                |                    |              |                |
| Overall                                                          | 69.43          | 10.45              | 1.99         | 94.30          |
| Male<br>Female                                                   | 78.04<br>60.01 | 9.72<br>12.06      | 2.47<br>1.49 | 96.62<br>92.03 |
| Literacy: Non-slum Urban                                         | 00.01          | 12.00              | 1.47         | 72.03          |
| Overall                                                          | 79.76          | 7.57               | 37.92        | 96.62          |
| Male                                                             | 86.36          | 6.56               | 44.50        | 97.90          |
| Female                                                           | 72.55          | 9.21               | 27.87        | 95.38          |
| WPR*: Slums                                                      |                |                    |              |                |
| Overall                                                          | 37.60          | 6.06               | 20.26        | 68.19          |
| Male                                                             | 58.06          | 5.76               | 34.16        | 78.95          |
| Female                                                           | 15.19          | 8.29               | 0.74         | 59.33          |
| WPR: Non-slum Urban                                              |                |                    |              |                |
| Overall                                                          | 35.66          | 4.64               | 25.05        | 58.79          |
| Male                                                             | 56.98          | 5.07               | 42.12        | 75.93          |
| Female                                                           | 12.33          | 5.81               | 2.81         | 46.53          |

Note: \*The workforce participation rate(WPR) has been arrived at by dividing the total workers by the total population above the age of 6. Source: Authors' calculations based on census data 2001 on 640 towns from 26 states and union territories.

<sup>&</sup>lt;sup>5</sup> Poor persons are defined as those whose per capita total expenditure is less than 75 per cent of the state specific poverty lines.

<sup>&</sup>lt;sup>6</sup> Case studies and small sample surveys have shown that a bulk of the slum dwellers are poor. A survey of nine slums in Howrah, West Bengal, undertaken by Sengupta (1999) revealed that one-third of the total population living in the slums spent less than Rs 247 a month and was below the poverty line.

<sup>&</sup>lt;sup>7</sup> They also found that in the slum areas only 34 per cent women reported a birth interval of more than three years. The corresponding number in non-slum areas was 51 per cent. With regard to women's health, a survey undertaken by Institute of Medical Health, Pune (in 1998) of 27 slums in Pune revealed that 44 per cent of women did not take treatment for reproductive tract infections.

<sup>&</sup>lt;sup>8</sup> http://www.cmdaonline.com/plans\_gis.html

The state level aggregates reported in the earlier section mask the variations within the states. In this section we discuss the differences in the variables of interest across the towns of each state and the pattern that emerges is summarized in Table 6.1.

We find that the average household size is bigger in the slums than in non-slum urban areas. The sex ratio too is higher in the slums. The proportion of people from minority groups, in particular those belonging to SC households, is higher in the slums than in the non-slum urban areas.

The average literacy rate in the slums in towns is 69 per cent and this is 10 percentage points lower than that in non-slum urban areas. The difference in the male-female literacy rate in slums is 18 per cent while it is 14 per cent in non-slum urban areas. What is of concern is that while the literacy rate in the non-slum urban areas of these towns varies from 37 per cent to 96 per cent, in the slums of these towns the average literacy rate varies from 2 per cent to 94 per cent.

We do not find substantial difference in the work force participation rate<sup>9</sup> (WPR) across slums and non-slum urban areas. In slums the average WPR is 37.60 per cent while it is 35.66 per cent in non-slum urban areas. However, there are variations across towns in the male and female WPR. The male WPR varies from 34.16 to 78.95 per cent in slums and from 42.12 to 75.93 per cent in the non-slum urban areas. The female WPR is lower than the male WPR. The female WPR varies from 0.74 to 59.33 per cent in slums and from 2.81 to 46.53 per cent in the non-slum urban areas.

#### HETEROGENEITY IN SLUM POPULATION

A large proportion of India's slum dwellers live in the slums of Greater Mumbai Municipal Corporation (6.48 million), Delhi Municipal Corporation (1.85 million), Kolkata Municipal Corporation (1.49 million), and Chennai Municipal Corporation (0.82 million).<sup>10</sup> If one considers the urban agglomerations of Mumbai, Delhi, Kolkata, and Chennai then these four agglomerations account for 29 per cent of the population living in the slums. These four urban agglomerations have populations of over six million each. Narrowing the focus from urban agglomeration to the municipal boundaries, we find that a large proportion of households live in the slums. For instance, in the Greater Mumbai Municipal Corporation, 35 per cent of people live in the slums.

There are large variations in the characteristics of the slum population within the wards of these cities (Table 6.2). From

**TABLE 6.2** Variation in the Characteristics of the Slum Population Residing in different Wards of the same Municipal Corporation

|                       |       | Kolkata |       | Chennai |                |       |  |
|-----------------------|-------|---------|-------|---------|----------------|-------|--|
|                       | Mean  | Min.    | Max.  | Mean    | Min.           | Max.  |  |
| Household Size        | 5.33  | 3.89    | 8.26  | 4.61    | 3.94           | 6.10  |  |
| Sex Ratio (0–6 years) | 927   | 677     | 1286  | 984     | 621            | 1393  |  |
| Percentage of SCs     | 5.70  | 0       | 29.17 | 33.64   | 0              | 84.99 |  |
| Percentage of STs     | 0.15  | 0       | 2.01  | 0.21    | 0              | 3.79  |  |
| Overall Literacy Rate | 74.43 | 44.97   | 92.18 | 74.73   | 44.54          | 93.84 |  |
| Male Literacy Rate    | 79.09 | 47.63   | 95.09 | 81.42   | 52.30          | 97.69 |  |
| Female Literacy Rate  | 68.80 | 38.98   | 88.35 | 67.92   | 37.54          | 90.91 |  |
| Overall WPR Rate      | 43.56 | 27.83   | 70.25 | 39.40   | 30.47          | 51.54 |  |
| Male WPR Rate         | 64.77 | 47.01   | 87    | 60.41   | 50.05          | 70.23 |  |
| Female WPR Rate       | 15.32 | 3.66    | 39.57 | 18.01   | 7.01           | 47.62 |  |
|                       |       | Delhi   |       |         | Greater Mumbai |       |  |
| Household Size        | 4.77  | 3.47    | 6.96  | 4.89    | 4.31           | 7.18  |  |
| Sex Ratio (0–6 years) | 904   | 0       | 1208  | 923     | 798            | 1067  |  |
| Percentage of SCs     | 32.40 | 0       | 92    | 6.77    | 0              | 60.95 |  |
| Percentage of STs     | 0     | 0       | 0     | 1.17    | 0              | 6.83  |  |
| Overall Literacy Rate | 60.60 | 10.80   | 93.61 | 82      | 50.98          | 93    |  |
| Male Literacy Rate    | 69.20 | 15.03   | 95.52 | 88.11   | 58.11          | 96.73 |  |
| Female Literacy Rate  | 48.65 | 5.66    | 92.07 | 73.96   | 39.55          | 88.37 |  |
| Overall WPR Rate      | 44.31 | 33.80   | 77.78 | 43.67   | 34.58          | 59    |  |
| Male WPR Rate         | 64.54 | 54.71   | 80    | 64.21   | 49.77          | 75.04 |  |
| Female WPR Rate       | 16.30 | 4.07    | 75    | 16.52   | 3.78           | 33.66 |  |

Source: Authors' calculations based on Census 2001 data.

<sup>&</sup>lt;sup>9</sup> The WPR has been calculated by dividing the total workers in the slums by the total above the age of 6 in the slums.

<sup>&</sup>lt;sup>10</sup> Bhagat (2005) provides a discussion on the population growth rate (1981–2001) of these cities and urban agglomerations.

the table it is evident that there are differences in the household size, sex ratio, and share of minorities in the slum population. We also find that there exist substantial differences in the literacy rates in the slums within the same city. We computed the pair-wise correlation between the share of population not from the SC and ST and the overall literacy rate in the slum. The correlation coefficient is 0.36 and is statistically significant at 1 per cent level of significance. This suggests that in slums with a higher share of population from the minority groups, the literacy rate is lower.

We computed the pair-wise correlation between the female literacy rate and female WPR. The correlation coefficient is –0.32 and is statistically significant at 1 per cent level of significance. This suggests that female literacy could be a potential determinant of female work force participation rates.

Mayer (1999) finds causal linkages between sex ratio and female WPR, and sex ratio and female literacy. To examine this matter we computed the corresponding pair-wise correlation coefficients. We find the pair-wise correlation between sex ratio and female WPR to be very low (0.07) but statistically significant at 1 per cent. We find the pair-wise correlation between sex ratio and female literacy to be close to zero and statistically not significant. Interestingly, we find different results when we take the unit of observation as the town and not the ward. Using information at the town level, we find the pair-wise correlation between sex ratio and female WPR to be higher at 0.23 and statistically significant at 1 per cent. We find the pair-wise correlation between sex ratio and female literacy to be 0.14 and statistically significant at 1 per cent. Mayer's (1999) conjecture about a causal linkage between sex ratio and female literacy does not hold true when the unit of observation is the ward instead of the town. This finding is important since it seems to suggest that results could vary depending on the level of aggregation. The findings in this section clearly reflect the extent of heterogeneity in the slum population.

# INTRA URBAN DIFFERENCES IN ECONOMIC CONDITION OF HOUSEHOLDS

To begin with, we measure the extent of relative poverty in urban areas. The concept of relative poverty takes into account the general level of income or consumption by considering the median MPCE. Relative poverty is defined as the proportion of people living in households with MPCE lower than 60 per cent of the MPCE<sup>11</sup> of the median household. Since this was not the thick sample of NSSO

we are not able to calculate extent of absolute poverty. One limitation of the concept of absolute poverty is that it is defined and measured with respect to an absolute minimum, independent of the general level of income or standard of living. Relative poverty in contrast is measured in reference to the general level of income or consumption by considering the median MPCE. Hence our decision to focus on relative poverty is a fruitful exercise, capable of generating some insights.

We find the median MPCE in urban areas to be Rs 700. For the purpose of calculation of relative poverty we take the relative poverty line at 60 per cent of the median MPCE, that is, Rs 420.

For All India, we find relative poverty in urban areas to be 16.52 per cent, that is, 16.52 per cent of people in urban areas have an MPCE of less than 60 per cent of the median MPCE.<sup>12</sup>

We then focus on the distribution of relatively poor people by location (notified slum, non-notified slum, non-slum urban). In order to do this, we first calculate the total number of relatively poor people by location and also calculate the total number of people who are not relatively poor by location. We then take the ratio of these two numbers for each location and multiply it by 100. We find that for every 100 people residing in non-slum urban areas who are not relatively poor, there are 18 people from non-slum urban areas who are relatively poor. We find that for every 100 people residing in notified (non-notified) slums who are not relatively poor, there are 34 (48) people from notified (non-notified) slums who are relatively poor.

In many data sets such as DHS information on MPCE is not available and authors have constructed a standard of living index. Given that NSSO data have information on assets and MPCE, we construct an asset index in order to find the extent of correspondence between ranking of households as per asset index and MPCE.

Asset indices have been used as a proxy for long-run household wealth. It is often argued that compared to consumption expenditure, asset indices are better indicators of wealth and hence the economic condition of the household. We compute an asset index using the principal components statistical technique, that is, reduce a given number of variables by extracting linear combinations that best describe the variables. The first principal component, the linear combination capturing the greatest variance, can be converted into factor scores that serve as weights to construct a wealth index. The weights are standardized first

<sup>&</sup>lt;sup>11</sup> In developed countries, including, the United Kingdom, the relative poverty line is drawn at 60 per cent of the median MPCE.

<sup>&</sup>lt;sup>12</sup> We calculated the relative poverty for urban areas using NSS0 data for 1999–2000. These are the data from which official poverty numbers are generated. In 1999–2000, the median MPCE in urban areas was Rs 667 and the relative poverty line works out to Rs 400.2. Relative poverty in urban areas in 1999–2000 was 16.38 per cent. The 1999–2000 data did not have a slum identifier.

principal component of the variance–covariance matrix of the observed household assets. Filmer and Pritchett (2001) use a similar method to construct a wealth index (asset) using DHS data.

The summary statistics of the variables used to construct the asset index<sup>13</sup> are presented in Table 6.3. The definition suggested by UN-Habitat focuses on inadequate access to safe water, sanitation, poor quality of housing, overcrowding and insecure residential status. We focus on water source, availability of electricity, latrines, and drainage system.

TABLE 6.3 Mean of Assets by Resident Type

|                                  | Non-<br>slum<br>urban | Notified<br>slum | Non-<br>notified<br>slum |
|----------------------------------|-----------------------|------------------|--------------------------|
| Own Radio                        | 0.51                  | 0.34             | 0.31                     |
| Own Electric Fan                 | 0.82                  | 0.76             | 0.62                     |
| Own Bicycle                      | 0.5                   | 0.35             | 0.35                     |
| Own Sewing Machine               | 0.27                  | 0.13             | 0.07                     |
| Own Colour TV                    | 0.38                  | 0.18             | 0.16                     |
| Own Black-White TV               | 0.29                  | 0.37             | 0.3                      |
| Own Telephone                    | 0.28                  | 0.08             | 0.05                     |
| Own Refrigerator                 | 0.3                   | 0.07             | 0.06                     |
| Own Washing Machine              | 0.12                  | 0.01             | 0.01                     |
| Own Motor Cycle                  | 0.26                  | 0.06             | 0.03                     |
| Own Heater                       | 0.06                  | 0.01             | 0.01                     |
| Own Air Conditioner              | 0.02                  | 0                | 0                        |
| Own Car                          | 0.05                  | 0                | 0                        |
| Own Computer (PC)                | 0.03                  | 0                | 0                        |
| Drinking water from Tap          | 0.73                  | 0.84             | 0.73                     |
| Drinking water from well/tube    | 0.26                  | 0.13             | 0.24                     |
| Drinking water from Other Source | 0.02                  | 0.03             | 0.03                     |
| Main cooking: wood, coal, dung   | 0.26                  | 0.34             | 0.41                     |
| Main source of lighting electric | 0.92                  | 0.89             | 0.78                     |
| Private Pit                      | 0.07                  | 0.02             | 0.03                     |
| Private Flush                    | 0.5                   | 0.19             | 0.11                     |
| Shared Pit                       | 0.05                  | 0.04             | 0.08                     |
| Shared Flush                     | 0.22                  | 0.47             | 0.36                     |
| No Latrine                       | 0.17                  | 0.28             | 0.43                     |
| No Drainage                      | 0.17                  | 0.22             | 0.41                     |
| No Separate Kitchen              | 0.4                   | 0.74             | 0.78                     |
| Dwelling made with High          |                       |                  |                          |
| Quality Material                 | 0.78                  | 0.71             | 0.58                     |

Source: Authors' calculations based on Census 2001 data.

Among all the sources of water, tap water is probably the most preferred water source. We find that 73 (84) per cent of households in non-notified (notified) slums have access to piped water. In the non slum urban areas 73 per cent of households have access to piped water. Similar differences

emerge when one examines availability of latrines and drainage. Nearly 43 (28) per cent of non-notified (notified) slums do not have a latrine; and 41 (22) per cent do not have any drainage facility. In the non-slum urban areas 17 per cent of households do not have a latrine or any drainage facility.

Table 6.4 presents the mean and standard deviation of each item, and unrotated factor scores from principal component analysis. The distribution of non-slum, notified slum, and non-notified slum based on the wealth index quintiles is presented in Figure 6.2. The quintiles distinctively distinguish between the three locations. Based on the wealth index, 17 per cent of non-slum households, 1st 26 per cent of notified slum households, and 41 per cent of the non-notified slum households are in the poorest (1st quintile). On the other hand, 22, 2, and 2 per cent of the richest 20 per cent (5th quintile) reside in non-slum, notified slum, and non-notified slum, respectively.

In order to evaluate whether the rankings based on asset index and MPCE are similar, one can calculate the Spearman rank correlation based on the ranking of households according to the MPCE and the asset index. The overall Spearman's rank correlation between MPCE and the asset index for all households is 0.60. Spearman's test of independence between the reported monthly personal consumption expenditure and the wealth index rejects test of independence of the two distributions.

Alternatively, one can construct a matrix akin to a transition matrix (Sahn and Stifel 2003). Under this, we group households into n quantiles first based on the asset index and then based on MPCE of the households. In order to evaluate whether the rankings based on asset index and MPCE are similar, we compute the following correspondence index

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (i-j)^{2} m_{ij}}{\frac{n}{2} \sum_{j=1}^{n} (i-j)^{2}} x \frac{1}{0.322}$$
(6.1)

where 'n' is the number of even number of quantiles, 'i' is the row quantile, 'j' is the column quantile, and  $m_{ij}$  is the observation in the (i, j) cell of the matrix. We set n equal to 10. The underlying idea is that it gives weight to the off-diagonal elements of the matrix and the weights increase with distance from the diagonal. If all households are along the diagonal then the correspondence index takes the value 0.

<sup>&</sup>lt;sup>13</sup> The standard of living index using the DHS data is constructed taking into consideration the following variables: type of house, toilet facility, source of lighting, main fuel for cooking, source of drinking water, separate room for cooking, ownership of house, agricultural land, irrigated land, livestock, and durable goods.

**TABLE 6.4** Scoring Factors Based on the First Principal Component and Summary Statistics

|                                               | Scoring coefficients   | Mean          | Sandard deviation | Scoring factors |
|-----------------------------------------------|------------------------|---------------|-------------------|-----------------|
|                                               | 1                      | 2             | 3                 | (1/3)           |
| Own Radio                                     | 0.50                   | 0.49          | 0.50              | 1.00            |
| Own Electric Fan                              | 0.53                   | 0.81          | 0.39              | 1.36            |
| Own Bicycle                                   | 0.15                   | 0.48          | 0.50              | 0.30            |
| Own Sewing Machine                            | 0.45                   | 0.25          | 0.43              | 1.04            |
| Own Colour TV                                 | 0.75                   | 0.35          | 0.48              | 1.57            |
| Own Black-White TV                            | -0.19                  | 0.30          | 0.46              | -0.41           |
| Own Telephone                                 | 0.73                   | 0.26          | 0.44              | 1.67            |
| Own Refrigerator                              | 0.78                   | 0.28          | 0.45              | 1.74            |
| Own Washing Machine                           | 0.62                   | 0.11          | 0.31              | 2.00            |
| Own Motor Cycle                               | 0.66                   | 0.24          | 0.42              | 1.56            |
| Own Heater                                    | 0.45                   | 0.06          | 0.23              | 1.91            |
| Own Air Conditioner                           | 0.34                   | 0.02          | 0.14              | 2.46            |
| Own Car                                       | 0.46                   | 0.04          | 0.20              | 2.22            |
| Own Computer (PC)                             | 0.35                   | 0.03          | 0.17              | 2.02            |
| Drinking water from Tap                       | 0.31                   | 0.74          | 0.44              | 0.69            |
| Drinking water from well/tube                 | -0.31                  | 0.25          | 0.43              | -0.72           |
| Drinking water from other source              | -0.01                  | 0.02          | 0.13              | -0.06           |
| Main cooking: wood, coal, dung                | -0.56                  | 0.27          | 0.44              | -1.26           |
| Main source of lighting electric              | 0.43                   | 0.92          | 0.28              | 1.54            |
| Private Pit                                   | -0.07                  | 0.07          | 0.25              | -0.27           |
| Shared Pit                                    | -0.16                  | 0.05          | 0.21              | -0.75           |
| Shared Flush                                  | -0.20                  | 0.24          | 0.43              | -0.47           |
| Private Flush                                 | 0.66                   | 0.47          | 0.50              | 1.33            |
| No Latrine                                    | -0.52                  | 0.19          | 0.39              | -1.34           |
| No Drainage                                   | -0.40                  | 0.18          | 0.39              | -1.03           |
| No Separate Kitchen                           | -0.60                  | 0.44          | 0.50              | -1.21           |
| Dwelling made with High Quality Material      | 0.45                   | 0.77          | 0.42              | 1.06            |
| Percent covariance explained by 1st factor    | 22.77                  |               |                   |                 |
| First eigenvalue                              | 6.15                   |               |                   |                 |
| Second eigenvalue                             | 2.54                   |               |                   |                 |
| Scoring coefficients are unrotated factor sco | ores from PCA with mea | ın 0 and star | dard deviation 1. |                 |

Source: Authors.

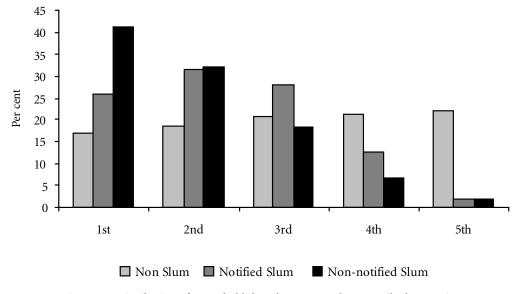



Figure 6.2: Distribution of Households based on Asset Index Quantiles by Location

If the value of the correspondence index is 1 then it implies perfect random association between the distributions based on asset index and MPCE of households. The correspondence indices for non-slum urban, notified slum, and nonnotified slum are 0.37, 0.44, and 0.41, respectively. These numbers are comparable with those in the literature (Sahn and Stifel 2003).

### **CONCLUSION**

This article provides a comprehensive picture of India's slum and non-slum urban population using data from the 2001 Census of India and NSSO. The paper establishes that there is substantial heterogeneity in the urban areas. There are large differences in the literacy rates between households living in slums and in non-slum urban areas. It also provides evidence that slums are extremely heterogeneous. There are large variations in the characteristics of slum households not only across the towns and cities of India but also within the wards of a city. We examined variations in the following variables: household size, proportion of minority groups in the urban population, literacy, sex ratio, and WPRs.

In order to highlight the distributional aspects, we estimated the extent of relative poverty in the urban areas. We also constructed an asset index and found a high rank correlation coefficient between ranking of households according to MPCE and asset index. Since asset indices have been used as one of the proximate determinants of reproductive and child health outcomes, our finding of similar rankings based on MPCE and asset index is of significance.

### Reference

- Bhagat, R.B. (2005), 'Urban Growth by City and Town Size in India', Paper presented at the Annual Meeting of Population Association of America held at Philadelphia, USA, 31 March-2 April 2005.
- Census of India (2001), 'Metadata and Brief Highlights on Slum Population', available at http://www.censusindia.net/results/ slum/metadata\_highlights.pdf
- Filmer, Deon and Lant H. Pritchett (2001), 'Estimating Wealth Effects without Expenditure Data or Tears: An Application to Educational Enrolments in States of India', Demography, Vol. 38, No. 1 (February), pp. 115–32.

- Geodbole, V.T. and M.A. Talwalkau (1991a), 'Programme for Children: An Assessment in Urban Areas of Maharashtra 1998, State Family Welfare Bureau, Pune.
- Government of Maharashtra (2002), Human Development Report Maharashtra.
- Kolenikov, Stanislav and Gustavo Angeles (2004), 'The Use of Discrete Data in PCA: Theory, Simulations, and Applications to Socioeconomic Indices', available at www.cpc.unc.edu/measure/publications/pdf/wp-04-85.pdf
- Matthews, Zoë, M. Brookes, R. William Stones, and Mian Bazle Hossain (2005), 'Village in the City: Autonomy and Maternal Health-Seeking among Slum Populations of Mumbai A Focus on Gender: Collected Papers on Gender Using DHS Data', ORC Macro, Calverton, Maryland, USA, August.
- Mayer, Peter (1999), 'India's Falling Sex Ratios', Population and Development Review, Vol. 25, No. 2 (June), pp. 323–43.
- Montgomery, Mark R. and Paul C. Hewett (2004), 'Urban Poverty and Health in Developing Countries: Household and Neighborhood Effects', Working Paper No. 184, Population Council, USA.
- Montgomery, Mark, R. Stren, B. Cohen, and H. Reed (eds) (2003), Cities Transformed: Demographic Change and Its Implications in the Developing World, National Academy Press, Washington, DC.
- National Commission on Population (undated), 'Role of NGO's', available at http://populationcommission.nic.in/ngo.htm
- National Sample Survey Organization (2003), 'Condition of Urban Slums-2002' Report no. 488, Ministry of Statistics and Programme Implementation, Government of India.
- (2004), 'Housing Condition in India', Report no. 486, Ministry of Statistics and Programme Implementation, Government of India.
- Radhakrishna, R., K.H. Rao, C. Ravi, and B.S. Reddy (2004), 'Chronic Poverty and Malnutrition in India in the Nineties', Reprint Number 568, Indira Gandhi Institute of Development Research, Mumbai, India.
- Rutstein, Shea, Kiersten Johnson, and Livia Montana (2005), 'Targeting Health Services to the Urban Poor: Is Slum Geography Enough?', Paper presented at International Union for the Scientific Study of Population, XXV International Population Conference, Tours, France, July 2005.
- Sahn, David and David Stifel (2003), 'Exploring Alternative Measures of Welfare in the Absence of Expenditure Data', Review of Income and Wealth, Vol. 49, No. 4, pp. 463-89.
- Sengupta, C. (1999), 'Dynamics of Community Environmental Management in Howrah Slums', Economic and Political Weekly, 22 May.

# Macroeconomic Policy and the Exchange Rate Working Together

Ashima Goyal

### INTRODUCTION

Macroeconomic policy has been more intensively studied and is better understood for Latin American economies, but emerging market economies (EMEs) differ from each other in important respects. Greater attention has been focused on Asia after the East Asian crises, and currently on the Chinese exchange rate regime, as reserves grow in Asia and deficits widen in the US. Even so, the unique macroeconomic conditions facing China and India in their rapid catch-up phase of growth are not fully understood. The two countries have more than 2 billion people accounting for a third of the world population. The key transition that both face is one of absorbing labour into more productive modern employment. There are signs that China is reaching the end of this process. Migratory labour is no longer freely available in the SEZs and nominal wages are going up. India lags behind China in this process by about ten years. In this paper we examine the implications of a dualistic labour market structure for macroeconomic policy and, in particular, exchange rate policy for India.

We also examine the implications, for the appropriate exchange rate regime, of other major features that impact policy. Among these are the large inflows of global capital after the reforms, frequent temporary and some permanent supply shocks, the absence of full wage indexation for the majority of the population, prevalence of administered prices, and political factors resulting in an interaction of monetary and fiscal policy that keeps output below potential. The exchange rate regime should be able to contribute to lowering the probability of currency and banking crises, ensuring sustainable internal and external balance, and containing inflation. We examine each in turn in the sections to follow, in the specific structural context.<sup>1</sup>

Ever since the Indian reforms and liberalization, open economy issues have dominated monetary policy making. Dealing with the wall of foreign inflows hitting the economy and managing its impact on money supply has been the major day-to-day issue. Financial markets had to be deepened and an exchange rate appropriate for India's wider interface with the world found. Policy has done a good job, on the whole, and has responded flexibly to rapid changes. Although financial stability has been maintained and export promotion achieved, exchange rate policy has not contributed as much as it could have towards maintaining internal balance and containing inflation. The implications of structure and of more forward-looking behaviour of markets and consumers have been underutilized. Perspectives from

I thank an anonymous referee for very useful comments, Ankita Agarwal for prompt research assistance and T.S. Ananthi for help with the processing.

<sup>&</sup>lt;sup>1</sup> The analysis draws on and updates material contained in Goyal (2002; 2004a; b, 2005a; b; 2006) and Goyal and Pujari (2005). The data and analysis of trends in until 2006 when the paper was written.

modern open economy macroeconomics explored in this paper suggest considerable degrees of freedom for policy even in the context of high capital mobility.

A change in the value of the rupee has widespread affects and, therefore, provokes interest. There have been many such changes after the reforms. Depreciation hurts all those who have to make payments in foreign currency, while those who receive such payments gain. Thus exporters, and beneficiaries of export spillovers, gain at the cost of the importers, the consumers, the holders of foreign liabilities. Nationalists want the rupee to be strong irrespective of the costs of overvaluation, but the current dominant view is that increasing the productive use of unemployed resources, to which exports can contribute, creates wealth.

The structure of the argument is as follows: in the next section, we examine changes in the nominal value of the rupee since the reforms, and then, in the third section, draw out their implications for the stability of forex (foreign exchange) markets. Box 7.1 shows that hedging tends to be incomplete and yet the exchange rate regime can encourage hedging; Box 7.2 explores the role of central bank (CB) intervention in focusing market expectations. Both would make forex markets more stable. The fourth section presents the contribution of Indian exchange rate policy to internal balance and argues that the latter was not achieved. Box 7.3 shows that large negative monetary policy shocks sustained the industrial slowdown. Box 7.4 explores the consequences of capital account convertibility and India's progress in achieving it. Box 7.5 lays out the arguments of the simple Mundell-Fleming (M-F) model for a loss of monetary policy autonomy in a more open economy. But a number of deviations from the simple case, which are valid for the Indian economy, imply that monetary policy has considerable impact. The two aspects of external balance examined in the fifth section are, first, the real exchange rate and its impact on exports; second, the large capital inflows

and ballooning reserves. Box 7.7 argues that given the objective of encouraging exports, and the existence of unemployed resources, stimulating demand is a valid way of absorbing foreign resources available. Box 7.6 shows that despite more foreign borrowing, net income from abroad has risen as a ratio of GDP in the period after reforms. The sixth section argues that India's labour market structure implies an elastic aggregate supply curve, but one which is subject to frequent shocks. One such shock is a rise in food prices, which triggers off a rise in wages. More openness can contribute to stabilizing food prices and so can changes in the nominal exchange rate, thus giving the CB more weapons to fight inflation, yet maintain demand. The seventh section draws out the implications of this structure for monetary and fiscal policy and their co-ordination, and the final section concludes.

### INDIA'S CHANGING EXCHANGE RATE REGIME

After the dual devaluation in the early 1990s, the rupee was market-determined, in the sense that it was now convertible on the current account and the RBI was no longer fixing buy and sell quotes. But heavy RBI intervention as it bought and sterilized the boom in foreign inflows, kept the rupee rock steady over 1993 and 1994 (see Figure 7.1, Table 7.1 and 7.2).

Periodic bursts of volatility occurred over the years 1995–2000, starting before and continuing past the East Asian currency and banking crisis. The response was to intervene to reduce volatility by raising interest rates and squeezing liquidity. The official policy stance was announced to be market determined exchange rates with intervention to control excess volatility. However, intervention's other aim was to maintain the unannounced real exchange rate target required to stimulate exports. This led to increasing reserves. Trend steady nominal depreciation was continued through the bursts of volatility, since Indian inflation rates

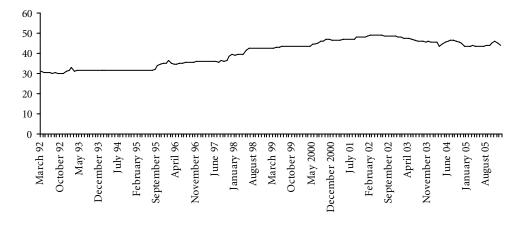



Figure 7.1: Post-reform Exchange Rates

| Table 7.1                                          |
|----------------------------------------------------|
| Depreciation (-) Or appreciation (+), End December |

| Year | Percentage change |
|------|-------------------|
| 1993 | -1.6              |
| 1994 | -0.02             |
| 1995 | -12.1             |
| 1996 | -2.2              |
| 1997 | -9.3              |
| 1998 | -8.2              |
| 1999 | -2.4              |
| 2000 | -7.5              |
| 2001 | -3.1              |
| 2002 | 0.3               |
| 2003 | 5.0               |
| 2004 | 3.5               |
| 2005 | -3.0              |

Source: Calculated using data from www.rbi.org.in

were higher than world rates. Table 7.1 shows consistent minus signs (denoting rupee depreciation) all through the 1990s. The trend was reversed for the first time in 2002 when the dollar began to depreciate under large US twin fiscal and balance of payment deficits. The rupee gained against the dollar even while it did not strengthen against other currencies.

Table 7.1 shows yearly changes in nominal rupee dollar exchange rates. In Table 7.2 percentage change between the highest and the lowest daily exchange rate within a year is used to calculate yearly volatility and standard deviation, to

TABLE 7.2 Yearly Volatility of the Exchange Rate

| Years                  | Monthly high–low (per cent change) | Standard deviation |
|------------------------|------------------------------------|--------------------|
| 1993                   | 0.9                                | 0.2                |
| 1994                   | 0.2                                | 0.05               |
| 1995                   | 12.2                               | 2.7                |
| 1996                   | 11.6                               | 2.8                |
| 1997                   | 11.3                               | 2.9                |
| 1998                   | 11.6                               | 3.2                |
| 1999                   | 2.8                                | 0.9                |
| 2000                   | 7.8                                | 2.4                |
| 2001                   | 4.3                                | 1.4                |
| 2002                   | 2.3                                | 0.8                |
| 2003                   | 5.3                                | 1.7                |
| 2004                   | 6.9                                | 2.1                |
| February 2005–         | 1.3                                | 0.4                |
| June 2005              | 6.9                                | 2.1                |
| January 2006–July 2006 | 6.6                                | 2.1                |

Source: Calculated with data from www.rbi.org.in

get a sense of the changes within a year. The table gives interesting information. Both 1999 and 2002 were periods where the exchange rate reverted to being almost frozen. That was partly why there was so much excitement in the markets, and volatility was high when the trend reversed. Reversals after a period of fixed exchange rates cause overreaction by market players as well as policy makers.

The reversal did establish the possibility of a two-way movement in nominal exchange rates, which can contribute to the stability of forex markets.

#### STABILITY OF FOREX MARKETS

Policy makers have traditionally regarded traders in Indian markets as prone to destabilizing speculative behaviour,<sup>2</sup> but poor market design and predictable one-way movements in exchange rates contribute to such behaviour.

To make currency markets more stable, policy makers need to avoid two traps: first, attempting to curb speculation through quantitative controls or restrictions on derivatives, which impede the development of financial markets and second, creating moral hazard and incentives to undertake more risk using derivatives. Thus market development has to go side by side with improving the incentives for hedging.

Before the reversal in the trend of Indian depreciation only importers and those who had borrowed from abroad were hedging their forex exposure. After the appreciation, exporters also rushed for cover. There was a 51 per cent rise of activity in rupee derivatives. It continued, however, to be concentrated among a few players, mostly foreign banks. Although there are still some restrictions on hedging indirect currency risk, new technology and regulatory market design are enhancing market activity yet lowering destabilizing speculation (Gopinath 2005).

By 2004, the Indian exchange rate policy evolved further in the required direction, with the RBI maintaining some two-way movement while continuing to prevent excess volatility. The identical percentage change in high—low rates and standard deviation over 2004, 2005, and the first half of 2006 suggests a conscious decision to create volatility. There were still periods when the exchange rate was almost frozen, but they had shrunk. One such period was from February to June 2005 (Table 7.2). In 2006, depreciation and higher volatility began earlier in May, driven partly by the fall-out of a crash in stock market indices. Over one week in May 2006, the Bombay Stock Exchange (BSE) stock index fell from approximately 13,000 to 9000, and then fluctuated.

<sup>&</sup>lt;sup>2</sup> This has often caused great trauma to traders and to certain communities that specialize in trade. See Hardgrove (2004) for a study of the Indian Marwari community, their self-understanding, and sense of identity. They were said to be gamblers but for example, the traditional gambling on the rains actually served to hedge against income loss. Political rhetoric even equated foodgrain traders to the rats who eat grains and deserve to be shot.

# Box 7.1 Speculation versus Hedging

Hedging is reducing an existent risk by eliminating exposure to price movements in an asset. Speculation is betting on a one-way price movement. Thus speculators aim to profit by taking a position in the market. If they believe a currency is going to depreciate they sell the currency, or take a position using derivative products. It is not linked to any risk from an existing transaction, but is rather a 'risk-taking attempt to profit from subjective predictions of price movements' (Shiller 1993). It is sometimes argued that since speculators buy when prices are low and sell when prices are high, rational speculative activity stabilizes markets. But this does not always follow since speculators buy when there is a high probability of price appreciation and sell when the probability is low (Hart and Kreps 1986), and can thus cause cumulative movements. Hedging, however, stabilizes markets. First, it removes potential shocks to balance sheets that can destabilize the financial system. Second, if hedging is complete at the aggregate level, long and short positions can be matched with less price volatility.

Hedging through market instruments has a cost\* but can be potentially costless, for example, writing an insurance contract with someone who has the opposite currency position. But customized OTC hedging products have to be developed to implement such contracts. Financial innovation and competition should reduce the cost of hedging and this is part of market deepening. Informal hedging is also costless. However, hedging does not necessarily rise with the availability of more market instruments, since the same derivative can be used for hedging or for speculation. Incentives to induce hedging are more important.

Hedging is incomplete even in developed markets. Psychological factors undermine rational decisions. Kahneman and Tversky's (1979) prospect theory showed that while people prefer a sure gain, they prefer an uncertain outcome with a small probability of a gain to a sure loss. Hedging involves a small sure loss or cost, and without it there is a small probability of a gain. Thus they are willing to reduce hedging and undertake more risk than is rational. But subsequent work shows the importance of 'framing' for the outcome. If the same choice is translated in a way sensitive to psychological attitudes, risk-taking behaviour can reduce.

Moreover, an agent will rationally undertake too much risk under limited liability, when the government, debtors, or shareholders absorb bankruptcy costs, while the promoter is able to protect his assets. He will also prefer to speculate rather than hedge if economic structure or policy induces an expected one-way movement in exchange rates. Unhedged, short-term foreign borrowing had played a major role in escalating the East Asian crisis. Burnside et al. (2001) present evidence that markets, instruments, and opportunities existed for hedging in East Asian countries prior to the crisis, although there were some restrictions on the use of currency derivatives, for example in Korea. It was possible for those who took foreign loans to lay off the currency risk. These markets certainly existed in a country like Sweden, which also had a twin crisis in the early 1990s. The failure was more of incentives to hedge. Commitment to a pegged nominal exchange rate and domestic interest rates that exceeded international rates had encouraged firms and banks to over-borrow abroad without covering exchange rate risk. As currencies started depreciating they rushed to buy cover thus increasing the demand for dollars and creating pressure on the domestic currencies.

st The approximate annual cost of hedging an NRI deposit against rupee fluctuations was between 130 to 150 basis points in 2006.

Figure 7.2 graphs daily spot rates over the period July 2005 to February 2006, it shows the concentration of volatility in a few months. An even spread through the year would imply deep markets and active price discovery. But

until markets become deep enough, policy has to space its intervention so as to stimulate them. While continuing to limit excess volatility, policy has to consciously create some volatility.




Figure 7.2: Recent Daily Fluctuations in Spot Exchange Rates

Box 7.2 presents some of the reasons for the instability of forex markets and discusses the role for, and effectiveness of, non-monetary interventions from the CB. Moreover, the RBI has the added advantage of the absence of full capital account convertibility (see Box 7.4). There are QRs of various kinds on the forex exposures allowed to different kinds of transactors, which give it additional levers of control. The problem is that these raise transaction costs, are impediments in the smooth working of markets, and are difficult to implement in the electronic age. The second advantage that the

RBI has is the huge stock of reserves it has built up, so that its market interventions command respect.

Apart from improving one's own markets and policy, other ways to reduce the risk associated with capital inflows are improvements in the international financial architecture, and more regional co-operation (Goyal 2002b). Although the former is stalled, India is making progress in the latter (Reddy 2005). Apart from contributing to the stability of forex markets, exchange rate policy also has to contribute to internal balance—keeping the economy near

#### Box 7.2

#### Forex Markets and Central Bank Intervention

There is a basic inequity in forex markets and that is the superior information with the CB and its dominance as a trader. Therefore, the forex market is not like any other market. Even so, the CB has a healthy respect for the market because of the tendency of market participants to follow each other in unstoppable one-way movements, and the sheer volume of forex transactions. CB reserves can be wiped out in minutes if it tries to defend a particular value of the exchange rate against market perceptions. So the CB watches the market and the market watches the CB in a guessing game. Each wants to know what the other is thinking.

Trend following also occurs because people are trying to guess and follow what other people are going to do, rather than base decisions on fundamentals. Herd behaviour is especially prevalent where fundamentals are uncertain, as in forex markets. Such markets are subject to irrational bubbles, especially in EMEs where conditions are less settled. Other psychological traits compound inefficiencies in forex markets. Past trends are expected to persist, leading to overreaction. The tendency towards mean reversion is systematically underrated (Shefrin 2001).

Another frequent psychological factor in financial markets is low error bands; that is, judgements are made with overconfidence. Investors tend to believe in their own evaluations and luck, thus suffer from an 'illusion of control' (Shiller 1993). All this suggests that there may be a role for exchange rate policy in focusing market expectations.

Exchange rate announcements alone can affect exchange rates because of the CB's dominant position in the forex market, and the market's aversion to uncertainty and ambiguity,\* provided macroeconomic policy is credible. Ultimately a policy that strengthens fundamentals is credible. Initial intervention with the wind may be required to support an announcement. The intervention would be destabilizing, since the CB would buy the rupee when it signals a further appreciation and sell it when it wants it to depreciate. Since it would lose money if the opposite movement occurred, the intervention would be a credible signal of its intention. Market players would follow the signal since they would make speculative profits, for example as they sold a depreciating currency. They would not overreact since of the CB commitment to limiting the volatility. An announcement can be directional and diffuse, but within a prespecified band, to minimize 'loss of face' if the market does not follow. This tends to be a concern with CBs.

Noise traders or those bound by contracts or current requirements would lose. They would be providing the net rupee demand on the opposite side of the market. Since rupee supply would far exceed demand, the required depreciation would soon occur. A reversal of the CB's stance, switching from selling the rupee to buying it, for example, may be required if depreciation begins to exceed the required amount. This—against the wind—intervention implies the CB buys when low. Since it would also sell when high, in the opposite case, if it wanted to stop rupee appreciation, it makes money across the two types of transactions. If the time of intervention followed random supply shocks, it would be random, providing incentives to hedge. Since the intervention is sterilized it implies that money supply is not tied to the exchange rate and remains free to respond to the domestic cycle. CB's buying or selling of the rupee, or its announcement of an expected direction of movement can alone initiate the change even without any change in the money supply.

Since in an EME such as India, receiving large capital inflows, the CB is always intervening or buying currency to accumulate foreign exchange reserves and prevent a large appreciation, only some modification of this intervention is required to bring about the required changes. On other occasions, market-driven movements in the exchange rate will continue to occur due to shocks to fundamentals or news from foreign markets; here stabilizing intervention may be required. When the CB influences and limits exchange rate expectations, entry of noise traders is lowered. These are traders without knowledge of fundamentals and who base valuations on actions of others. Such traders tend to gain from higher exchange rate volatility so their entry is lowered when this volatility is limited (Jeanne and Rose 2002), making forex markets more stable. Limited volatility is sufficient to encourage the activity of the well-informed institutional actors that markets in derivative contracts require.

\*An example from Indian markets was the 'Manic Monday' on 17 May 2004, due to unexpected election results. Stock markets crashed and had to be shut down. The RBI made a public announcement on its website that it was ready to sell forex and to provide liquidity as required. The availability of the window meant it was not required. Since each player knew that the other knew that liquidity was available there was no need for a panic rush to be the first to draw a limited stock.

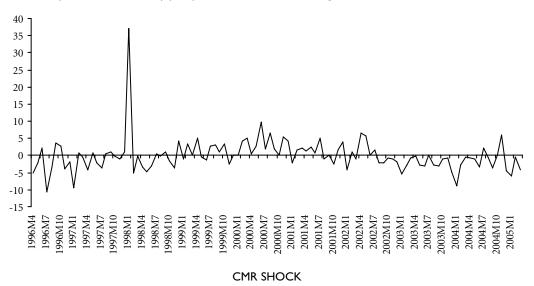
full employment—and external balance, that is, maintaining a balance of payments that is sustainable over time.

#### INTERNAL AND EXTERNAL BALANCE

#### Internal Balance

The response to bursts of high volatility in exchange rates was normally a sharp rise in interest rates. The first such episode in the mid-1990s triggered an industrial slowdown and subsequent such episodes sustained it over 1997–2001. When the domestic cycle required a macroeconomic stimulus, monetary policy repeatedly tightened in response to external shocks. Box 7.3 explains one way of calculating monetary shocks and the figure shows the large negative monetary shocks estimated over this period.

An analysis of the pattern of macroeconomic volatility across four pre- and post-reform, high and low growth periods (Goyal 2005a), shows that Indian interest rate volatility exceeded exchange rate volatility for much of the 1990s. Limited exchange rate volatility is easier to hedge than interest rate volatility, which has a deeper impact particularly when bank loans are the dominant mode of finance. Since the reliance on bank debt is high in an EME, sharp interest rate volatility delivers a severe shock to the financial system.


Although post-reform foreign financial inflows, measured by the surplus on the capital account rose, their volatility, and that of the major non-controlled components of the capital account fell. The volatility was also much below that of the current account deficit (CAD), which rose in the

# Box 7.3 Monetary Policy Shocks

The strategy for isolating monetary policy shocks involves making enough identifying assumptions to estimate the parameters of the RBI's feedback rule. These assumptions include functional form assumptions and assumptions about the variables that RBI looks at while setting up its monetary policy instrument and also about the operating instrument.

Monetary policy shocks are identified using a short-run vector autoregression model. Since the variables are simultaneously determined over time, an identification assumption on contemporaneous causality is required to be able to isolate the policy shocks. That is, exogenous shocks (foreign oil price inflation and interest rates), and domestic variables (inflation, IIP growth, and exchange rate changes) affect the policy instrument variable (call money rates, or treasury bill rates) contemporaneously, but the policy variables affects them only with a lag. All these variables go on to affect gross bank credit and the broad monetary aggregate (M3). This is a 'recursiveness assumption'. The foreign variables are block exogenous to the system, since the Indian economy is too small to affect international prices, that is, domestic variables do not enter the lag structure of the foreign variables. The RBI's reaction function or feedback rule to changes in the foreign shocks and non-policy variables determines the setting of the policy instrument variable. The policy shock is the residual after this estimated 'reaction' of the RBI. It is orthogonal to the variables in the RBI's feedback rule. The residuals of the 'monetary policy instrument' equation are our estimate of monetary policy shocks.

The model behaves consistently. Responses to shocks are in directions suggested by theory, and thus it can be considered as a good approximation to reality. Estimated monetary policy shocks are shown in the figure.



Source of box: Ankita Agarwal.

period of the slowdown.<sup>3</sup> This suggests the latter may have been policy-induced due to the domestic cycle and not due to external volatility. Policy was magnifying the volatility of the inflows, and hindering their absorption. The CAD measures the actual absorption of foreign savings allowing domestic investment to exceed domestic savings.<sup>4</sup> Their trend was stable, but short-term fluctuations of foreign portfolio inflows did contribute to exchange rate volatility. The impact of interest rates rose significantly in the post-reform period. Although in the post-reform period exchange and nominal interest rates were more volatile, volatility in the latter reduced volatility in the real interest rate.

After 2001, two things happened. Falling US interests rates increased capital flows to EMEs. The calming of the so-called EME capital market crises<sup>5</sup> made capital less jittery. There was some reduction in Indian interest rates although not as much as in US rates. Second, the liquidity adjustment facility became operational at this time. It made effective smoothing of liquidity possible and brought all short-term interest rates within a corridor determined by the reverse-repo and the repo rate, short-term policy rates. The steady lowering and smoothing of interest rates stimulated consumer spending and industry. But when the US Fed began raising the federal fund rate (ffr) in mid-2004, the RBI followed with quarter point rises in the reverse-

repo rate from mid-2005. The question that arises is, if it is possible for the interest rate to respond to the domestic cycle, with some independence from international rates, in a more open economy? What is the degree of monetary policy autonomy and what is its impact on output?

The RBI also has to control for changes in US monetary policy since that influences capital flows to EMEs. But the US is following a paradigm of monetary policy that smoothes interest rates and gives excess demand time to reveal itself. So the RBI should have no difficulty in keeping Indian rates aligned. Although US rates have been rising since June 2004, the RBI had degrees of freedom since it had never lowered rates as much as the US.<sup>7</sup> Political rigidities that put a floor on the Indian interest rate structure led to large interest differentials, thus inviting short-term inflows seeking arbitrage opportunities. These differentials can be lowered as US interest rates rise. A fall in the risk associated with EMEs also makes it possible to lower interest differentials (BIS 2006). Indian rates can also rule lower than US rates to the extent that the rupee is appreciating against the dollar.

India has had a slow relaxation of controls on the capital account through the 1990s; capital account convertibility is now high for international capital but still low for outflows of domestic capital (see Box 7.4). We are closer to a fixed than a flexible rate.

### Box 7.4

# The Road to Full Capital Convertibility\*

Controls raise transaction costs and create inefficiencies. Moreover, capital controls are difficult to implement in a more open and highly wired economy—the nuisance remains without the benefits. Global movement of capital to EMEs has risen. It is feared that controls may reduce India's share of the pie (although China has had no problem in attracting capital even with controls). India has the human capital to acquire a comparative advantage in the provision of financial services. Their development is handicapped without full rupee convertibility. The latter would also allow productive absorption of excess foreign exchange reserves as individuals optimally diversify their portfolio of assets.

However, short-term capital flows can be excessively volatile, and self-fulfilling panics develop in EMEs when fundamentals are weak and uncertain. Therefore, strong fundamentals and crisis proofing are prerequisites for full rupee convertibility. EMEs that opened their up capital account without the necessary institutional maturity suffered a series of crises in the 1990s. Acquiring external signs of development without the internal strengths is extremely dangerous.

Even so, steady progress is possible on the road to full convertibility. It requires reducing the instability of markets but releasing their strengths through improvements in regulation. As controls disappear, incentive structures have to be in place to induce responsible

(Box 7.4 contd.)

<sup>&</sup>lt;sup>3</sup> The coefficients of variation for the two periods 1992–7 and 1997–2003 were –0.48 and –1.97, respectively, for the CAD and 0.46 and 0.19 for the capital account. The latter period coincided with the industrial slowdown.

 $<sup>^4</sup>$  Forex reserves rose to 140 billion US dollars in 2005, compared to a paltry 5 billion in 1990–1. 30 billion dollars were accumulated in just 18 months over the period January 2002 to August 2003. Arbitrage occurred at the short end since Indian short real rates were kept higher than US rates.

<sup>&</sup>lt;sup>5</sup> This was the name given to the East Asian currency crises after contagion spread to Brazil and Russia.

<sup>&</sup>lt;sup>6</sup> The RBI stands ready to lend collateralized liquidity at the repo rate. The reverse-repo rate is the rate the RBI pays for deposits kept with it. Thus the repo is the rate at which the market can borrow from the RBI, and the reverse-repo the rate at which it lends to the RBI. The first creates injections of liquidity and the second absorbs liquidity.

<sup>&</sup>lt;sup>7</sup> The lowest value the ffr had reached in mid 2004 was 1 per cent compared to 4.5 per cent for the Indian reverse repo rate (rrr). In August 2006 the two rates were respectively 5.25 (ffr) and 6 (rrr). The US Fed, coming to the end of its rising cycle missed a rise in August, while the RBI raised the rrr in July. Since the ffr is the daily rate at which US banks borrow from each other, it should be compared to the Indian call money rate, which is normally higher than the rrr.

(Box 7.4 contd.)

behaviour, to ensure that both policy and individual responses are such as not to amplify shocks. Market design and incentives have to encourage a shift away from speculative to fundamentals based behaviour.

Crises proofing is required to tackle weaknesses of markets. Part of this is countercyclical macroeconomic policy that supports trend growth—two-way movement of exchange rates, and a transparent exchange rate policy. Foreign capital comes in because of growth expectations and can go if either growth collapses or overheating occurs. Policy has to maintain a fine balance.

Financial markets need to be deepened further. Although reform of legal systems and implementation takes time, regulatory convergence is occurring faster. Debt markets still need to be deepened and international accounting standards adopted. We have made progress on all these fronts. Well-sequenced partial convertibility has already lowered transaction costs and stimulated financial development.

Specific sectoral policy proposals should be assessed in terms of their contribution to the overall objectives outlined above, to encouraging innovation, and inducing more competition in markets. Some examples are as follows:

Banks in SEZs make 75 per cent of loans to firms that are based in SEZs. It is possible to allow more foreign business, giving banks more freedom to compete in providing offshore services in SEZs, in line with the objective to create international financial centres. Since short-term unhedged bank borrowing abroad was a major cause of East Asian crises, limits on open positions should continue longer, but could be relaxed for individual banks depending on the strength of their balance sheets.

Individuals already had the freedom to remit upto \$25,000 abroad in 2006. There is an argument that this was not fully utilized so the limit should be raised only for high net worth individuals. But since this is for portfolio diversification and can lead to unstable outflows, limits should be relaxed only for productive purposes, exports business acquisitions, expansions (above the current 200 per cent of a firm's net worth). To develop debt and derivative markets, limits for foreign inflows can be raised for longer-term bonds.

Competition and innovation should be encouraged to reduce the cost of hedging while two-way movement of asset prices encourages hedging. Restrictions on indirect hedging should be relaxed; MIFOR (Mumbai Interbank Forward Offer Rate) swaps for forex exposures, and interest rate futures should be allowed to develop.

Tax distortions should be removed. For example, ECB guidelines should have equal treatment of domestic as well as overseas acquisitions. The withholding tax should be made equal for bank loans and debt issues.

\* This box draws on the author's contribution to The Economic Times, Tuesday debate, 28 March 2006, on 'Full rupee convertibility: good, bad or ugly?', and the author's comments made at a brainstorming discussion at the Indian Merchant's Chamber, Mumbai on 'Fuller Capital Account Convertibility', 14 June 2006.

The M–F model tells us that with perfect capital mobility, static expectations, and a fixed exchange rate, monetary autonomy is lost. Policy makers often refer to this impossible trinity, feeling a sense of helplessness before the wave

of foreign inflows, and the increasing dominance of the market. But going beyond the simple M-F model (presented in Box 7.5), it turns out that the potential impact of monetary policy has increased with the reforms.

#### **Box 7.5**

#### The Impact of Monetary Policy in an EME: The Mundell-Fleming Model

Analysis\* with the simple M-F model (this takes the expected exchange rate to be equal to its current rate) implies that under a float, monetary policy is effective in raising output in the short run but fiscal policy becomes ineffective. The reason is that a rise in money supply depreciates the currency and stimulates exports. But fiscal policy has the reverse effect, which counters the demand stimulus from the fiscal expansion.

Under a fixed exchange rate, a monetary expansion lowers the interest rate and the consequent capital outflow necessitates a sale of reserves, which reduces money supply, in order to maintain the fixed exchange rate. Fiscal policy escapes this neutralizing effect. A fiscal expansion raises interest rates above world rates. Maintaining the fixed exchange rate under the consequent capital inflow requires an expansion of reserves and money supply. The latter supports the fiscal expansion, thus raising demand and output in the short run.

With non-static expectations, the expected exchange rate can differ from the current rate. Now fiscal policy can also be effective under a floating exchange rate. The appreciation that occurs implies an expected depreciation back to equilibrium values. Therefore, higher interest rates do not lead to a further capital inflow and appreciation, crowding out the rise in demand, since uncovered interest parity is satisfied. That is, returns on holding domestic or foreign currency balances are equalized.

Under a fixed exchange rate, a monetary boost is still reversed, but devaluation allows reserves, money supply, and output to increase in the short term. An expected devaluation, however, would raise interest rates and if the latter harmed real fundamentals sufficiently, could lead to a capital outflow or attack on the foreign exchange reserves.

In the long run, of course, macroeconomic policy would not be able to raise output above full employment, and if the economy is at full employment, any monetary impulse would affect only nominal variables.

\* Krugman and Obstfeld (2003) offer a textbook treatment that is simple yet in line with modern developments that emphasize asset markets.

The exchange rate regimes in most countries, and especially in EMEs such as India, are somewhere between a perfect fix and a perfect float. Even partial flexibility of exchange rates gives some monetary autonomy, and the absence of complete capital account convertibility (as in India) opens up more degrees of freedom, as Figure 7.3 (Frankel 1999) shows. The bottom two corners represent a fixed and a floating exchange rate and the line between them depicts the whole range of intermediate regimes. The upper point is a closed capital account, so that in approaching the bottom line, convertibility gradually increases until perfect capital mobility is reached on the line. Therefore, the impossible trinity is only point A of the triangle. Everywhere else there are varying degrees of monetary autonomy. The impossible trinity occupies only a point in the policy space even in the simple M-F model.

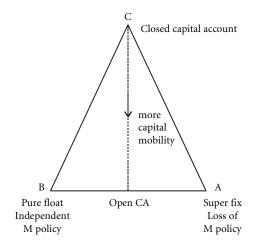



Figure 7.3: Shrinking the Impossible Trinity

If during rapid transition, as is currently occurring in India, productivity rises, and demand for a country's products rises even faster than productivity, the real exchange rate appreciates. From real interest parity this implies that the country's real interest rate has to be lower than world real interest rates, giving monetary policy a further degree of freedom in adjusting interest rates. If output is less than potential, and rising rapidly, as in India, even a rising money supply can be associated with a nominal appreciation, not depreciation, since demand for a currency falls with a rise in its relative money supply but rises with its relative income (Goyal 2005b).

Market efficiency has never been established for forex markets. Markets can sometimes get stuck in the wrong rate. These factors are exacerbated by goods market imperfections. The exchange rate overshoots to compensate for short-term nominal rigidities, and then slowly comes back to equilibrium. Excess volatility raises profits for noise traders and attracts more of them. Reducing excess volatility of the

exchange rate can give a free lunch by reducing noise trader entry, and focusing market expectations, thus freeing monetary policy instruments to respond to the domestic cycle (Goyal 2006).

If the exchange rate is managed it cannot overshoot, but the same market imperfections can show up in excess volatility of interest rates in order to satisfy asset market expectations and currency arbitrage. Thus, some exchange rate flexibility can help smooth interest rates, yet give considerable freedom to adjust short-term interest rates to suit the domestic cycle. For example, even if exchange rates vary within a 5 per cent band, six month interest rates can vary 10 per cent while satisfying uncovered interest parity.

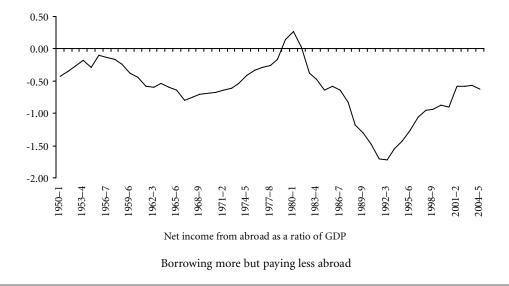
EMEs like India also suffer from structural rigidities. But some rigidities actually enhance the power of monetary policy. Interest rates generally exceed international rates. Structural changes allow domestic rates to approach international ones. For example, reform lowers financial repression, deepens financial markets, and improves regulation thus lowering the risk premium and inflation differentials and giving more independence to the CB. While the interest differential can become very narrow for certain types of capital where arbitrage is almost free, capital controls and continuing structural impediments allow large differentials to continue in some segments, and there is a role for policy in aligning them.

There are other factors that increase the impact of monetary policy in an open economy. Thus the new open economy macroeconomics (OEM) (Obstfeld and Rogoff 1996) points out that monetary policy can have persistent effects on output and welfare because of the wealth effects of current account imbalances. A monetary stimulus raises output where industry structure is such that output is below potential. But now the stimulus has long-run effects. This issue is particularly relevant for an EME like India that should be able to invest more than it saves through a CAD, making possible a faster transition to maturity where it reaches its potential output and absorbs all its labour at the technology frontier.

OEM makes it clear that causality runs from macroeconomic policy—affecting savings, investment and consumption smoothing—and, therefore, the current account of the balance of payments. Credible reform and expected future growth can allow a country's consumption and investment to rise, financed by sustainable capital inflows. In both China and India, foreign inflows and reserve accumulation have occurred in the presence of large fiscal deficits and government debt. This is perhaps because in both countries private savings are high enough to cover government dissaving and the foreign savings flowing in are based on sustainable future growth expectations. OEM emphasizes forward-looking behaviour and expectations not only on the part of consumers and investors, but also workers. EMEs have rigidities that make forward-looking behaviour the exception rather than the rule. In the next sub-section, we see how these rigidities have tempered the absorption of foreign savings, and then go on to argue that even so, labour market rigidities peculiar to a populous democracy can, with suitable policy, actually encourage rapid growth.

## External balance

Policy was successful in stimulating exports but less successful in absorbing the foreign savings available. Policy makers were committed to the successful East Asian and Chinese growth strategy of competitive exchange rates. This strategy effectively ruled out a substantial appreciation as a means of absorbing foreign exchange reserves through cheapening and encouraging imports. It is also the correct strategy as long as India, like China, has large reserves of


labour that need to be absorbed into higher productivity employment to which exports can contribute.

But what was the specific value of the real and nominal exchange rate policy aimed at? The market value of a currency depends on demand and supply of foreign exchange and how these are expected to change. But these are uncertain, especially in a country without deep markets or full capital account convertibility so that the true demand for the currency cannot be revealed. A short-term market indicator of equilibrium rates is the approximate equality of buyer-initiated and seller-initiated orders. Although in the short term, market perceptions and policy can affect the exchange rate, in the longer-term it cannot depart from equilibrium rates determined by macroeconomic fundamentals such as relative money supply, relative output, productivity, and demand for a country's products. The rate has to allow a sustainable CAD. Investment can initially exceed domestic savings, but the deficit has to turn into a surplus as income levels rise, in order to repay debt. Box 7.6 shows

# Box 7.6 The Difference Between Indian GDP and GNP

In an open economy, GDP can be very different from gross national product (GNP) because Indian nationals hold assets abroad and foreigners hold assets within India. Net income paid abroad has to be deducted from GDP produced within a nation's boundary to obtain the nation's GNP. If a country has been borrowing from abroad more than it has been lending, the deduction should be high. The figure below shows the adjustment as a ratio to GDP. We pay abroad more than we earn from abroad so the adjustment is negative. But the amount is low, only about minus half a percentage point. The upward trend in the ratio during the period of reforms is surprising since this was a time of more openness and borrowing from abroad. Time series regressions run by teams of students\* as a class assignment suggest that rise in GDP, fall in global interest rates, and fall in net interest and service payments (a component of net income from abroad), were the primary reasons for the reduction in the ratio of the payments we made abroad. The last factor was highly significant in the regressions, and had the largest coefficient. As a ratio to GDP it also fell during this period. We had to pay less for what we borrowed and we had also begun to earn from assets held abroad.

\* Anindya Sengupta, Anuradha Ghosal, Arjun Singh, Mamta Agrawal, M. Pratima, Rajendra Gupta, Rama Joglekar, Shazeb Kohari, and Sujeet Kumar revised their work and estimated the robust regressions reported here.



that payments abroad remained small as a ratio of GDP, and the ratio actually fell during the 1990s.

A number of macroeconomic variables affect the equilibrium real exchange rate, but the latter affects exports. The real effective exchange rate (REER) gives weights according to major trading partners and corrects for relative inflation. The index of the 36-country, export-based REER, with 1993–4 as the base, was at 100.04 in November 2005, and had largely ruled at just below hundred over the past decade. A rise above hundred would have meant an appreciation over the 1993–4 level. The trouble with the REER is that constancy of the aggregate is consistent with large changes against individual countries. It also does not correct for relative changes in productivity and world demand, which affect equilibrium real exchange rates.

A 5-country, trade-weighted REER, with weights based on India's major trading partners, was also calculated. But as the pattern of India's trade changed in this period, a new 6-country, trade-weighted REER was made available from 2005. This included India's trade with China together with the traditional western partners. Table 7.3 shows two-way movements in this REER with sustained appreciation in the past few years. However, lower Indian inflation and higher productivity growth meant the limited appreciation did not hurt exports, which grew at above 20 per cent per annum. Global trade was on the upswing and there was a rise in international demand for Indian products. The nominal effective exchange rate<sup>9</sup> (NEER) largely depreciated since our inflation rates were higher than those of our trading partners.

TABLE 7.3

Taking Account of the Trade Basket and Inflation
(6 country export weights (appreciation +) base 2003-4 = 100)

| Year              | REER | NEER  |
|-------------------|------|-------|
| 1994–5            | 5.7  | -3.1  |
| 1995–6            | -4.3 | -8.7  |
| 1996–7            | -0.2 | -1.9  |
| 1997-8            | 3.2  | 1.2   |
| 1998–9            | -7.9 | -11.9 |
| 1999-2000         | 1.6  | -0.4  |
| 2000-1            | 5.3  | 0.3   |
| 2001-2            | -0.2 | -1.8  |
| 2002-3            | -4.9 | -6.3  |
| 2003-4            | 1.5  | -1.9  |
| 2004-5 (P)        | 2.5  | -0.7  |
| 2005–6 (December) | 6.5  | 3.4   |

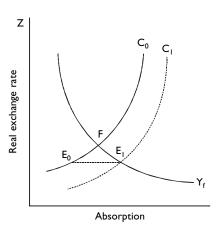
Source: Calculated using data from www.rbi.org.in.

A fixed nominal exchange rate is supposed to stimulate trade by reducing uncertainties, but hedging can remove the impact of limited currency flexibility on trade. Moreover, there is evidence that while currency crises adversely affect trade, limited fluctuation in exchange rates does not have a large effect on trade (McKenzie 2004). If limited volatility helps prevent crises and lower interest rates, it may even benefit trade. Another constraint on rupee movement is that it cannot appreciate substantially unless the Renminbi does so, since China is a major trade competitor and partner. China's tight band with the dollar had been shifted to a currency basket in July 2005, but the depreciation has been only marginal. China wants to develop its financial markets further and strengthen its weak banks before allowing more exchange rate flexibility.

An economy at full employment requires an appreciation of the exchange rate to absorb foreign inflows since a rise in domestic absorption occurs through a rise in imports. But if there is excess labour, the rise in absorption can occur at an unchanged real exchange rate, through output and capacity expansion (see Box 7.7). But for this, interest rates must be such as to stimulate demand. More capital account convertibility is another way to absorb capital inflows, but this has to be gradual and well-sequenced (see Box 7.4).

Some exchange rate appreciation would help to absorb inflows but it cannot be the major part of the adjustment. Large numbers available to work at low wages prevent the substantial rise in average real wages required for a major currency appreciation. Such a rise in real wages is possible only with a rise in labor productivity in agriculture. Full capital account convertibility, which allows domestic residents to acquire foreign assets, also absorbs reserves, but it raises the risk of capital outflows and crises unless markets and institutions are well-developed. Therefore, it has to be introduced gradually and in a correct sequence.

#### INFLATION AND THE LABOUR MARKET


Inflation control is another policy objective to which the exchange rate policy can contribute. An appreciation is an antidote to price shocks coming from food, oil, and other intermediate inputs. This also requires a two-way movement of the exchange rate. For example, even if the underlying trend is that of nominal depreciation, a steeper short-term appreciation in response to an adverse supply shock can moderate the relative price shock. Short-term movements in the exchange rate to counter temporary supply shocks can achieve the limited volatility required to stabilize forex

<sup>&</sup>lt;sup>8</sup> The REER is, therefore, the price of Indian output in terms of a basket of foreign currencies.

<sup>&</sup>lt;sup>9</sup> The NEER is the price of a rupee in terms of a basket of currencies. The RBI estimates the NEER as the summation of the SDR/ rupee rate divided by the weighted average of the other countries SDR/\$ rates, so the units of the NEER are \$/rupee. Therefore, an appreciation implies a rise in the nominal value.

# **Box 7.7** Strategies to Absorb Foreign Inflows

The simple Swan diagram here (see Corden 2002) shows how foreign inflows can be absorbed, without a real appreciation, if there is less than full employment.



The Swan Balance of Payments Model with foreign inflows

The vertical axis gives the real exchange rate, Z, which is the ratio of traded to non-traded goods prices  $(P_T/P_N)$ , so that a rise is a real depreciation. The horizontal axis gives real absorption, A, or total real expenditure by the country on domestic goods and imports (A = C + I + G). Curve Y<sub>f</sub> gives the combinations of Z and A which give output demand equal to full employment output. Values above the curve would generate inflation and those below unemployment. The curve is downward sloping because as domestic absorption rises, Z must appreciate to reduce foreign demand at a given level of output. Curve Co gives the combinations of the two variables that yield a given CAD. The C curves are upward sloping because as imports rise with higher domestic expenditure Z must depreciate to encourage exports and keep the current account unchanged. A rise in foreign inflows implies a leftward shift of C<sub>1</sub> since foreign inflows now finance the rise in CAD as Z appreciates and imports rise.

It is easy to see that if the initial position of the economy is on the Y<sub>f</sub> curve at F, absorbing foreign inflows through a higher CAD will require a real appreciation. But if the economy is at  $E_0$ , a demand stimulus can move it along  $E_0 E_1$ , and absorb the foreign inflows, at the same real exchange rate.

markets and also reduce the effect of supply shocks on the domestic price-wage process, through which they impact inflation. Building in a rule whereby there is an automatic announced response to an expected supply shock would avoid the tendency to do nothing until it becomes necessary to overreact. But better forecasting and estimation of macro models is required for such forward-looking policy. This policy implies using the exchange rate to contribute to supply-side management, and insofar as exchange rate policy can be de-linked from changes in the money supply (the section on internal balance shows why this is sometimes possible), monetary adjustment can be tuned to the domestic output cycle. Even monetary adjustment can change the exchange rate in the right direction. If a negative supply shock occurs under general excess capacity, Goyal

(2005b) shows that a monetary expansion can lead to an appreciation of the exchange rate.

Under any kind of wage-price rigidity, a rise in relative prices of key intermediate inputs, or of commodities that have a large share in the consumption basket, can raise the average price level or inflation. The labour market plays a major role in the wage–price process of a specific economy. <sup>10</sup> India has a large informal labour market (accounting for 80 per cent of the work force) without formal cost of living indexation. Therefore, nominal wages respond with a lag to changes in the CPI. But India is also a democracy, and the lack of indexation and large number of poor makes the polity very sensitive to inflation. There are political pressures to keep real wages fixed in terms of food. Therefore, the lag with which wages respond to changes in food prices

<sup>&</sup>lt;sup>10</sup> Thus real wage rigidity constrained the German Central Bank to be strict, while the US Fed could be more accommodative to domestic cycles because customary three-year nominal wage contracts allowed real wages to fall after an unexpected rise in prices (Bruno and Sachs 1985).

is very short. The CPI is a weighted average of home and foreign prices, but with a large weight (about 50 per cent) given to food items. With trade liberalization, food prices become more closely linked to border prices and the weight of the exchange rate in the CPI rises; the exchange rate has a larger effect on the cost of living and, therefore, on wages. Producer prices are marked up on wages, so producer price inflation responds to nominal wage inflation, lagged output (indicating demand pressure), and contemporaneous oil or productivity shocks to supply.

Pressures from well-organized farm lobbies (the rural population exceeds 57 per cent of the Indian population)<sup>11</sup> have in the past led to high and rising farm support prices. The compromise was to subsidize both farmers and consumers; the latter through a low price public distribution system. Since the latter was not very effective, protection was not complete, and nominal wages rose with a lag in response to a rise in food prices. Farmers also did not make long-term gains from this policy combination since the terms of trade advantage were only short term. It was lost as non-agricultural prices rose with inflation. For labour to move from agriculture to urban activities, productivity in agriculture has to rise. The focus on rising support prices came at the expense of development of irrigation and other essential agricultural infrastructure. In general, in a democracy, short-term subsidies gained at the expense of development of infrastructure and human capital. Support polices for farmers should shift from raising prices to stabilizing prices; developing human and physical capital and infrastructure; and giving them greater freedom from marketing monopolies. As populations totally dependent on agriculture for their living shrink, but poverty remains high in the large informal sector, stable food prices will benefit a larger group of voters, while providing insurance to farmers.

This migration of populations implies a labour slack. Therefore, both in the short run and over a horizon exceeding one year, which is long enough for the capital stock to rise, mean output lies below potential output. If food prices are stable, capital is available, specific bottlenecks are alleviated, and institutional reforms undertaken; supply will not be a constraint on output, which is below the potential that absorbs the labour slack. 12 In the absence of full labour absorption, the forward looking marginal cost facing the firms is flat. Large capital inflows and foreign exchange reserves relieve constraints on imports of food stocks, fuel oils, and capital goods.<sup>13</sup> Moreover, new technology makes it possible to bypass some deficiencies in infrastructure while easier availability of finance funds its expansion. Reduction in bureaucratic rationing and continuing reforms shorten lags and delays, making supply more elastic. These factors, together with the large numbers willing to work at a low constant real consumption wage imply constant returns to capital, <sup>14</sup> or an elastic supply curve. But this aggregate supply curve is subject to frequent shocks. Therefore, monetary policy has to find a way to counter these shocks, while maintaining aggregate demand.

Reforms allow faster labour absorption and an upward trend in the mean output. Capital accumulation and organizational change over time will raise labour productivity, and increasing competition through opening up will reduce mark-ups. These factors will tend to reduce inflation further until the economy reaches a mature steady state. As long as monetary policy is able to anchor nominal wages and inflationary expectations, it can stimulate demand. A rise in credit will finance an expansion in output, capital,

<sup>11</sup> Kelkar (2005) makes the point that India is urbanizing rapidly. The urban sprawl found outside most towns has a much higher population density compared to rural areas. He quotes the Indian Retirement, Earnings, and Savings database as giving the occupational break-up for India earners as 6.3 per cent in big firms, 9.7 per cent in government, 29 per cent self-employed, 25 per cent in small firms, and only 30 per cent in agriculture.

help, but changing power equations have given firms many freedoms, for example, in the use of contract labour. A little bit of investment in training makes a large supply of labour available. For example, the Maharashtra Government and the Retailers Association of India have launched a scheme to train slum-dwelling youth from backward castes to man food and grocery divisions in the ongoing retail boom, ensuring a flat supply curve. These tasks do not require very sophisticated skills. Faster growth has not as yet been successful in absorbing labour. The NSSO 60th round reports that the unemployment rate for rural males increased over the period 1993–4 to 2004 from 5.6 to 9 per cent and for urban males from 6.7 to 8.1 per cent. It increased for women also. Goyal and Pujari (2005) present evidence that the Indian long-run aggregate supply curve is elastic.

<sup>13</sup> It may even relieve India's pressing infrastructure needs. The Indian Government is trying to find innovative ways to use forex reserves to spend more on infrastructure, motivated by the Chinese Government's successful large spending in this area. The inability of the private sector to build infrastructure despite inducements has led to an emphasis on public-private partnerships.

<sup>14</sup> Aghion et al. (1999) derive this in a standard Cobb–Douglas production function  $Y = AK^{\beta}L^{1-\beta}$  where Y is the output level, K the capital stock, and L the labour employed. Normalizing the constant consumption wage  $W/P_t^c = 1$  (where W is the nominal wage and P the price level) and equating it to the marginal product of labour gives a value for L, which when substituted in the production function gives:

 $Y = A((1-B)A)^{(1-\beta)/\beta}$  K =  $\tau$ K or the standard AK production function with CRS. If the average real consumption wage is around subsistence, firms do not gain from lowering it, since productivity falls commensurately.

and capacity. The ability of the CB to focus exchange rate expectations gives it an additional weapon, independent of monetary policy, to counter relative price shocks that trigger the wage–price process and raise inflation. It can then focus monetary policy on maintaining demand, in a situation of overall excess capacity and unemployment.

To summarize, if food prices are constant, labour cost does not rise; if there is no cost shock, intermediate inputs prices also do not rise; and with labour slack, deviations from mean output are demand-determined, with costs remaining constant. Since keeping inflation low and real wages constant in terms of a basic consumption basket are political imperatives, an exchange rate policy that furthers these objectives is politically feasible. As it reduces the necessity for subsidies and administered prices that distort incentives and result in lower efficiency, it lowers the waste in the system. Two-way movement only pre-empts the effect of temporary supply shocks on the domestic price-wage process. This is different from fixing the exchange rate to bring down high levels of inflation, which often leads to real appreciation and ends in a crisis, as in the Latin American exchange-based stabilization episodes. Svensson (2000) points out that the lag from the exchange rate to consumer prices is the shortest.

#### STRUCTURE, MONETARY, AND FISCAL POLICY

To sum up, the Indian exchange rate policy has started to contribute to market stability and deepening, and has supported rising exports. Although exchange rates are more flexible, the inflation sensitivity of the electorate ensures that the RBI does not have an inflation bias. Since there was no temptation to raise the exchange rate in order to cause surprise inflation, the exchange rate was not systematically undervalued. As inflation was low there was no need to use the exchange rate as a nominal anchor to stabilize inflationary expectations, thus, there was no overvaluation. However, the exchange rate policy did not support the adjustment of monetary policy to domestic cycles and to the productive absorption of foreign exchange reserves. Although some agricultural liberalization and falling world food prices did reduce the political pressures that had raised food support prices and inflation, the exchange rate policy was not systematically used to moderate the effect of the typical EME supply shocks—oil price shocks and failure of rains. Monetary policy broadly succeeded in preventing an explosive growth in money supply and reined in inflationary expectations, but at a high output cost.

Indian private and corporate savings are high enough to compensate for government dissaving, and a large population employed at low productivity implies that output is below potential. Moreover, political and institutional features result in fiscal—monetary co-ordination such that the economy remains on an elastic stretch of the aggregate supply curve, unable to exhaust excess labour and capacity. Fiscal populism pushes monetary authorities towards conservatism in order to reduce inflationary expectations. But since the populism raises inefficiencies, and therefore, costs, it shifts up the supply curve, while monetary tightening reduces demand, resulting in a large negative effect on output for little gain in reduced inflation. Therefore, optimal co-ordination of monetary and fiscal policy requires the imposition of flexible rules that will constrain discretion and push it in the required direction (Goyal 2002a, 2007). Fiscal surpluses should be built in good times that are available to spend in bad, government expenditure capped at an expected trend growth rate, and its composition changed to make it more effective. The Fiscal Responsibility and Budget Management (FRBM) Act 2003 will put some restraint on the fiscal laxity, but it does not really address the need to change the composition of government expenditure away from consumption and towards investment in infrastructure and human capital, and hence reduce waste. Even so, together with more openness, it may make it possible for monetary policy to be more in tune with the domestic cycle. Higher growth, lower interest rates, and the commitment to reduce the revenue deficit will eventually lower domestic public debt ratios. Publicprivate partnerships can help leverage public resources available for infrastructure and utilize them more effectively.

In the theory of monetary policy in an open economy (Clarida et al., 2001), optimal policy is derived by minimizing deviations from potential output and from target inflation subject to three constraints. First, forward-looking aggregate demand, second, aggregate supply derived from firms equating wages to expected marginal product, and third, trader arbitrage over currencies linking changes in the exchange rate to real interest differentials over time. With such a framework, a short-run trade-off between inflation and output variability arises only if inflation is positive due to a cost shock, since excess demand can be removed without output cost. This is trivially true for an economy such as India during a catch-up period of rapid productivity growth when potential output exceeds actual output. Moreover, monetary policy based on expectations and forward-looking behaviour has shorter lags; since fiscal policy must go through the political process, fiscal policy lags can be longer.

If the exchange rate is flexible there is automatic adjustment to a demand shock, since depreciation results and increases demand. Under a fixed exchange rate, money supply automatically responds to money demand and financial market shocks in order to maintain the fixed exchange rate, but with a more flexible exchange rate this does not happen. Thus, a monetary policy regime that allows a more automatic response to market conditions is required. Inflation targeting allows a learning from, and response to, the market, while anchoring inflation expectations. Targeting monetary quantities is inadequate as money demand becomes unstable.

As Dash and Goyal (2000) point out, information available in the systematic structural features can be exploited while designing monetary policy. Policy had been accommodating an agricultural shock but tightening as manufacturing prices rose subsequently and this had a large output cost. They argue that a monetary contraction should be completed earlier than in the past, and should coincide with a rise in food prices. But the open economy gives degrees of freedom because it turns out that a monetary relaxation, in response to an anticipated temporary supply shock, can appreciate the exchange rate, and thus reverse the impact of the supply shock (Goyal 2005b). The administered price mechanism implies that there is a lag between a supply shock such as a failure of rains or a rise in international oil prices and its impact on inflation. Forward-looking monetary policy can use its knowledge of this structure to abort the inflationary process. As long as supply shocks are the dominant source of inflation and deviations of output from the potential harm welfare, optimal policy would aim to achieve an inflation target only over the medium-term by which time temporary supply shocks have petered out, or have been countered by exchange rate policy, changes in tax rates, or improvement in efficiencies. Inflation targeting itself will prevent inflationary wage-price expectations from setting in, which can permanently shift up the supply curve in response to a temporary supply shock. Monetary policy has to tighten only if there is excess demand. Thus, exchange rate policy and the management of inflationary expectations can help abort the relative price shocks that contribute to inflation, allowing monetary policy to maintain demand. In a situation of overall excess capacity and unemployment, tightening monetary policy to reduce supplyshock inflation has a high cost in terms of output sacrificed.

Indian financial markets have developed to the point where short-term interest rates are well integrated. Short-term forex market efficiency holds (Mohan 2006). Therefore, exchange rate expectations affect the interest differential. To the extent rapid catch-up implies the exchange rate is expected to appreciate, and the risk premium is low, domestic interest rates can even be lower than international rates, giving greater freedom to adapt monetary policy to domestic needs.

### **CONCLUSION**

Limited volatility in exchange rates improves the structure of incentives, thus contributing to four objectives. First, external balance—a real exchange rate that follows its trend competitive value can stimulate the real sector, so that eventual current account surpluses follow the initial deficits. Second, internal balance—smoother and more countercyclical interest rates can stimulate activity. Higher activity allows more inflows to be absorbed. Third, an appreciation is an antidote to price shocks coming from food, oil, and other intermediate inputs, which are typical temporary supply shocks that the economy faces. These affect aggregate inflation through the wage—price process. For example, whatever the underlying trend, a steeper short-term appreciation can counter the supply-shock, contributing to control of inflation, thus allowing interest rates to be tuned to the macroeconomic output cycle.

A large voting population whose wages are not formally indexed to inflation implies political sensitivity to food price inflation. Administrative restraints are often put on the prices of basic consumption goods. Since political pressure from farmers pushes up farm support prices, consumption subsidies are given. Since these are not complete, nominal wages respond with a lag to a rise in food prices leading to inflation. With more openness, world prices can restrain domestic food prices. An exchange rate policy that lowers domestic food price inflation through its effect on imported food prices also reduces the necessity for other distorting interventions. The resulting improvements in efficiency release a surplus, which can be used, for example, to provide better infrastructure to farmers. Therefore, the policy is compatible with political constraints and the overall macro policy objectives to lower inflation and raise growth.

The fourth benefit is stability in the external sector, and a fall in the likelihood of currency crises. Limited two-way movement of the exchange rate, creates incentives to hedge, reduces noise trader entry, and contributes to deepening of the forex markets.

If monetary policy is loose the currency is expected to depreciate, and a capital outflow occurs; but if it is too tight high interest rates harm activity and a capital outflow can provoke the depreciation it fears. For well-behaved forex markets, credibility of the CB policy is essential. A policy that satisfies the four objectives, with appropriate support from fiscal policy, would be credible. Policy transparency such as through an inflation targeting regime gives sufficient discretion to allow flexible response to markets signals; but the transparent constraints on the discretion may be sufficient to prevent inflation expectations from setting in, even without monetary tightening.

# References

Aghion, A., A. Banerjee, and T. Piketty (1999), 'Dualism and Macroeconomic Volatility', *Quarterly Journal of Economics*, Vol. 114, No. 4, November, pp. 1359–97.

- BIS (Bank for International Settlements) (2006), 'An Overview', 76th Annual Report, 1 April 2005-31 March 2006, BIS, Basel.
- Bruno, M. and J.D. Sachs (1985), Economics of Worldwide Stagflation, Harvard University Press, Cambridge, Massachusetts.
- Burnside, C., M. Eichenbaum, and S. Rebelo (2001), 'Hedging and Financial Fragility in Fixed Exchange Rate Regimes', European Economic Review, Vol. 45, pp. 1151-93.
- Clarida, R., J. Gali, and M. Gertler (2001), Optimal monetary policy in closed versus open economies: An integrated approach, American Economic Review, Vol. 91, No. 2, May, pp. 248-52.
- Corden, W.M. (2002), Too Sensational: On the Choice of Exchange Rate Regimes, MIT Press, Cambridge MA.
- Dash, S. and A. Goyal (2000), 'The Money Supply Process in India: Identification, Analysis and Estimation', Indian Economic Journal, Vol. 48, No. 1, July-September.
- Frankel, J.A. (1999), 'No Single Currency Regime is Right for all Countries or at all Times', NBER Working Paper 7338, Cambridge, USA.
- Gopinath, S. (2005), 'Recent Developments in Forex, Money and G-sec Markets: Account and Outlook', Address at the 16th National Forex Assembly at Kochi, 13 August 2005, available at www.rbi.org.in.
- Goyal, A. (2002a), 'Coordinating Monetary and Fiscal Policies: A Role for Rules?', chapter 11 in K.S. Parikh and R. Radhakrishna (eds), India Development Report 2002, IGIDR and Oxford University Press, New Delhi.
- (2002b), 'Reform Proposals from Developing Asia: Finding a Win-win Strategy', in Leslie Elliott Armijo (ed.), Debating the Global Financial Architecture, SUNY Press, New York.
  - -(2004a), 'Rupee Reversals: More on Real Exchange Rates, Fiscal Deficits and Capital Flows', discussion piece in Economic and Political Weekly, Vol. 39, No. 2, 15 May, pp. 2061-3.
- (2004b), 'Rupee: Changing Trends', commentary piece in Economic and Political Weekly, Vol. 39, No. 23, 5 June, pp. 2335-7.
- (2007), 'Tradeoffs, delegation and fiscal-monetary coordination in a developing economy', Indian Economic Review, Vol. 42, No. 2, July-December, forthcoming working paper available at http://ssrn.com/abstract=625861.
- (2005a), 'Reducing Endogenous Amplification of Shocks from Capital Flows in Developing Countries', Report for the GDN Coordinated Project on Macroeconomic Policy Challenges of Low Income Countries, available at http://www. gdnet.org/pdf2/gdn\_library/global\_research\_projects/macro\_ low\_income/Goyal.pdf.

- (2005b), 'Incentives from Exchange Rate Regimes in an Institutional Context', IGIDR Working Paper WP-2005-02, available at http://www.igidr.ac.in/pub/pdf/WP-2005-002. pdf
- (2006), 'Exchange Rate Regimes: Middling Through', Global Economic Review, Vol. 35, No. 2, June.
- Goyal, A. and A.K. Pujari (2005), 'Identifying Long-run Supply Curve in India', Journal of Quantitative Economics, Vol. 3, No. 2, July.
- Hardgrove, A. (2004), Community and Public Culture, Oxford University Press, New Delhi.
- Hart, O.D. and D.M. Kreps (1986), 'Price Destabilising Speculation', Journal of Political Economy, Vol. 94, No. 5, pp. 927–52.
- Jeanne, O. and A.K. Rose (2002), 'Noise Trading and Exchange Rate Regimes', The Quarterly Journal of Economics, Vol. CXVII, No. 469, pp. 537-70.
- Kahneman, D. and A. Tversky (1979), 'Prospect Theory: An Analysis of Decision under Risk', Econometrica, Vol. 47, No. 2, March, pp. 263-92.
- Kelkar, V. (2005), 'India's Economic Future: Moving beyond State Capitalism', D.R. Gadgil Memorial Lecture, MEDC, Monthly Economic Digest, November.
- Krugman, P.R. and M. Obstfeld (2003), International Economics: Theory and Policy, 6th edition, Pearson Education, India.
- McKenzie, M.D. (2004), 'The Effects of Exchange Rate Volatility on Trade', in G. de Brouwer and M. Kawai (eds), Exchange Rate Regimes in East Asia, Routledge Curzon, London and New
- Mohan, R. (2006), 'Coping with Liquidity Management in India: A Practitioner's View', based on an Address at the 8th Annual Conference on Money and Finance in the Indian Economy, IGIDR, 27 March.
- Obstfeld, M. and K. Rogoff (1996), Foundations of International Macroeconomics, Cambridge, MIT Press, Massachusetts.
- Reddy, Y.V. (2005), 'Monetary Co-operation in Asia', Speech by Governor, RBI at the IMF-MAS High-Level Seminar on Asian Integration held on 3 September, at Singapore.
- Shefrin, H. (2002), Beyond Greed and Fear: Understanding Behavioral Finance and the Psychology of Investing, Oxford University Press, Oxford.
- Shiller, R.J. (1993), Creating Institutions for Managing Society's Largest Economic Risks, Clarendon Lectures in Economics, Clarendon Press, Oxford.
- Svensson, L.E.O. (2000), 'Open Economy Inflation Targeting', Journal of International Economics, Vol. 50, pp. 155-83.

# Emerging Policy Regime for Bank Credit Delivery and Tasks Ahead

A Critical Review

S.L. Shetty

# INTRODUCTION: IMPORTANCE ASSIGNED TO FINANCE FOR DEVELOPMENT

Public policies in India have always conferred a pivotal role for finance in the process of development. Even in the preindependence period, when the nation got an independent CB, the importance of institutional credit for the dominant agrarian economy was embedded in the statute. The early part of planning in the post-independence period was devoted to building and nurturing institutions in the financial system so as to facilitate improvements in savings mobilization and in productive deployment of financial resources. This phase of banking consolidation and strengthening of banking regulations (1950-67) was followed by a more decisive thrust in terms of a supply-leading approach to the institutional credit structure (1967–90). The policy of bank nationalization and the associated public policies on banking and financial sector development were predicated on the strong assumption of the need for promoting financial intermediation by building institutions, expanding their geographical spread, mobilizing savings, and promoting better regional, sectoral, and functional as well as small borrower reach of institutional credit in India.

Post-independence banking development, and in particular the post-nationalization banking progress continued for two decades until the end of the 1980s, and received encomia in literature on the positive role played by finance in the process of development in India. Bell and Rousseau (2001) have brought out how financial intermediaries in India played a leading role in influencing the economic performance; their results suggest that the financial sector, amongst other things, was not only instrumental in promoting aggregate investment and output but also in attaining financeled industrialization. What is more, studies by Burgess and Pande (2003 and 2004) and Burgess, Pande, and Wong (2004) conclusively prove that state-led branch expansion into rural unbanked locations reduced poverty across Indian states; in addition, the directed bank lending requirement was associated with increased bank borrowing among the poor, in particular low caste and tribal groups. Their studies go further and find that while the presence of a nationwide bank branch licencing rule between 1977 and 1990 caused banks to open relatively more branches in Indian states with lower initial financial development during the period, the reverse was true outside this period; they also find

The author wishes to place on record sincere thanks to Bipin Deokar for his unstinted support in preparing the entire banking database; also to V.P. Prasanth for his national accounts/state domestic product data base used in the study and to K. Srinivasan for his repeated typesetting work.

that rural branch expansion in India significantly reduced rural poverty and increased non-agricultural output.

More generally, the financial policies of the 1970s and 1980s have followed Patrick's (1966) supply-leading strategy, or they have resembled an endogenous growth strategy in which finance itself is seen as a crucial factor of production such as knowledge and in which the influence of institutional arrangements with regard to finance on growth rates has been forcefully emphasized (see Eschenbach 2004; see also RBI 2001). We have been repetitively emphasizing that sustained expansions in sectoral credit growth in real terms during the latter half of the 1970s and the whole of the 1980s served inter alia as an important causal factor in the acceleration of growth rates in agriculture and unregistered manufacturing in the 1980s (Shetty 2002). Similarly, the acceleration in employment growth from 1.5 per cent per annum during the period 1977 to 1983 to 2.70 per cent during 1983 to 1993–4, and more significantly, the non-farm employment growth in rural areas that showed an outstanding performance in the 1980s, appear to have been related to better sectoral, regional, and size distributions of bank credit.

Contrari-wise, after the financial sector reforms began in the early part of the 1990s, every banking indicator representing post-nationalization success—spread of branch banking in rural and historically underbanked regions, improved credit-deposit ratios of these regions, better credit delivery for agriculture, small-scale industries (SSIs), small borrowers, and other priority areas—has received a setback. No doubt, the unprecedented growth of the banking system for two decades prior to the 1990s brought in its trail serious infirmities in the working of the whole financial system: reduced bottomlines, large non-performing assets, poor capital base and insufficiency of loan loss provisions, and organizational weaknesses leading to serious deterioration in house-keeping tasks as well as customer service. By the end of the 1980s, even the post-nationalization successes cited above had begun to wear thin. Therefore, the evolution of banking after the 1990s has reflected the enormous challenges that the public sector banks in particular have faced in cleaning up and consolidating their operations in an entirely new competitive and reform-zest environment. Apart from the onerous discipline imposed by regulatory and prudential norms as part of financial sector reforms, there has also occurred a sea change in the role of banks as a result of competitive opportunities thrown up in para-banking activities—merchant banking, housing finance, mutual funds, insurance, and others, and above all, in the notion of universal banking and project finance.

Even as banks have responded to the above challenges, they have very seriously faltered on their traditional developmental role, particularly in their task of credit delivery for varied informal sectors. The resultant distortions in credit distribution, which persisted for over a decade, became very glaring. It is, however, perceived that corrections to these distortions cannot be introduced entirely by resurrecting the traditional control regime. The multiplicity of in-house and independent committees appointed by the RBI and National Bank for Agriculture and Rural Development (NABARD) have recommended a combination of measures involving credit targets, intensive use of microfinance institutions (MFIs), more innovative system of 'agency banking', and even embracing the philosophy of 'financial inclusion' so that banks are obliged to provide banking services to all segments of the population on an equitable basis. The authorities have responded to these recommendations quickly and positively and directed banks to rapidly expand credit delivery to agriculture and small and medium enterprises.

The objective of this paper is to take a close look at the emerging policy regime and its implications for the ultimate goals of widening credit delivery arrangements sectorally, regionally, and by size. To be meaningful, this evaluation has to take cognizance of the ground reality of developments in the post-nationalization and post-reform periods; hence the second section of the study is devoted to a review of these developments as a background. In the post-nationalization period also, the directed credit arrangements had recognized the limited credit absorptive capacities of agricultural and informal sectors as well as the underdeveloped regions and hence, substitute devices were introduced to take cognizance of such infirmities and to mitigate them; their results are also reviewed in this section. The third section presents a review of the micro-credit system in India which has emerged as a major movement to cover the borrowing as well as thrift facility needs of poorer households after the 1990s. The fourth section seeks to bring out the ground reality regarding the growing dependence of farmer/rural households on non-institutional sources for their indebtedness despite varied attempts made to provide institutional credit. In response to the acutely deteriorating ground situation, the official agencies have, of late, introduced a fresh series of innovative measures to fill the institutional gaps in the rural credit structure and to arrest the gaps in credit delivery for the informal sectors. These measures, enumerated in the fifth section, form the basis for a critical evaluation of the emerging policy regime for credit delivery and for offering a set of suggestions to make the delivery mechanism relatively more enduring in the last section.

# POST-NATIONALIZATION AND POST-REFORM BANKING DEVELOPMENTS

### Changing Rural Credit Structure

An outstanding aspect of banking development after the nationalization of banks in July 1969 was the rapid growth and territorial spread of branch network all over the country, particularly in rural areas and underdeveloped regions. From a base of a little over 8000 bank branches in 1969, the presence of over 68,680 branches today, indeed represents an unprecedented growth of scheduled commercial banking in India. However, the bulk of this expansion took place before the 1990s. In the first two decades (1970–91), 53,537 branches were added, that is, 2550 branches per year. But, thereafter in a 15-year period until March 2006, only 6957 branches were added, that is, 464 branches per year or near one-sixth of what was achieved until the 1990s.

More significantly, by the early 1990s, the number of bank branches operating in rural areas had crossed 35,000 or about 57 per cent of the total number of bank branches operating in the country (as per the centres with 10,000 of population, classified on the basis of the 1981 Population Census). Reclassification of the areas based on the 1991 Census also brought down the number of rural bank branches from 33,017 in March 1995 to 32,981 in March 1996. Since then, on a comparable basis, the number of rural branches has steadily come down to as low as 30,572 by March 2006 (Table 8.1) through mergers and swapping of rural branches. It is significant that the first Narasimham Committee Report on the Financial System (November 1991) had specifically recommended that 'each public sector bank should set up one or more rural banking subsidiaries to take over all its rural branches' and that the operations of regional rural banks (RRBs) should be expanded to embrace all types of banking business.

A major component of the banking policy before reforms had been the spread of branch network into rural areas—a policy which has since been given up in the post-reform period. There was a branch expansion programme monitored by the RBI which was disbanded. On the expiry (on 31 March 1995), of this branch expansion programme 1990–5, no fresh programme was drawn up on the ground that the subject had to be left to the commercial judgements of banks (RBI 1997). Banks were allowed to convert their nonviable rural branches into satellite offices or close bank branches at rural centres served by two commercial banks. RRBs were allowed to relocate their loss-making branches to new places even outside the rural areas. This shows that given the option, banks would not like to open branches in rural areas.

Alongside the opening of rural bank branches between 1970 and 1991, shares of rural deposits and rural credit in aggregate deposits and credit had risen. More significantly, with the prescribed targets of 60 per cent credit—deposit ratio, the credit—deposit (C—D) ratios of rural branches had touched 64—5 per cent by the mid-1980s (Table 8.2).

These positive developments have uniformly suffered a setback since the beginning of the 1990s. No doubt, rural C–D ratios appear much higher based on utilization rather than sanction of bank credit, but even such C–D ratios have experienced sharp reductions between 1990 and 2000; overall only 36 per cent of the incremental deposits in rural areas during the whole of the 1990s have been deployed in the very areas even after taking into account the net in-migration of credit from outside the rural areas. Since 2000, a noticeable improvement has occurred (Table 8.2), but 'the average size of loans mitigating into rural areas, which was around Rs 5 lakh until March 1998, suddenly jumped to Rs 30 lakh or more thereafter, implying that these loans do not have any rural character' (EPWRF 2005).

TABLE 8.1 Spread of Bank Branch Network in India

(Scheduled Commercial Banks including RRBs)

| Period-end    | Rura                       | ıl                   | Semi-ui                    | ban:                 | Total                      |                      |  |
|---------------|----------------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------|--|
|               | Number of<br>Bank Branches | Per cent<br>to total | Number of<br>Bank Branches | Per cent<br>to total | Number of<br>Bank Branches | Per cent<br>to total |  |
| December 1969 | 1443                       | 17.6                 | 3337                       | 40.8                 | 8187                       | 100.0                |  |
| March 1991    | 35,134                     | 56.9                 | 11,566                     | 18.7                 | 61,724                     | 100.0                |  |
| March 1995    | 33,017                     | 51.7                 | 13,502                     | 21.2                 | 63,817                     | 100.0                |  |
| March 1996    | 32,981                     | 51.2                 | 13,731                     | 21.3                 | 64,456                     | 100.0                |  |
| March 2002    | 32,443                     | 47.8                 | 14,910                     | 21.9                 | 67,897                     | 100.0                |  |
| March 2003    | 32,283                     | 47.4                 | 15,042                     | 22.1                 | 68,078                     | 100.0                |  |
| March 2004    | 32,107                     | 46.8                 | 15,252                     | 22.2                 | 68,645                     | 100.0                |  |
| March 2005    | 31,967                     | 45.7                 | 15,619                     | 22.3                 | 69,969                     | 100.0                |  |
| March 2006*   | 30,572                     | 44.5                 | 15,274                     | 22.2                 | 68,681                     | 100.0                |  |

Notes: Decline in March 1996 is partly due to reclassification of centres based on the 1991 Census.

Source: RBI Basic Statistical Returns, various issues; \* RBI's Quarterly Handout.

<sup>&</sup>lt;sup>1</sup> An innovative data set gathered in the RBI's banking statistics relates to the capturing of the phenomenon of migration of bank credit from the place of sanction to the place of utilization. This is the distinction between C–D ratios based on sanction and utilization.

**TABLE 8.2** Population Group-wise C-D Ratio as Per Sanction and Utilization

(In percentages)

| Year/Population Group | June 1980 | March 1990 |             | Marc     | h 2000      | March 2005 |                      |  |
|-----------------------|-----------|------------|-------------|----------|-------------|------------|----------------------|--|
|                       | Sanction  | Sanction   | Utilization | Sanction | Utilization | Sanction   | Sanction Utilization |  |
| Rural                 | 54.5      | 61.2       | 97.1        | 40.4     | 49.3        | 51.6       | 75.3                 |  |
| Semi-urban            | 47.2      | 49.1       | 48.5        | 34.7     | 40.0        | 44.2       | 48.3                 |  |
| Urban                 | 60.0      | 55.6       | 52.9        | 41.9     | 42.1        | 50.5       | 56.6                 |  |
| Metropolitan          | 87.0      | 69.9       | 58.0        | 78.9     | 73.2        | 83.7       | 73.8                 |  |
| All India             | 67.2      | 60.7       | 60.7        | 56.0     | 56.0        | 66.0       | 66.0                 |  |

Source: RBI Basic Statistical Returns, various issues; \* RBI's Quarterly Handout.

Sanction and Utilization Differences in Bank Credit at the State Level

A significant point to note with regard to interregional disparities in credit flow is that the improvement that took place in narrowing the disparities during the first two decades of bank nationalization, has been reversed and that a sizeable fall in C-D ratios of the less developed regions has occurred in the 1990s in terms of both sanction and utilization (Tables 8.3 and 8.4). However, the only silverlining in this respect has been that the data show that after March 2000, there has been an improvement in C-D ratios of backward regions, particularly in terms of utilization. It should be recognized that even this has occurred when there has been a sizeable improvement in the overall C–D ratio at the all-India level due to sharp reductions in cash reserve and statutory reserve ratios and due to vast increases in personal loans and other retail sector credit (EPWRF 2006).

**TABLE 8.3** Regional Scenario of C-D Ratios

(In percentages)

| Region        | March<br>2005 |                  | March<br>2002 |                  | March<br>1996 |                  | March<br>1992 |                  | December<br>1982 |                  | December<br>1972 |                  |
|---------------|---------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|------------------|------------------|------------------|------------------|
|               | San-<br>ction | Utili-<br>zation | San-<br>ction | Utili-<br>zation | San-<br>ction | Utili-<br>zation | San-<br>ction | Utili-<br>zation | San-<br>ction    | Utili-<br>zation | San-<br>ction    | Utili-<br>zation |
| Northern      | 59.5          | 62.2             | 56.2          | 55.0             | 51.4          | 50.4             | 51.1          | 49.3             | 70.0             | 67.7             | 47.6             | 46.6             |
| North-eastern | 35.0          | 44.6             | 27.2          | 53.2             | 35.5          | 41.1             | 46.7          | 66.3             | 41.2             | 57.5             | 36.3             | 71.4             |
| Eastern       | 45.5          | 50.4             | 37.6          | 41.4             | 47.0          | 46.4             | 49.5          | 49.1             | 56.1             | 55.2             | 62.9             | 62.6             |
| Central       | 40.8          | 45.8             | 33.9          | 38.4             | 40.0          | 42.0             | 47.6          | 50.2             | 47.8             | 50.6             | 39.1             | 44.4             |
| Western       | 83.5          | 71.8             | 79.7          | 71.3             | 72.2          | 71.4             | 58.2          | 56.5             | 73.7             | 73.0             | 76.2             | 71.8             |
| Southern      | 78.1          | 83.9             | 64.6          | 68.9             | 74.2          | 74.8             | 76.5          | 77.7             | 79.2             | 80.2             | 91.1             | 94.7             |
| All India     | 66.0          | 66.0             | 58.4          | 58.4             | 59.8          | 59.8             | 57.7          | 57.7             | 67.1             | 67.1             | 66.4             | 66.4             |

Source: RBI Basic Statistical Returns, various issues; \* RBI's Quarterly Handout.

**TABLE 8.4** C-D Ratios for Selected States

(In percentages)

|                |               |                  |               |                  |               |                  |               |                  | ( I -            | recininger)      |                  |                  |
|----------------|---------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|------------------|------------------|------------------|------------------|
| Region         | March<br>2005 |                  | March<br>2002 |                  | March<br>1996 |                  | March<br>1992 |                  | December<br>1982 |                  | December<br>1972 |                  |
|                | San-<br>ction | Utili-<br>zation | San-<br>ction | Utili-<br>zation | San-<br>ction | Utili-<br>zation | San-<br>ction | Utili-<br>zation | San-<br>ction    | Utili-<br>zation | San-<br>ction    | Utili-<br>zation |
| Northern       | 59.5          | 62.2             | 56.2          | 55.0             | 51.4          | 50.4             | 51.1          | 49.3             | 70.0             | 67.7             | 47.6             | 46.6             |
| Rajasthan      | 68.7          | 76.5             | 48.4          | 55.4             | 45.4          | 45.3             | 55.6          | 59.3             | 70.1             | 74.1             | 48.6             | 54.5             |
| Bihar          | 27.7          | 31.4             | 21.3          | 21.9             | 30.1          | 31.1             | 36.9          | 38.5             | 42.8             | 50.7             | 28.1             | 53.0             |
| West-Bengal    | 52.3          | 56.8             | 45.8          | 49.2             | 55.2          | 53.3             | 52.8          | 51.0             | 59.3             | 54.1             | 76.0             | 65.5             |
| Madhya Pradesh | 54.7          | 61.2             | 46.6          | 50.3             | 56.2          | 60.6             | 61.0          | 63.2             | 58.2             | 61.2             | 46.6             | 51.8             |
| Uttar Pradesh  | 37.9          | 42.2             | 29.9          | 34.3             | 33.8          | 35.0             | 42.5          | 45.3             | 44.7             | 47.3             | 36.9             | 42.2             |
| Gujarat        | 46.5          | 60.9             | 44.1          | 54.7             | 52.9          | 56.9             | 52.4          | 57.3             | 52.0             | 53.9             | 56.4             | 64.6             |
| Maharashtra    | 94.9          | 75.9             | 92.3          | 77.5             | 79.6          | 77.3             | 60.7          | 57.1             | 83.7             | 81.7             | 83.8             | 74.8             |
| Tamil Nadu     | 101.2         | 105.4            | 85.4          | 88.5             | 94.9          | 94.4             | 89.0          | 89.1             | 94.6             | 94.5             | 109.5            | 110.0            |
| All India      | 66.0          | 66.0             | 58.4          | 58.4             | 59.8          | 59.8             | 57.7          | 57.7             | 67.1             | 67.1             | 66.4             | 66.4             |

Source: RBI Basic Statistical Returns, various issues; \* RBI's Quarterly Handout.

It may be argued that the credit absorptive capacities of backward states and regions may have been eroded during the decade of the 1990s, but as is shown in a subsequent section, this is only partially true; the supply of credit has been found to have fallen behind the demand for it.

Inter-district disparities in bank credit—initial improvement and subsequent setback

The improvement in banking development in the postnationalization period was reflected in a large number of districts showing noticeably higher growth in bank deposits, higher credit growth, and improved C–D ratios. The number of districts with C–D ratios of 60 per cent and above shot up from 136 in March 1980 to 209 in March 1985; thereafter they remained in the range of 177–63 until March 1992. Such improvement took place in rural centres of districts also (EPWRF 2006).

But, as in the case of other banking indicators cited earlier, in the 1990s, a large number of districts began to experience reductions in credit delivery in relation to the deposits that they generated. At one extreme, in March 1990 or even up to March 1992, there were just about 20–8 districts (out of 401–78) which had C–D ratios of less than 20 per cent, but in March 2000, there were as many as 105 districts (out of 565) within this lowest range of C–D ratios.

Classification of districts by their C–D ratios and by states reveals an interesting picture (Table 8.5). As of March 2005,

TABLE 8.5 State-wise Classification of Districts by Size of C–D Ratios, March 2005

| State-v                            | vise Ciassifica | ation of Distr | icis by size c | or C-D Ratio | s, march 200 | ) S    |       |       |
|------------------------------------|-----------------|----------------|----------------|--------------|--------------|--------|-------|-------|
| Region/State/Union Territory Range | < 20            | 20-30          | 30-40          | 40-50        | 50-60        | 60–100 | > 100 | Total |
| NORTHERN REGION                    | 10              | 13             | 16             | 13           | 13           | 27     | 4     | 96    |
| Haryana                            |                 | 1              | 3              | 4            | 3            | 7      | 1     | 19    |
| Himachal Pradesh                   | 1               | 7              |                | 1            | 2            | 1      |       | 12    |
| Jammu & Kashmir                    | 6               | 2              | 5              |              |              |        | 1     | 14    |
| Punjab                             | 3               | 1              | 2              | 2            | 1            | 7      | 1     | 17    |
| Rajasthan                          |                 | 2              | 6              | 6            | 7            | 10     | 1     | 32    |
| Chandigarh                         |                 |                |                |              |              | 1      |       | 1     |
| Delhi                              |                 |                |                |              |              | 1      |       | 1     |
| NORTH-EASTERN REGION               | 13              | 9              | 21             | 14           | 8            | 12     | 2     | 79    |
| Arunachal Pradesh                  | 10              | 3              | 3              |              |              |        |       | 16    |
| Assam                              |                 | 4              | 11             | 6            | 3            |        |       | 24    |
| Manipur                            | 1               |                | 1              |              | 2            | 4      | 1     | 9     |
| Meghalaya                          | 1               |                | 2              | 3            | 1            |        |       | 7     |
| Mizoram                            |                 |                |                | 3            |              | 4      | 1     | 8     |
| Nagaland                           | 1               | 1              | 1              | 2            | 2            | 4      |       | 11    |
| Tripura                            |                 | 1              | 3              |              |              |        |       | 4     |
| EASTERN REGION                     | 12              | 38             | 18             | 11           | 19           | 15     | 1     | 114   |
| Bihar                              | 5               | 17             | 9              | 4            | 3            |        |       | 38    |
| Jharkhand                          | 5               | 10             | 4              | 2            |              |        |       | 21    |
| Orissa                             |                 |                | 1              | 2            | 13           | 13     | 1     | 30    |
| Sikkim                             |                 | 1              | 1              |              | 1            | 1      |       | 4     |
| West Bengal                        | 1               | 9              | 3              | 3            | 2            | 1      |       | 19    |
| Andaman & Nicobar Islands          | 1               | 1              |                |              |              |        |       | 2     |
| CENTRAL REGION                     | 12              | 27             | 34             | 29           | 18           | 25     | 2     | 147   |
| Chhattisgarh                       |                 | 3              | 5              | 5            | 2            |        | 1     | 16    |
| Madhya Pradesh                     | 1               | 3              | 14             | 8            | 5            | 16     | 1     | 48    |
| Uttar Pradesh                      | 4               | 17             | 14             | 16           | 11           | 8      |       | 70    |
| Uttaranchal                        | 7               | 4              | 1              |              |              | 1      |       | 13    |
| WESTERN REGION                     | 6               | 8              | 10             | 8            | 14           | 17     | 1     | 64    |
| Goa                                |                 | 2              |                |              |              |        |       | 2     |
| Gujarat                            | 4               | 6              | 5              | 4            | 5            | 1      |       | 25    |
| Maharashtra                        |                 |                | 4              | 4            | 9            | 16     | 1     | 34    |
| Dadra & Nagar Haveli               |                 |                | 1              |              |              |        |       | 1     |
| Daman & Diu                        | 2               |                |                |              |              |        |       | 2     |
|                                    |                 |                |                |              |              |        |       |       |

TABLE 8.5: Contd.

| Region/State/Union Territory Range | < 20 | 20–30 | 30–40 | 40-50 | 50-60 | 60–100 | > 100 | Total |
|------------------------------------|------|-------|-------|-------|-------|--------|-------|-------|
| SOUTHERN REGION                    | 1    | 2     | 6     | 9     | 15    | 53     | 13    | 99    |
| Andhra Pradesh                     |      |       |       | 2     | 5     | 13     | 3     | 23    |
| Karnataka                          |      |       | 2     | 1     | 2     | 18     | 4     | 27    |
| Kerala                             |      | 1     | 1     | 2     | 3     | 6      | 1     | 14    |
| Tamil Nadu                         |      |       | 1     | 3     | 5     | 16     | 5     | 30    |
| Lakshadweep                        | 1    |       |       |       |       |        |       | 1     |
| Pondicherry                        |      | 1     | 2     | 1     |       |        |       | 4     |
| ALL INDIA                          | 54   | 97    | 105   | 84    | 87    | 149    | 23    | 599   |

Note: C-D Ratios are in Percentages.

Source: RBI Basic Statistical Returns, various issues; \* RBI's Quarterly Handout.

the north-eastern, eastern, and central regions have their districts concentrated in low C–D ratio loops, while the western region districts appear somewhat spread out across various C–D ratio ranges. The southern region enjoys the distinction of its districts being concentrated in high C–D ratio loops.

A glance at the list of districts appearing in the low C–D ratios range suggests that the above mentioned deterioration, since the beginning of the 1990s, may have taken place because of the constricted banking (and economic) activities in Jammu and Kashmir and some states in the north-eastern region due to political tensions. But a large number of districts in the list also belong to bigger states such as West Bengal, Bihar, and UP. Interestingly, some of the deposit-generating districts in many of the relatively advanced states, for example, Gurgaon, Rewari, Rohtak, and Sonipat in Haryana, Bilaspur, Mandi, and Simla in Himachal Pradesh, Amritsar and Gurdaspur in Punjab, Udupi in Karnataka, and Kollam and Thiruvananthapuram in Kerala, appear in the same low C-D ratio list—a phenomenon which, on the face of it, may not appear as unduly disquieting because of the limited number of bankable projects that can absorb higher credit levels.

Nevertheless, while the district banking profiles have to be juxtaposed against the corresponding economic profiles so as to be able to critically evaluate the district-wise performance of banks, the presence of such advanced districts, agriculturally or otherwise, like Ghaziabad, Meerut, and Kheda in the northern/western states and Raigad, Ratnagiri, and Sindhudurg in Maharashtra facing low C–D ratios, typify the observation that overall efforts by banks in promoting borrowers in different parts of the country, particularly in rural and semi-urban areas, leave much to be desired.

Also, as expected, there are acute inter-district disparities within states in banking developments. Interestingly, the district-wise database built by the EPWRF reveals uniform deterioration of these intra-state disparities since the beginning of the 1990s. An example of the data for the

two states of Maharasthra and Andhra Pradesh presented in Table 8.6 brings out how such a deterioration occurred between March 1992 and March 2005. The acute concentration of bank credit share amongst the top five districts, further intensified after March 1992 in both the states. Likewise, the credit shares of the bottom five districts slipped between March 1992 and March 2005 in both the states.

Substitute Policy Devices to Promote Larger Credit Absorption in Backward States and Regions

To a significant extent, the credit absorptive potentials of the underdeveloped regions and districts had suffered a setback

TABLE 8.6
District-wise Aggregate Deposits and Bank Credit for Maharashtra and Andhra Pradesh

| March 2<br>redit Share<br>n per cent) | C–D<br>Ratio                                                                                                   | March 1 Credit–Share                                                                                                                                                                         | .992<br>C–D                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                | Credit–Share                                                                                                                                                                                 | C-D                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| n per cent)                           | Ratio                                                                                                          |                                                                                                                                                                                              | O D                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       |                                                                                                                | (in per cent)                                                                                                                                                                                | Ratio                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100.0                                 | 77.4                                                                                                           | 100.0                                                                                                                                                                                        | 60.7                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91.7                                  | 75.7                                                                                                           | 89.9                                                                                                                                                                                         | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77.8                                  | 74.8                                                                                                           | 79.5                                                                                                                                                                                         | 61.2                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.9                                   | 86.0                                                                                                           | 5.4                                                                                                                                                                                          | 66.9                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.9                                   | 49.8                                                                                                           | 1.7                                                                                                                                                                                          | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.2                                   | 85.8                                                                                                           | 2.1                                                                                                                                                                                          | 56.6                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.0                                   | 229.2                                                                                                          | 1.2                                                                                                                                                                                          | 69.2                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.24                                  | 46.3                                                                                                           | 0.67                                                                                                                                                                                         | 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100.0                                 | 83.3                                                                                                           | 100.0                                                                                                                                                                                        | 80.1                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61.7                                  | 85.9                                                                                                           | 59.3                                                                                                                                                                                         | 91.2                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39.0                                  | 89.5                                                                                                           | 36.3                                                                                                                                                                                         | 101.3                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.2                                   | 48.1                                                                                                           | 6.7                                                                                                                                                                                          | 65.5                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.0                                   | 131.3                                                                                                          | 6.0                                                                                                                                                                                          | 80.7                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.4                                   | 107.4                                                                                                          | 5.8                                                                                                                                                                                          | 71.2                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.1                                   | 88.0                                                                                                           | 4.5                                                                                                                                                                                          | 132.6                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.9                                   | 67.8                                                                                                           | 6.4                                                                                                                                                                                          | 55.5                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 100.0<br>91.7<br>77.8<br>6.9<br>2.9<br>2.2<br>2.0<br>0.24<br>100.0<br>61.7<br>39.0<br>6.2<br>6.0<br>5.4<br>5.1 | 100.0 77.4<br>91.7 75.7<br>77.8 74.8<br>6.9 86.0<br>2.9 49.8<br>2.2 85.8<br>2.0 229.2<br>0.24 46.3<br>100.0 83.3<br>61.7 85.9<br>39.0 89.5<br>6.2 48.1<br>6.0 131.3<br>5.4 107.4<br>5.1 88.0 | 100.0     77.4     100.0       91.7     75.7     89.9       77.8     74.8     79.5       6.9     86.0     5.4       2.9     49.8     1.7       2.2     85.8     2.1       2.0     229.2     1.2       0.24     46.3     0.67       100.0     83.3     100.0       61.7     85.9     59.3       39.0     89.5     36.3       6.2     48.1     6.7       6.0     131.3     6.0       5.4     107.4     5.8       5.1     88.0     4.5 |

Note: C-D Ratios are in Percentages.

Source: RBI, Basic Statistical Returns, March 1992 and March 2005.

in the 1990s and hence, their C–D ratios were deteriorating. To mitigate this situation, substitute policy devices were considered and put into place. Two such special policy initiatives are: (i) bank investment in securities and bonds of state governments and state-associated bodies; and (ii) resources placed by banks with NABARD in the rural infrastructure development fund (RIDF) which are utilized for funding state governments for rural infrastructure projects including irrigation projects; 216,099 projects for Rs 42,948.51 crore had been sanctioned up to end March 2005.

Though interregional disparity remains, the north-eastern, eastern, and central regions show significant improvements in (credit utilization + investments + RIDF) to deposit ratios. As shown in Table 8.7, the number of states with C–D ratios of 50 per cent and above have steadily increased, from 7 under C<sup>S</sup>–D ratio to 15 under C<sup>U</sup>–D ratio, to 21 under (C<sup>U</sup>+I) to D ratio and to 24 under (C<sup>U</sup>+I+RIDF) to D ratio (as of March 2003). But, to add a caveat, C–D ratio based on utilization plus investment improves the position of underdeveloped regions, but it does so even for the advanced southern region (Table 8.8). Further, inclusion of RIDF benefits improves the C–D ratios across all regions—developed as well as underdeveloped (Table 8.9).

TABLE 8.7 Number of States and UTs in Different Ranges of C–D Ratio, March 2003

(In percentages)  $C^U$  DR Range of CDR CS DR CU+I/D Ratio C<sup>U</sup>+I+RIDF/D <30 17 8 2 2 9 30-50 11 12 14 7 8 50-60 1 4 6 8 15 16 >60 Total 35 35 35 35

*Note*: C<sup>S</sup>/DR: Credit as per sanction to deposit Ratio; C<sup>U</sup>/D Ratio: credit as per utilization to deposit ratio; C<sup>U</sup>+I/D Ratio: credit as per utilization plus Investment to deposit ratio; C<sup>U</sup>+I+RIDF/D: credit as per utilization plus investment plus RIDF to deposit ratio

Source: NABARD (2006): Report of the Expert Group on Credit-Deposit Ratio.

TABLE 8.8
Region-wise CDR (as per sanction) and C+I/D Ratio (as per credit utilization) of Scheduled Commercial Banks

(In percentages)

| Region/Year   | March 1995        |                     | Marc              | h 2000              | March 2003        |                     |  |
|---------------|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------|--|
|               | C <sup>S</sup> /D | C <sup>U</sup> +I/D | C <sup>S</sup> /D | C <sup>U</sup> +I/D | C <sup>S</sup> /D | C <sup>U</sup> +I/D |  |
| Northern      | 48.6              | 53.4                | 51.1              | 54.8                | 56.0              | 60.5                |  |
| North-eastern | 35.6              | 68.8                | 28.1              | 48.9                | 27.4              | 67.0                |  |
| Eastern       | 47.1              | 62.7                | 37.0              | 48.3                | 39.6              | 54.3                |  |
| Central       | 39.0              | 57.3                | 33.9              | 48.5                | 33.3              | 49.9                |  |
| Western       | 63.2              | 67.2                | 75.4              | 78.6                | 81.0              | 74.9                |  |
| Southern      | 69.4              | 80.9                | 66.2              | 75.5                | 66.3              | 79.2                |  |
| All India     | 55.6              | 65.3                | 56.0              | 63.6                | 59.2              | 66.4                |  |

Notes: C<sup>S</sup>/D: Credit (as per sanction) + investment to deposit ratio; C<sup>U</sup>+I/D: Credit (as per utilization) + investment to deposit ratio. Source: NABARD (2006): Report of the Expert Group on Credit–Deposit Ratio.

TABLE 8.9
Region-wise Credit Plus Investment Plus RIDF to Deposit Ratio

(In percentages)

| Region/Year   | M                  | farch 2000               | March 2003         |                          |  |
|---------------|--------------------|--------------------------|--------------------|--------------------------|--|
|               | C <sup>S</sup> /DR | C <sup>U</sup> +I+RIDF/D | C <sup>S</sup> /DR | C <sup>U</sup> +I+RIDF/D |  |
| Northern      | 51.1               | 55.2                     | 56.0               | 61.4                     |  |
| North-eastern | 28.1               | 50.2                     | 27.4               | 69.4                     |  |
| Eastern       | 37.0               | 48.9                     | 39.6               | 55.2                     |  |
| Central       | 33.9               | 49.6                     | 33.3               | 51.3                     |  |
| Western       | 75.4               | 79.1                     | 81.0               | 75.5                     |  |
| Southern      | 66.2               | 76.3                     | 66.3               | 80.5                     |  |
| All India     | 56.0               | 64.3                     | 59.2               | 67.4                     |  |

*Notes*: C<sup>S</sup>/DR: Credit (as per sanction) + investment to deposit ratio; C<sup>U</sup>+I+RIDF/D: Credit (as per utilization) + investment + rural infrastructure development fund (RIDF) to deposit ratio. *Source*: NABARD (2006): Report of the Expert Group on Credit–Deposit Ratio.

### Bank Credit for Agriculture

Yet another achievement of the banking industry in the 1970s and 1980s was a decisive shift in credit deployment in favour of the agricultural sector, in particular. From a puny level at the time of bank nationalization, the credit share of the sector had moved to near 11 per cent in the mid-1970s and to a peak of about 18 per cent at the end of the 1980s. This was the official target set, at any rate for public sector banks. But, thereafter a steady deterioration, mostly against the declared public policies, has occurred in the sectoral distribution of bank credit. The share of agriculture in total bank credit (both direct and indirect) had dwindled to a low of 10 per cent by March 2005 (Table 8.10).

No doubt, the failure of scheduled commercial banks to expand their credit base for agriculture is to be seen against the relative decline in the share of agriculture in the country's GDP. In a nutshell, the share of agriculture in total GDP has steadily slipped from 38.9 per cent in 1980-1 to 31.3 per cent in 1990-1 and further to 22.0 per cent in 2004-5. An obvious policy question that would be asked is whether the 18 per cent of net bank credit target set for agriculture would still be valid. It appears to be still valid on account of a few important considerations. First, the proportion of paid-out costs in terms of modern inputs has increased considerably in agriculture over the years. Second, vast diversification is taking place in agriculture—away from crop husbandry and in favour of horticultural and livestock products, which require higher amounts of short-term and investment credit. Finally, the proportion of workforce dependent on agriculture remains nearly 60 per cent. Against this background, the stark reality of a sharp reduction in the absolute number of agricultural loan accounts has been indeed disquieting. This number, which had reached a peak of 27.74 million in March 1992, persistently declined thereafter and touched 20.35 million by March 2002, that is, a fall of 25 per cent in a period of ten years; some increase has occurred thereafter to 26.66 million by March 2005 due to socio-political pressures (Table 8.9) but loans for agriculture as a percentage of total loans have remained at about 10 per cent.

# Direct vs Indirect Credit for Agriculture

A caveat is to be entered at this stage in the context of the absolute reductions in the number of loan accounts as well as decline in the agriculture sector's share in total bank credit. The annual percentage increases in bank credit rendered by scheduled commercial banks (SCBs) in recent years have been quite sizeable, ranging from 19 per cent to 29 per cent in each of the past four years. There are a few reasons for these apparent accelerated increases in agricultural loans. First, a substantial part of the loans has been in the form of indirect advances, that is, not to individual farmers but to institutions and organizations serving the interest of farmers directly or indirectly. Second, it has occurred in the most recent period after the government introduced the policy of doubling farm credit over a period of three years. Finally, within farm credit, a growing proportion has been in favour of large-size loans, which is evident from the fact that while the number of loan accounts under direct finance has risen by meagre percentages, the loan amounts have risen quite significantly (Table 8.11).

# Total Credit Flow for Agriculture (Including that from Co-operatives)

The above picture is based only on credit delivery arrangements by scheduled commercial banks, and that too, in terms of outstandings at year-ends and not in terms of fresh

TABLE 8.10 Outstanding Credit of SCBs against Agriculture and SSIs

(Amount in rupees lakh)

| Year        |                    | Agrici                   | ulture     |                          |                    | SS                       | Is        |                          |
|-------------|--------------------|--------------------------|------------|--------------------------|--------------------|--------------------------|-----------|--------------------------|
|             | No. of<br>Accounts | Per cent to<br>All India | Amount     | Per cent to<br>All India | No. of<br>Accounts | Per cent to<br>All India | Amount    | Per cent to<br>All India |
| December 72 | 1,371,975          | 31.6                     | 50,091     | 9.0                      | 172,685            | 4.0                      | 65,926    | 11.9                     |
| December 75 | 3,042,170          | 41.3                     | 107,058    | 10.7                     | 262,301            | 3.6                      | 117,796   | 11.8                     |
| December 81 | 11,231,727         | 50.5                     | 486,330    | 17.1                     | 765,431            | 3.4                      | 353,315   | 12.4                     |
| March 1990  | 24,520,595         | 45.5                     | 1,662,607  | 15.9                     | 1,606,146          | 3.0                      | 1,198,563 | 11.5                     |
| March 1999  | 19,788,385         | 37.8                     | 4,088,926  | 10.7                     | 2,029,920          | 3.9                      | 3,142,843 | 8.2                      |
| March 2000  | 20,532,891         | 37.8                     | 4,563,827  | 9.9                      | 2,126,150          | 3.9                      | 3,506,987 | 7.6                      |
| March 2001  | 19,843,289         | 37.9                     | 5,173,035  | 9.6                      | 1,742,544          | 3.3                      | 3,690,487 | 6.9                      |
| March 2002  | 20,351,184         | 36.1                     | 6,400,855  | 9.8                      | 1,572,798          | 2.8                      | 3,197,030 | 4.9                      |
| March 2003  | 20,840,434         | 35.0                     | 7,593,522  | 10.0                     | 1,431,421          | 2.4                      | 3,794,034 | 5.0                      |
| March 2004  | 21,304,168         | 32.1                     | 9,624,504  | 10.9                     | 718,056*           | 1.1                      | 3,843,255 | 4.4                      |
| March 2005  | 26,656,308         | 34.6                     | 12,438,487 | 10.8                     | 939,186            | 1.2                      | 4,707,642 | 4.1                      |

*Note*: \* This does not appear to be correct; the error is in the source. Also, there are significant definitional problems associated with the SSI sector data due to frequent revisions in definitions.

Source: RBI's Basic Statistical Returns, various issues.

TABLE 8.11
Direct and Indirect Finance For Agriculture and Allied Activities by SCBs

(Amount in rupees lakh)

| Year     |                   |          | Number of Acc  | counts   |                  |          |
|----------|-------------------|----------|----------------|----------|------------------|----------|
|          | Agriculture total | Per cent | Direct Finance | Per cent | Indirect Finance | Per cent |
|          | 1 = (2+3)         | Increase | 2              | Increase | 3                | Increase |
| March 97 | 22,524,364        |          | 22,224,763     |          | 299,601          |          |
| March 98 | 21,720,055        | -3.6     | 21,407,723     | -3.7     | 312,332          | 4.2      |
| March 99 | 19,788,385        | -8.9     | 19,520,405     | -8.8     | 267,980          | -14.2    |
| March 00 | 20,532,891        | 3.8      | 20,214,350     | 3.6      | 318,541          | 18.9     |
| March 01 | 19,843,289        | -3.4     | 19,564,089     | -3.2     | 279,200          | -12.4    |
| March 02 | 20,351,184        | 2.6      | 19,740,112     | 0.9      | 611,072          | 118.9    |
| March 03 | 20,840,434        | 2.4      | 20,195,464     | 2.3      | 644,970          | 5.5      |
| March 04 | 21,304,168        | 2.2      | 20,719,954     | 2.6      | 584,214          | -9.4     |
| March 05 | 26,656,308        | 25.1     | 26,010,380     | 25.5     | 645,928          | 10.6     |
|          |                   |          | Amount Outsta  | anding   |                  |          |
| March 97 | 3,163,415         |          | 2,721,736      |          | 441,680          |          |
| March 98 | 3,526,252         | 11.5     | 3,050,890      | 12.1     | 475,362          | 7.6      |
| March 99 | 4,088,926         | 16.0     | 3,394,114      | 11.2     | 694,812          | 46.2     |
| March 00 | 4,563,827         | 11.6     | 3,856,079      | 13.6     | 707,748          | 1.9      |
| March 01 | 5,173,035         | 13.3     | 4,342,026      | 12.6     | 831,008          | 17.4     |
| March 02 | 6,400,855         | 23.7     | 4,743,042      | 9.2      | 1,657,813        | 99.5     |
| March 03 | 7,593,522         | 18.6     | 5,905,756      | 24.5     | 1,687,766        | 1.8      |
| March 04 | 9,624,504         | 26.7     | 7,009,873      | 18.7     | 2,614,631        | 54.9     |
| March 05 | 12,438,487        | 29.2     | 9,463,537      | 35.0     | 2,974,950        | 13.8     |

Source: RBI, Banking Statistics: Basic Statistical Returns of Scheduled Commercial Banks in India, March 2005 (Vol. 34) and earlier issues.

annual flows of advances. NABARD provides such data on total credit flow for agriculture separately for co-operatives, RRBs and commercial banks. These data show that with the introduction of special agricultural credit plans, commercial banks and RRBs have come to play an increasing role in

the supply of total agricultural credit, while co-operatives have begun to take a back seat. The share of co-operatives in total farm credit has declined steadily from about 40 per cent in 1999–2000 to 24 per cent in 2005–6 (Table 8.12); suggesting that less than one-fourth of institutional credit

 ${\it TABLE~8.12}$  Flow of Total Institutional Credit for Agriculture by Institution

(Rs crore)

| Years/<br>Agency | Coopera-<br>tives | Per cent<br>Increase | Scheduled<br>Commercial<br>Bank (4+5) | Per cent<br>Increase | RRBs   | Per cent<br>Increase | Commercial<br>Banks | Per cent<br>Increase | Total<br>Institutional<br>Credit (2+3) | Per cent<br>Increase |
|------------------|-------------------|----------------------|---------------------------------------|----------------------|--------|----------------------|---------------------|----------------------|----------------------------------------|----------------------|
| (1)              | (2)               |                      | (3)                                   |                      | (4)    |                      | (5)                 |                      | (6)                                    |                      |
| 1999–00          | 18,363<br>(39.7)  |                      | 27,905<br>(60.3)                      |                      | 3172   |                      | 24,733              |                      | 46,268                                 |                      |
| 2000–1           | 20,800<br>(39.4)  | 13.3                 | 32,027<br>(60.6)                      | 14.8                 | 4220   | 33.0                 | 27,807              | 12.4                 | 52,827                                 | 14.2                 |
| 2001–2           | 23,604<br>(38.0)  | 13.5                 | 38,441<br>(62.0)                      | 20.0                 | 4854   | 15.0                 | 33,587              | 20.8                 | 62,045                                 | 17.5                 |
| 2002–3           | 23,716<br>(34.1)  | 0.5                  | 45,844<br>(65.9)                      | 19.3                 | 6070   | 25.1                 | 39,774              | 18.4                 | 69,560                                 | 12.1                 |
| 2003–4           | 26,959<br>(31.0)  | 13.7                 | 60,022<br>(69.0)                      | 30.9                 | 7581   | 24.9                 | 52,441              | 31.9                 | 86,981                                 | 25.0                 |
| 2004–5           | 30,639 (26.6)     | 13.7                 | 84,604<br>(73.4)                      | 41.0                 | 11,718 | 54.6                 | 72,886              | 39.0                 | 115,243                                | 32.5                 |
| 2005–6           | 37,272<br>(23.7)  | 21.7                 | 120,228<br>(76.3)                     | 42.1                 | 14,076 | 20.1                 | 106,152             | 45.6                 | 157,500                                | 36.7                 |

Note: Figures in brackets are percentage to total.

Source: NABARD data quoted in GOI (2006), Economic Survey 2005-6 up to 2004-5 and from NABARD for 2005-6.

for agriculture comes from co-operatives. 'This is reflected in the increasing concern in recent years over the effectiveness, governance, and financial health of rural co-operative banks and the attention being given to rural lending by commercial banks. Just under a third of rural credit continues to be extended by the co-operative system and hence it is essential that they be revitalised and put on a sound business footing' (Mohan 2006, p. 1017). As explained in a subsequent section, revitalization of the co-operative credit system has been conceived as a major task and the recommendations of the Vaidyanathan Committees (I and II) have been accepted in principle for implementation.

As a result of the sufferance of the co-operative credit system, it is its traditional role rendering term credit that has suffered a serious setback (Table 8.13). Even so, because of sizeable increases in term credit by commercial banks and RRBs ranging from 40 per cent to 70 per cent in the recent period,<sup>2</sup> the share of term credit in total credit has risen from 35 per cent in 2001–2 to 41 per cent in 2004–5 (Table 8.14).

# Database Issues on Agricultural Credit

Even though as an aside, it is necessary to take note of the fact that the data published by RBI and NABARD based on their control returns invariably tend to overestimate the size of bank credit outstanding against agriculture and allied activities as compared to that revealed by the Basic Statistical Returns of Scheduled Commercial Banks (BSR). The latter is a more scientifically designed annual survey conducted by the RBI, the data for which are collected from the branch offices of scheduled commercial banks individually and hence, their quality is not influenced by the regional offices and head offices of banks. Otherwise, there does not appear to be any valid reason for the persistent overestimation of agricultural credit totals by the control returns as compared with those tabulated by the BSR system. It is also interesting that the overestimation so reported has risen from about Rs 6662 crore in March 2002 to Rs 15,386 crore in March 2005 (Table 8.15). Besides, almost the entire part of

TABLE 8.13 Agency-wise Break-up of Term Credit Flow

(Rs crore)

| Year                  | Coopera-<br>tives | Growth rate (per cent) | Commercial<br>Banks | Growth rate (per cent) | RRBs  | Growth rate (per cent) | Total term<br>credit | Growth rate (per cent) |
|-----------------------|-------------------|------------------------|---------------------|------------------------|-------|------------------------|----------------------|------------------------|
| (1)                   | (2)               |                        | (3)                 |                        | (4)   |                        | (5)                  |                        |
| 1995–6                | 2148              |                        | 4827                |                        | 532   |                        | 7507                 |                        |
|                       | (28.6)            | 21.8                   | (64.3)              | 29.1                   | (7.1) | 5.8                    | (100)                | 25.4                   |
| 1996–7                | 2616              |                        | 6234                |                        | 563   |                        | 9413                 |                        |
|                       | (27.8)            | 21.9                   | (66.2)              | 20.0                   | (6.0) | 14.4                   | (100)                | 20.2                   |
| 1997-8                | 3190              |                        | 7482                |                        | 644   |                        | 11316                |                        |
|                       | (28.2)            | 6.1                    | (66.1)              | 17.9                   | (5.7) | 16.5                   | (100)                | 14.5                   |
| 1998-9                | 3386              |                        | 8821                |                        | 750   |                        | 12957                |                        |
|                       | (26.1)            | 3.9                    | (68.1)              | 47.8                   | (5.8) | -0.1                   | (100)                | 33.5                   |
| 1999-2000             | 3518              |                        | 13036               |                        | 749   |                        | 17303                |                        |
|                       | (20.3)            | 19.9                   | (75.3)              | 9.9                    | (4.3) | 30.0                   | (100)                | 12.8                   |
| 2000-1                | 4218              |                        | 14321               |                        | 974   |                        | 19513                |                        |
|                       | (21.6)            | 13.2                   | (73.4)              | 9.5                    | (5.0) | 10.6                   | (100)                | 10.4                   |
| 2001-2                | 4776              |                        | 15683               |                        | 1077  |                        | 21536                |                        |
|                       | (22.2)            | -17.2                  | (72.8)              | 19.4                   | (5.0) | 20.1                   | (100)                | 11.3                   |
| 2002-3                | 3956              |                        | 18724               |                        | 1294  |                        | 23974                |                        |
|                       | (16.5)            | 7.7                    | (78.1)              | 40.2                   | (5.4) | 15.4                   | (100)                | 33.5                   |
| 2003-4                | 4262              |                        | 26249               |                        | 1493  |                        | 32004                |                        |
|                       | (13.3)            | -4.4                   | (82.0)              | 70.2                   | (4.7) | 60.3                   | (100)                | 59.8                   |
| 2004-5                | 4074              |                        | 44688               |                        | 2394  |                        | 51156                |                        |
|                       | (8.0)             | 11.8                   | (87.4)              |                        | (4.7) | -3.6                   | (100)                |                        |
| 2005-6                | 4554              |                        | *                   |                        | 2308  |                        | *                    |                        |
|                       | (*)               |                        |                     |                        | (*)   |                        |                      |                        |
| CAGR<br>(1995–6 to 20 |                   | 7.8                    |                     | 24.9                   | . ,   | 15.8                   |                      | 21.1                   |

Notes: \* Not available; Figures in bracket are percentages to total term credit flow.

Source: NABARD (2005), Expert Group on Investment Credit, June up to 2002-3 and NABARD sources thereafter.

<sup>&</sup>lt;sup>2</sup> The growth rates will work out to be more moderate if they are measured over outstandings.

**TABLE 8.14** Flow of Institutional Credit for Agriculture by Category

(Rs crore)

| Year         | Short-term<br>credit | Growth<br>rate<br>(per cent) | Term<br>credit | Growth rate (per cent) | Total<br>Credit | Growth rate (per cent) | Term credit as per cent<br>of pvt. sector GCF<br>in agriculture\$ |
|--------------|----------------------|------------------------------|----------------|------------------------|-----------------|------------------------|-------------------------------------------------------------------|
| (1)          | (2)                  |                              | (3)            |                        | (4)             |                        | (5)                                                               |
| 1995–6       | 14,525               |                              | 7507           |                        | 22,032          |                        | 35.1                                                              |
|              | (65.9)               |                              | (34.1)         |                        | (100)           |                        |                                                                   |
| 1996-7       | 16,998               | 17.0                         | 9413           | 25.4                   | 26,411          | 19.9                   | 38.6                                                              |
|              | (64.4)               |                              | (35.6)         |                        | (100)           |                        |                                                                   |
| 1997-8       | 20,640               | 21.4                         | 11,316         | 20.2                   | 31,956          | 21.0                   | 43.5                                                              |
|              | (64.6)               |                              | (35.4)         |                        | (100)           |                        |                                                                   |
| 1998-9       | 23,903               | 15.8                         | 12,957         | 14.5                   | 36,860          | 15.3                   | 48.5                                                              |
|              | (64.8)               |                              | (35.2)         |                        | (100)           |                        |                                                                   |
| 1999-2000    | 28,965               | 21.2                         | 17,303         | 33.5                   | 46,268          | 25.5                   | 53.6                                                              |
|              | (62.6)               |                              | (37.4)         |                        | (100)           |                        |                                                                   |
| 2000-1       | 33,314               | 15.0                         | 19,513         | 12.8                   | 52,827          | 14.2                   | 59.5                                                              |
|              | (63.1)               |                              | (36.9)         |                        | (100)           |                        |                                                                   |
| 2001-2       | 40,509               | 21.6                         | 21,536         | 10.4                   | 62,045          | 17.4                   | 60.5                                                              |
|              | (65.3)               |                              | (34.7)         |                        | (100)           |                        |                                                                   |
| 2002-3       | 45,586               | 12.5                         | 23,974         | 11.3                   | 69,560          | 12.1                   | 61.7                                                              |
|              | (65.5)               |                              | (34.5)         |                        | (100)           |                        |                                                                   |
| 2003-4       | 54,977               | 20.6                         | 32,004         | 33.5                   | 86,981          | 25.0                   | _                                                                 |
|              | (63.2)               |                              | (36.8)         |                        | (100)           |                        |                                                                   |
| 2004-5       | 73,960               | 34.5                         | 51,349         | 60.4                   | 125,309         | 44.1                   | _                                                                 |
|              | (59.0)               |                              | (41.0)         |                        | (100)           |                        |                                                                   |
| CAGR (1995–6 | 5                    |                              |                |                        |                 |                        |                                                                   |
| to 2004-5)   | 19.6                 |                              | 23.5           |                        | 21.1            |                        |                                                                   |

*Note:* Figures in brackets are percentages to total credit; \$\\$ This is a rough estimate.

Source: Same as in Table 8.13.

**TABLE 8.15** Data Reported on Agricultural Advances of Public Sector Banks: A Comparison of Control Return and BSR Numbers

A. Agricultural Advances Reported as per Priority Sector Data for Public Sector Banks (Control Returns)  $(As\ on\ last\ reporting\ Friday)$ 

|             |            | No. of Acco | ounts (lakh) |            | Amount Outstanding (Rs Crore) |            |            |              |  |
|-------------|------------|-------------|--------------|------------|-------------------------------|------------|------------|--------------|--|
|             | March 2002 | March 2003  | March 2004   | March 2005 | March 2002                    | March 2003 | March 2004 | March 2005 @ |  |
| Agriculture | 158        | 168         | 190          | 208        | 58,142                        | 70,501     | 84,435     | 112,475      |  |
| Direct      | 153        | 165         | 188          | 191        | 44,019                        | 51,484     | 62,170     | 82,613       |  |
| Indirect    | 5          | 3           | 2            | 17         | 14,123                        | 19,017     | 22,265     | 29,862       |  |

## B. Advances to Agriculture by Public Sector Banks (BSR Data)

(As on 31st March)

|             |            | No. of Acco | unts (lakh) |            | Amount Outstanding (Rs Crore) |            |            |            |  |
|-------------|------------|-------------|-------------|------------|-------------------------------|------------|------------|------------|--|
|             | March 2002 | March 2003  | March 2004  | March 2005 | March 2002                    | March 2003 | March 2004 | March 2005 |  |
| Agriculture | 137        | 140         | 140         | 177        | 51,480                        | 59,992     | 76,445     | 97,089     |  |
| Direct      | 133        | 136         | 137         | 174        | 36,794                        | 45,000     | 53,215     | 71,334     |  |
| Indirect    | 4          | 4           | 3           | 3          | 14,686                        | 14,992     | 23,230     | 25,755     |  |

Note: <sup>@</sup> Data are provisional.

Sources: (i) For A, Report on Trend and Progress of Banking in India, 2004–5, p. 236.

(ii) For B, RBI, Banking Statistics: Basic Statistical Returns of Scheduled Commercial Banks in India, March 2005 (Vol. 34) and earlier issues.

the difference is to be found under direct finance for agriculture as distinguished from indirect finance.

There is yet another reason to believe that the overestimation could be still more because the control returns cover agricultural advances under the 'priority sector' which by definition should normally exclude many big-size advances given against agricultural operations (such as loans beyond Rs 10 lakh against pledge/hypothecation of agricultural produce, and loans for input distribution for allied activities beyond Rs 40 lakh shown as indirect finance), whereas the BSR data include all agricultural advances.

#### Small-scale Industries

Next to agriculture, the small-scale industrial sector occupies a pivotal position in terms of employment and output share in the economy.<sup>3</sup> Apart from sectoral dispersal and wider promotion of entrepreneurship, the SSIs have a regional dimension in that the SSI units are scattered all over, in the nooks and corners of the country. Immediately after the introduction of social control and subsequent bank nationalization, banks found SSIs to be a lucrative target for lending. Hence, the share of SSI units in total bank credit shot up from 6.9 per cent in June 1968 to 12.0 per cent in June 1973. Thereafter, it was sustained in the range of 11 to 13.5 per cent until the early 1990s. What has happened thereafter is truly disappointing. A steady and drastic fall in the share of bank credit in favour of SSIs has occurred from 13.4 per cent in March 1989 to as low as 4.1 per cent in March 2005 and that of artisans and village industries from 0.9 per cent to 0.7 per cent. The number of bank loan accounts in respect of the SSI sector has dropped from a peak of 21.26 lakh in March 2000 to as low as 9.39 lakh in March 2005—a loss of over 12 lakh or 56 per cent (see Table 8.10). To what extent these are attributable to revisions in the definition of the SSI sector is not known. Besides, while separate data are not available for the SSI sector's GDP, indications are that its share in total GDP may have generally stood firm in recent years. The share of unregistered manufacturing was about 5.7 per cent in 1980–1 and has remained at that level in 2003–4.

Loss of Momentum in the Distribution of Bank Credit in Favour of Small Borrowers and other Vulnerable Groups

Between December 1972 and June 1983, there were 21.2 million additional bank loan accounts in the aggregate, added and nursed by the SCBs, of which 19.8 million or 93.1 per cent were accounts with credit limits of Rs 10,000 or less. This trend of focusing on small borrowal accounts continued for another decade up to March 1992 (despite the loan waiver scheme effective 15 March 1990). Between December 1982 and March 1992, there were 38.1 million additional bank accounts, of which 36.0 million were the redefined small borrowal accounts with credit limits of Rs 25,000 and less.

However, what has happened since the beginning of the 1990s has been most distressing. Between March 1992 and March 2001, there has been an absolute decline of about 13.5 million in the aggregate bank loan accounts and this has happened entirely because of a much larger decline of 25.3 million accounts for the redefined small borrowal accounts with credit limits of Rs 25,000 and less. On the other hand, borrowal accounts with higher credit limits of above Rs 25,000 have shown an unusually large increase of 11.8 million as compared with only 2.1 million increase during the preceding decade (December 1983 to March 1992).

Even in the recent period, March 2001 to March 2005, while an addition of 24.79 million in total loan accounts has occurred, small borrowal accounts have experienced an absolute fall of 0.49 million (until March 2004); during 2004–5, there was a fractional rise of 1.97 million because of the forced expansion in farm loans (Table 8.16).

TABLE 8.16
Trends in the Number of Small Borrowal vis-à-vis other Bank Loan Accounts

| Period-End    |        | Total Bank Borrowal<br>Accounts (Lakh) |        | orrowal Accounts<br>,000 or less (Lakh) | Other Bigger Accounts<br>(Lakh) |                                   |
|---------------|--------|----------------------------------------|--------|-----------------------------------------|---------------------------------|-----------------------------------|
|               | Number | Increase over the previous period      | Number | Increase over the previous period       | Number                          | Increase over the previous period |
| December 1983 | 277.48 | _                                      | 265.21 | _                                       | 12.27                           | _                                 |
| March 1992    | 658.61 | 381.12                                 | 625.48 | 360.27                                  | 33.12                           | 20.85                             |
| March 2001    | 523.65 | (-) 134.95                             | 372.52 | (-) 252.96                              | 151.13                          | 118.01                            |
| March 2004    | 663.90 | 140.25                                 | 367.66 | (-) 4.86                                | 296.24                          | 145.11                            |
| March 2005    | 771.51 | 107.61                                 | 387.33 | 19.67                                   | 384.18                          | 87.94                             |

<sup>&</sup>lt;sup>3</sup> In the recent period, a paradigm shift from SSI to small and medium enterprises in the official focus on sectoral bank credit flow has taken place (see RBI 2005). Only the SSI credit is treated as part of the priority sector. Data are not as yet available for the medium enterprises sector.

*Impact of Credit Contraction on Poor Households*<sup>4</sup>

The implications of credit contractions for small borrowers are many. First, RBI data have shown that nearly 80 per cent of small borrowal accounts were in rural and semiurban areas and hence their contraction is sure to hurt the borrowers in such areas. Second, about 22 per cent of the number of small accounts and 18.1 per cent of the amount outstanding of such accounts have been in respect of women borrowers; over the years this proportion has edged up implying that women borrowers have increased their share of bank borrowings. Such is not the case with the borrowers amongst SCs and STs; their share has remained generally static between 1993 and 1997; the shares of women in these groups are also broadly the same. Third, even within the small borrower category, still smaller loans up to Rs 7500 had accounted for 80.5 per cent of the number of accounts and 50 per cent of the loan amount outstanding in March 1993, which slipped to 64 per cent and 32 per cent, respectively by March 1997. Fourth, the bulk of the small borrowal accounts have been for agricultural and allied activities. Fifth, about 50 per cent of the small borrowal accounts have been granted under special asset-creating employment programmes like the IRDP, SEEUY, SEPUP, DRI, and others. Sixth, RRBs stand out as banks serving the small borrowal accounts; this is more so in rural areas. Many of these phenomena are getting further reinforced in the more recent period. Finally, small borrowal accounts have about two-thirds of credit outstanding as standard assets, which is somewhat lower than that for the public sector banking system as a whole at 88 per cent. Standard assets of small borrowal accounts have risen with the size of loans but have been higher for agricultural activities than for industry, trade, and transport except for personal and professional loans; the latter categories thus have weaker assets.

#### MICRO-CREDIT MOVEMENT IN INDIA

The rationale behind the micro-credit movement in India is manifold. Despite their phenomenal growth and spread, there is still a vast gap in the availability of banking services in rural areas. Apart from the organizational reluctance on the part of banking institutions to expand their branch network and to cater to the needs of informal sector households, formal credit institutions have a major disability in that they cannot meet the composite borrowing needs of poor households in the form of production as well as consumption credit and in the form of thrift facilities. Apart from large transaction costs involved when they meet such services, the formal institutions face large nonperforming loans.

In response to the above problems associated with formal banking institutions, non-governmental organizations (NGOs) and other voluntary agencies have devised the institution of self-help groups (SHGs) and for them, the operation of microfinance arrangements involving both the delivery of credit and thrift-type of saving schemes. Such an arrangement has been co-opted by the official agencies in India as part of the structure of credit institutions in the country. With strong official blessings, the whole arrangement has partaken the character of SHG-bank linkage programme. NABARD has taken a number of steps to intensively promote the microfinance movement in India and the RBI has issued a set of guidelines to banks to be observed by them in rendering micro-credit assistance. Credit disbursals through the scheme are to be covered as part of priority sector advances. Alongside Small Industries Development Bank of India (SIDBI), Foundation for Micro Credit (SFMC) was launched effective January 1999.

There is no doubt that the micro-credit movement has shown significant potential in India, and with intensive official support, the coverage has rapidly expanded in recent years. Almost all SCBs and RRBs have embraced it as an important banking programme. As shown in Tables 8.17 and 8.18, over 22.38 lakh SHGs have obtained bank loans aggregating Rs 11,398 crore for about 330 lakh poor households with the refinance support of Rs 4157 crore from NABARD (at the end of March 2006). Likewise, the cumulative assistance under the SIDBI scheme has aggregated Rs 422 crore for 15 lakh poor households at the end of March 2005.

SHGs comprising only women members have constituted 90 per cent; with of course timely loan repayment (95 per cent). There has been substantial regional concentration of SHGs, with the southern states occupying a pride of place accounting for 54 per cent of the total SHGs credit linked and much more at 75 per cent in terms of the total amount of bank loans disbursed as at the end of March 2006. Andhra Pradesh alone accounted for 26 per cent of the SHGs credit linked and 38 per cent of cumulative bank loans as at the end of March 2006. This situation was much more acutely concentrated until the recent period and it is claimed to be undergoing a change as may be seen in the latest data provided by NABARD (Table 8.19). However, it is important to note that for the BIMARU (Bihar, Madhya Pradesh, Rajasthan, Uttar Pradesh) states, the proportion of SHGs in the all-India total has remained at about 15-16

<sup>&</sup>lt;sup>4</sup> The summary assessment in this sub-section is based on a series of occasional articles in the RBI's monthly bulletin; See, for example, 'Survey of Small Borrowal Accounts, 2001' in May 2004 issue of the Bulletin; some parts of the data on small borrowal accounts are available in the RBI's BSR of Scheduled Commercial Banks, which has been the basic source of information for this note.

**TABLE 8.17** NABARD: Bank-SHG Credit Linkage Programme Cumulative Progress up to 2004-5

| Year-End<br>(April–March) | No. of<br>SHGs linked | SHGs Refinanced<br>(Number) | Bank Loans<br>(Rs Crore) | Refinance by NABARD<br>(Rs Crore) |
|---------------------------|-----------------------|-----------------------------|--------------------------|-----------------------------------|
| 2000–1*                   | 263,825               | 213,213                     | 481                      | 400                               |
| 2001-2                    | 461,478               | 340,131                     | 1026                     | 796                               |
| 2002-3                    | 717,360               | 493,634                     | 2049                     | 1419                              |
| 2003-4                    | 1,079,091             | 611,043                     | 3904                     | 2124                              |
| 2004-5                    | 1,618,476             | 824,888                     | 6898                     | 3086                              |
| 2005-6                    | 2,238,565             | 900,000                     | 11,398                   | 4157                              |

Note: \* In the 2000-1 report, SHGs are excluding those not covered under refinance.

Source: NABARD's Annual Report 2004-5 and various issues.

**TABLE 8.18** Progress Under SIDBI Foundation for Micro Credit (SFMC)

(Amount in Rs crore)

| Year      | Amount<br>Sanctioned | Amount<br>Disbursed | Number<br>of SHGs<br>Involved | Outstanding<br>Loan Portfolio<br>of SIDBI<br>(amount) | Cumulative<br>sanctions of<br>assistance<br>(amount) | Cumulative<br>total number<br>of poor persons<br>benefited (lakh) |
|-----------|----------------------|---------------------|-------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| 1999–2000 | 21.90                | 14.03               | _                             | _                                                     | 52.61                                                | 3.14                                                              |
| 2000-1    | 28.28                | 19.45               | 20530                         | 33.24 (1.50)                                          | 81.05                                                | 4.42                                                              |
| 2001-2    | 41.70                | 21.79               | 28436                         | 43.45 (1.51)                                          | 122.75                                               | 7.28                                                              |
| 2002-3    | 38.51                | 31.04               | _                             | _                                                     | 161.26                                               | 8.62                                                              |
| 2003-4    | 70.84                | 66.31               | _                             | 91.21                                                 | 232.08                                               | 10.41                                                             |
| 2004–5    | 189.73               | 145.06              | _                             | 199.21                                                | 421.81                                               | 15.10                                                             |

Note: Figures in brackets represent NPAs of the total portfolio.

Source: SIDBI Annual Reports, various issues.

**TABLE 8.19** Cumulative Growth in SHG-Linkage in Priority States (As on 31 March )

(Number of SHGs)

|                              |                |                |                |                | · · · · · · · · · · · · · · · · · · · |
|------------------------------|----------------|----------------|----------------|----------------|---------------------------------------|
| State                        | 2002           | 2003           | 2004           | 2005           | 2006                                  |
| Assam                        | 1024           | 3477           | 10,706         | 31,234         | 56,449                                |
| Bihar                        | 3957           | 8161           | 16,246         | 28,015         | 46,221                                |
| Chhattisgarh                 | 3763           | 6763           | 9796           | 18,569         | 31,291                                |
| Gujarat                      | 9496           | 13,875         | 15,974         | 24,712         | 34,160                                |
| Himachal Pradesh             | 5069           | 8875           | 13,228         | 17,798         | 22,920                                |
| Jharkhand                    | 4198           | 7765           | 12,647         | 21,531         | 30,819                                |
| Maharashtra                  | 19,619         | 28,065         | 38,535         | 71,146         | 1,31,470                              |
| Madhya Pradesh               | 7981           | 15,271         | 27,095         | 45,105         | 57,125                                |
| Orissa                       | 20,553         | 42,272         | 77,588         | 1,23,256       | 1,80,896                              |
| Rajasthan                    | 12,564         | 22,742         | 33,846         | 60,006         | 98,171                                |
| Uttar Pradesh                | 33,114         | 53,696         | 79,210         | 1,19,648       | 1,61,911                              |
| Uttaranchal                  | 3323           | 5853           | 10,908         | 14,043         | 17,588                                |
| West Bengal                  | 17,143         | 32,647         | 51,685         | 92,698         | 1,36,251                              |
| Total for 13 priority states | 141,804 (30.7) | 249,462 (34.7) | 397,464 (36.8) | 667,761 (41.2) | 10,05,272 (44.9)                      |
| Southern States              | 317,276 (68.8) | 463,712 (64.7) | 674,356 (62.5) | 938,941 (58.0) | 12,14,431 (54.3)                      |
| BIMARU States                | 57,616 (12.5)  | 99,870 (13.9)  | 156,397 (14.5) | 252,774 (15.6) | 3,63,428 (16.2)                       |
| All-India Total              | 461,478        | 717,360        | 1,079,091      | 1,618,456      | 22,38,565                             |
|                              |                |                |                |                |                                       |

Note: Figures in brackets represent percentages to all-India totals.

Source: Progress of SHG-Bank Linkage in India, Various Issues, NABARD.

per cent (at the end of March 2006). As far as data on the sources of support for the SHG sector are concerned, SHGs directly formed and financed by banks still constitute only 20 per cent of the total (as at the end of March 2006); an overwhelming 74 per cent are formed by NGO organizations but directly financed by banks and another 6 per cent are financed by banks using financial intermediaries.

The microfinance movement in India has shown significant potential, and with intensive official support, the coverage has expanded significantly which, as the institutional visions portray, is likely to be further intensified. The RBI has also expanded the scope by giving freedom to institutions to charge interest rates at their own discretion and more importantly, to cover not only consumption and production loans but also credit needs of housing and shelter improvements. SHGs involve thrift as well as credit arrangements. NABARD and SIDBI have provided for SHGs and SHG members scope for capacity building through training and other inputs by NGOs. Peer monitoring helps in better credit recovery. Finally, the SHG movement so far has shown that the outcomes have gone beyond thrift, credit, and economic well-being; they serve as an instrument of social change, especially the empowerment of women. Improvement in literary levels and children's education particularly in awareness of girls' education, housing facilities, abolition of child labour, decline in family violence, and banning of illicit distilleries in the villages have all been reported in different studies. Women have acquired better communication skills and self-confidence; they have also acquired better status within families. However, there are a number of misgivings regarding the working of the microfinance system in India and the possibilities of it emerging as an effective instrument of credit delivery for the vast masses of productive households and enterprises in rural areas—small and medium farmers, tenant farmers, and agriculture labourers desiring to graduate to non-farm activities and artisans and other small-scale, own-account enterprises; these issues are raised in the final section.

## DISAPPOINTING GROUND REALITY AFTER THE 1990s

The official statistics on the distribution of bank credit amongst the informal sectors reveal a steady deterioration since the early 1990s. To bring home the seriousness of the deterioration in credit rendered by SCBs, the tabular data presented in earlier sections are depicted in Figures 8.1 to 8.5. The shares of bank credit for agriculture, SSIs, and small borrowal accounts in total bank credit were at their peak levels of 17.7 per cent, 13.4 per cent, and 25.4 per cent around the end of the 1980s or early 1990s; they have fallen steadily since then and reached their lowest levels of 10.0 per cent, 4.1 per cent, and 3.7 per cent of total bank credit around 2000 or 2001 (Figures 8.3 and 8.5). The subject of the possible erosion in the absorptive capacities of these informal sectors, due to significant structural changes taking place in the Indian economy such as reductions in their GDP share, has been addressed earlier. An incisive study calls for more detailed work on the measurement of demand for credit from these sectors and the nature of gap that may have grown over the years (Singh and Sagar 2004). One incontrovertible evidence of the growing gap in the supply of bank credit for all the three categories of informal sectorsagriculture, SSIs, and small borrowals—lies in the drastic

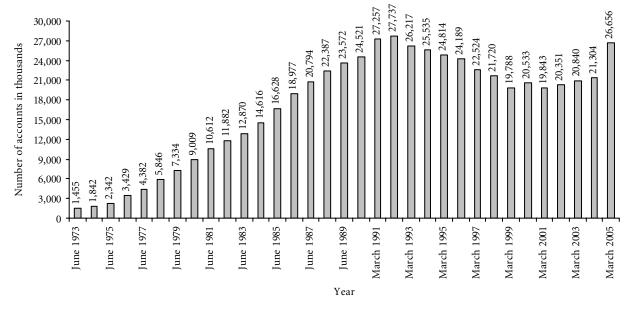



Figure 8.1: Trends in Agricultural Credit: Number of Borrowal Accounts (For SCBs)

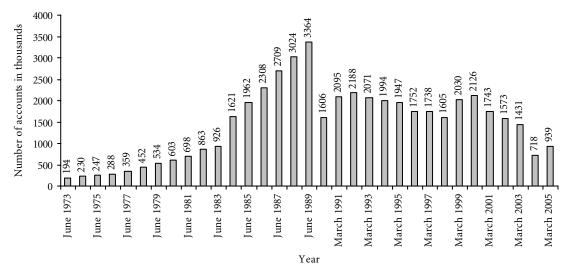



Figure 8.2: Trends in Credit for SSI Sector: Number of Borrowal Accounts (For SCBs)

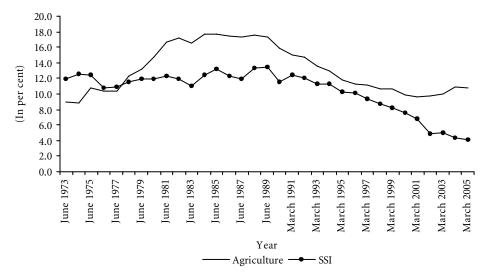
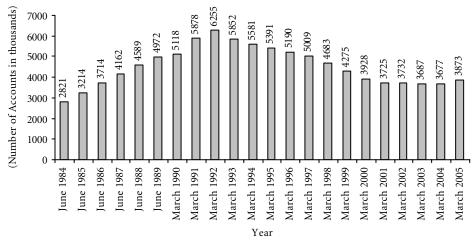
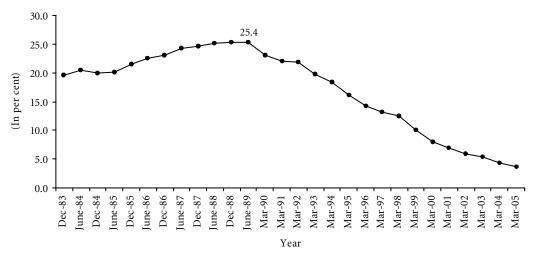





Figure 8.3: Percentage Shares of Agriculture and SSI Credit in Total Bank Credit (By SCBs)



Note: \* With credit limits of Rs 25,000 or below

Figure 8.4: Number of Small Borrowal Accounts\* (For SCBs)



Note: \* With credit limits of Rs 25,000 or below

Figure 8.5: Percentage Share of Credit of Small Borrowal Accounts\* to Total Credit (By SCBs)

decline in the number of borrowal accounts from their peak levels as shown in Figures 8.1, 8.2, and 8.4. For agriculture, the number of borrowal accounts had touched the peak of 27.74 million at the end of March 1992 and this steadily declined to the lowest level of 19.84 million at the end of March 2001—a loss of about 29 per cent. While the proportion of workforce employed in agriculture and allied activities has declined fractionally from 60.4 per cent in 1993—4 to 56.7 per cent in 1999–2000, the actual number has remained static at around 191 million; between 1983 and 1993—4, there was a rise of 26 per cent from 151.35 million to 190.72 million (NSSO data) (Figure 8.1). Similar declines in the number of borrowal accounts have taken place for SSIs (partly due to definitional changes) and small borrowal categories with credit limits of Rs 25,000 or less.

# MORE DECISIVE EVIDENCE FROM AIDIS AND OTHER FIELD STUDIES

The valuable insights provided by the all-India rural credit or debt and investment surveys historically on estimates of household indebtedness divided between institutional and non-institutional sources on a decennial basis are well-known. These show that institutional agencies have accounted for an increasing share of total cash dues outstanding of rural households from about 29 per cent in 1971 to 64 per cent in 1991 (Subba Rao 2005). Considering only the cultivator households, the share of institutional debt had expanded from 31.7 per cent to 66 per cent during the period (Rakesh Mohan 2006). What is evident now is the reversal of this rising trend since the beginning of the 1990s.

In the above respect, there are two survey results on indebtedness of farmer households for the recent period. First, instead of the usual decennial rural—urban debt and investment survey for 2001, the NSSO has covered the subject of indebtedness under a special 'Situation Assessment Survey of Farmers' (SAS) conducted during 2003 and published a separate report on 'Indebtedness of Farmer Households' (NSSO 2005). Second, there is the 'Rural Finance Access Survey' (RFAS), also for 2003, undertaken by the World Bank and the National Council of Applied Economic Research (NCAER) (see Basu 2005). The NSSO survey is a nationwide survey with a major central sample supplemented by a few state/union territory samples, while the RFAS 2003 covered only two Indian states, namely, Andhra Pradesh and Uttar Pradesh.

As the SAS 2003 of NSSO covered only the farmer households, its results are roughly comparable with the data on cultivator households provided by the NSSO's AIDIS in the past (Subba Rao 2005). Such a comparison is shown in Table 8.20—it reveals a decline in the share of institutional debt of cultivator households from 66.3 per cent in 1991 to 61.1 per cent in 2002 and a corresponding increase in the dependence of cultivators on money lenders. What is more revealing in the SAS 2003 survey results is the progressive decline in the proportion of indebted households as well as the share of institutional debt to total debt with the decline in the size of land possessed (Table 8.21). Obviously, this is what has brought to official focus 'the increasing concern in recent years over the effectiveness, governance and financial health of rural co-operative banks and the attention being to rural lending by commercial banks' (Rakesh Mohan 2006).

The results of RFAS 2003 are not comparable as the survey covered only two states. However, the results provide a telling commentary on the state of access to institutional finance for the vast rural masses. The results are best quoted

TABLE 8.20
Relative Share of Outstanding Debts of Cultivator Households from Different Sources

(per cent)

| Sources of Credit           | 1951  | 1961  | 1971  | 1981  | 1991  | 2002  |
|-----------------------------|-------|-------|-------|-------|-------|-------|
| Institutional of which:     | 7.3   | 18.7  | 31.7  | 63.2  | 66.3  | 61.1  |
| Co-op Soc/Banks, etc        | 3.3   | 2.6   | 22.0  | 29.8  | 30.0  | 30.2  |
| Commercial Banks            | 0.9   | 0.6   | 2.4   | 28.8  | 35.2  | 26.3  |
| Non-Institutional of which: | 92.7  | 81.3  | 66.3  | 36.8  | 30.6  | 38.9  |
| Moneylenders                | 69.7  | 49.2  | 36.1  | 16.1  | 17.5  | 26.8  |
| Unspecified                 | _     | _     | _     | _     | 3.1   | _     |
| Total                       | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |

Source: All-India Debt and Investment Surveys.

TABLE 8.21
Indebtedness of Farm Households Classified According to Land Possessed

| Size of Land<br>Possessed (hectares) | Distribution of<br>Farm Households | Percentage of<br>Indebted Households | Share of Institutional<br>Debt in Total (per cent) |
|--------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------------|
| < 0.01                               | 1.4                                | 45.3                                 | 22.6                                               |
| 0.01-0.40                            | 32.8                               | 44.4                                 | 43.3                                               |
| 0.41-1.00                            | 31.7                               | 45.6                                 | 52.8                                               |
| 1.01-2.00                            | 18.0                               | 51.0                                 | 57.6                                               |
| 2.01-4.00                            | 10.5                               | 58.2                                 | 65.1                                               |
| 4.01-10.00                           | 4.8                                | 65.1                                 | 68.8                                               |
| 10.00 +                              | 0.8                                | 66.4                                 | 67.6                                               |
| All Classes                          | 100.0                              | 48.6                                 | 57.7                                               |

Source: Report No. 498 (NSSO), Quoted from Subba Rao (2005).

in the words of Basu (2005, p. 4009) who is the author of the World Bank–NCAER study.

Notwithstanding the progress made over the decades, the majority of the rural population still does not appear to have access to finance from a formal source. According to the RFAS 2003, some 59 per cent of rural households do not have a deposit account and 79 per cent of rural households have no access to credit from a formal source. The problem of access is even more severe for poorer households in rural areas. Indeed, bank branches in rural areas appear to serve primarily the needs of richer borrowers: some 66 per cent of large farmers have a deposit account; 44 per cent have access to credit. Meanwhile, 70 per cent of marginal farmers do not have a bank account and 87 per cent have no access to credit from a formal source. Another segment that faces serious problems in accessing formal finance is the commercial household (that is, micro-enterprise) segment.

# NEW INITIATIVES FOR EXPANDING CREDIT FLOW TO AGRICULTURE AND OTHER PRIORITY SECTORS

Concerned at the glaring agrarian crisis including the widespread incidence of farmer suicides and the growing structural constraints faced by the non-farm informal sectors which alone have the potential for expanding employment opportunities, and concurrently recognizing the acute short-fall in credit flow to these sectors for over a decade since the beginning of the 1990s, the Government of India, the RBI, and NABARD, have initiated a number of measures to mitigate the situation. With renewed emphasis on institutional and structural features in credit policy formulation, the RBI initially appointed three committees for sectoral attention to reduce procedural delays in credit delivery: (i) R.V. Gupta committee for studying credit delivery for agriculture; (ii) S.L. Kapur committee for credit needs of SSIs; and (iii) S.H. Khan committee on harmonizing the regulatory environment for banks and development finance institutions (DFIs).

As discussed earlier, the trends in credit delivery hardly improved for some years up to 2003–4 or thereabout. Consequently, the socio-political pressures became so intense that as many 10 committees were constituted to address the questions of bank lending for agriculture and small and medium-enterprises (SMEs) as well as the institutional issues related to the working of RRBs and the need for revitalizing the short-term as well as long-term co-operative credit structure. The system of priority sector credit has

been looked at afresh; likewise, the norms for regional C–D ratios and investment credit for agriculture have been probed at the instance of NABARD. The RBI's internal working groups have examined issues relating to rural credit and microfinance, lending against warehouse receipts and the question of adopting 'financial inclusion' as a policy goal. Broadly, these committees and working groups have departed from the traditional methods of targeted lending and instead proposed more intensive use of microfinance institutions along with an innovative system of 'agency banking' as a substitute for branch banking in rural areas; yet another innovative idea commended by the authorities is that of 'financial inclusion'.<sup>5</sup>

As the recommendations of the various committees and working groups have been by and large inspired by the inhouse thinking on various issues (except the Vaidyanathan committees on co-operatives), they have all been accepted including those by both Vaidyanathan committees; and appropriate measures for their implementation have been put into place in official communications. As a result of the acute social pressures to mitigate the travails of the farm community, the Government of India has gone beyond the committee recommendations. To begin with, it announced a credit package envisaging 30 per cent growth in credit flow to agriculture during 2004-5 and sought to double the total flow over a period of three years from Rs 86,981 crore in 2003–4 to Rs 175,000 crore in 2006–7. As shown in Figure 8.1, the number of loan accounts in agriculture rose by 25 per cent from 21.30 million at the end of March 2004 to 26.66 million at the end of March 2005. The Government has also decided to provide a certain level of subvention to NABARD so that farmers receive short-term credit at 7 per cent rate of interest (up to an upper limit of Rs 3 lakh as the principal amount). This measure accepts the principle that interest rate relief to farmers has to be provided through fiscal measures rather than through cross-subsidisation within the banking sector (RBI 2006). The RBI has said that it has commenced implementation of the budget measures, while ensuring the commercial viability of banks and the overall soundness of the credit system (RBI 2006). The issuance of Kisan Credit Cards (KCCs) (introduced in August 1998), has been yet another step in the direction of expanding farm credit. An average of about 90 lakh KCCs have been issued during the past five years 2000–1 to 2004-5, taking the aggregate to 511 lakh; coverage of 100 lakh new farmers was expected during 2005-6. Hitherto, KCCs were only for crop loans but in 2004–5, their scope was expanded to cover term loans. Hence, commercial banks have replaced co-operatives as the maximum issuers of KCCs.

The flow of credit to agriculture had also suffered a setback partly because credit flow from co-operatives had been sluggish. The implementation of the recommendations of the Vaidyanathan Committees (I and II), designed to revitalize the short-term and long-term co-operative credit structures, and to minimize the cost of multi-layering is expected to improve credit delivery, appears to be in a limbo; the process of implementing the recommendations is yet to begin.

With an appropriate definition of medium enterprises (that is, plant and machinery investment in excess of the SSI limits and up to Rs 10 crore), banks have been asked to make concerted efforts to provide credit cover to at least five new SMEs per year on an average at each of their semi-urban and urban branches.

The most innovative measures relate to the more intensive use of MFIs and the introduction of the system of 'agency banking'. The absence of any expansion of branch banking in rural areas for over a decade and a half now, has created a serious institutional vacuum in such areas. Therefore, as a substitute arrangement, the system of agency banking has been introduced whereby two models, namely, 'business facilitator' model and 'business correspondent' model, have been commended to the banks for adoption. The agency system would facilitate the banks to take recourse to local-level institutions—MFIs, other varied civil society organizations, post-offices, and others—as intermediaries in providing financial and banking services through the above two types of models. Through the business facilitator model, the banks would use the services of intermediary agencies as agents for providing various facilitation services such as identification of borrowers, collection of loan applications, and post-sanction monitoring; this model does not involve any conduct of banking business by the concerned intermediaries; they will render services only as agents. On the other hand, the business correspondent model would embrace activities falling within the normal course of a bank's banking business, to be conducted through correspondent intermediaries; such activities would include: (i) disbursal of small value credit, (ii) recovery of principal/collection of interest, (iii) collection of small value deposits, (iv) sale of micro insurance/mutual fund products/pension products/other third party products, and (v) receipt and delivery of small value remittances/other

<sup>5</sup> 'The findings of the NSS 59th Round (2003) reveal that out of the total number of cultivator households, only 27 per cent receive credit from formal sources and 22 per cent from informal sources. The remaining households, mainly small and marginal farmers, have virtually no access to credit. With a view to bringing more cultivator households within the banking fold, I propose to appoint a Committee on Financial Inclusion. The Committee will be asked to identify the reasons for exclusion, and suggest a plan for designing and delivering credit to every household that seeks credit from lending institutions', *Union Finance Minister's Budget Speech*, 2006–7, pp. 10–11.

payment instruments. These business facilitator and business correspondent models go beyond the SHG-bank linkage programme described earlier.

Finally, with a view to ensuring greater financial inclusion and aimed at taking banking services to everyone, the RBI has introduced a series of measures, such as the issuance of a general credit card (GCC) to bank customers in rural and semi-urban areas with no prescription of purposes or end-use of funds or security. 50 per cent of the outstanding amount under GCC will be treated as indirect finance to agriculture.

#### NEW POLICY REGIME FOR BETTER CREDIT DELIVERY: TASKS AHEAD

The fresh thrust conferred on expansion of the bank credit base for agriculture and other informal sectors is greatly welcome. However, a closer examination of different elements of the new policy regime raises a few misgivings; these are required to be addressed if an enduring impact has to be made on the system of credit delivery for the targeted sectors.

First, the target of doubling credit flow to agriculture and allied activities in three years appears a knee-jerk reaction to the serious socio-political pressures that have come to bear on the system due to vast credit supply gaps created over a prolonged period. During this period, it is not only that the credit flow had dried up; even the rural institutional structure in terms of branch-banking had been weakened. Superimposing such a large target on the weak institutional structure will have its repercussions on first, the quality and purposes of lending, and second, the process of loan recovery. Therefore, attempts should be made to resurrect the entire institutional structure in terms of its geographical spread as well as organizational strength. Only such a structure will be able to achieve a steady and healthy delivery of credit for agriculture and rural enterprises.

First and foremost is the need for further spreading of branch network by SCBs and RRBs. The system of 'agency banking' can only supplement the operations of bank branches in rural and semi-urban areas. A palpable cause for the decline in bank lending to agriculture, SSIs, and small borrowers, has been the banks' professional reluctance towards expanding their branch network in rural areas. As shown earlier, the number of bank branches operating in rural areas (classified uniformly on the basis of the 1991 Census) has experienced an absolute reduction from 33,017 (or 51.7 per cent of the total) in March 1995 to 30,572 (44.5 per cent of the total) in March 2006. Any yardstick we apply—30,600 rural branches serving 5.5 lakh villages, the decline in population per bank office, the period in which bank branches reached break-even points in the past, and

the positive externalities they provide—justifies the promotion of rural bank branches. Given the option, SCBs would not like to operate in rural areas. This has been proved clearly since March 1995 after the disbanding of branch licencing policy and the granting of freedom to bank boards to decide on their branch expansion programme. Since then, there has been a reduction of roughly 2445 rural branches instead of an addition of at least 10,000 bank branches in rural areas under the erstwhile policy thrust. This approach has thus created a serious institutional vacuum in the rural credit structure. It happened also because no attempt was made by the authorities to substitute it by strengthening RRBs or by building an alternative rural institutional structure for credit delivery. Second, with vast modern input requirements and diversification into horticultural products and other allied areas, agriculture will require a more sophisticated system of credit delivery, for which induction of a sizeable number of qualified agricultural science graduates and graduates with other relevant technical qualifications will be necessary. Considering this felt need, the renewed policy thrust becomes an excellent opportunity for the government to generate an additional employment of about one lakh posts essentially for rural and semi-urban branches of banks; there are about 3.80 lakh employees in these branches (out of a countrywide bank total of about 8.82 lakh, at the end of March 2004). Of the 3.80 lakh employees, about 1.16 lakh are of officers cadre, and considering the past neglect and the enormous business potential, it would not be too ambitious a goal to induct another lakh of technically qualified officers with moderate salaries befitting rural and semi-urban postings in the next five years or so. A rough calculation suggests that the additional burden of wages and perquisites on this count would work out to about Rs 1200-1500 crore per year after five years; it would constitute less than 0.8 per cent of total income or less than 4 per cent of operating profits of SCBs.

Third, it is necessary to reinforce close co-ordination between district planning authorities and banking institutions operating in a district. The system of lead bank scheme and associated district-level co-ordination committees of bankers has apparently become inactive; it needs to be reinvigorated with clear guidelines on respecting the bankers' commercial judgments even as they fulfill their sectoral targets (Shete/NIBM 2004).

Finally, it is necessary to modify the nature of expectations of profitability for rural branches. It is wrong to consider, even as a business proposition, that every rural branch should reach a break-even point and attain positive profits in three years or so. Rather, the expectation should be to achieve positive profits in a cluster of bank branches, say, within a taluka or even a district; the profit so derived should be sufficiently attractive in relation to the totality of business in the whole taluka or district.<sup>6</sup>

Before closing this section, a word of caution is required on the expectations of a pivotal role to be played by the microfinance movement in the rural credit system of the country. First, success stories of MFIs are invariably based on intensely dedicated, selfless, and celebrity services of individuals as NGOs. It is in this context that questions are asked whether the institution of NGOs is a free good, liberally available and whether it can be a substitute for public administration and associated public programmes and policies. Second, NABARD's own experience has shown that over 54 per cent of NGO-supported SHGs are concentrated in the four southern states—over 48 per cent of them in Andhra Pradesh alone. SHG formation in other regions is hampered by the absence of a dedicated NGO movement. Third, upliftment of women is an important goal, but the goal of poverty-alleviation needs to have a wider coverage. The latest report on progress of SHG-bank linkage for 2004-5 states that 90 per cent of the SHGs linked to banks continue to comprise women members only, but this has been commended on the ground that as a result, repayment of loans by SHGs to banks has consistently been over 95 per cent. When the microfinance system is brought into the mainstream, concentration on women SHGs only will not work and formation of SHGs amongst men entrepreneurs is a much arduous task. Fourth, the whole microfinancing programme is at an early stage 'and that the results are an initial outcome of a small-scale and nascent programme. Even studies on Bangladesh's Grameen Bank have revealed that low default rates were confined to loans of small size, that the default rates tended to rise with the loan size and with time and repetitive borrowers' (Hossain 1988). Fifth, the same thing can be said of the impact of high interest rates in micro-credit lendings mediated through NGOs and SHGs. Again, studies on Grameen Bank and other microfinancing schemes have emphasized how high rates of interest, while they are accepted by the poor initially because of their state of helplessness, nevertheless become a burden on their incomes and their future stream of savings (Rahman 1999 and Mosley and Hulme 1998). Sixth, the studies express similar misgivings regarding the apparent prompt and regular loan repayments by the micro borrowers, but in reality they are known to repay not out of the income stream flowing from assets gained, but through further borrowing, even from money lenders (Rahman 1999). In a significant study in northern Bangladesh, Sinha and Martin (1998) reveal that 'most of the informal loans repaid with Grameen loans were taken to repay earlier Grameen loans'. Among the target group households, 45 per cent of the amount of informal sector loans was utilized for repaying loans taken from micro-credit institutions, including Grameen Bank; for the non-target groups this was 15 per cent (Rahman 1999). Hence, Rahman (1999) has characterized the micro credit situation as the creation of 'debt cycles' for the borrowers. Such are the implications of creating a system of MFIs, which are made commercially viable on the strength of higher interest rates charged to the poor than those charged by traditional banking from their normal customers. The caution on the uneconomic levels of rates of interest should also be applicable to the new system of agency banking. The RBI has exempted the whole system from interest rate ceilings and it could have significant adverse repercussions on the finances of micro enterprises.

Seventh, can the micro-credit system substitute for the vast credit needs of the poor in general? Today, only women's needs are being catered to and that also to a limited extent through micro-credit. Small borrowal accounts with credit limits of Rs 25,000 or less account for Rs 42,992 crore of loans, whereas, out of these small borrowal accounts, the SCBs at best may have provided Rs 6900 crore as part of micro-credit arrangement, and that too, with about 80 per cent refinance from NABARD at 6.5 per cent concessional rate of interest. How long such an arrangement can be sustained when the banking system in general shows no commitment to the needs of the small borrowers spread across the country? What is being sought to be hypothesized here is that there is a degree of continuum in the economic relationships, say within a village, and the objective of the socio-economic empowerment of the poor households in the village will be better served only if all sections of a village—myriad small and marginal farmers, farm households in general, village artisans, unincorporated enterprises, and other household enterprises—partake the benefits of increased institutional credit. However, such a requirement is unlikely to be served without co-opting the borrowing needs of all small borrowing households as a responsibility of the banking system and not just the NGO-supported and SHG-based micro enterprises.

#### References

Basu, Priya (2005), 'A Financial System for India's Poor', H.T. Parekh Finance Forum, *Economic and Political Weekly*, No. 37, 10 September.

Bell, Clive and Peter L. Rousseau (2001), 'Post-independence India: a case of finance-led industrialization?', *Journal of Development Economics*, Vol. 65, pp. 153–75.

Burgess, Robin and Rohini Pande (2003), 'Do Rural Banks Matter? Evidence from the Indian Social Banking Experiment', CMPO Working Paper Series No. 04/104.

<sup>&</sup>lt;sup>6</sup> The suggestions contained in these two paragraphs have also been advanced in another context. See Shetty (2004).

- (2004), Can Rural Banks Reduce Poverty? Evidence from the Indian Social Banking Experiment, Department of Economics, London School of Economics and Yale University, 9 June.
- Burgess, Robin, Rohini Pande, and Grace Wong (2004), Banking for the Poor: Evidence from India', 2004 EEA Meetings, 22 September. Published in Journal of European Economic Association, Vol. 3, Nos 2, 3 (2005).
- EPWRF (2005), 'Metamorphic Changes in the Financial System', Economic and Political Weekly, No. 12, Special statistics-38, 19 March.
- (2006), 'Increasing Concentration of Banking Operations: Top Centres and Retail Loans', Economic and Political Weekly, No. 11, 18 March.
- Eschenbach, Felix (2004), 'Finance and Growth: A Survey of the Theoretical and Empirical Literature', Tinbergen Institute Discussion Paper, TI 2004-039/2, http://www.tinbergen.nl
- Hossain, M. (1988), Credit for Alleviation of Rural Poverty: The Grameen Bank in Bangladesh, Research Paper No. 4, International Food Policy Research Institute, Washington.
- Mohan, Rakesh (2006), 'Agricultural Credit in India: Status, Issues and Future Agenda', Economic and Political Weekly, No. 11, 18 March.
- Mosley, Paul and David Hulme (1998), 'Microenterprice Finance: Is there a Conflict Between Growth and Poverty Alleviation?', World Development, Vol. 26, No. 5, May.
- NSSO (2005), Situation Assessment Survey of Farmers, Indebtedness of Farmer Households, NSS 59th Round (January-December 2003), Report No. 498(59/33/1), May.
- Patrick, Hugh T. (1966), 'Financial Development and Economic Growth in Underdeveloped Countries', Economic Development and Cultural Change, January.
- Rahman, Aminur (1999), 'Micro-credit Initiations for Equitable and Sustainable Development: Who Pays?', World Development, Vol. 27, No. 1, January.

- Ramachandran, V.K. and Madhura Swaminathan (eds) (2005), Financial Liberalization and Rural Credit in India, Agrarian Studies 2, Tulika Books, New Delhi.
- RBI (1997), Report on Trend and Progress of Banking in India, 1996-97.
- (2001), 'Financial Development and Economic Growth in India', Report on Currency and Finance (1999-2000), January.
- (2005), Report of the Internal Group to Review Guidelines on Credit Flow to SME Sector, April.
- (2006), Basic Statistical Returns of Scheduled Commercial Banks in India—March 2005, Vol. 34, February.
- Shete, N.B./NIBM (2004), Role of Lead Bank Officers in the Changed Context of Financial Sector Reforms (A Research Report), National Institute of Bank Management (NIBM), Pune, 24 December.
- Shetty, S.L. (2002), 'Regional, Sectoral and Functional Distribution of Bank Credit', Paper submitted at a Workshop on Financial Liberalization and Rural Credit in India, organized by Artis Dasgupta and the editors for the Sociological Research Unit of the Indian Statistical Institute, and held in Kolkata in March 2002, in V.K. Ramachandran and Madhura Swaminathan (eds) (2005).
- (2004), 'Distributional Issues in Bank Credit: Multipronged Strategy for Correcting Past Neglect', Economic and Political Weekly, No. 29, 17 July.
- Singh, Surjit and Vidya Sagar (2004), State of the Indian Farmer: A Millennium Study, Agricultural Credit in India, Department of Agriculture and Co-operation, Ministry of Agriculture and Academic Foundation, New Delhi.
- Sinha, Saurabh and Imran Martin (1998), 'Informal Credit Transactions of Micro-Credit Borrowers in Rural Bangladesh', IDS Bulletin, Vol. 29, No. 4, April.
- Subba Rao, K.G.K. (2005), 'A Financial System for India's Poor', Economic and Political Weekly, No. 43, 22 October.

## Non-Perforing Assets in Indian Banking:

# Magnitude, Determinants, and Impact of Recent Policy Initiative\*

Kausik Chaudhuri • Rudra Sensarma

#### INTRODUCTION

Banking is inherently a risky activity. It entails several risks such as credit risk, market risk, liquidity risk, operational risk etc. Prudent banking practice involves managing the risks and not eliminating them. The same is the case for credit risk which, if not managed effectively, eventually leads to bad loans or non-performing assets (NPAs). While it is neither feasible nor desirable for banks to have zero NPAs, a proper understanding of NPAs is required to manage them, with a view to keeping them under control. In this connection it becomes imperative to understand the determinants of NPAs. This is important both from the regulatory as well as managerial angles. For the regulator, NPAs are crucial since they constitute the first trigger of banking crises. Hence, it is important to ascertain the determinants of NPAs that will help in monitoring the level of bad loans so as to pre-empt any possibilities of a banking crisis. For the bank manager, NPAs eat into the bank's profitability, as banks are not allowed to book income on NPAs and, at the same time, are required to make provision for such accounts as per the regulator's guidelines. Moreover, managerial and financial resources of the bank are diverted towards resolution of NPA problems causing lost opportunities for more productive use of resources. A bank saddled with NPAs might tend to become risk averse in making new loans, particularly to SMEs. According to Merton (1995), the efficiency of the central business activities of financial intermediaries depends critically on their customer liabilities being default-free. Hence an awareness of the determinants of NPAs becomes crucial for efficient decision making at the managerial level. It is with this motivation that we study the problem of NPAs in Indian banking. More specifically, we examine the extent of the problem; and discuss the prudential norms and regulatory responses. Finally, we attempt to identify the determinants of NPAs and examine the impact of policy measures on NPAs in Indian banking.

The rest of the paper proceeds as follows: The second section outlines the relevant literature in modelling problem loans. The third section presents an overview of the Indian banking system and introduces the problem of NPAs in the context of Indian banking. The fourth section discusses the prudential norms and regulatory response to the problem of NPAs in India. The fifth section introduces the empirical methodology and the data for our analysis and the sixth section presents and discusses the empirical

<sup>\*</sup> The authors gratefully acknowledge useful comments received from M. Jayadev, K.L. Krishna, and R. Radhakrishna, on earlier drafts of the paper. The authors are responsible for remaining errors, if any.

results on the determinants of NPAs. The next section explores the impact of policy measures on the level of NPAs. Finally, the eighth section concludes by collating the findings and providing some policy implications.

#### LITERATURE REVIEW

The academic literature has mostly dealt with determinants of banking crisis, which is the most severe consequence of bad loans in a banking system. Gonzalez-Hermosillo (1999) analysed the role of microeconomic and macroeconomic factors in five episodes of banking system problems in the US. The paper found that low capital equity and reserve coverage of problem loans ratio are the leading indicators of banking distress and failure. Demirguc-Kunt and Detragiache (2000) employed a multivariate logit framework to develop an early warning system for banking crisis and a ratings system for bank fragility. Beck, Demirguc-Kunt, and Levine (2005) examined the interlinkage between bank concentration and banking system fragility. The paper concluded that higher bank concentration is associated with lower probability of banking crisis. Moreover, institutions and regulations that facilitate bank competition are associated with less banking system fragility. Some papers have also specifically looked at the aspect of banking system fragility which we are focusing on, viz. NPAs. Fernandez de Lis, Martinez-Pages, and Saurina (2000) found that GDP growth, bank size, and capital had negative effect on NPAs while loan growth, collateral, net interest margin, debt-equity, market power, and regulation regime had a positive impact on NPAs. According to, Bloem and Gorter (2001), NPAs may be caused by wrong economic decisions or by plain bad luck.

In the Indian context too, a few papers have looked at the determinants of NPAs. Rajaraman, Bhaumik, and Bhatia (1999) and Rajaraman and Vasishtha (2002) explained variations in NPAs across Indian banks through differences in operating efficiency, solvency, and regional concentration. Das and Ghosh (2005) studied the association between risk-taking and productivity using data from public sector Indian banks over the period 1995-6 to 2000-1. They documented that capital to risk-asset ratio and loan growth have a significant negative effect on NPAs. However, the advances to priority sector do not increase NPAs. In another exercise, Das and Ghosh (2003) studied the determinants of NPAs in Indian public sector banks and identified macroeconomic factors such as GDP growth and micro-economic factors such as real loan growth, operating expenses, and size as the main factors associated with NPAs. In addition to these findings, Ranjan and Dhal (2003) found that terms of credit and different measures of bank size also affect the level of NPAs. In this paper, we explicitly try to examine the impact of recent policy initiatives on NPAs after controlling for both bank-specific and macroeconomic variables.

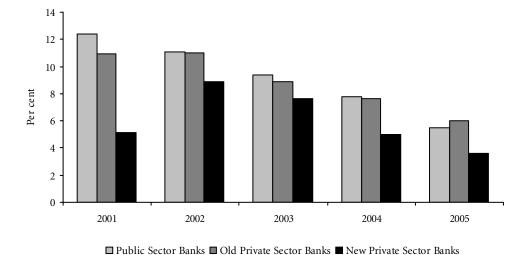
#### INDIAN BANKING SYSTEM AND ITS NPA PROBLEM

The Indian banking system is characterized by different groups of banks categorized into state-owned or public sector banks, domestic private banks, and foreign banks, which compete amongst each other in almost all areas of banking business. Table 9.1 provides the present structure of the Indian banking industry. The numbers in the table indicate that the state-owned public sector banks dominate the banking industry in terms of presence and asset size. However,

**TABLE 9.1** Asset Structure of Indian Commercial Banking System

(as at end-March 2005)

| Institutional Category                                               | No. of<br>Institutions | Outstanding Assets<br>(Rs crores) | Assets (per cent to total) |
|----------------------------------------------------------------------|------------------------|-----------------------------------|----------------------------|
| SCBs                                                                 | 286                    | 2,045,748                         | 100.0                      |
| (a) Public sector banks                                              | 28                     | 1,773,939                         | 72.9                       |
| (i) State Bank group                                                 | 8                      | 627,075                           | 25.8                       |
| <ul><li>(ii) Nationalized banks</li><li>(iii) Other Public</li></ul> | 19                     | 1,065,504                         | 43.8                       |
| Sector Bank*                                                         | 1                      | 81,360                            | 3.3                        |
| (b) Private sector banks                                             | 29                     | 133,494                           | 17.6                       |
| (i) Old private banks                                                | 20                     | 294,422                           | 5.5                        |
| (ii) New private banks                                               | 9                      | 154,128                           | 12.1                       |
| (c) Foreign banks                                                    | 31                     | 77,866                            | 6.3                        |
| (d) RRBs                                                             | 196                    | 2,045,748                         | 3.2                        |


Note: \* IDBI Ltd, which became an SCB with effect from 11 October 2004.

Source: Compiled based on various tables in Report on Trend and Progress in Banking in India, 2004-5.

the new domestic private banks, which were set-up in 1995 subsequent to deregulation, have quickly occupied a significant position as compared to the old private banks.

Prior to the 1990s, the banking regulator, viz. the RBI, strictly controlled the banking system. Policies such as administered interest rates, directed lending, and restricted entry were in place in order to help the government achieve its social objectives. However, towards the early 1990s it was realized that such severe controls were adversely impacting the profitability of banks and the efficiency of the banking system as a whole. In response to this, the RBI initiated the banking sector reforms of 1992 on the recommendations of the first Narasimham Committee on financial sector reforms (1991). Some of the areas where reforms were undertaken are deregulation of entry norms, branch de-licencing, deregulation of interest rate structure, allowing greater autonomy to public sector banks, reduction of the cash reserve ratio (CRR) and the statutory liquidity ration (SLR), setting capital adequacy norms of a minimum 8 per cent capital to risk-weighted assets ratio (CRAR), and the imposition of strict income recognition and provisioning norms. Towards the late 1990s, in the aftermath of the South East Asian Crisis and following the Basel Committee recommendations, the Report of the second Narasimham Committee (April 1998) suggested further reforms in the banking sector. The committee recommended higher CRAR (now at the minimum 9 per cent stipulated by RBI), admitting market risk on government securities, stricter NPA norms, introduction of assets-liabilities management and risk management guidelines. Around the same time (May 1998), the working group for harmonizing the role and operations of DFIs and banks (the Khan Committee) recommended consolidation of the banking system through a move towards universal banking, mergers between banks and DFIs, and harmonizing the operations and regulatory frameworks of these two types of financial intermediaries.

While it is often argued that the banking sector reforms in India were successful in enhancing efficiency and productivity of banks (Sensarma 2006), one of the problems that still remains is the overhang of bad loans or NPAs. As on 31 March 2004, the gross NPAs to gross advances ratio of SCBs in India was 5.2 per cent while the net NPAs (net of provisioning) to net advances ratio was 2.2 per cent. Table 9.2 presents a summary of the state of the NPA problem in the Indian banking system. As can be seen from the table, NPA ratios have been declining over the years for all bank groups. Net NPA ratio was the highest for old private sector banks at end-March 2005 (2.7 per cent), followed by public sector banks, new private banks, and foreign banks. In further analysis we ignore the RRBs since they function with different objectives and business models than the rest of the groups and hence are not comparable with them. They own only 3.2 per cent of the assets of the industry and as is customary in Indian banking studies, we do not include them in our analysis. Furthermore, the numbers in Table 9.2 indicate that the problem of NPAs was more severe for domestic banks as compared to that for foreign banks. Figure 9.1 displays the situation in terms of gross NPAs to gross advances ratio of scheduled domestic banks. Two interesting observations emerge: (i) Over the years the ratio has been decreasing for the public sector banks, the same is true with the private banks except for the year 2002; (ii) In 2005, this ratio for the public sector banks was lower than that of old-private banks for the first time for the years under study. For domestic banks, the problem can be serious since they own more than 90 per cent of the assets of the

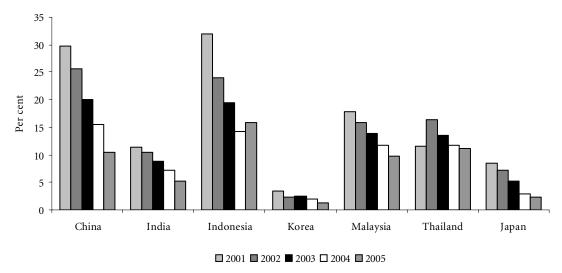


Source: Report on Trend and Progress in Banking in India, Reserve Bank of India, 2003-4 and 2004-5.

Figure 9.1: Gross NPAs to Gross Advances, 2001–5 Public Sector and Private Sector Banks

**TABLE 9.2** Incidence of Gross and Net NPAs of SCBs (at end-March)

(amount in Rs crore)


| Bank Group/Year          | Gross<br>Advances | Gross<br>NPAs | Percentage<br>of Gross<br>NPAs to<br>Gross<br>Advances | Percentage<br>of Gross<br>NPAs to<br>Total<br>Assets | Net<br>Advances | Net<br>NPAs | Percentage<br>of Net<br>NPAs to<br>Net<br>Advances | Percentage<br>of Net<br>NPAs to<br>Total<br>Assets |
|--------------------------|-------------------|---------------|--------------------------------------------------------|------------------------------------------------------|-----------------|-------------|----------------------------------------------------|----------------------------------------------------|
| SCBs                     |                   |               |                                                        |                                                      |                 |             |                                                    |                                                    |
| 2001                     | 558,766           | 63,741        | 11.4                                                   | 4.9                                                  | 526,328         | 32,461      | 6.2                                                | 2.5                                                |
| 2002                     | 680,958           | 70,861        | 10.4                                                   | 4.6                                                  | 645,859         | 35,554      | 5.5                                                | 2.3                                                |
| 2003                     | 778,043           | 68,717        | 8.8                                                    | 4.0                                                  | 740,473         | 32,671      | 4.4                                                | 1.9                                                |
| 2004                     | 902,026           | 64,786        | 7.2                                                    | 3.3                                                  | 862,643         | 24,617      | 2.9                                                | 1.2                                                |
| 2005                     | 1,152,682         | 64,439        | 5.2                                                    | 2.7                                                  | 1,115,663       | 22,289      | 2.0                                                | 0.9                                                |
| Public Sector Banks      |                   |               |                                                        |                                                      |                 |             |                                                    |                                                    |
| 2001                     | 442,134           | 54,672        | 12.4                                                   | 5.3                                                  | 415,207         | 27,977      | 6.7                                                | 2.7                                                |
| 2002                     | 509,368           | 56,473        | 11.1                                                   | 4.9                                                  | 480,681         | 27,958      | 5.8                                                | 2.4                                                |
| 2003                     | 577,813           | 54,090        | 9.4                                                    | 4.2                                                  | 549,351         | 24,867      | 4.5                                                | 1.9                                                |
| 2004                     | 661,975           | 51,538        | 7.8                                                    | 3.5                                                  | 631,383         | 18,860      | 3.0                                                | 1.3                                                |
| 2005                     | 877,825           | 48,541        | 5.5                                                    | 2.7                                                  | 848,912         | 17,490      | 2.1                                                | 1.0                                                |
| Old Private Sector Banks |                   |               |                                                        |                                                      |                 |             |                                                    |                                                    |
| 2001                     | 39,738            | 4346          | 10.9                                                   | 5.1                                                  | 37,973          | 2771        | 7.3                                                | 3.3                                                |
| 2002                     | 44,057            | 4851          | 11.0                                                   | 5.2                                                  | 42,286          | 3013        | 7.1                                                | 3.2                                                |
| 2003                     | 51,329            | 4550          | 8.9                                                    | 4.3                                                  | 49,436          | 2740        | 5.5                                                | 2.6                                                |
| 2004                     | 57,908            | 4392          | 7.6                                                    | 3.6                                                  | 55,648          | 2140        | 3.8                                                | 1.8                                                |
| 2005                     | 70,412            | 4206          | 6.0                                                    | 3.2                                                  | 67,742          | 1859        | 2.7                                                | 1.4                                                |
| New Private Sector Banks |                   |               |                                                        |                                                      |                 |             |                                                    |                                                    |
| 2001                     | 31,499            | 1617          | 5.1                                                    | 2.1                                                  | 30,086          | 929         | 3.1                                                | 1.2                                                |
| 2002                     | 76,901            | 6811          | 8.9                                                    | 3.9                                                  | 74,187          | 3663        | 4.9                                                | 2.1                                                |
| 2003                     | 94,718            | 7232          | 7.6                                                    | 3.8                                                  | 89,515          | 4142        | 4.6                                                | 2.2                                                |
| 2004                     | 119,511           | 5963          | 5.0                                                    | 2.4                                                  | 115,106         | 2717        | 2.4                                                | 1.1                                                |
| 2005                     | 127,420           | 4576          | 3.6                                                    | 1.6                                                  | 123,655         | 2292        | 1.9                                                | 0.8                                                |
| Foreign Banks            |                   |               |                                                        |                                                      |                 |             |                                                    |                                                    |
| 2001                     | 45,395            | 3106          | 6.8                                                    | 3                                                    | 43,063          | 785         | 1.8                                                | 0.8                                                |
| 2002                     | 50,631            | 2726          | 5.4                                                    | 2.4                                                  | 48,705          | 920         | 1.9                                                | 0.8                                                |
| 2003                     | 54,184            | 2845          | 5.3                                                    | 2.4                                                  | 52,171          | 921         | 1.8                                                | 0.8                                                |
| 2004                     | 62,632            | 2894          | 4.6                                                    | 2.1                                                  | 60,506          | 900         | 1.5                                                | 0.7                                                |
| 2005                     | 77,026            | 2192          | 2.8                                                    | 1.4                                                  | 75,354          | 648         | 0.9                                                | 0.4                                                |

Source: Compiled based on various tables in Report on Trend and Progress in Banking in India, 2003-4 and 2004-5.

banking industry and thus because of their sheer size are extremely crucial for the financial stability of the economy. Moreover, because of their significant contribution to domestic industrial credit and mobilizing deposits, the issue of prudent lending and effective credit risk management is paramount for these banks. As such, our study concentrates on the NPA management of the domestic banks in India.

To get an idea of the scale of India's bad loans problem in comparison with the rest of the world, we take a look at some cross-country experience with NPAs. Table 9.3 provides a comparison of incidence of NPAs in India with that in some selected countries across geographical regions. In Figure 9.2, we only concentrate on some selected Asian countries. Note that the ratio is lower in India compared to other countries except for Japan and Korea. However, if we look at the average rate of reduction per year, India's performance ranks after Japan, China, and Korea.

We observe that the incidence of NPAs has come down over the past few years for almost all countries reported in the table. Moreover, incidence of NPAs in India appears to be quite low in comparison to some other Asian economies such as China, Indonesia, and Malaysia. However, some emerging economies such as Brazil and Korea have lower incidence of NPAs than India. Developed countries such as USA, Australia, and Canada, expectedly, have the lowest levels of NPAs. Clearly, while India's bad loans problem is not as severe as in several other comparable economies, there is a need to manage NPAs and reduce them further. As we



Source: Global Financial Stability Report, IMF, April 2006.

Figure 9.2: Gross Non-performing Loans to Total Loans (per cent), 2001–5

TABLE 9.3 Cross-country Comparison of Gross Non-performing Loans to Total Loans

(per cent, 2001-5)

|               |      |      |      | ·1 . |      |
|---------------|------|------|------|------|------|
| Country       | 2001 | 2002 | 2003 | 2004 | 2005 |
| Brazil        | 5.6  | 4.8  | 4.8  | 3.8  | 4.1  |
| Russia        | 6.2  | 5.6  | 5    | 3.8  | 3.4  |
| China         | 29.8 | 25.6 | 20.1 | 15.6 | 10.5 |
| India         | 11.4 | 10.4 | 8.8  | 7.2  | 5.2  |
| Indonesia     | 31.9 | 24   | 19.4 | 14.2 | 15.8 |
| Korea         | 3.4  | 2.4  | 2.6  | 1.9  | 1.2  |
| Malaysia      | 17.8 | 15.9 | 13.9 | 11.7 | 9.8  |
| Thailand      | 11.5 | 16.5 | 13.5 | 11.8 | 11.1 |
| Egypt         | 16.9 | 20.2 | 24.2 | 26.9 | 26   |
| South Africa  | 3.1  | 2.8  | 2.4  | 1.8  | 1.6  |
| Australia     | 0.7  | 0.6  | 0.4  | 0.3  | 0.2  |
| Canada        | 1.5  | 1.6  | 1.2  | 0.7  | 0.5  |
| Japan         | 8.4  | 7.2  | 5.2  | 2.9  | 2.4  |
| United States | 1.3  | 1.4  | 1.1  | 0.8  | 0.7  |
|               |      |      |      |      |      |

Source: Global Financial Stability Report, IMF, April 2006.

have stated before, the problem of NPAs when ignored has the potential of causing economic and financial deterioration of an economy. To tackle the problem, the regulators have initiated several policy responses, which are discussed in the next section.

# PRUDENTIAL NORMS AND REGULATORY RESPONSE TO NPAs

#### Classification of Assets as Non-performing

An NPA refers to an asset that stops generating income for a bank. As per RBI guidelines (RBI 2005a), an NPA is a loan or an advance where:

- 1. interest and/or instalment of principal remain overdue for a period of more than 90 days in respect of a term loan;
- the account remains 'out of order' (that is, if the outstanding balance remains continuously in excess of the sanctioned limit/drawing power), in respect of an overdraft/cash credit;
- 3. the bill remains overdue for a period of more than 90 days in the case of bills purchased and discounted;
- 4. a loan granted for short duration crops will be treated as NPA, if the instalment of principal or interest thereon remains overdue for two crop seasons; and
- 5. a loan granted for long duration crops will be treated as NPA, if the instalment of principal or interest thereon remains overdue for one crop season.

Assets that generate income for the bank, that is, non-NPAs, are known as standard assets. Once an asset becomes an NPA, banks have to make provision for the uncollected income from these assets. The provisioning is made on the basis of the classification of assets into the following categories: sub-standard, doubtful, and loss assets. A Substandard asset is one which has remained NPA for a period less than or equal to 12 months. A doubtful asset is one, which has remained in the sub-standard category for a period of 12 months and a loss asset is one where the bank or internal or external auditors have identified loss or the RBI inspection but the amount has not been written off wholly. In other words, such an asset is considered uncollectiable and of such little value that its continuance as a bankable asset is not warranted although there may be some salvage or recovery value.

After classifying assets into the above categories, banks are required to make provisions against these assets for the interest not collected by them. The provisioning norms are as follows. Loss assets should be either written off or100 per cent of the outstanding should be provided for. In case of doubtful assets, provisioning requirement is 100 per cent of the 'unsecured portion' and for the 'secured portion' the requirement ranges from 20 per cent to 100 per cent depending on the age of the NPA. In the case of sub-standard assets, provision of 10 per cent on total outstanding is to be made. Those sub-standard assets that are also 'unsecured exposures' require additional provisioning of 10 per cent, that is, a total of 20 per cent on the outstanding balance. In the case of standard assets, banks are required to make a general provision of a minimum of 0.25 per cent on global loan portfolio basis.

#### The Response

Several measures have been implemented by the RBI and the Government of India to contain the level of NPAs (RBI 2005b). These include debt recovery tribunals (DRTs), Corporate Debt Restructuring (CDR) scheme, Securitization and Reconstruction of Financial Assets and Enforcement of Security Interest (SARFAESI) Act, and Asset Reconstruction Companies (ARCs). Settlement Advisory Committees have also been formed at regional and head office levels of commercial banks. In order to provide an additional option to banks and to develop a healthy secondary market for NPAs, guidelines on sale/purchase of NPAs were issued in July 2005 where securitization companies and reconstruction companies are not involved.

Some other steps that have been taken to reduce NPAs are: improvement in supervisory mechanism through prompt corrective action (PCA), sharing of borrower information among banks by setting up of Credit Information Bureau of India Limited (CIBIL) and rewarding low NPA banks with freedom in dividend payments to the shareholders. With regard to the first measure mentioned, RBI initiates some structured and discretionary actions against those banks which have hit certain 'trigger points' on three parameters, viz. CRAR, net NPAs, and return on assets (ROA). The two trigger points for net NPAs are 10 per cent and 15 per cent beyond which the concerned bank has to implement measures such as a special drive to reduce NPAs, review its loan and credit-risk management policies, not enter new lines of business etc. With regard to the second measure mentioned above, CIBIL is a repository of information containing credit history of commercial and consumer borrowers that banks can make use of in evaluating their risks and taking their credit decisions. With regard to the last measure mentioned, RBI has granted general permission to those banks to declare dividends (subject to a cap of 40 per cent on dividend payout ratio) for the accounting year ended 31 March 2005 onwards, which comply with: (i) CRAR of at least 9 per cent for preceding two years and the accounting year for which it proposes to declare dividend; and (ii) net NPA ratio of less than 7 per cent. In case any bank does not meet the above CRAR norm, but has a CRAR of at least 9 per cent for the accounting year for which it proposes to declare dividend, it is allowed to declare dividend, provided its net NPA ratio is less than 5 per cent.

Thus, banks have a variety of options and legislations to take recourse to in order to resolve their bad loans problem. There are also supportive supervisory mechanisms available with the RBI and incentives provided to banks for reducing the level of NPAs.

#### The DRT Act

Coincident with the first phase of banking sector reforms, one of the first legislations to address the problem of NPAs in India was the Recovery of Debts Due to Banks and Financial Institutions Act, 1993, which came into force on 24 June 1993. The Act recommended the setting up of DRTs for speedy adjudication and recovery of debts (where the claim is more than Rs 10 lakh) due to banks and financial institutions (FIs). The Act also recommended setting up Debt Recovery Appellate Tribunals (DRATs) to entertain appeals against any order made by a DRT. Alongside this, the RBI actively promoted the compromise settlements or one time settlements (OTS) to encourage out-of-court settlements of bad debts. Lok Adalats (or people's courts), organized by DRTs, help banks to settle disputes involving small loans, but the ceiling has now been raised from Rs 5 lakh to Rs 20 lakh.

As on 31 December 2005, there were 29 DRTs and one DRAT in India. From 1 January 1996 to 31 December 2005, 86,922 cases involving an amount of Rs 184,538.01 crore were filed in DRTs, out of which 59,115 cases involving an amount of Rs 91,866.59 crore were disposed of and recovery of Rs 24,915.28 crore was made (Government of India 2005). In addition to the actual recovery, DRTs are one of the main factors behind the defaulters coming forward for OTS with the Banks and FIs. Recoveries under OTS amounted to Rs 1095 crore and those under Lok Adalats amounted to Rs 328 crore as at end-June 2004 (RBI 2004a, b).

According to RBI guidelines, 'Unsecured exposure is defined as an exposure where the realisable value of the security, as assessed by the bank/approved valuers/Reserve Bank's inspecting officers, is not more than 10 per cent, ab-initio, of the outstanding exposure. "Exposure" shall include all funded and non-funded exposures (including underwriting and similar commitments). "Security" will mean tangible security properly discharged to the bank and will not include intangible securities like guarantees, comfort letters etc' (RBI 2005a).

#### The CDR Scheme

On 23 August 2001, the RBI issued guidelines to banks and financial institutions to implement CDR System. CDR is a voluntary and non-statutory arrangement between lenders and borrowers for timely and orderly restructuring of debts of corporate entities affected by certain internal and external factors. As on 31 October 2005, out of 175 cases with total debt of Rs 81,716 crore that were referred for CDR, 138 cases with total debt of Rs 75,756 crore were restructured, 30 cases were rejected, and 7 were under process.<sup>2</sup>

#### The SARFAESI Act and ARC

The SARFAESI Act was passed on 21 June 2002 to enable banks and FIs to attach the assets of defaulting borrowers without having to approach the courts for recovery. The Act provides for the sale of financial assets by banks and FIs to securitization companies (SCs) and ARCs. SCs and ARCs are institutions that acquire NPAs from FIs and banks with the objective of recovery thereby taking up their burden of NPAs. The first ARC, viz. Asset Reconstruction Company (India) Limited (ARCIL) was also set up under the Act and commenced business on 29 August 2003. This Act was later amended through the Enforcement of Security Interest and Recovery of Debts Laws (Amendment) Act, 2004, which was passed on 29 December 2004. The new Act made it mandatory for borrowers who appeal to a DRAT to deposit upfront 50 per cent of the amount involved in the dispute. This is expected to check borrowers from delaying repayment under the cover of trivial cases. Recoveries under the SARFAESI Act, 2002 amounted to Rs 1748 crore as at end-June 2004 and recoveries under asset sales to ARCIL amounted to Rs 9631 crore (RBI 2004a, b).

#### EMPIRICAL METHODOLOGY AND DATA

In this section, we introduce the methodology used in our empirical analysis. Our objective is to identify the determinants of NPAs in Indian banking. As such we need to estimate a relationship of the following form, using bank-level data across several years.

$$NPA_{it} = \alpha + \beta X_{it} + \varepsilon_{it}$$
 (9.1)

Here, X represents factors, which are supposed to determine NPAs, i and t represent bank and year, respectively, and  $\varepsilon$  is the unexplained residual. Using panel data across banks and over years, we estimate the above relationship using a random effects regression specification. We could not use the fixed-effects models due to the fact that some of the explanatory variables, for example, growth in GDP remain bank-invariant. For the time being, we refer to X as a variety of bank level financial variables as well as macroeconomic indicators that we employ to explain NPAs.

The financial data are taken from various issues of Financial Analysis of Banks and Performance Highlights of Banks published by the Indian Banks' Association. Data on macroeconomic variables have been obtained from the RBI's website. We use data on three broadly defined groups of Indian banks, which are homogenous in the nature of their functioning and governance structures. As such, our data set consists of 27 public sector banks (public banks, henceforth), 26 domestic private sector banks (private banks, henceforth) and 9 new domestic private sector banks (new private banks, henceforth) that started operating after deregulation. The time period of analysis is from 1998 to 2003.<sup>3</sup>

#### EMPIRICAL RESULTS

Our analysis consists of estimating different versions of the NPA equation (9.1). In all our estimations, the dependent variable is taken as the ratio of net NPAs to net advances.<sup>4</sup> As determinants of NPAs, we include the following variables. Proportion of loans to priority sector (PRADV) is included as a determinant in order to account for the argument that the priority sector loans are responsible for the most number of defaults. While it is also argued that it is the non-priority sector that contributes to the biggest defaults in terms of size, controlling for this variable appears sufficient to take care of the nature of the sector to which most of the loans are given as a determinant of NPAs. Size (SIZE) taken as logarithm of assets acts as a control for whether bigger banks are more vulnerable to the NPA problem than smaller banks. Proportion of rural and semiurban banks (RSUBR) is included as a determinant to study whether the location of banks, that is, in rural or urban areas, matters in causing NPAs. ROA is considered as a determinant since profitability of banks would have a close relation with its NPAs. It is expected that the more profitable banks would have less NPAs. Operating cost ratio (OCR) is included as a determinant to proxy for the importance of operating efficiency. It is expected that inefficient banks with higher operating costs would also

<sup>&</sup>lt;sup>2</sup> Data provided on the website of the Corporate Debt Restructuring Cell (www.cdrcell.com).

<sup>&</sup>lt;sup>3</sup> By 1998, we imply the financial year 1997–8, and similarly for all other years.

<sup>&</sup>lt;sup>4</sup> It may be noted that even though the dependent variable is truncated between 0 and 1, which may call for a censored regression technique to avoid biased estimates, Greene (2004) pointed out that the bias is very small in case of panel data with T larger than 5, which which is the case in our sample.

have higher NPAs. Both ROA and OCR are accounting indicators of bank performance.<sup>5</sup> Capital adequacy ratio (CAR) is considered to account for the importance of capitalization in causing NPAs. It is expected that adequately capitalized banks would exhibit lower NPAs. GDP growth is included to control for macroeconomic conditions, which, owing to business cycles, have an important role to play in causing defaults. It may be expected that when the macroeconomic conditions are sound and GDP growth is higher, the level of NPAs would be lower. Finally, growth in advances (ADVGR) is included as a determinant to represent the aggressiveness of a bank in its lending behaviour. More aggressive banks may push riskier loans and hence end up with more NPAs (Clair 1992). On the other hand, banks that concentrate on more lending may have developed expertise in effectively managing credit risk and hence may exhibit lower NPAs. Therefore, the role of lending aggressiveness in NPAs is ambiguous.

We begin the discussion of our analysis with the estimation results of the following version of equation (9.1), which we refer to as Model I (sub-scripts are not explicitly shown henceforth):

NPA = f(PRADV, SIZE, RSUBR, ROA,  
OCR, CAR, GDPGR, ADVGR) + 
$$\varepsilon$$
 (9.2)

Column 2 of Table 9.4 summarizes the results.<sup>6</sup> The coefficient of size turns out to be negative indicating that large banks may have better risk management procedures and technology, which allows them to enjoy lower NPAs. The presence of rural and semi-urban branches appears to have a positive association with NPAs. In other words, nonurban branches contribute to the most NPAs. This is not surprising since the maximum amount of priority sector credit disbursed by banks is in the non-urban areas, that are generally perceived to have higher default rates. ROA is found to be negatively associated with NPAs.<sup>7</sup> In other words, profitable banks exhibit lower NPAs. CAR is negatively associated with NPAs implying that well capitalized banks have fewer problem loans. Coming to macroeconomic conditions, we find that GDP growth is negatively associated with NPAs, which would signify that the bad loans problem is less when the economy at large is doing well and the macroeconomic environment is conducive for business growth. We also tried an interest rate variable to proxy for macroeconomic environment in place of GDP growth. Employing the State Bank of India's lending rate in our estimation, we found that its coefficient is positive and significant, indicating that NPAs are higher in periods of high interest rates. This is expected since higher interest rates create pressure on firms' repayment capabilities. However, we do not retain both indicators of macroeconomic conditions in the same estimation and report the results only with GDP growth henceforth. The rest of the variables exhibit theoretically expected relationships with NPAs, but the strengths of the relationships may be weak since the coefficients of these variables are found to be statistically insignificant.

**TABLE 9.4** Nature and Strength of the Impact of Various Factors on NPAs (Dependent Variable: Ratio of Net NPAs to Net Advances)

| Explanatory Variable (1) | Model I (2)                | Model II (3)                |
|--------------------------|----------------------------|-----------------------------|
| PRADV                    | Positive and insignificant | Negative and insignificant  |
| SIZE                     | Negative and significant   | Negative and significant    |
| RSUBR                    | Positive and significant   | Positive and insignificant  |
| ROA                      | Negative and significant   | Negative and significant    |
| OCR                      | Positive and insignificant | Positive and insignificant  |
| CAR                      | Negative and significant   | Negative and significant    |
| GDP Growth               | Negative and significant   | Negative and significant    |
| ADV Growth               | Negative and insignificant | Positive and insignificant  |
| PVTDUM                   | -                          | Negative and insignificant  |
| NEWPVTDUM                | _                          | Negative and significant    |
|                          |                            | (larger (in absolute value) |
|                          |                            | than coefficient of PVTDUM  |

Source: Authors.

<sup>&</sup>lt;sup>5</sup> Net interest margin (NIM) in this regard can also be used as another indicator of bank performance. NIM would indicate the importance of spread in causing NPAs. Once again, it is expected that higher spreads would be associated with lower NPAs.

Throughout the analysis, we do not present the actual coefficients and the associated t-statistics. However, interested readers are encouraged to contact the authors for detailed results.

<sup>&</sup>lt;sup>7</sup> One may argue that ROA is endogenous. We have also used the first lag of ROA as an independent variable in the regression. Our results as reported remain invariant. We also use the second and third lag of ROA as instruments for ROA and conduct the Davidson-MacKinnon test of exogeneity. The result confirms that ROA can be treated as an exogenous variable in our model.

We are also interested in looking at the impact of ownership on NPAs. In other words, does the nature of ownership have any bearing on the level of NPAs? This issue can easily be investigated by including ownership dummies (PVTDUM for old private banks and NEWPVTDUM for new private banks) in the above specification and estimating the NPA equation (Model II). The results summarized in the last column of Table 9.4 indicate that new private banks may be holding the lowest levels of NPAs in their books, followed by old private banks, and public sector banks in this order. In other words, after controlling for other factors, new private banks appear to be managing their NPAs most effectively followed by the old private banks. Public sector banks appear to be lagging behind their private counterparts in NPA management.

#### IMPACT OF POLICY RESPONSE

In the fourth section, we referred to several policy responses to the problem of NPAs. In this section we attempt to gauge the impact of some of these policies on the level of NPAs in India. We restrict our focus to only those policies, which our data set allows us to analyse, specifically, these are the DRT Act, the CDR scheme, ARC, and the SARFAESI Act.

#### Impact of DRT Act

In order to ascertain the impact of DRTs on NPAs in India, we investigate whether the setting up of DRTs in each year had any impact on NPAs. For this we compute the proportion of states that had set up DRTs in each year (PDRT). We then include PDRT in our NPA equation given in (9.2) (Model III). With this reduced structure, we re-estimate the

NPA equation and the results are summarized in column 2 of Table 9.5.8 We can clearly observe that the coefficient of PDRT is negative and statistically significant, thereby indicating that as more and more states have set up DRTs, it may have indeed led to lower NPAs in Indian banking, after controlling for other factors that may affect NPAs. We also note that the signs and significance of most of the other explanatory variables remain the same.

#### Impact of the CDR Scheme

To find out whether the CDR Scheme had any ameliorating effect on NPAs, we compute a dummy variable (CDRDUM) that takes the value one for the year 2002 when the CDR scheme was implemented and zero for other years. We then include CDRDUM in our NPA equation (9.2) and estimate the equation (Model IV). If the CDR scheme has had a positive impact on the bad loans problem, then the coefficient of this variable should turn out to be negative. The results of this exercise are summarized in column 3 of Table 9.5; they indicate that the coefficient of CDRDUM is negative and statistically insignificant using a two-tailed *t*-test, however, significant using a one-tailed *t*-test. This result indicates that, after controlling for other factors that may affect NPAs, it appears that the CDR Scheme may have led to lower NPAs.

#### Impact of the SARFAESI Act

To analyse whether the SARFAESI Act had any beneficial effects on the problem of bad loans in Indian banking, we create a dummy variable (SARFAESIDUM), this time for the year 2003 when the SARFAESI Act was passed. We then

TABLE 9.5

Nature and Strength of the Impact of Policy Responses on NPAs

(Dependent Variable: Ratio of Net NPAs to Net Advances)

| Explanatory Variable (1) | Model III (2)              | Model IV (3)               | Model V (4)                |
|--------------------------|----------------------------|----------------------------|----------------------------|
| PRADV                    | Positive and insignificant | Positive and insignificant | Positive and insignificant |
| SIZE                     | Negative and insignificant | Negative and significant   | Negative and significant   |
| RSUBR                    | Positive and insignificant | Positive and significant   | Positive and significant   |
| OCR                      | Positive and insignificant | Positive and insignificant | Positive and insignificant |
| CAR                      | Negative and significant   | Negative and significant   | Negative and significant   |
| GDP Growth               | Negative and significant   | Negative and significant   | Negative and insignificant |
| ADV Growth               | Negative and insignificant | Negative and insignificant | Negative and insignificant |
| PVTDUM                   | Negative and insignificant | Negative and insignificant | Negative and insignificant |
| NEWPVTDUM                | Negative and significant   | Negative and significant   | Negative and significant   |
| PDRT                     | Negative and significant   | _                          | _                          |
| CDR Scheme Dummy         | _                          | Negative and insignificant | _                          |
| SARFEASI Act Dummy       | _                          | _                          | Negative and insignificant |

Source: Authors.

<sup>&</sup>lt;sup>8</sup> In this set of estimations, we retain only one accounting indicator of bank performance, viz. OCR. Including ROA or NIM does not change our results qualitatively.

include the SARFAESIDUM in our NPA equation given in (9.2) (Model V). If the passing of the SARFAESI Act has indeed aided recovery of bad loans, then the coefficient of this variable should turn out to be negative. The results of this exercise are summarized in the last column of Table 9.5. We observe that the coefficient of SARFAESIDUM is negative but insignificant. However, note that we just have one year's observation since the passing of this Act. Our evidence in this regard can, therefore, be taken as suggestive.

#### POLICY IMPLICATIONS AND CONCLUDING REMARKS

This paper reviews the problem of NPAs in Indian banking. We discuss the magnitude of the problem, the associated prudential norms, and present the different policy responses undertaken to address it. Next we undertake an empirical analysis to identify the determinants of NPAs in India banking. Finally, we investigate the impact of various policy responses on NPAs. For the purpose of the empirical analysis we consider data for 62 Indian banks for six years 1998 to 2003. We employ the technique of random effects regression to identify the determinants of bank-wise NPAs and ascertain the impact of policy responses initiated to reduce NPAs.

Our findings may be summarized as follows. The impact of priority sector lending on NPA levels is ambiguous while rural branching is associated with higher NPAs. Larger banks exhibit better credit risk management demonstrated by lower NPAs and more profitable banks also have lower NPAs. Banks with higher operating efficiency have lower NPAs and adequately capitalized banks also appear to have lower NPAs. Favourable macroeconomic conditions help to lower NPA levels while the effect of aggressive lending practices on NPA levels is ambiguous. Nature of ownership has a significant impact on NPA levels. Specifically, new private banks have the lowest NPA levels, followed by old private banks, and public sector banks in this order. Finally, policy measures implemented to tackle the NPA problem have been largely successful in achieving their objective. Setting up of DRTs, implementing the CDR Scheme, and passing of the SARFAESI Act have been successful in lowering NPAs in Indian banking.

The above findings indicate that better credit risk management practices need to be undertaken for bank lending in the non-urban sectors. The RBI should focus on smaller banks and less profitable banks that seem to exhibit higher NPAs. Adequate attention should also be paid to banks with low operating efficiency and low capitalization as also to macroeconomic cycles that appear to be important in determining NPA levels. Finally, after accounting for all the above explanations for NPAs, it appears that the public sector, and to some extent the old private sector, accounts for the bulk of the NPA problem. Thus, we conclude that while the policies that have been implemented to address the NPA problem may have been largely successful, there are further steps that can be taken by the RBI as well as by the banks themselves to tackle the problem of NPAs. These relate to rural branches, smaller banks, unprofitable banks, and inefficient banks, especially during adverse macroeconomic conditions, and more so for the public and old private sector banks. These findings are of crucial importance to banks in order to improve their credit risk management and for the regulatory-supervisory authority in devising its policies, especially in view of the importance that is now being attached to the concept of risk-based supervision in order to prioritize the allocation of supervisory resources.

#### References

Beck, T., A. Demirguc-Kunt, and R. Levine (2005), 'Bank Concentration and Fragility: Impact and Mechanics', NBER Working Papers 11500, National Bureau of Economic Research, Inc.

Bloem, Adriaan and Cornelis N. Gorter (2001), 'The Treatment of Nonperforming Loans in Macroeconomic Statistics', Working Paper No. 01/209, International Monetary Fund.

Clair, R.T. (1992), 'Loan Growth and Loan Quality: Some Preliminary Evidence from Texas Banks', Economic Review, Federal Reserve Bank of Dallas, Third Quarter, pp. 9–21.

Das, A. and S. Ghosh (2003), 'Determinants of Credit Risk in Indian State-owned Banks: An Empirical Investigation', Paper presented at the Conference on Money, Risk and Investment, Nottingham Trent University, UK.

- (2005), 'Size, Non-Performing Loan, Capital and Productivity Change: Evidence from Indian State-owned Banks', Journal of Quantitative Economics, New Series, Vol. 3, No. 2, pp. 48-66.

Demirguc-Kunt, A. and E. Detragiache (2000), 'Monitoring Banking Sector Fragility: A Multivariate Logit Approach', World Bank Economic Review, Vol. 14, No. 2, pp. 287-307.

Fernandez de Lis, S., J. Martinez-Pages, and J. Saurina (2000), 'Credit Growth, Problem Loans and Credit Risk Provisioning in Spain,' Working Paper No. 0018, Banco de Espana.

Gonzalez-Hermosillo, B. (1999), 'Determinants of Ex-Ante Banking System Distress: A Macro-Micro Empirical Exploration of Some Recent Episodes', IMF Working Paper No. 99/33.

Government of India (2005) 'Performance Budget 2005-6'.

Greene, W. (2004), 'Fixed Effects and Bias Due to the Incidental Parameters Problem in the Tobit Model', Econometric Reviews, Vol. 23, No. 2, pp. 125-47.

Indian Banks' Association, 'Performance Highlights of Banks', Mumbai, India. Various Issues.

Indian Banks' Association, 'Financial Analysis of Banks', Mumbai, India, Various Issues.

International Monetary Fund (2006), 'Global Financial Stability Report: Market Developments and Issues', Washington, DC, USA, April.

- Rajaraman, I., S. Bhaumik, and N. Bhatia (1999), 'NPA Variations Across Indian Commercial Banks: Some Findings', *Economic and Political Weekly*, Vol. 37, Nos 3 and 4, pp. 16–23.
- Rajaraman, I. and G. Vasishtha (2002), 'Non-Performing Assets of Public Sector Banks: Some Panel Results', *Economic and Political Weekly*, Vol. 37, No. 5, pp. 429–35.
- Ranjan, R. and S.C. Dhal (2003), 'Non-Performing Loans and Terms of Credit of Public Sector Banks in India: An Empirical Assessment', *RBI Occasional Papers*, Vol. 24, No. 3, pp. 81–122
- RBI (Reserve Bank of India) (1991), 'Report of the Committee on Financial Sector Reforms'.

- ——— (1998), 'Report of the Committee on Banking Sector Reforms'.
- ——— (1998), 'Report of the Working Group for Harmonising the Role and Operations of DFIs and Banks.'
  - ——— (2004a), 'Report on Currency and Finance'.
- ——— (2004b), 'Report on Trend and Progress of Banking in India, 2003–4'.
- ————(2005a), 'Master Circular—Prudential norms on Income Recognition, Asset Classification and Provisioning pertaining to Advances'.
- ——— (2005b), 'Report on Trend and Progress of Banking in India, 2004–5'.
- Sensarma, R. (2006), 'Are Foreign Banks Always the Best? Comparison of State-Owned, Private and Foreign Banks in India', *Economic Modelling*, Vol. 23, No. 4, pp. 717–35.

### India and China

### Changing Patterns of Comparative Advantage?

C. Veeramani

During the 1950s, India and China, like many other developing countries, chose the import substitution strategy for industrial development, which involved insulation from the world economy and industrialization under the aegis of state enterprises. Subsequently, there has been a paradigm shift—from import substitution to outward orientation—in many of the developing countries, including in India and China. China started the trade liberalization process in a major way in 1978. India's liberalization initiatives during the 1980s focussed primarily on internal deregulation rather than on trade liberalization. The most pronounced overhaul of India's trade policy regime occurred during the early 1990s in response to a severe balance of payment crisis.

The rationale behind trade liberalization suggests that greater competition would induce the production units to improve productivity, which is instrumental for accelerating overall economic growth. Since firms respond to world market signals, the commodity structure of the country's trade would undergo changes in accordance with the changing patterns of specialization. The conventional wisdom, based on the Heckscher-Ohlin-Samuelson (H-O-S) model, is that trade liberalization would induce reallocation of productive resources from the import competing industries to those industries where the country has comparative advantages. Therefore, while both exports and imports are expected to grow faster, trade liberalization invariably

involves some adjustment costs as some of the domestic industries may go out of business.

Does the evidence from India and China support this conventional wisdom? It is well-known that the export performance of China since the 1980s has been spectacular and that India's performance, in comparison, leaves much to be desired. Between 1980 and 2004, China's share in the world exports steadily increased from less than 1 per cent to more than 6 per cent, while India's share increased from 0.4 per cent to only 0.8 per cent. Export expansion under trade liberalization is an offshoot of resource reallocation on the basis of comparative advantage. In other words, rapid export expansion may not materialize if certain rigidities and bottlenecks stand in the way of resource reallocation, whatever the extent of trade liberalization. A question that arises in this context is: Has the process of resource reallocation been smoother in China compared to India, which enabled the former to specialize according to comparative advantage and to achieve export success? The nature and extent of resource reallocation would be reflected in the changing structure of a country's trade flows.

Patterns of specialization can change not only due to the one-time static allocation effects but also due to the long-term dynamic effects of trade liberalization (Baldwin 1992). Accumulation of productive factors, such as human and physical capital, that characterizes economic development,

can bring about a dynamic process of changing comparative advantage. For example, the road to export success for the newly industrialized countries (NICs) of Asia started with labour-intensive and low technology manufactures. However, as investments in physical and human capital rose and as labour costs increased with the accumulation of skills, relatively more sophisticated manufacturing activity expanded in these countries at the expense of labour-intensive manufactures.

This paper attempts a comparative analysis of the changing patterns of exports and specialization in India and China since 1980. Drawing upon the Chinese experience, the study throws some light on what needs to be done to accelerate India's exports. The analysis shows that the fear of 'Chinese invasion' of India's export markets is only a popular myth. On a more general level, the analysis provides some insights into the patterns of resource reallocation under trade liberalization and its implications for the cost of adjustments. The analysis excludes the service sector exports and uses data on merchandise exports at the 3-digit level of SITC for the period 1980–2003. The data are taken from the various issues of the *Handbook of Statistics* brought out by the UNCTAD.

The rest of the paper is structured as follows. A brief overview of trade policy changes in India and China is provided in the next section. The impact of the policy changes on aggregate exports in both the countries is briefly discussed in the third section. The changing patterns of exports and comparative advantages in the two countries are analysed in the fourth section. Some concluding remarks and implications of the findings for policy are provided in the fifth section.

#### TRADE POLICY REFORMS

Prior to the reforms, both India and China followed a relatively autarkic trade policy accompanied by a battery of trade and exchange controls, cutting the link between domestic and world relative prices (Lal 1995). China had a non-market command economy while India always had a large private sector and functioning markets (though subjected to state controls). The exchange rate was overvalued in both the countries, creating a bias against exports. In China, foreign trade activities were monopolized by a handful of centrally controlled foreign trade corporations. In India, an elabourate system of exchange controls and allocation was instituted to ensure that the foreign exchange earned by exporters was used to import only those commodities that conformed to the priorities set in the Five Year Plans (Srinivasan 1990).

Subsequently, there has been a paradigm shift—from import substitution to outward orientation—in both the countries. See Boxes 10.1 and 10.2 for a brief summary of the reforms in China and India, respectively.<sup>1</sup>

#### Box 10.1 Major Reforms in China

- Permission for a large number of firms to participate in foreign trade activities.
- Creation of SEZs and promotion of FDI in joint ventures.
- Liberalization of the imports of intermediate inputs (for use in the production of exports) and capital goods (for use in joint ventures).
- Liberalization of the labour market, particularly in the nonstate sector (see Meng 2000; Brooks and Tao 2003).
- Progressive reduction of the tariff rates, from about 50 per cent in 1982 (higher than the developing country average) to about 12 per cent by 2002 (lower than the developing country average) (see Table 10.1).
- Major tariff exemptions for processing trade and foreign investments.
- WTO accession in 2001.

#### Box 10.2 Major Reforms in India

- Some domestic industrial liberalization during the 1980s (Joshi and Little 1994).
- · More comprehensive and systemic liberalization since 1991.
- Complete removal of QRs on the import of capital goods and intermediates in 1992. Removal of QRs in consumer goods in early 2000s.
- Lowering of customs duties from 100 per cent in 1986 to 33 per cent by 2002 (Table 10.1).
- Complete removal of the industrial licencing system (except for a small list of industries on strategic and environmental considerations).
- Elimination of controls on investment and expansion by large industrial houses.
- · Opening up of manufacturing industries for FDI.
- Significant disinvestments of government holdings in the equity share capital of public sector enterprises (PSEs).

TABLE 10.1
Average Import Tariff Rate

(unweighted)

| Year | India | China | Developing country average |
|------|-------|-------|----------------------------|
| 1981 | 74.3  | NA    | 28.7                       |
| 1982 | NA    | 49.5  | 32.6                       |
| 1986 | 100   | 38.1  | 28.4                       |
| 1990 | 81.8  | 40.3  | 25.9                       |
| 1994 | 47.8  | 36.3  | 20.2                       |
| 1998 | 30    | 17.5  | 16.2                       |
| 2002 | 33    | 12.3  | 13.6                       |

Source: Downloaded from the World Bank website (http://siteresources. worldbank.org/INTRANETTRADE/Resources/tar2002.xls).

<sup>&</sup>lt;sup>1</sup> See Lardy (1992, 2002) for a comprehensive description of China's reform process.

#### **GROWTH OF EXPORTS**

The broad trends in the values of India's exports and imports for the period 1950-2004 can be seen from Figure 10.1. It is clear that both exports and imports were almost stagnant in India during the first two decades or so. During this period, India failed to take advantage of opportunities offered by the growing world trade. This is evident from the fact that when the world exports grew at a rate of 7.5 per cent per annum during 1950-70, exports from India grew at a much lower rate of 2.5 per cent (Table 10.2). During the 1970s, India's exports grew at the rate of 17 per cent per annum, which was quite impressive compared to the past performance. However, it must be noted that world exports during this period grew even faster at a rate of

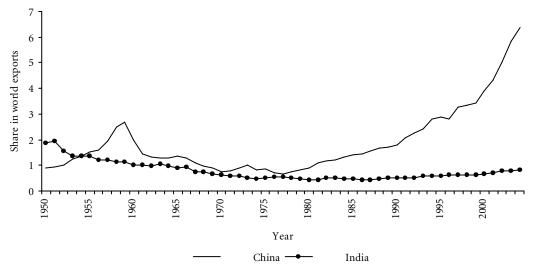
**TABLE 10.2** Average Annual Growth Rates of Exports (Million US dollars)


| Period    | India | China | World |
|-----------|-------|-------|-------|
| 1950–70   | 2.49  | 6.29  | 7.48  |
| 1970-80   | 17.25 | 20.04 | 20.42 |
| 1980-90   | 7.29  | 12.78 | 5.99  |
| 1992–2004 | 9.74  | 15.38 | 6.33  |

Source: Author's estimation using data from Handbook of Statistics, UNCTAD.

20 per cent per annum. It is striking that India's exports have been growing faster than world exports since the 1980s. The pattern of China's export growth vis-à-vis world export growth is more or less similar, but it must be noted that the rate of growth of China's exports has always been higher than that of India's and that the gap started widening since the 1980s. Import growth generally kept pace with export growth in both the countries, though China often runs a small amount of trade surplus.

India's share of world exports declined steadily from 1.9 per cent in 1950 to as low as 0.4 per cent by 1980 (Figure 10.2). The situation in China is not different either: between 1950 and 1959, China's share in world exports registered an increase from about 0.9 per cent to 2.7 per cent, but then declined steadily, reaching as low as 0.7 per cent by 1977. China's share of world exports, however, has been increasing dramatically since the late 1970s and crossed 6 per cent by 2004 while India's share increased marginally from 0.4 per cent in 1980 to 0.5 per cent in 1990 and to 0.8 per cent by 2004. The share of exports in China's GDP was 35 per cent in 2004 while it was 11 per cent for India.


Several factors might have contributed to the export success of China, such as a favourable exchange rate, low wages, availability of labour, large domestic market, huge volume FDI inflows etc. However, India does not lag much behind China with respect to these factors, except for FDI inflows.<sup>2</sup>



Source: Plotted using data from the Handbook of Statistics, UNCTAD.

Figure 10.1: Trends in India's Exports, Imports, and Trade Balance (Million US\$)

<sup>&</sup>lt;sup>2</sup> Apart from the domestic economic policies, geo-political elements may also be crucial in understanding China's export success: while the Multi Fibre Agreement stunted India's textile exports, liberal quotas were offered to China (after the Soviet occupation of Afghanistan in 1979) and other US allies in East Asia.



Source: Same as for Figure 10.1.

Figure 10.2: Comparative Exports Performance, 1950–2004

A brief discussion on the contribution of FDI to the export growth of China and India can be seen in Box 10.3.<sup>3</sup> While the multinationals mostly engage in export activities in China, they target the domestic markets in India (Wei 2005). Some explanation for this differential behaviour of multinationals in the two countries is provided in Box 10.4.

# STRUCTURE OF EXPORTS AND CHANGING COMPARATIVE ADVANTAGES

#### Composition of Exports

Table 10.3 shows the composition of exports by commodity groups for both India and China since the 1980s. It is evident that the share of manufactured goods has been

increasing steadily, at the cost of other commodity groups, in both the countries. Manufactured goods accounted for about 90 per cent of China's and 75 per cent of India's exports during 2000–3. In the case of China, much of this can be attributed to machinery and transport equipments, the share of which in total exports increased from 7 per cent to 38 per cent between 1980–4 and 2000–3. Manufactured products constitute the major part not only of the export baskets but also of the import baskets in both the countries. Overall, the structure of imports appears to be relatively persistent compared to the structure of exports.

Shifts in the commodity composition of exports according to factor intensity are shown in Table 10.4.<sup>4</sup> Overall, a noticeable shift can be seen in both the countries away

# Box 10.3 Contribution of FDI to Export Growth in China and India

A significant volume of China's FDI inflows represent 'round tripping' of capital. Wei (2005) reported that even after adjusting for this and other definitional problems, the gap in the volume of FDI into China and India remained very high. According to the World Investment Report 2003 (UNCTAD 2003), FDI has contributed to the rapid growth of China's merchandise exports at an annual rate of 15 per cent between 1989 and 2001. In 1989, foreign affiliates accounted for less than 9 per cent of total Chinese exports, but by 2002 they provided 50 per cent.

In contrast, FDI has been much less important in driving India's export growth except in IT. FDI accounted for only 3 per cent of India's exports in the early 1990s and even today, it is estimated to account for less than 10 per cent of India's manufacturing exports. The contribution of FDI to India's exports was insignificant before the 1990s as well (Chandra 1994). Most of the FDI flows to India have been domestic market seeking in nature, and go to services, electronics and computer industries.

<sup>&</sup>lt;sup>3</sup> As a large part of reported FDI inflows to China consists of the return flow of capital placed abroad by the state owned enterprises, the contribution of foreign-owned firms to China's exports could be overestimated. The extent of overestimation may not be much, if such 'reverse investments' are more domestic market oriented compared to the true FDI.

<sup>&</sup>lt;sup>4</sup> We follow Horne (1996), who adopts a scheme devised by Krause to categorize the 3-digit SITC items according to factor intensity. Products at the 3-digit level are divided into five groups according to their intensities in five factors: agricultural resources, mineral resources, unskilled labour, technology, and human capital. There are 239 items at the 3-digit level of SITC. These were classified according to their factor intensity, except for 5 items, which could not be grouped into any of the categories.

#### Box 10.4 Market Seeking vs Export Promoting FDI

Market Seeking FDI: Also known as 'horizontal FDI' it refers to the situation where the multinational performs essentially the same range of production activities in its plants located in the home and host countries. Much of the FDI flows among the developed countries are horizontal in nature. Theory suggests that, in the presence of positive trade costs (tariffs plus transport costs), multinational enterprises tend to undertake FDI of the 'horizontal type' when their home and host country are very similar with respect to incomes and factor prices (Markusen 1995). A firm has incentive to undertake horizontal FDI in the foreign country, if the saving on trade costs exceeds the fixed costs involved in setting up the new plant.

Export Promoting FDI: Also known as 'vertical FDI' represents the international fragmentation of production process by multinationals, locating each stage of production in the country where it can be done at the least cost. The bulk of the FDI that flows to the East Asian developing countries is vertical in nature. According to the theory, multinational enterprises tend to conduct FDI of the 'vertical type' when there exists a sufficient gap in factor prices between their home and host country, and when the trade costs among them are not large. Vertical FDI was initially concentrated in South Korea, Taiwan, Hong Kong, and Singapore. After the mid 1980s, as wage levels in these countries (in relation to labour productivity) began to rise, FDI shifted to China and other Asian countries.

India, however, has been sailing against the wind. Much of the FDI flows into India have been horizontal in nature rather than vertical. It is not difficult to see the reasons why India obtains more horizontal than vertical FDI while the opposite is true for China. For one thing, there has been a powerful incentive for multinationals to undertake tariff jumping horizontal investment in India. This is because the tariff levels have been quite high in India, compared to other countries in Asia, despite their reduction since the early 1990s. At the same time, high trade costs due to tariffs make India an unattractive destination for vertical investments. Trade costs are relatively high in India not only due to high tariffs but also due to the inadequate physical infrastructure in the country compared to China. Further, the well-known rigidities in the organized labour market hobble India's labour-intensive manufacturing activities and discourage vertical FDI into the country.

**TABLE 10.3** Structure of Exports by Commodity Group

(per cent of total, averages for the periods)

| Commodity Group                  | India       |             |             |             |             |  |  |  |
|----------------------------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
|                                  | 1980–4      | 1985–9      | 1990–4      | 1995–9      | 2000–3      |  |  |  |
| All food items                   | 26.4 (9.0)  | 20.5 (7.1)  | 16.4 (3.8)  | 17.3 (5.8)  | 12.4 (5.2)  |  |  |  |
| Agricultural raw materials       | 3.7 (2.9)   | 2.6 (3.9)   | 2.2 (3.7)   | 1.8 (3.3)   | 1.2 (3.2)   |  |  |  |
| Fuels                            | 9.5 (30.8)  | 3.6 (19.5)  | 2.5 (27.6)  | 1.0 (25.1)  | 5.1 (31.7)  |  |  |  |
| Ores and metals                  | 5.9 (6.0)   | 6.4 (7.5)   | 4.8 (6.7)   | 3.1 (6.0)   | 3.7 (4.5)   |  |  |  |
| Manufactured goods               | 54.2 (51.1) | 65.6 (58.1) | 72.8 (50.7) | 74.9 (48.9) | 75.5 (46.5) |  |  |  |
| Chemicals                        | 4.0 (9.8)   | 4.6 (10.0)  | 6.71 (11.1) | 7.64 (10.4) | 8.63 (7.4)  |  |  |  |
| Metal Products                   | 2.4 (1.4)   | 1.6 (0.8)   | 2.1 (0.7)   | 2.1 (0.8)   | 2.7 (0.8)   |  |  |  |
| Iron and Steel                   | 0.8 (7.1)   | 0.9 (6.7)   | 2.5 (3.8)   | 3.1 (3.0)   | 3.9 (1.6)   |  |  |  |
| Machinery & Transport Equipments | 7.0 (19.5)  | 6.9 (22.2)  | 7.2 (16.8)  | 7.5 (17.5)  | 8.7 (17.7)  |  |  |  |
| Textile & Textile products       | 20.2 (1.1)  | 22.9 (0.9)  | 26.0 (0.9)  | 26.3 (1.0)  | 23.1 (1.4)  |  |  |  |
| Other Manufactures               | 19.9 (12.2) | 28.7 (17.4) | 28.4 (17.5) | 28.2 (16.3) | 28.5 (17.6) |  |  |  |
| Others                           | 0.27 (0.3)  | 1.24 (3.9)  | 1.72 (7.6)  | 2.0 (11.0)  | 2.14 (9.0)  |  |  |  |
|                                  |             |             | China       |             |             |  |  |  |
| All food items                   | 18.2 (8.0)  | 14.8 (6.8)  | 11.4 (5.4)  | 7.2 (5.4)   | 5.0 (3.7)   |  |  |  |
| Agricultural raw materials       | 6.2 (9.1)   | 5.8 (6.4)   | 2.6 (4.7)   | 1.5 (4.7)   | 0.9 (4.1)   |  |  |  |
| Fuels                            | 6.9 (0.9)   | 13.5 (1.4)  | 5.7 (3.9)   | 3.3 (5.3)   | 2.9 (7.6)   |  |  |  |
| Ores and metals                  | 3.8 (5.0)   | 2.9 (3.1)   | 1.8 (3.6)   | 2.0 (4.8)   | 1.7 (5.7)   |  |  |  |
| Manufactured goods               | 64.3 (76.2) | 60.2 (81.6) | 77.7 (81.8) | 85.8 (79.2) | 89.3 (78.4) |  |  |  |
| Chemicals                        | 9.7 (11.1)  | 5.0 (6.9)   | 4.6 (7.1)   | 4.7 (6.2)   | 3.8 (6.1)   |  |  |  |
| Metal Products                   | 4.8 (2.3)   | 2.0 (1.3)   | 2.6 (1.1)   | 3.2 (1.3)   | 3.4 (1.0)   |  |  |  |
| Iron and Steel                   | 2.3 (9.0)   | 1.1 (11.9)  | 1.8 (6.8)   | 2.5 (4.7)   | 1.4 (4.6)   |  |  |  |
| Machinery & Transport Equipments | 6.9 (30.1)  | 9.1 (39.3)  | 17.4 (41.5) | 25.2 (39.9) | 37.6 (44.6) |  |  |  |
| Textile & Textile products       | 20.7 (6.2)  | 27.8 (7.9)  | 27.2 (9.6)  | 22.5 (8.9)  | 18.1 (5.2)  |  |  |  |
| Other Manufactures               | 19.9 (17.5) | 15.2 (14.2) | 24.1 (15.7) | 27.8 (18.3) | 25.0 (16.9) |  |  |  |
| Others                           | 0.7 (0.8)   | 2.9 (0.7)   | 0.8 (0.6)   | 0.2 (0.7)   | 0.2 (0.6)   |  |  |  |

*Note:* Values in parentheses are import shares.

from agricultural and mineral resource-intensive goods towards other goods. Between 1980–4 and 2000–3, the combined share of agricultural and mineral resource-intensive goods declined from 58 per cent to 35 per cent in India and from 35 per cent to 12 per cent in China. In both the countries, the share of unskilled labour-intensive goods showed a steady increase till the mid-1990s and then showed some decline, particularly during 2000–3. Human capital and technology-intensive goods have increased their shares since the 1990s in both the countries. Between 1985–9 and 2000–3, the combined share of human capital and technology-intensive goods in India increased from 20 per cent to 36 per cent. These goods together constituted the largest share of China's exports (52 per cent) by 2000–3.

The share of technology-intensive goods in total exports need not necessarily reveal comparative technological capability (Chandra 1999). A significant part of these exports, especially for China, may represent re-exports after making some domestic value addition and may also be an outcome of the relocation of production into China by firms from industrial countries. At the same time, it is also true that a number of domestic firms have emerged in China in technology-intensive sectors such as consumer electronics, home appliances, computers, and telecom with a significant presence in the global markets. By contrast, most technology-intensive exports from India come from domestic firms.<sup>5</sup>

# Changing Patterns of Comparative Advantage and Competitiveness

The commodity pattern of comparative advantage is a central concept in international trade theory. However, the empirical measurement of comparative advantage is difficult because the concept is defined in terms of relative autarkic prices, which are not observable in post-trade equilibria. Thus, if the concept of comparative advantage is to be used empirically, it must be measured indirectly using post-trade events. The index of 'revealed comparative advantage' (RCA) formulated by Balassa (1965) has been widely used to assess the patterns of comparative advantage. The RCA index can be defined as:

$$RCA_{ij} = \frac{X_{ij} / \sum_{i} X_{ij}}{\sum_{i} X_{ij} / \sum_{i} \sum_{i} X_{ij}}$$

The numerator represents the percentage share of a given sector (or product) in national exports— $X_{ij}$  is exports of sector (or product) i from country j. The denominator represents the percentage share of a given sector (or product) in total world exports. The RCA index, thus, contains a comparison of the national export structure (the numerator) with the world export structure (the denominator). When RCA equals 1 for a given sector (or product) in a given country, the percentage share of that sector (or product) is identical with the world average. Where RCA is above

TABLE 10.4
Composition of Exports by Factor Intensity

(per cent of total, averages)

| Classification of commodities   | 1980–4 | 1985–9 | 1990–4 | 1995–9 | 2000–3 |
|---------------------------------|--------|--------|--------|--------|--------|
|                                 |        |        | India  |        |        |
| Agricultural resource-intensive | 35.26  | 28.80  | 21.68  | 21.07  | 15.75  |
| Mineral resource-intensive      | 23.09  | 23.98  | 21.35  | 19.26  | 19.13  |
| Unskilled labour-intensive      | 22.00  | 25.64  | 31.06  | 30.98  | 27.25  |
| Human capital-intensive         | 10.53  | 8.22   | 12.08  | 13.23  | 15.47  |
| Technology-intensive            | 8.86   | 12.13  | 12.12  | 13.46  | 20.72  |
|                                 |        |        | China  |        |        |
| Agricultural resource-intensive | 25.80  | 21.05  | 14.99  | 9.86   | 7.14   |
| Mineral resource-intensive      | 9.64   | 14.50  | 7.84   | 6.14   | 4.62   |
| Unskilled labour-intensive      | 31.95  | 38.46  | 44.36  | 42.62  | 35.87  |
| Human capital-intensive         | 13.33  | 10.02  | 14.81  | 16.85  | 20.02  |
| Technology-intensive            | 18.59  | 13.08  | 17.18  | 24.38  | 32.13  |

<sup>&</sup>lt;sup>5</sup> Therefore, more detailed data are required to understand the comparative domestic technological capabilities of the two countries. An analysis of this issue is beyond the scope of the present paper.

1, the country is said to have a comparative advantage (and specialized) in that sector (or product) and vice versa where RCA is below 1.

The H-O-S model explains the patterns of comparative advantage in terms of relative factor endowments and factor intensities. Therefore, it is appropriate to compute the RCA index after classifying the products (SITC 3-digit items), according to their factor intensity. The RCA values at the aggregate level (values in parentheses, Table 10.5) mask important heterogeneities at the product level. Therefore, we look at the number of products within each group where the value of the RCA is greater than 1 and this is shown as percentage shares in Table 10.5. It is clear that every group contains a certain number of products where the RCA value is greater than 1, which is true for both India and China.<sup>6</sup> Nevertheless, the comparative advantage of both India and China lies primarily in unskilled labour-intensive goods, which is truly in accordance with their relative factor endowments. As expected, the comparative advantage of both the countries is the least in technology-intensive goods. However, a gradual gain of comparative advantage in human capital and technology-intensive goods can be seen for both the countries. Compared to India, China holds a comparative advantage in a larger number of unskilled labour and technology-intensive products. In the case of other groups, the pattern has become more or less similar for India and China by 2000-3.

The dynamic process of climbing up the ladder of comparative advantage—from unskilled labour-intensive to human capital and technology-intensive goods—seems to be occurring at a slower pace in both the countries compared to that in the NICs. A much longer period of sustained high economic growth would be necessary for significantly altering the factor endowment conditions of countries such as India and China that have plenty of surplus labour.

**TABLE 10.5** Patterns of Comparative Advantage According to Factor Intensity

| Factor intensity classification | Total    | Shares of the total no. with RCA greater than 1 |        |        |        |        |  |  |
|---------------------------------|----------|-------------------------------------------------|--------|--------|--------|--------|--|--|
|                                 | No. of   |                                                 |        |        |        |        |  |  |
|                                 | Products | 1980–4                                          | 1985–9 | 1990–4 | 1995–9 | 2000–3 |  |  |
| Agricultural resource-intensive | 70       | 28.6                                            | 24.3   | 25.7   | 34.3   | 35.7   |  |  |
|                                 |          | (2.0)                                           | (1.9)  | (1.6)  | (1.8)  | (1.6)  |  |  |
| Mineral resource-intensive      | 29       | 13.8                                            | 24.1   | 27.6   | 24.1   | 27.6   |  |  |
|                                 |          | (1.3)                                           | (1.9)  | (1.9)  | (1.9)  | (1.7)  |  |  |
| Unskilled labour-intensive      | 29       | 37.9                                            | 41.4   | 55.2   | 58.6   | 58.6   |  |  |
|                                 |          | (2.1)                                           | (2.2)  | (2.4)  | (2.5)  | (2.3)  |  |  |
| Human capital-intensive         | 42       | 28.6                                            | 26.2   | 33.3   | 33.3   | 42.9   |  |  |
|                                 |          | (0.5)                                           | (0.4)  | (0.5)  | (0.6)  | (0.7)  |  |  |
| Technology-intensive            | 64       | 7.8                                             | 7.8    | 7.8    | 10.9   | 18.8   |  |  |
|                                 |          | (0.3)                                           | (0.4)  | (0.3)  | (0.4)  | (0.5)  |  |  |
|                                 |          |                                                 |        | China  |        |        |  |  |
|                                 |          | 1980–4                                          | 1985–9 | 1990–4 | 1995–9 | 2000–3 |  |  |
| Agricultural resource-intensive | 70       | 57.1                                            | 42.9   | 45.7   | 35.7   | 31.4   |  |  |
|                                 |          | (1.5)                                           | (1.4)  | (1.1)  | (0.8)  | (0.7)  |  |  |
| Mineral resource-intensive      | 29       | 34.5                                            | 34.5   | 37.9   | 34.5   | 34.5   |  |  |
|                                 |          | (0.6)                                           | (1.0)  | (0.7)  | (0.6)  | (0.4)  |  |  |
| Unskilled labour-intensive      | 29       | 82.8                                            | 72.4   | 82.8   | 86.2   | 86.2   |  |  |
|                                 |          | (3.1)                                           | (3.2)  | (3.5)  | (3.4)  | (3.0)  |  |  |
| Human capital-intensive         | 42       | 45.2                                            | 23.8   | 38.1   | 40.5   | 40.5   |  |  |
|                                 |          | (0.6)                                           | (0.5)  | (0.6)  | (0.7)  | (0.9)  |  |  |
| Technology-intensive            | 64       | 25.0                                            | 12.5   | 20.3   | 25.0   | 31.3   |  |  |
|                                 |          | (0.6)                                           | (0.4)  | (0.50  | (0.6)  | (0.8)  |  |  |

Note: Values in parentheses are the RCA index computed by aggregating the export values at the 3-digit level for each group. Averages of the exports values for the given periods are used.

<sup>&</sup>lt;sup>6</sup> We are not giving a detailed list naming the particular products where RCA is greater than 1. Interested readers are referred to Batra and Khan (2005) who provide a list of the particular items where the RCA values are greater than 1 for both India and China. While they use more disaggregated data, their period of the analysis is limited to 2000-3.

Patterns of comparative advantage by commodity groups are shown in Table 10.6. Again, it is clear that every group contains a certain number of products where the RCA value is greater than 1. Since the 1990s, India has been gaining comparative advantage in a number of products within the groups of food items, chemicals, iron and steel, textiles, and other manufactures. China continues to hold high comparative advantage in textiles while improving its position in machinery and transport equipments and other manufactures. China, however, has lost its comparative advantage in certain products within the groups of food items and chemicals.

By definition, each country has a comparative advantage in some products, depending upon the opportunity cost of producing various products in different countries. However, comparative advantage is not the same as international competitiveness or competitive advantage (see Krugman 1996). The notion of comparative advantage has little significance

from a macroeconomic perspective; it is not meaningful to say that China has a comparative advantage over India in the aggregate. However, it is meaningful to talk about international competitiveness on both—the macro and micro levels.7

The share of a country in world exports (in aggregate or product level) is one of the widely used indicators of international competitiveness. Table 10.7 shows the changes in the shares of India and China in world exports by commodity groups. China has been improving its share remarkably since the 1980s in a number of commodity groups, while India's share has been increasing consistently since the 1990s. Throughout the period, India has been lagging much behind China in almost all the commodity groups including those commodities where India has a higher RCA than China. During 2000-3, there were as many as 118 products (out of 234) where India had a higher RCA value than China, but the former had a higher market share in just 28 products.<sup>8</sup>

**TABLE 10.6** Patterns of Comparative Advantage According to Commodity Group

| Commodity Group            | Total    |        |        | Sha    | res of the | total no. v | vith RCA g | greater tha | ın 1   |        |        |
|----------------------------|----------|--------|--------|--------|------------|-------------|------------|-------------|--------|--------|--------|
|                            | No. of   |        | India  |        |            |             | China      |             |        |        |        |
|                            | Products | 1980–4 | 1985–9 | 1990–4 | 1995–9     | 2000–3      | 1980–4     | 1985–9      | 1990–4 | 1995–9 | 2000–3 |
| All food items             | 44       | 29.5   | 25.0   | 27.3   | 38.6       | 40.9        | 63.6       | 43.2        | 47.7   | 34.1   | 29.5   |
|                            |          | (2.2)  | (1.9)  | (1.7)  | (2.0)      | (1.8)       | (1.5)      | (1.4)       | (1.2)  | (0.8)  | (0.7)  |
| Agricultural raw materials | 20       | 25.0   | 20.0   | 20.0   | 25.0       | 25.0        | 40.0       | 45.0        | 40.0   | 35.0   | 25.0   |
|                            |          | (0.9)  | (0.7)  | (0.8)  | (0.8)      | (0.7)       | (1.5)      | (1.5)       | (0.9)  | (0.7)  | (0.5)  |
| Fuels                      | 7        | 0.0    | 14.3   | 0.0    | 0.0        | 28.6        | 14.3       | 57.1        | 42.9   | 57.1   | 42.9   |
|                            |          | (0.6)  | (0.4)  | (0.3)  | (0.1)      | (0.5)       | (0.5)      | (1.2)       | (0.6)  | (0.4)  | (0.3)  |
| Ores and metals            | 20       | 15.0   | 25.0   | 25.0   | 20.0       | 25.0        | 30.0       | 30.0        | 35.0   | 30.0   | 30.0   |
|                            |          | (1.2)  | (1.6)  | (1.4)  | (1.0)      | (1.4)       | (0.8)      | (0.8)       | (0.6)  | (0.7)  | (0.6)  |
| Manufactured goods         | 142      | 21.8   | 21.8   | 28.2   | 30.3       | 35.2        |            | 28.9        | 40.1   | 43.0   | 47.2   |
| of which:                  |          | (0.9)  | (1.0)  | (1.0)  | (1.0)      | (1.0)       |            | (0.9)       | (1.1)  | (1.1)  | (1.2)  |
| Chemicals                  | 18       | 27.8   | 27.8   | 44.4   | 44.4       | 55.6        | 83.3       | 33.3        | 33.3   | 27.8   | 22.2   |
|                            |          | (0.7)  | (0.8)  | (1.2)  | (1.3)      | (1.3)       | (1.6)      | (0.8)       | (0.8)  | (0.8)  | (0.6)  |
| Metal Products             | 8        | 37.5   | 25.0   | 37.5   | 50.0       | 50.0        | 75.0       | 50.0        | 75.0   | 87.5   | 87.5   |
|                            |          | (1.1)  | (0.8)  | (1.0)  | (1.0)      | (1.3)       | (2.1)      | (1.0)       | (1.3)  | (1.5)  | (1.6)  |
| Iron and Steel             | 9        | 0.0    | 22.2   | 44.4   | 55.6       | 77.8        | 22.2       | 22.2        | 44.4   | 33.3   | 22.2   |
|                            |          | (0.2)  | (0.3)  | (0.9)  | (1.2)      | (1.7)       | (0.6)      | (0.3)       | (0.6)  | (0.9)  | (0.6)  |
| Machinery & Transport      | 45       | 8.9    | 4.4    | 2.2    | 2.2        | 4.4         | 6.7        | 6.7         | 17.8   | 26.7   | 33.3   |
| Equipments                 |          | (0.3)  | (0.2)  | (0.2)  | (0.2)      | (0.2)       | (0.3)      | (0.3)       | (0.5)  | (0.6)  | (0.9)  |
| Textile & Textile products | 15       | 66.7   | 66.7   | 86.7   | 86.7       | 86.7        | 93.3       | 93.3        | 93.3   | 93.3   | 93.3   |
| •                          |          | (3.9)  | (3.8)  | (4.0)  | (4.2)      | (4.2)       | (4.1)      | (4.6)       | (4.2)  | (3.6)  | (3.2)  |
| Other Manufactures         | 47       | 19.1   | 21.3   | 23.4   | 25.5       | 29.8        | 55.3       | 25.5        | 40.4   | 42.6   | 53.2   |
| -                          |          | (1.3)  | (1.7)  | (1.6)  | (1.5)      | (1.6)       | (1.3)      | (0.9)       | (1.4)  | (1.5)  | (1.4)  |

Note: Values in parentheses are the RCA index computed by aggregating the export values at the 3-digit level for each group. Averages of the exports values for the given periods are used.

<sup>&</sup>lt;sup>7</sup> See Krugman (1994, 1996) who argues that competitiveness is 'a dangerous obsession' since it may lead to policy choices that are not clearly in the national interest, for example, protectionism when foreign goods 'threaten' local producers.

<sup>&</sup>lt;sup>8</sup> It is illogical to hold that the huge gap in the market share simply reflects the bigger size of China's economy compared to India's. The logic of international specialization is that individual countries are no longer constrained by the size of their domestic markets. It is indeed possible to identify many products where the relatively smaller countries hold a higher market share compared to the big countries.

**TABLE 10.7** Shares of India and China in World Exports by Commodity Group

(per cent, averages for the periods)

| Commodity Group                  |        |        | India  |        |        |
|----------------------------------|--------|--------|--------|--------|--------|
|                                  | 1980–4 | 1985–9 | 1990–4 | 1995–9 | 2000–3 |
| All food items                   | 0.98   | 0.97   | 0.97   | 1.29   | 1.36   |
| Agricultural raw materials       | 0.40   | 0.35   | 0.44   | 0.52   | 0.52   |
| Fuels                            | 0.32   | 0.17   | 0.15   | 0.08   | 0.41   |
| Ores and metals                  | 0.55   | 0.80   | 0.82   | 0.65   | 1.08   |
| Manufactured goods               | 0.40   | 0.48   | 0.56   | 0.63   | 0.79   |
| Chemicals                        | 0.29   | 0.39   | 0.66   | 0.81   | 1.01   |
| Metal Products                   | 0.48   | 0.38   | 0.55   | 0.62   | 1.02   |
| Iron and Steel                   | 0.09   | 0.13   | 0.48   | 0.74   | 1.33   |
| Machinery & Transport Equipments | 0.11   | 0.10   | 0.11   | 0.12   | 0.17   |
| Textile & Textile products       | 1.76   | 1.89   | 2.23   | 2.69   | 3.22   |
| Other Manufactures               | 0.60   | 0.84   | 0.87   | 0.98   | 1.26   |
| Total                            | 0.45   | 0.50   | 0.56   | 0.63   | 0.78   |
|                                  |        |        | China  |        |        |
| All food items                   | 1.73   | 2.28   | 2.75   | 2.71   | 3.39   |
| Agricultural raw materials       | 1.70   | 2.48   | 2.17   | 2.13   | 2.32   |
| Fuels                            | 0.63   | 1.95   | 1.38   | 1.41   | 1.38   |
| Ores and metals                  | 0.90   | 1.19   | 1.30   | 2.14   | 3.00   |
| Manufactured goods               | 1.23   | 1.40   | 2.46   | 3.66   | 5.78   |
| Chemicals                        | 1.82   | 1.32   | 1.82   | 2.50   | 2.72   |
| Metal Products                   | 2.44   | 1.59   | 2.87   | 4.73   | 7.93   |
| Iron and Steel                   | 0.64   | 0.50   | 1.34   | 2.94   | 2.95   |
| Machinery & Transport Equipments | 0.29   | 0.44   | 1.08   | 2.02   | 4.57   |
| Textile & Textile products       | 4.72   | 7.35   | 9.53   | 11.61  | 15.58  |
| Other Manufactures               | 1.53   | 1.41   | 3.07   | 4.87   | 6.77   |
| Total                            | 1.16   | 1.60   | 2.29   | 3.21   | 4.86   |

Source: Same as for Table 10.2.

The bottomline is that a mere existence of comparative advantage does not automatically translate into high market shares if there are certain impediments in the country in fully exploiting its comparative advantage.

Notwithstanding the differential performance of India and China, the trade statistics at the 3-digit level suggest that exports (and imports) of the large majority of products have expanded from both the countries, not just of those where the RCA values are greater than 1 (Table 10.8). How is it possible for a country to continuously expand its exports of a product even as the RCA value suggests that the country does not have a comparative advantage in that product? The explanation is very simple: even at a highly disaggregated level, the RCA index masks important heterogeneities within the product. In other words, countries tend to specialize in different types of a given product, indicating the significance of intra-industry reallocation of resources under trade liberalization. Clearly, trade liberalization is not causing a polarization wherein certain industries are forced to vanish while certain other industries

**TABLE 10.8** Expansion of Trade by Products, 1980-4 to 2000-3

(Total no. of Products = 239; US \$; averages)

| Indicator                                                                                                   | India                 | China                 |
|-------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| No. of products where value of exports increased                                                            | 223 ( 93.3)           | 210 (87.9)            |
| No. of products where value of exports fell to zero No. of products where market share of exports increased | 1 (0.4)<br>196 (82.0) | 3 (1.3)<br>193 (80.8) |
| No. of products where value of imports increased                                                            | 187 (78.2)            | 214 (89.5)            |

*Note*: Values in parentheses are the shares of the total no. of products (=239).

gain prominence. This, however, does not mean that inter-industry movement of resources is not occurring at all, just not to the extent of industries going out of business. A large majority of domestic industries and firms in both India and China are able to survive and compete through specialization in narrow product lines.

In what follows, the extent of structural changes in India and China are examined on the basis of Spearman rank correlation coefficients, computed using the 3-digit level data on exports (Table 10.9). Though some changes (between 1980–4 and 2000–3) can be observed in the structure of exports and comparative advantage in both the countries, the values of the correlations by no means indicates that the changes are substantial. Nevertheless, it is clear that China's exports and comparative advantage have undergone a greater degree of structural change as compared to India's.

The correlations suggest that India and China have become more dissimilar to each other during 2000–3 when compared to 1980–4 with respect to the patterns of comparative advantage and relative market shares of various industries. This implies a greater division of labour in both

the countries in recent years compared to the past, which is to be expected in a more competitive and liberalized environment. The statistically insignificant correlation coefficients in the table indicate that China's gain of market share (or comparative advantage) in a given product does not necessarily mean India's lose of market share (or comparative advantage) in the same product and vice versa. The fear of a 'Chinese invasion' of India's export markets is only a popular myth: the two countries have been expanding their exports by specializing in different product lines within each of the product categories. This is also evident from an increasing intra-industry trade in both the countries.<sup>10</sup>

#### CONCLUSION AND IMPLICATIONS

India and China have been enjoying historically unprecedented average growth rate of GDP since the 1980s.<sup>11</sup> The sectoral composition of growth, however, is an important matter of concern: if the poor people do not own skills sought by the expanding and better paying sectors, the beneficial effect of growth on poverty reduction will be

TABLE 10.9

Structural Changes of Exports and Comparative Advantage Across Products, Rank Correlation Coefficients<sup>#</sup>

| Description of the Correlated Variables <sup>a</sup>                       | Manufactured Goods | Other Goods |  |
|----------------------------------------------------------------------------|--------------------|-------------|--|
| Composition of Exports (share of the national exports)                     |                    |             |  |
| Export composition of India during 1980-4 and 2000-3                       | 0.60*              | 0.73*       |  |
| Export composition of China during 1980-4 and 2000-3                       | 0.53*              | 0.65*       |  |
| Values of RCA index                                                        |                    |             |  |
| India's RCA during 1980–4 and 2000–3                                       | 0.59*              | 0.69*       |  |
| China's RCA during 1980–4 and 2000–3                                       | 0.55*              | 0.47*       |  |
| RCA during 1980–4 of India and China                                       | $0.47^{*}$         | 0.48*       |  |
| RCA during 2000–3 of India and China                                       | 0.25*              | 0.30*       |  |
| Point changes of RCA (between 1980-4 and 2000-3) of India and China        | -0.09              | 0.13        |  |
| Shares in the World Exports                                                |                    |             |  |
| India's shares during 1980-4 and 2000-3                                    | 0.58*              | 0.70*       |  |
| China's shares during 1980–4 and 2000–3                                    | 0.54*              | 0.48*       |  |
| Shares during 1980-4 of India and China                                    | 0.47*              | 0.48*       |  |
| Shares during 2000–3 of India and China                                    | 0.24*              | 0.31*       |  |
| Point changes of the shares (between 1980-4 and 2000-3) of India and China | 0.13               | 0.12        |  |

*Note*: \* lower value of the correlation signifies greater extent of structural change; a the variables are the average values for the two periods; \* significant at 1 per cent level.

<sup>&</sup>lt;sup>9</sup> In the case of India, there is only one product for which the export value declined to zero during 2000–3 from a positive value. Interestingly, this is SITC 911 (mail not classified by kind), which is not related at all to trade liberalization. In the case of China, the number of such products is three; one among them is again SITC 911. The others are SITC 286 (uranium, thorium ores) and SITC 675 (iron, steel hoop, and strip).

<sup>&</sup>lt;sup>10</sup> Intra-industry trade refers to the simultaneous occurrence of exports and imports within the same industry. We estimated the standard Grubel–Lloyd index to measure the extent of intra-industry trade in the total trade of both India and China since the 1980s. In order to save space, we do not discuss this issue in the present paper. See Veeramani (2002, 2004) for more details pertaining to India's intra-industry trade. Hu and Ma (1999) reported significant levels of intra-industry trade for China.

<sup>&</sup>lt;sup>11</sup> The average annual growth rates during 1980–2000 were around 6 per cent and 10 per cent, respectively for India and China.

limited. This issue is far more serious for India than for China considering that the GDP growth in India has been largely driven by the services sector rather than the industrial sector. However, China has followed the conventional path in transiting from an agricultural economy to an industrial economy—a pattern observed in many developed countries.<sup>12</sup> While the industrial output now accounts for more than a half of the Chinese GDP, it accounts for only one-fourth of India's GDP. The onus to absorb the surplus labour engaged in India's agriculture rests primarily on the industrial sector as the knowledge-based services sector generally has weaker linkage effects and employs mainly the educated urban youth. 13 It is well-known that exports of manufactured goods played an important role in China's industrialization process. In this context, the present study analysed the emerging trends and patterns of merchandise exports in a comparative perspective.

India's share in world exports has been increasing since the 1990s, yet it contributes only 0.8 per cent of total world exports in 2004. The export performance of China, in comparison, has been spectacular, accounting for more than 6 per cent of world exports in 2004. The analysis of export structure by commodity groups indicates a noticeable shift in the export baskets of both the countries away from agricultural and mineral resource-intensive goods towards manufactured goods. Within manufacturing, both the countries continue to hold a comparative advantage in unskilled labour-intensive goods. At the same time, a gradual improvement of comparative advantage in human capital and technology-intensive goods was noticed in both the countries.

In a number of products, India does hold a higher RCA value than China, but its share in the world exports of these products is much lower than that of China. This is not surprising, as comparative advantage does not automatically translate into a high market shares if there are impediments in the country in fully exploiting its comparative advantage. We also found that China's exports and comparative advantage have undergone a greater degree of structural change over the years when compared to India's. These findings indicate that certain bottlenecks (such as poor physical infrastructure) and policy induced rigidities in the factor markets (such as those in the organized labour market) stand in the way of the resource reallocation process and export activities in India.

These constraints notwithstanding, we found that the exports (and imports) of the large majority of the products from India have expanded since the 1990s. A similar pattern was observed for China since the 1980s. We also noticed that China's gain of market share (or comparative advantage) in a given product does not necessarily mean India's loss of market share (or comparative advantage) in the same product and vice versa. The two countries have been expanding their exports by specializing in different product lines within each of the product categories. Overall, our findings indicate the growing significance of intraindustry specialization under trade liberalization in both the countries. The resource reallocation process under trade liberalization is not causing a polarization wherein certain industries are forced to vanish while certain other industries gain prominence. In a liberalized environment, a large majority of the domestic industries and firms are able to survive and compete through specialization in narrow product lines. The apprehension that import liberalization would lead to a large-scale demise of domestic industries (the fear of de-industrialization) is unwarranted. 14 Further, greater intra-industry specialization would imply that trade liberalization entails lower adjustment costs than is generally considered.

China has been quite successful in exploiting the opportunities that arise from the growing international fragmentation of the production process in manufacturing industries. India, so far, has failed to take full advantage of such opportunities due to the bottlenecks and rigidities (indicated already), that stand in the way of resource reallocation both between and within the industries. Policy reforms are required to make the process of resource reallocation smoother—labour market reforms, facilitation of investment in infrastructure, and further reduction of trade barriers are particularly crucial. These policy changes are also necessary to induce the multinationals to conduct FDI of the 'vertical type' and hence to augment the process of integrating Indian industry with the fragmented structure of global production activities. Needless to say, the policy environment should be neutral for the domestic and foreign enterprises unlike in China where domestic private entrepreneurs have been discriminated against for various reasons (as elabourated in Huang 2002). It is important not to borrow the wrong aspects of policies from China as much as it is important to borrow the right aspects.

<sup>&</sup>lt;sup>12</sup> Various available estimates suggest that the proportion of people living below the poverty line has been declining in both India and China since the 1980s. These estimates further suggest that the extent of poverty reduction has been higher in China than in India (Srinivasan 2004). While there exist certain concerns on the comparability of the poverty statistics, the differences in the sectoral composition of growth in the two countries reinforce the statistical finding that poverty reduction has been higher in China than in India.

<sup>&</sup>lt;sup>13</sup> While the share of agriculture in India's GDP is 22 per cent, roughly two-thirds of the labour force is employed in agriculture.

<sup>&</sup>lt;sup>14</sup> Such apprehensions about the Indian industry can be seen in Nambiar et al. (1999) and Chaudhuri (2002).

#### References

- Baldwin, R.E. (1992), 'Measurable dynamic gains from trade', *Journal of Political Economy*, Vol. 100, No. 1, pp. 162–74.
- Balassa, B. (1965), 'Trade liberalization and revealed comparative advantage', *Manchester School of Economics and Social Studies*, Vol. 33, pp. 99–123.
- Batra, A. and Z. Khan (2005), 'Revealed comparative advantage: an analysis for India and China', Working Paper No. 168, Indian Council for Research on International Economic Relations, New Delhi.
- Brooks, R. and R. Tao (2003), 'China's labour market performance and challenges', IMF Working Paper 03/210, Asia and Pacific Department, http://www.imf.org/external/pubs/ft/wp/2003/wpo3210.pdf.
- Chandra, N.K. (1994), 'Planning and foreign investment in Indian manufacturing,' in T.J. Byres (ed.), State and Development Planning in India, Oxford University Press, Delhi; reprinted in T.J. Byres (ed.), State, Development Planning and Liberalisation in India, Oxford University Press, Delhi.
- ——— (1999), 'FDI and domestic economy: neoliberalism in China', *Economic and Political Weekly*, Vol. 11, 6 November.
- Chaudhuri, S. (2002), 'Economic reforms and industrial structure in India', *Economic and Political Weekly*, Vol. 37, 12 January.
- Horne, J. (1996), 'East Asia and Eastern Europe: trade linkages and issues', *Pacific Economic Papers No. 261*, Australian National University.
- Hu, X. and Y. Ma (1999), 'International intra-industry trade of China', *Weltwirtschaftliches Archiv*, Vol. 135, pp. 82–101.
- Huang, Y. (2002), Selling China: Foreign Direct Investment during the Reform Era, Cambridge University Press, New York.
- Joshi and Little (1994), *India: Macroeconomics and Political Economy*, 1964–1991, World Bank, Washington.
- Krugman, P. (1994), 'Competitiveness: a dangerous obsession', *Foreign Affairs* (April/March), Vol. 23, No. 2, pp. 28–44.

- (1996), 'Making sense of the competitiveness debate', Oxford Review of Economic Policy, Vol. 12, No. 3, pp. 17–25.
- Lal, D. (1995), 'India and China: contrasts in economic liberalization?' *World Development*, Vol. 23, No. 9, pp. 1475–94.
- Lardy, N. (1992), Foreign Trade and Economic Reform in China, 1978–90, Cambridge University Press, Cambridge.
- ———— (2002), Integrating China into the Global Economy, Brookings Institution Press, Washington.
- Markusen, J.R. (1995), 'The boundaries of multinational enterprises and the theory of international trade', *Journal of Economic Perspectives*, Vol. 9, No. 2, pp. 169–89.
- Meng, X. (2000), *Labour Market Reform in China*, Cambridge University Press, New York.
- Nambiar, R.G., B.L. Mumgekar, and G.A. Tadas (1999), 'Is Import liberalization hurting domestic industry and employment?', *Economic and Political Weekly*, Vol. 34, 13 February.
- Srinivasan, T.N. (1990), 'External sector in development: China and India, 1950–89', American Economic Review, Vol. 80, No. 2, Papers and Proceedings of the Hundred and Second Annual Meeting of the American Economic Association, May 1990, pp. 113–17.
- ——— (2004), 'China and India: economic performance, competition, and cooperation: an Update' *Journal of Asian Economics*, Vol. 15, No. 4, pp. 613–36.
- UNCTAD (2003), World Investment Report 2003: FDI Policies for Development—National and International Perspectives, United Nations Publications, UN, New York and Geneva.
- Veeramani, C. (2002), 'Intra-industry trade of India: trends and country-specific factors', *Review of World Economics* (*Weltwirtschaftliches Archiv*), Vol. 138, No. 3, pp. 509–33.
- ——— (2004), 'Growing intra-industry trade in manufacturing: implications for policy', *Economic and Political Weekly*, Vol. 39, No. 41, 9 October.
- Wei, W. (2005), 'China and India: any difference in their FDI performances?', *Journal of Asian Economics*, Vol. 16, pp. 719–36.

# Indian Textile and Apparel Sector Performance, Employment, and Demand

G. Badri Narayanan

#### INTRODUCTION

The Indian textile<sup>1</sup> and apparel sector<sup>2</sup> is the second largest employer after agriculture, with more than 35 million persons engaged in it. It contributes 5 per cent to the GDP, 30 per cent to the total exports, and 20 per cent to the industrial production of India. By virtue of being among the earliest established industries in the country as well as a major sector responsible for rapid growth of the NICs, in addition to the facts and figures listed above, the textile industry is very significant for the Indian economy. This industry has a rich history in India, in addition to its dimensions in culture and heritage, so much so that any study on Indian history would industry be incomplete without a detailed treatment of textile in India. Textile production has been an integral part of the lives of millions of poor people, including farmers in India, for centuries.<sup>3</sup> In addition, textile production has backward linkages with agriculture and allied activities, as far as natural fibres are concerned. Given these features, the link between the textile sector and development of India is quite obvious.

Strong and diverse raw material base, cheap labour, evergrowing domestic market, and relatively better technologies

than the other developing countries are the key strengths of the Indian textile sector that have resulted in such a pronounced prominence of this industry. Development of modern textile industry in India had gained momentum after it did so in Britain owing to the availability indigenous cotton, cheap labour, access to British machinery, and a well-developed mercantile tradition in India.

The co-existence of a broad spectrum of production techniques, a distinct trend towards decentralized manufacturing in the informal sector, sustained, albeit considerably declined, predominance of cotton as the raw material, a very huge sick public sector, a recent trend of the manufacturers of adopting modern techniques; and the existence of quite a few regulations and preferential tariff structure (favouring natural fibres and conventional means of production) are some fundamental features of the Indian textile and clothing industry.<sup>4</sup>

Despite being among the leaders in textile production in 1950 and the fact that India has a self-reliant value chain of textiles, India has been steadily receding from the world textile market, with a loss of importance in industrialization at home also. The decline of the Indian textile industry

<sup>&</sup>lt;sup>1</sup> The textile sector includes spinning that involves producing yarn from fibres, weaving that involves manufacturing fabric from the yarns, and processing that involves chemical treatment and colouration of yarns and fabrics for durability as well as aesthetics.

<sup>&</sup>lt;sup>2</sup> The apparel sector includes the processes that result in the manufacture of readymade garments from fabrics.

<sup>&</sup>lt;sup>3</sup> Roy(1996) is a comprehensive study of Indian textile history.

<sup>&</sup>lt;sup>4</sup> Misra (1993) and Sastry (1984) elaborate on these issues.

is very conspicuous, relative to other industries as well as relative to the textile industries of the other countries in the developing world, as evident from a steep fall in the share of Indian textiles in the international market and that in the total Indian exports.

In the 1990s, the Indian textile industry had been facing a severe recession in terms of employment as well as the number of operational mills/factories, which continued despite fundamental changes in tariff structure (among other policy aspects) in the mid-1980s and in 1991. However, there are symptoms of recovery of late, owing to the market expansion resulting from the phasing out of Multi-Fibre Agreement (MFA) quotas. Thus, the textile sector is not only a significant sector in the Indian economy, but also a sector that is at a crucial stage now.

There are some major issues that arise when we look at the textile sector, with a respect to its role in the development of the country, as well as its performance in the global market as a whole: employment, welfare of the people involved in weaker sections of the economy, typically those involved in the unorganized sector, and provision of sufficient clothing to all Indians. While employment is an issue to be considered in more detail in the organized sector, owing to data availability issues, welfare of the people involved in the unorganized sector would be reflected in the performance of textile enterprises in the unorganized sector. The major objective of this chapter is to document how the Indian textile sector has been performing in recent years, with an inclusion of certain issues of concern to development, namely, employment in the organized sector, performance of the unorganized sector, and the consumption of textiles by Indian households.

The perspective considered in this chapter is one of development. India's performance in international textile trade is linked with development in the sense that enhanced textile trade is critically important for better employment prospects in the economy, as is evident from the contribution of Indian textile sector to India's employment, while employment is primarily a development-related issue. Unorganized sector is emphasized in this chapter, to be inline with its focus on implications for development. By nature, the unorganized sector is a part of relatively less-endowed segment of the economy, employing a major part of the Indian workforce. Hence, examining its performance under increased competition is essential for studying the textile sector with a developmental perspective. Analysis of consumption of textiles is an obviously developmentrelated issue, as much as the food consumption would be, by virtue of clothing being a basic need.

This chapter is divided into six sections. The second section gives a brief description of India's recent performance

in international textile trade. Looking at the trends in real and nominal value terms of India's annual exports of various textile products, their shares in total exports and their monthly averages, it is observed that they have not risen much even after the phasing out of quotas. The third section gives an account of performance of the organized textile sector in India, with an emphasis on employment, as this plays a major role in India's development. Region-wise and sub-sector-wise analysis is done over the years. The fourth section analyses the performance of the unorganized textile sector, in terms of various partial productivity measures, as this sector involves manufacturers who are most susceptible to open competition, thereby raising a major developmental issue.

As the external sector and domestic supply sector have been covered in the previous sections, it is imperative to look at another major developmental issue linked with textile sector: consumption of textiles by Indians and the factors affecting it, which is the subject matter of the fifth section. Looking at a few trends in domestic consumption and domestic tariff structure, some policy suggestions are provided to improve domestic consumption of textiles, which is a critical step to ensure the development of both consumers as well as manufacturers involved. The sixth section elucidates the policy aspects of the government with respect to the textile sector. Having set a clear picture about demand and supply in the previous sections, this section briefly evaluates policies from an integrated viewpoint. It also comes up with some policy recommendations to strike a balance between globalizing the sector and preserving the developmental objectives, considering the observations from the perspectives of performance and policies on the supply and demand sides.

# INDIAN TEXTILE SECTOR IN THE INTERNATIONAL MARKET

To understand the role played by India in the international textile market, it is essential to summarize the recent history of the international textile trade.<sup>5</sup>

After World War II, there were many bilateral trade agreements among countries, till 1961, when a regulatory framework named Short-Term Agreement, was signed by GATT member countries. This was replaced by Long-Term Agreement since 1962, which imposed controls on the exports of cotton textiles and exports to the developed countries from the developing ones. MFA came into force in 1974 to exercise controls and restrictions over imports of noncotton textiles as well.

The first stage of MFA, which was in place till 1977, promised an increase in export earnings for developing countries, with due considerations of market disruption that

<sup>&</sup>lt;sup>5</sup> Most of this is discussion based on Gokhale and Katti (1995).

might occur owing to excessive imports to the developed countries. In such cases, the developed countries were empowered to restrain the levels of exports, based on past exports, allowing for some positive growth rates as well. These could be done by bilateral consultations and they did apply for handlooms.

The second stage of MFA was from 1978 to 1981, and was more restrictive than the first one, as it allowed reasonable but temporary departures from the general terms of MFA. As the departures were mostly restrictions and were of a continuing nature, this was detrimental to the export performance of the developing countries.

The third stage of MFA, from 1982 to 1986, was supposed to be less restrictive as it gave more provisions to the developing countries to be compensated for the safeguard measures. Textiles and apparel sectors were treated as two distinct sectors and quotas were worked put accordingly. However, this worsened the situation as regards Indian textile and apparel exports, as most bilateral agreements signed consisted of rigid features on category ceilings, growth rates, carry over, carry forward, and swing provisions.

During its last stage, there was increasing resentment across the world against the MFA, since it had allowed the developed countries to export among themselves without restrictions and to safeguard against all low-price exports. Even the consumers of developed countries were at loss, as they had to pay unnecessarily high prices due to these

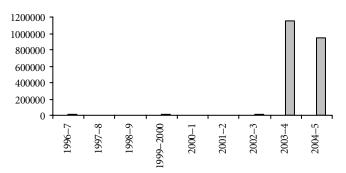



Figure 11.1: Exports of Silk and Silk Products at Constant (1993–4) Prices (in Rs Lakhs)

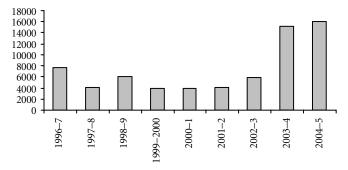



Figure 11.2: Exports of Wool and Wool Products at Constant (1993–4) Prices (in Rs Lakhs)

quotas. Thus, phasing out of MFA quotas was scheduled from 1995 till 2005, based on the Agreement on Textiles and Clothing. The increase in growth rates of all the categories, as agreed, was 16 per cent from 1995 to 1998, 25 per cent from 1999 to 2002, and 27 per cent from 2003 to 2005. The importing countries could postpone the phasing out of certain sensitive categories, selected by them at random. Phasing out of MFA quotas is expected to increase the exports of textiles and apparel from developing countries such as India. Low domestic demand, high cotton prices, fiscal policies skewed against synthetics, quality issues, and infrastructure bottlenecks are the major problems faced by the industry today.

In order to analyse the role of India in the international textile market, it is imperative to look at the trends of exports of various textile product-groups over the years, during the era of phasing out of textile quotas. Once this is known, the trends in relative shares of different textile product groups in India's total exports over years can be noted, so as to pinpoint the relative export performance of sub-sectors within textiles. Since the data available from the export import data bank of Directorate General of Commercial Intelligence and Statistics are annual, from 1996–7 till 2004–5, the data available for 2005–6 (from April to September 2005) could not be used in this analysis.

Figures 11.1–11.4 illustrate the fact that the value in constant (1993–4) prices of Indian textile exports rose sharply

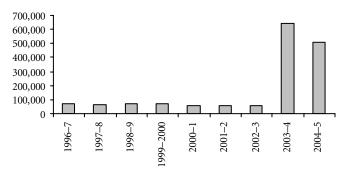
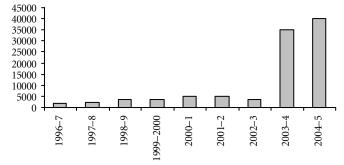
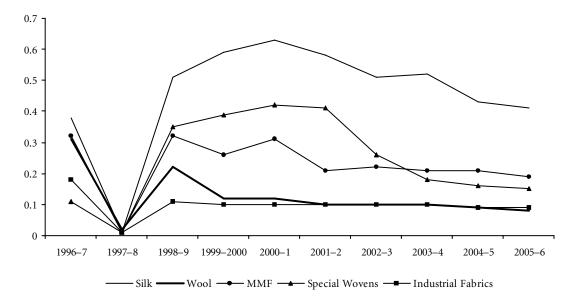



Figure 11.3: Exports of Cotton and Cotton Products at Constant (1993–4) Prices (in Rs Lakhs)





Figure 11.4: Exports of Products from Manmade Filaments at Constant (1993–4) Prices (in Rs Lakhs)

in 2003–4 and this break in the stagnant trend, which existed before 2003–4, was just for one year. In 2004–5, the exports either remained the same or fell in most cases, while they marginally rose in a few product groups such as wool, manmade fibres, and filaments. The worrisome fact is that cotton products have suffered a fall in value terms of exports from 2003–4. These being the major sub-sectors in the Indian textile sector, further prospects of the industry are heavily dependent on their performance.

To examine whether these trends are irrespective of the relative sizes of these exports, we need to look at the shares of exports of these product-groups in the total exports of India. However, inclusion of the data for the year 2005–6 would shed more light on this trend. This may be done

in two different ways: studying the trends in shares of the exports of the textile commodities in total exports and trends in the monthly average of exports of different textile commodities, in real terms. Examination of monthly averages strengthens the observations made so far and hence this is not shown here to avoid repetition.

A look at the trends in the shares of different textile product groups in the total exports from India from 1996–7 to 2005–6 (April to September), illustrated in Figures 11.5 and 11.6, gives the impression that the shares have been falling in almost all product groups in textiles since 2000–1. This is quite surprising and contrary to general perception that the textile exports have been increasing since 2000. Further, a fall in the share after 2005 is steeper in many categories,



**Figure 11.5:** Trends in Percentage Shares of Exports of Some Non-cotton Textile Products in Total Exports from India.

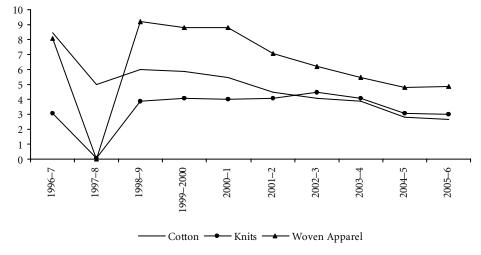



Figure 11.6: Trends in Percentage Shares of Exports of Some Cotton Textile and All Apparel Products in Total Exports from India

which makes the story even more interesting. A marginal increase in the share of woven apparel exports after 2005–6, coupled with the fact that the share of knitted apparel exports in total exports has risen from 4.6 per cent in 2004–5 to 5 per cent in 2005–6, hints at a possibility that the apparel sector is performing better than the textile sector in terms of exports.

Most importantly, these figures lead us to conclude that phasing out of MFA quotas has not affected the relative size of textile exports. This is a very significant observation, given the hype about booming textile exports in an era of free textile trade. To say the least, it can be noted that textile exports have not increased greatly in terms of their value relative to the value of total exports from the country so far and may be expected to pick up in the future, as the data under examination include only eleven months of the post-MFA regime.

Table 11.1 strengthens the observations noted in this section. The annual percentage growth rates from 2002–3 to 2003–4 have been in thousands for most categories, while they have been either negative or small if positive from 2003–4 to 2004–5. Of course, the average annual growth rates from 1996–7 to 2002–3 have been abysmally low if at all positive. Thus, an explosive growth in 2003–4, followed by stagnation in exports in 2004–5, is evident from these figures.

TABLE 11.1
Annual Growth Rates of Textile and Apparel Exports
(Base Year: 1993–4, Growth rates in per cent)

|                                    | · ·      |         | 1 /    |
|------------------------------------|----------|---------|--------|
| Products                           | 1996–7   | 2002-3  | 2003–4 |
|                                    | to       | to      | to     |
|                                    | 2002 - 3 | 2003-4  | 2004-5 |
|                                    | (Average |         |        |
|                                    | Annual)  |         |        |
| Silk and its Products              | -4.61    | 2221.61 | -3.35  |
| Wool and its Products              | -3.58    | 173.29  | 9.89   |
| Cotton and its Products            | -6.85    | 1801.34 | -20.16 |
| Other Vegetable Fibres             | 25.78    | 781.04  | 16.11  |
| Manmade Filaments                  | -2.58    | 980.88  | 1.57   |
| Manmade Staple Fibres              | -4.40    | 1445.02 | -2.93  |
| Felt, non-wovens, cords, etc.      | 12.32    | 96.32   | -18.77 |
| Carpets and floor coverings        | -1.93    | 1919.05 | -1.49  |
| Special Woven Fabrics              | 3.50     | 239.64  | -7.47  |
| Industrial textiles                | 5.66     | 251.88  | -6.99  |
| Knitted/crocheted fabrics          | -9.01    | 1033.72 | -25.37 |
| Apparel accessories (knits)        | -1.50    | 2779.33 | -14.09 |
| Apparel accessories (non-knits)    | -5.36    | 2295.34 | -2.63  |
| Made-up textiles including apparel | -16.19   | 2842.03 | 5.24   |
| 2 0 11                             |          |         |        |

 $\it Source:$  Author's calculations based on data from Office of Directorate General of Foreign Trade.

While it is imperative to note at this point that it is difficult to make strong conclusions on India's performance post-MFA as the data available after 2005 are less, it should also be recognized that the quotas were removed in different phases and hence the export trends after late 1990s should be useful to conclude something, as we have done so far.

Having analysed of the trends in the real values of Indian textile exports, their shares in total exports, and their monthly averages, it seems that India has not really performed as well as it was expected to, in terms of textile exports, at least so far. The reasons should possibly exist on the supply-side, because, thanks to the removal of quotas, the external demand is no more constraining for India. This view is consistent with Beena (2006), who notes that the growth of textile and apparel exports by South Asian countries has been low post-1995, possibly because of various factors including industrial structure.

There are important implications of this analysis from a developmental perspective. Development of emerging economies has, in the past, always been heavily dependent on labour-intensive sectors such as textiles and apparel sectors. Examples are the NICs in South East Asia and Japan to some extent. Most of this development was owing to their performance in international textile trade, despite heavily-constrained trade regimes. Taking this into consideration, the moderate performance of Indian textile exports even after phasing out of the quotas is worrisome from a developmenal viewpoint. Thus, the supply side needs to be looked at, for analysing the state of the Indian textile sector. This motivates us to undertake an overview of the organized textile sector in India. In addition, given the developmental perspective, we also look into the aspects of employment in this sector in the next section.

# INDIA'S ORGANIZED TEXTILE SECTOR: PERFORMANCE AND EMPLOYMENT

During the past decades, the organised mill sector in the textile industry has been facing recession. Numerous textile mills have been closed and declared sick, while many of the mills under National Textile Corporation (NTC) are being operated, despite losses, owing to the fact that there are many employees involved. Even in the private sector mills, employment has been a major issue. The recession continued despite fundamental changes in tariff structure among other policy aspects in the mid-1980s and in 1991, though there are symptoms of recovery of late, due to the prospects arising from phasing out of MFA quotas.

In the informal or unorganised sector that is progressing well in the clothing sector, the processes are not planned and systematic. The working conditions are not satisfactory as the labour regulations cannot be enforced and a hireand-fire principle is in place. This is true even in a part of organised sector, wherein the manufacturers recruit contract labourers in order to minimize the losses that they are facing due to the inflexible labour regulations which stop

them from firing their permanent employees even during recessions. In fact, some studies observe a rapid growth of the informal sector in the textile industry, especially after the reforms of 1991.

A wide range of regulations in the textile industry involving bureaucratic difficulties in the expansion of the industry and a highly distortionary tariff structure were partly responsible for this steady recession. For example, hank yarn obligation<sup>6</sup> requires spinners to allocate a fixed part of their production to handloom weavers. This not only restricts the profits of spinners, but also the raw material access and cost for weavers and others up the value chain. The reservation of the garment sector<sup>7</sup> under the SSI had restricted large-scale investment in this sector, which led to huge losses in efficiency that could have otherwise been achieved through economies of scale. Moreover, the Ministry of Environment and Forests (1986) demands proper treatment of certain chemicals used mainly in the processing of textiles, through the Environment (Protection) Act. In addition to domestic regulations, the industry has also been facing import restrictions from the developed countries. For example, the US imports from Asia are being highly constrained by the quotas based on the MFA.

Table 11.2 shows the trends in annual average growth rates of some major variables for the aggregate textile industry. Since this was based on the aggregated textile data, figures could be calculated for four decades with proper concordance of different reports of ASI. It can be seen that output, wages, and fixed capital have been growing at an increasing rate during 1961–2, to 1999–2000, but for a small fall in growth rate during 1991–2 to 1999–2000.

Here, it should be noted that this might partly be due to the omission of cotton ginning sector for the two years after 1997–8, as the NIC-98 has classified this sector

> TABLE 11.2 Average Annual Growth Rates in the Organized Indian Textile Sector (1993–4 prices)

| Period              | Output | Employ-<br>ment | Real<br>Wages | Real Fixed<br>Capital |
|---------------------|--------|-----------------|---------------|-----------------------|
| 1961–2 to 1970–1    | 5.034  | 0.496           | 2.487         | 3.645                 |
| 1971–2 to 1980–1    | 6.668  | 3.295           | 2.882         | 4.643                 |
| 1981–2 to 1990–1    | 8.174  | -0.968          | 5.44          | 8.802                 |
| 1991–2 to 1999–2000 | 6.718  | 0.997           | 2.378         | 17.774                |
| 1980–1 to 1997–8    | 5.34   | -5.17           | 5.35          | 8.11                  |
| 2001–2 to 2002–3    | 9.37   | 0.98            | 7.09          | 2.65                  |

Source: Author's calculations on the basis of data from ASI.

under agriculture. The same argument holds for the other variables also and hence the figures for the period between 1980–1 and 1997–8 have been highlighted. The trend in the growth of employment is, however, not uniform. For the period between 1971–2 and 1980–1, it has grown at a much lower rate than the other variables in most periods and, in fact, has declined from 1981–2 to 1990–1.

Though employment has grown on an average after the reforms of 1991, this is nowhere comparable to the growth of the other variables, especially, capital stock, which has grown at about 18 per cent an year.8 This observation is even more precise if only the period from 1980–1 to 1997– 8 is examined, since, in this period, employment has fallen at an approximately annual average rate at which output has grown, despite a remarkable annual growth of capital of over 8 per cent. It would seem from this that, as a whole, textile industry is characterized by substitutability between capital and labour. Given the labour-intensive nature and unionized labour of the organized segment of this industry, entrepreneurs might have had capital to substitute for labour. Even then, the absolute fall of 5 per cent per year in employment when output has increased by 5 per cent per year draws attention.

Even for the latest available data, the rise in employment is very low, though the real total emoluments have grown sharply. The growth in capital has come down to below 3 per cent, which is a reason for worry since huge investment is required to face the competitive market in the free trade regime. Output has, however grown at a higher rate.

Three measures of partial productivity have been analysed in Table 11.3: capital productivity, capital intensity, and labour productivity. Capital productivity is the ratio of gross output to gross fixed assets. This gives the amount of output produced from a unit of capital. Capital

TABLE 11.3
Trends in Some Ratios of Capital (K), Output (Y),
and Employment (N)

| Year   | Y/K   | K/N    | Y/N    |
|--------|-------|--------|--------|
| 1973–4 | 2.569 | 4.523  | 11.616 |
| 1980-1 | 3.657 | 4.364  | 15.958 |
| 1985–6 | 3.092 | 7.331  | 22.664 |
| 1990-1 | 3.614 | 10.332 | 37.336 |
| 1997-8 | 1.546 | 34.122 | 52.76  |
| 2001-2 | 1.403 | 3.969  | 6.443  |
| 2002-3 | 1.457 | 4.195  | 7.039  |

Source: Author's calculations from ASI.

<sup>&</sup>lt;sup>6</sup> It came into place in 1974 and was fixed at 50 per cent of the total marketable yarn in 1986, though it was brought down to 40 per cent and then 20 per cent in 2003.

<sup>&</sup>lt;sup>7</sup> This has been withdrawn with effect from 2 November 2000.

<sup>&</sup>lt;sup>8</sup> This is quite as expected, since this was the period when the phasing out of MFA quotas was initiated and hence the firms were apparently getting ready for the free trade regime by attempting to invest and enhance their quality and scales as well as the consequent economies and efficiency.

intensity is defined as the ratio of gross fixed assets to total employment. This reflects the relative size of capital and labour in the industries. Labour productivity is the ratio of gross output to total employment. This measures the extent to which labour has been used for production.

Table 11.3—in terms of lakhs of Rupees of gross value of output and gross invested capital per person engaged—makes it more explicit that the textile industry, on an average, has precisely become much less labour-intensive than it was thirty years ago. An unclear trend in labour-capital ratio raises doubt about the existence of substitutability between capital and labour. However, a rise in this ratio despite a fall in capital productivity seems to suggest an existence of mere substitution of labour by capital. After 2001, capital productivity, capital intensity, and labour productivity have fallen sharply. This is another serious problem, given the fact that the international market is becoming more and more competitive, requiring high productivity and capital intensity.

The figures warrant some explanation. Capital productivity (Y/K) has been quite stable from the 1970s till 2003, varying between 1.4 and 3.7. However, there are bulges in capital intensity (K/N) as well as labour productivity (Y/N). Strikingly huge values for these during 1985–6, 1990–1, and 1997–8 could possibly be a result of a rapid fall in employment, which is in the denominator for both these measures, in this period, as can be inferred from Table 11.2. Growth of employment since 2001–2 might have offset the unusually high rises in these ratios before, hence explaining the fall in these ratios to much lower values.

A fall in employment despite an immense rise in labour productivity, possibly because of increased capital intensity, is a cause for concern. Further, a fall in capital productivity suggests that the firms have started investing in expensive automation-oriented machinery, such as autoconers in the case cone-winding and fully automatic shuttleless looms in the case of weaving. Though efficiency-enhancing and skill-oriented-employment-generating, this is not a healthy trend for unskilled labour. Rehabilitation of retrenched/displaced workers, possibly by imparting skills to handle the new

machineries, could be a solution to ensure job and income security for the susceptible labour groups.

In recent years, most of the measures of protection have been brought down as a part of the reforms. Table 11.4 shows effective rates of protection for different sub-sectors of textile industry over the past few years. The measure used is based on Das (2003), who defines effective rate of protection as a measure of the extent to which a sector is sheltered from foreign competition. Specifically, this is based on Corden's formula and is the percentage excess of domestic value-added, vis-à-vis world value-added, introduced because of tariff and other trade barriers. This measures the distortion introduced due to tariff on input prices as well as final output prices and, therefore, measures protection to domestic factors of production. We use this measure of protection, because it not only captures the absolute level of effective rate of protection for each sector, but also accounts for intersectoral differences in protection (mentioned above). It is evident from this table that protection has fallen in all sub-sectors, and the reduction has been strikingly sharp in cotton khadi and handlooms. Fall in protection may have implications for employment, to the extent that protected industries that tend to lose because of a fall in protection are employment-intensive.

To explain the factors that could have influenced employment in the organized textile sector in India in the past, we undertake a detailed sector-wise study of trends. Figure 11.7 shows that employment in handlooms and powerlooms has been more or less stagnant from 1973-4 to 1997-8, except for a sharp increase in employment in handlooms in 1986-7 when the Handlooms (Reservation of Articles for Production) Act of 1985 was enforced from 1986. However, employment fell rapidly owing to liberalization which favoured the powerlooms and mill sector in the late 1980s, leading again to the past levels of employment. Figure 11.8 shows that employment has been consistently falling in the cotton mill sector, while it has been almost stagnant in the wool, silk, and other natural fibres and has risen sharply in the synthetics and made-up textiles, more so after the reforms of 1991. This roughly indicates that the highly

TABLE 11.4

Trends in Effective Rates of Protection for Different Sub-sectors in the Indian Textile Sector

| NIC-1987 Codes | Description of Sectors                    | 1980–5 | 1986–90 | 1991–5 | 1996–2000 |
|----------------|-------------------------------------------|--------|---------|--------|-----------|
| 230, 231, 235  | Cotton ginning, spinning, and weaving     | 109.77 | 125.38  | 68.38  | 42.93     |
| 262            | Embroidery, ornamental trimming, and zari | 160.91 | 151.23  | 95.79  | 48.22     |
| 232, 233       | Cotton khadi and handlooms                | 109.36 | 126.85  | 70.95  | 0         |
| 234, 236       | Powerlooms and processing in mills        | 109.77 | 125.38  | 68.38  | 42.93     |
| 260, 265, 267  | Hosieries, garments, and other made-ups   | 138.33 | 149.89  | 98.45  | 54.25     |
| 263            | Carpets and other furnishings             | 102.52 | 91.8    | 63.3   | 44.66     |
| 268, 269       | Water-proof and other speciality textiles | 160.91 | 151.23  | 95.79  | 48.2      |

Source: Based on Das (2003), Working Paper No. 105, ICRIER.

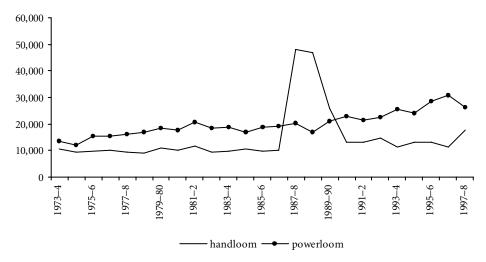



Figure 11.7: Employment Trends in Non-mill Textile Sector

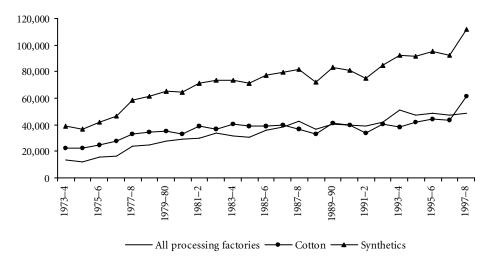



Figure 11.8: Employment Trends in Different Sub-sectors of Textile Wet Processing Sector

regulated conventional cotton mill sector has suffered the most among all the sub-sectors of cotton textiles in terms of employment—implying the existence of a negative relationship between labour regulations and employment. It also suggests a positive effect of liberalization at least in some sub-sectors that come under the made-ups.

Figure 11.9 shows that though employment has been rising as a whole in the textile processing sectors that are prime polluters in the industry, its fall in 1987–8 and 1995–6 in the overall, cotton, and synthetic processing sectors indicates the possible existence of a negative impact, at least in the short term, of the Environmental Pollution Act (1987) and the ban of certain dyes by some members of the EU in 1995. Figure 11.10 strengthens evidence for this statement since the fall in employment is even more conspicuous in the case of wool and silk processing sectors, which are more pollution-intensive in nature. The long-term increasing trend in employment is preserved despite the environmental

regulations, suggesting that the rise in employment that might be gained by compliance to these regulations may have played some role in increasing employment. These trends motivate us to test for the existence of an impact of environmental regulations on employment in polluting sectors of the textile industry. Further, figures 11.7 to 11.10 also highlight the fact that the Indian textile sector is extremely heterogeneous in terms of employment trends.

Given the past trends and figures, we examine the salient features of the latest available data for the organized sector (Table 11.5). The number of factories has increased in both textile and apparel sectors, implying a rise in fixed capital, number of workers, total persons engaged, total emoluments, and gross output in the apparel sector. However, employment and wages in the textile sector have fallen, though total emoluments have risen, possibly reflecting the increased requirement of skilled employees other than workers, as seen in the relatively better performance in terms

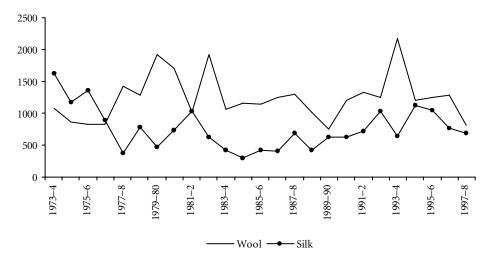



Figure 11.9: Employment Trends in Textile Wet Processing Sector

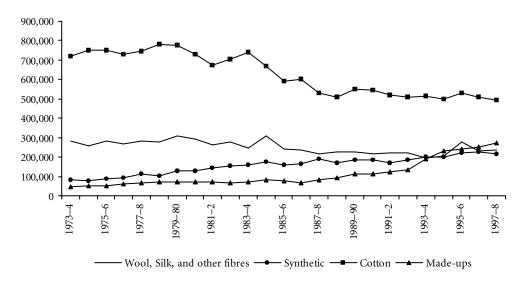



Figure 11.10: Employment Trends in Sub-Sector in Textile Sector

**TABLE 11.5** Salient Features of the Organized Textile and Apparel Sector in India: Recent Trends (values are in Rs lakhs, current prices and others are in number)

| Year   | Sector  | Factories | Fixed<br>Capital | Workers       | Total Persons<br>Engaged | Wages to<br>Workers | Total<br>Emoluments | Gross<br>Output |
|--------|---------|-----------|------------------|---------------|--------------------------|---------------------|---------------------|-----------------|
| 2001–2 | Textile | 12,557    | 3,931,489        | 1,004,848     | 1,182,124                | 445,017             | 602,216             | 8,202,046       |
| 2001-2 | Apparel | 3283      | 310,821          | 272,524       | 317,089                  | 86,647              | 127,917             | 1,456,746       |
| 2001-2 | Total   | 15,840    | 4,242,310        | 1,277,372     | 1,499,213                | 531,664             | 730,133             | 9,658,792       |
| 2002-3 | Textile | 12,764    | 4,011,135        | 1,001,251     | 1,178,520                | 438,814             | 634,828             | 8,771,897       |
| 2002-3 | Apparel | 3307      | 346,560          | 285,544       | 335,559                  | 96,242              | 150,978             | 1,885,114       |
| 2002-3 | Total   | 16,071    | 4,357,695        | 1,286,795     | 1,514,079                | 535,056             | 785,806             | 10,657,011      |
|        |         |           |                  | Annual Growth | Rates                    |                     |                     |                 |
| 2001-3 | Textile | 1.648     | 2.026            | -0.358        | -0.305                   | -1.394              | 5.415               | 6.948           |
| 2001-3 | Apparel | 0.731     | 11.498           | 4.778         | 5.825                    | 11.074              | 18.028              | 29.406          |
| 2001–3 | Total   | 1.458     | 2.720            | 0.738         | 0.992                    | 0.638               | 7.625               | 10.335          |

Source: Author's Calculations from ASI (2001–2 and 2002–3).

of total persons engaged, compared to that in terms of workers. This is another noteworthy issue with respect to development, as both employment and wages are serious issues of concern, more so because textiles is a much bigger sector than apparels in the organized segment.

Looking at the growth rates, it is surprising to note that though growth in the number of factories has been much lower in the apparel sector, capital, employment, wages, and emoluments as well as output have grown at very high rates. This shows that the organized apparel sector is now booming. This could partly be attributed to the fact that the garment sector was dereserved from the SSI Sector in 2000. This is supported by the observation that the number of factories, per se, has not grown much, probably because of the mergers of smaller fragments after dereservation, causing a reduction in number, which could have been outweighed by the number of new factories established. <sup>9</sup> Thus, the organized apparel sector seems to be more prepared for the freetrade regime than the organized textile sector. Therefore, employment from this industry could well become much more dependent on apparel than on textile in the future.

However, a word of caution is necessary while discussing about employment in the organized textile sector. Given the high labour costs and rigidities in the labour markets, coupled with the sickness of factories, the employers go in for sub-contracting employees from the unorganised sector, thereby reducing the employment in the organised sector. This, in addition to showing up as a decline in employment, is not a healthy trend, as far as the welfare of employees is concerned—as they are not protected by any legislation, given their unorganised nature. This issue needs to be taken care of by the policy makers, possibly by ensuring income security for the workers, coupled with some labour flexibility for the employers, so that they are discouraged from sub-contracting.

Having analysed the trends in employment in India's organised textile sector, it is essential to link these observations to the development perspective. The apparel sector has performed quite well in terms of employment in the recent years, showing a recovery from the declines in the past, though the same is not true for the textile sector, though there are some signs of recovery. This seems to be a good indication for the country's development in general, given the immense contribution of textile sector to the economy. However, as shown subsequently, the unorganized sector is a vital part of the Indian textile industry from the viewpoint of development. Therfore, the story on employment and performance of textile industry and its implication for development would not be complete without a comprehensive examination of trends in the unorganized textile sector.

# PERFORMANCE OF INDIA'S UNORGANIZED TEXTILE SECTOR

The unorganized manufacturing sector is defined as the collection of those manufacturing units whose activity does not come under any statutory Act or legal provision and/or which do not maintain any regular accounts or which are not registered under Sections  $2m(i)^{10}$  and  $2m(ii)^{11}$  of the Factories Act, 1948 and which are registered under Section  $85^{12}$  of the Factories Act, 1948. As Table 11.6 reveals, the unorganized manufacturing sector contributes 28 per cent of the gross value added and 73 per cent of employment to total manufacturing (including the organized sector), thus playing a vital role in the Indian economy.

Table 11.6 shows that the unorganized textile and apparel sector comprises 31 per cent of gross value added and 79 per cent of employment in the entire textile and apparel sector in India. In fact, the unorganised apparel sector, which

Table 11.6
Shares of Various Sub-sectors in Different Sectors, 2000–1

(current prices)

| Sub-sector                       | Sector                     | Share in Gross Value<br>Added (per cent) | Share in Employment (per cent) |
|----------------------------------|----------------------------|------------------------------------------|--------------------------------|
| Unorganised Manufacturing        | Total Manufacturing        | 28                                       | 73                             |
| Unorganised Textiles             | Total Textiles             | 18                                       | 74                             |
| Unorganised Apparel              | Total Apparel              | 59                                       | 89                             |
| Unorganised Textiles and Apparel | Total Textiles and Apparel | 31                                       | 79                             |
| Unorganised Textiles and Apparel | Unorganised Manufacturing  | 29                                       | 31                             |

Source: Author's calculations from NSSO reports on unorganized Manufacturing and ASI.

<sup>&</sup>lt;sup>9</sup> It may be noted here that an investment up to Rs 3 crore in plant and machinery and an FDI-cap of 25 per cent is permitted, subject to an export obligation of 50 per cent of total production of garments, even before dereservation.

<sup>&</sup>lt;sup>10</sup> Factories using power and employing 10 or more workers on any working day.

<sup>&</sup>lt;sup>11</sup> Factories not using power and employing 20 or more workers on any working day.

<sup>&</sup>lt;sup>12</sup> Factories, which have less than 10/20 workers with or without power, specially notified by the state government.

contributes about 59 per cent to gross value added and 89 per cent to employment in the apparel sector in India is predominantly unorganized. Thus, any study of Indian textile industry cannot claim to be complete unless it considers unorganised sector in its analysis.

As Misra (1993) notes, the unorganized segment of India's textile sector comprises handlooms, powerlooms, small power-processors, and traditional hand-processors, in addition to the numerous small-scale garment firms in woven as well as hosiery sectors. Powerlooms operate either on an independent basis, or serve a master-weaver system, in which they just process the orders from the master-weaver providing the raw materials and charges based on the quantity of cloth produced. They acquire loans from non-bank sources, while handlooms in rural areas rely on non-institutional sources such as village money lenders.

In the urban areas, where this sector is dominant, the labour is mostly workers migrating from the rural areas, non-unionized, and hence obtained at market-determined wage rates much lower than for the organized sector. All these, in addition to the exemption of grey fabric from excise duty and sales taxes and long working hours, are the sources of competitive advantage for the unorganized powerloom sector, over the organized mill sector. In fact, the rapid growth of the powerloom sector after deregulatory measures introduced in 1985 could be attributed to its unorganized labour market, well-developed input markets, ease of entry and flexible specialization.

Although there are some large production centres of handlooms in urban areas, the major part of this sector is small-scale, and often is an ancillary activity to agriculture in rural areas. Many of the Indian handlooms are noncommercial, such as those in the North East, which produce for local or domestic consumption. There are small-scale, power-processors as well as hand-processors using traditional techniques in India. The fact that the raw material cotton cost is around one-fourth of the total value, and the three stages of spinning, grey weaving, and processing each progressively add one-fourth of final value, illustrates the importance of processing and weaving in the cotton textile value chain.

Further down the value chain, most of the knitted garment manufacturers are in the unorganised sector. For example, many firms in Tiruppur, an industrial town in Tamil Nadu, are either unorganized or depend heavily on sub-contracting to firms in the unorganized sector. Most of these firms are export-oriented and are seasonal/casual in operation, depending on orders from foreign buyers. These firms are usually specialized<sup>13</sup> and small and hence complete their job orders<sup>14</sup> with the help of numerous suppliers. Even some of the woven garment manufacturers, such as a few in Mumbai, Gurgaon, Chennai, and Bangalore are unorganized.

It is worth mentioning that the aforementioned characteristics are almost typical for the cotton sector. However, the features of the other sectors such as wool, silk, and synthetics, which involve similar processes, remain the same. The jute sector, which is concentrated in rural and urban areas of West Bengal, among a few other states, has undergone a major transformation from prosperity in pre-independence times to sickness in recent years. The coir sector is a major cottage industry in many rural areas in Tamil Nadu and Kerala. Other miscellaneous sectors include furnishings, manufacture textiles for industrial purposes such as nylon tyre cords, metallized yarns and rubber thread or cord covered with textile material, speciality textiles such as tapes, cords, and nets, fancy textiles such as embroidery, zari work, and wadded textiles.

As the MFA quotas are being phased out, the Indian textile sector is facing both opportunities and threats. While the organized segment of the sector seems poised for a boom owing to its relatively better economies of scale, the large unorganized sector in this industry is expected to suffer because of its lack of competitiveness and technical efficiency among other related factors such as insufficient scales of operation which limit the levels of efficiency and competitiveness that can be achieved by these firms.

Further, dereservation of the garment sector under the SSI sector (in 2000) is expected to have adverse effects on the unorganized sector, as the enterprises in this sector now have to face stiff competition from big players. Given the huge contribution of the unorganized sector to the textile sector, this is certainly a serious issue for this sector as a whole. On the other hand, small firms are competitive after the recent trade reforms, as decentralized production does have some strengths in terms of costs. In addition, mergers of smaller firms into bigger ones could be one solution to face competition from big players. Combined effluent treatment plants established in clusters of small textile dyeing units, in places such as Tiruppur, are examples of how the small firms can join hands to eliminate their disadvantage of lack of economies of scale.

Given the heterogeneity of the unorganized textile sector, coupled with its potential strengths and drawbacks, it is imperative to examine the trends in productivity in this sector in recent years for which detailed data are available.

This study uses the aggregate summary results of 40th, 45th, 51st, and 56th rounds on unorganized manufacturing

<sup>&</sup>lt;sup>13</sup> Of course, there are a handful of firms that carry out all the activities in the textile value chain.

<sup>&</sup>lt;sup>14</sup> Most firms are order-based, though there are a few which also market their products.

of the NSSO (NSSO 1989, 1994, 1998, 2002). The different types of enterprises in this study are the following:

- Own account manufacturing enterprises (OAMEs) consisting of no employee other than the working owner.
- Non-directory manufacturing establishments (NDME) employing less than six persons other than the working owner.
- Directory manufacturing establishments (DMEs) employing more than six persons other than the working owner.

The demerits of NSSO data on unorganised manufacturing sector are the possibility of unrepresentative sampling, response errors, inadequate sample size, and absence of sampling error estimates. Owing to the absence of any better source of data for the unorganized textile sector, we use these data for analysis, acknowledging their limitations.

Based on these data, we analyse the average annual growth rates in employment, fixed assets, wages, and output (see Table 11.7). While employment and wages have fallen, on an average, from 1984 to 1990, they have risen in the early 1990s and their growth has been much higher in the late 1990s. This is despite a fall in fixed assets and output throughout this period, though the decline has not been as high in 1990s as it was in 1980s.

TABLE 11.7 Annual Average Growth Rates in Unorganized Textile Sector (based on 1993–4 prices)

| Period    | Employment | Fixed Assets | Wages  | Output  |
|-----------|------------|--------------|--------|---------|
| 1984–90   | -11.803    | -24.19       | -8.787 | -24.512 |
| 1989–95   | 2.724      | -8.412       | 9.174  | -3.276  |
| 1994–2001 | 6.781      | -9.123       | 10.946 | -7.251  |

Source: Author's calculations based on NSSO(1989, 1994, 1998, 2002).

Partial productivity measures should be analysed to obtain an overview of the performance of unorganized textile sector. Here, we analyse capital productivity (no units), labour productivity, and capital intensity (in rupees per employee). In large-scale or capital-intensive industries, capital productivity may be expected to be much lower than unity, as output produced would require capital that is much higher than itself, owing to the capital-intensive nature of production. However, as we are considering the unorganized sector, which is not very likely to include such enterprises, this ratio may be even greater than one. This indicates the extent to which capital has been used for production.

As we construct these measures over the years, to facilitate intertemporal comparability, we obtained them in constant prices (base year: 1981–2) by deflating the fixed assets using WPI for textile machineries and gross output using WPI for the respective products, namely, textiles and apparel.

Tables 11.8 and 11.9 show the trends and growth rates, respectively, in capital intensity, capital productivity, and labour productivity across different enterprises and areas in the two sub-sectors of the textile sector, namely, textile manufacture (NIC-98 code: 17) and apparel manufacture (NIC-98 code: 18).

First, we compare the trends in these variables for each year across different enterprise types, areas, and sub-sectors. Second, we look at the average annual growth rates for the variables, for a few years in the past. Third, we derive overall inferences from this analysis.

### Capital Productivity

In 1984–5, NDMEs were more capital-productive than OAMEs in almost all categories, except in the rural textile sector, where both were comparable. While the urban textile NDME sector produces output that is more than thrice that of capital, output is as high as capital in most other sectors except apparel OAME. In all cases except rural NDME, 15 the apparel sector is less capital-productive than textile sector. Rural textile NDME is the only exception for the observation that all categories in rural areas are more capital-productive than those in urban areas.

In 1989–90, all categories except rural textile OAME had capital productivity measuring above unity, exhibiting higher levels as compared to those in 1984–5, except urban textile NDME where it had halved. Further, NDMEs are more capital-productive than OAMEs in all categories. All categories in rural areas have been more capital-productive than those in urban areas, except textile NDMEs, just as the case in 1984–5. Further, in all categories except urban NDME, the apparel sector has been more capital-productive than textile sector.

In 1994–5, DMEs were also included in the analysis, owing to the availability of data from the same source (NSSO 1998). In this year, all categories in NDME, except urban apparel sector, were more capital-productive than OAME, while those in DME, except rural apparel sector, were better than those in NDME. Compared to 1989–90, capital productivity has fallen in all categories except rural apparel NDME. While urban textile NDME had been the most capital-productive of all categories till 1989–90, it was just an average category in these terms in 1994–5. Except in urban NDME, capital productivity has been higher in the apparel sector than in textile sector, for all enterprise types and areas. Enterprises in urban areas have higher capital

<sup>&</sup>lt;sup>15</sup> Note that in this case, both textile and apparel sectors are equally capital-productive.

| TABLE 11.8                     |                                                   |  |  |  |  |  |
|--------------------------------|---------------------------------------------------|--|--|--|--|--|
| Trends in Partial Productivity | y Measures in Unorganized Textile Sector in India |  |  |  |  |  |

| Year    | NIC-98 Code | Sample | Enterprise Type | Capital Productivity | Capital Intensity | Labour Productivity |
|---------|-------------|--------|-----------------|----------------------|-------------------|---------------------|
| 1984–5  | 17          | rural  | OAME            | 0.902                | 2016.479          | 1819.41             |
|         | 18          | rural  | OAME            | 0.251                | 8600.825          | 2154.82             |
|         | 17          | urban  | OAME            | 0.687                | 3679.076          | 2527.268            |
|         | 18          | urban  | OAME            | 0.108                | 39,475.00         | 4281.939            |
|         | 17          | rural  | NDME            | 0.863                | 5204.038          | 4488.943            |
|         | 18          | rural  | NDME            | 0.884                | 4554.78           | 4026.569            |
|         | 17          | urban  | NDME            | 3.263                | 3648.323          | 11,903.93           |
|         | 18          | urban  | NDME            | 0.695                | 9940.026          | 6906.713            |
| 1989–90 | 17          | rural  | OAME            | 1.021                | 1742.425          | 1778.319            |
|         | 18          | rural  | OAME            | 1.253                | 1879.168          | 2354.176            |
|         | 17          | rural  | NDME            | 1.74                 | 2435.485          | 4238.551            |
|         | 18          | rural  | NDME            | 1.757                | 3445.447          | 6054.648            |
|         | 17          | urban  | OAME            | 0.713                | 4247.893          | 3030.697            |
|         | 18          | urban  | OAME            | 1.069                | 4832.785          | 5165.134            |
|         | 17          | urban  | NDME            | 1.871                | 10,575.99         | 19,787.06           |
|         | 18          | urban  | NDME            | 1.303                | 12,223.04         | 15,922.37           |
| 1994-5  | 17          | rural  | OAME            | 1.143                | 2033.08           | 2323.994            |
|         | 18          | rural  | OAME            | 1.166                | 1596.906          | 1862.392            |
|         | 17          | urban  | OAME            | 0.836                | 4524.921          | 3782.379            |
|         | 18          | urban  | OAME            | 0.889                | 5100.408          | 4532.575            |
|         | 17          | rural  | NDME            | 1.279                | 4335.058          | 5542.978            |
|         | 18          | rural  | NDME            | 2.31                 | 1965.746          | 4541.748            |
|         | 17          | urban  | NDME            | 1.251                | 11,294.63         | 14,133.05           |
|         | 18          | urban  | NDME            | 0.493                | 24,059.05         | 11,871.76           |
|         | 17          | rural  | DME             | 1.578                | 5905.005          | 9320.225            |
|         | 18          | rural  | DME             | 2.244                | 3438.526          | 7717.756            |
|         | 17          | urban  | DME             | 1.804                | 9804.714          | 17,688.04           |
|         | 18          | urban  | DME             | 2.8                  | 6893.022          | 19,301.48           |
| 2000-1  | 17          | rural  | OAME            | 0.906                | 2577.797          | 2336.765            |
|         | 18          | rural  | OAME            | 0.612                | 4986.596          | 3050.152            |
|         | 17          | rural  | NDME            | 1.16                 | 4680.898          | 5429.882            |
|         | 18          | rural  | NDME            | 0.794                | 6554.459          | 5202.371            |
|         | 17          | rural  | DME             | 1.575                | 6661.292          | 10,490.51           |
|         | 18          | rural  | DME             | 1.201                | 5341.884          | 6418.246            |
|         | 17          | urban  | OAME            | 0.653                | 6369.44           | 4159.148            |
|         | 18          | urban  | OAME            | 0.43                 | 10,000.64         | 4296.527            |
|         | 17          | urban  | NDME            | 1.49                 | 15,329.54         | 22,846.26           |
|         | 18          | urban  | NDME            | 0.539                | 15,875.74         | 8554.678            |
|         | 17          | urban  | DME             | 1.452                | 16,719.66         | 24,275.79           |
|         | 18          | urban  | DME             | 1.049                | 16,444.34         | 17,243.16           |

Source: Author's calculations based on NSSO (1989, 1994, 1998, 2002).

productivity than those in rural areas only for DMEs and the reverse holds true for other enterprise types.

In 2000-1, capital productivity conspicuously declined in all categories. All categories in DME, except urban textiles were more capital-productive than others, while those in OAME were worse than those in others in this aspect. One striking observation is that capital productivity in apparel sector is lower than that in textile sector for all enterprise types and areas. In all cases except textile NDMEs, enterprises in rural areas are more capital productive than those in urban areas.

As seen from Table 11.7, annual average growth rates of capital productivity from 1984-5 to 1989-90 were in twodigits or even higher in all categories barring textile OAME, where they were less than 10 per cent and urban textile NDME, where they had fallen. From 1989-90 to 1994-5, aver-age annual rates of decline in all categories, except textile OAME and apparel NDME in the rural sample, 16

<sup>&</sup>lt;sup>16</sup> Note that capital productivity had grown in these categories during this period.

|                                       | TABLE 11.9                                      |    |
|---------------------------------------|-------------------------------------------------|----|
| Growth Trends of Partial Productivity | y Measures in Unorganized Textile Sector in Ind | ia |

| Year    | NIC-98 Code | Sample | Enterprise Type | Capital Productivity | Capital Intensity | Labour Productivity |
|---------|-------------|--------|-----------------|----------------------|-------------------|---------------------|
| 1984–5  | 17          | rural  | OAME            | 2.623                | -2.718            | -0.452              |
|         | 18          | rural  | OAME            | 80.007               | -15.63            | 1.85                |
| to      | 17          | rural  | NDME            | 20.351               | -10.64            | -1.116              |
|         | 18          | rural  | NDME            | 19.756               | -4.871            | 10.073              |
| 1989–90 | 17          | urban  | OAME            | 0.772                | 3.092             | 3.984               |
|         | 18          | urban  | OAME            | 177.059              | -17.551           | 4.125               |
|         | 17          | urban  | NDME            | -8.532               | 37.977            | 13.245              |
|         | 18          | urban  | NDME            | 17.495               | 4.594             | 26.107              |
| 1989–90 | 17          | rural  | OAME            | 2.4                  | 3.336             | 6.137               |
|         | 18          | rural  | OAME            | -1.381               | -3.004            | -4.178              |
| to      | 17          | urban  | OAME            | -4.358               | -1.274            | -5.354              |
|         | 18          | urban  | OAME            | -3.37                | 1.108             | -2.449              |
| 1994–5  | 17          | rural  | NDME            | -5.306               | 15.599            | 6.155               |
|         | 18          | rural  | NDME            | 6.296                | -8.589            | -4.997              |
|         | 17          | urban  | NDME            | -6.624               | 1.359             | -5.715              |
|         | 18          | urban  | NDME            | -12.424              | 19.367            | -5.088              |
| 1994–5  | 17          | rural  | OAME            | -4.14                | 5.359             | 0.11                |
|         | 18          | rural  | OAME            | -9.51                | 42.453            | 12.755              |
|         | 17          | rural  | NDME            | -1.856               | 1.596             | -0.408              |
| to      | 18          | rural  | NDME            | -13.129              | 46.687            | 2.909               |
|         | 17          | rural  | DME             | -0.045               | 2.562             | 2.511               |
|         | 18          | rural  | DME             | -9.294               | 11.071            | -3.368              |
| 2000-1  | 17          | urban  | OAME            | -4.376               | 8.153             | 1.992               |
|         | 18          | urban  | OAME            | -10.331              | 19.215            | -1.042              |
|         | 17          | urban  | NDME            | 3.821                | 7.145             | 12.33               |
|         | 18          | urban  | NDME            | 1.841                | -6.803            | -5.588              |
|         | 17          | urban  | DME             | -3.904               | 14.105            | 7.449               |
|         | 18          | urban  | DME             | -12.511              | 27.713            | -2.133              |

Source: Author's calculations based on NSSO (1989, 1994, 1998, 2002).

range from 1 per cent to 12 per cent. Between 1994–5 and 2000–1, enterprises were becoming 0.05 per cent to 13 per cent less productive every year, on an average, except in the case of urban NDME, where they had become more productive at an average annual rates of 1.8 per cent to 3.8 per cent. The rates of decline were much higher in the apparel sector than in textile sector. Even in urban NDMEs, apparel sector had become more productive at a rate lower than that for the textile sector. Decline in capital productivity, wherever it occurred, was more rapid in urban enterprises than in rural ones.

### Capital Intensity

In 1984–5, capital intensity varied between Rs 2000 and Rs 10,000 per employee, with an outlier of over Rs 39,000 for the urban apparel OAME sector. Capital intensity has been much higher in the apparel sector than in the textile sector, except in rural NDMEs, where it is the other way round. Except in textile NDMEs, the enterprises in urban areas are more capital-intensive than those in rural areas. With the exception of rural textile sector, NDMEs are less capital-intensive than OAMEs.

While these figures vary between Rs 1700 and Rs 12,000 in 1989–90, enterprises in the apparel sector, urban areas, and NDME have been uniformly more capital-intensive than those in textiles sector, rural areas, and OAME, respectively, with no exceptions. Except for the enterprises in urban textile OAME and urban NDME sectors, capital intensity has fallen across all categories, the sharpest fall being more than eight times in the case of urban apparel OAME.

In 1994–5, capital intensity ranged from Rs 2000 to Rs 24,000, and the textile sector was more capital-intensive than the apparel sector in the enterprises in rural areas and those in DME, though urban apparel NDME was most capital-intensive among all categories. Urban enterprises and NDMEs have been more capital-intensive than rural enterprises and OAMEs, respectively. While DMEs in rural areas were more capital intensive than NDMEs in these areas, DMEs in urban areas have been less capital-intensive than NDMEs in these areas. Except for rural apparel NDMEs, capital-intensity has fallen in all categories in 1994–5, compared to that in 1989–90.

Unlike in 1994–5, urban DME has been the most capitalintensive (around Rs 16,000, while the lowest is around Rs 2600) category in 2000-1, pushing urban NDME to second. The apparel sector has been more capital-intensive than the textile sector in all categories except DMEs. OAME sector is less capital-intensive than NDME, which is less capital-intensive than DME, in all categories except rural apparel sector, where DME is less capital-intensive than NDME. Further, we observe that enterprises in urban areas are much more capital-intensive than those in rural areas. Capital-intensity is much higher during 2000-1 than that during 1994-5 in all categories.

Except for urban NDMEs and textile urban OAMEs, enterprises in all categories had become less capital-intensive, at annual rates of 3-18 per cent during the period 1984-5 to 1989-90. However, annual growth rate has been as high as 38 per cent in textile urban NDMEs. The decline in capital intensity could not be offset by growth in a few categories from 1989-90 to 1994-5, because rapid growth has been seen only in categories which, to begin with, had grown in capital intensity from 1984-5 and growth, if it occurred, in the other categories was not high relative to the rates of decline in the previous period.

Unlike the previous periods, capital-intensity grew quite rapidly, in most categories, from 1994-5 to 2000-1, with the annual average growth rates ranging from 2 per cent to 47 per cent, the only exception being urban apparel DMEs. One more noteworthy observation is that the apparel sector has grown capital-intensive much faster than the textile sector, wherever it has grown, explaining why apparel sector has become more capital-intensive than textile sector in this year, in contrast with 1994-5 figures. While growth rates were much higher in the textile sector in the urban sample than those in the rural sample, the reverse holds true for the apparel sector, with an exception of DMEs. The other observations in growth rates may be made directly from Table 11.7.

# Labour Productivity

While the textile sector was less labour-productive than the apparel sector in OAME, the reverse holds true for NDME, during 1984-5. NDMEs were more labour-productive than OAMEs in all sectors and areas. Urban enterprises were more labour-productive than those in rural areas. While rural textile OAME was least labour-productive (Rs 1800), urban textile NDME was most labour-productive (around Rs 12,000).

Except for rural textile enterprises, labour productivity increased in all categories from 1984-5 to 1989-90. Urban enterprises and NDMEs were more labour-productive than rural enterprises and OAMEs, respectively, during 1989-90. The fact that the apparel sector was more labourproductive than the textile sector is violated only by urban NDMEs, which were the most labour-productive (about Rs 19,800). Rural textile OAMEs were least labourproductive (about Rs 1780 per person).

In 1994-5, except in urban OAMEs and DMEs, labour productivity, which varied from around Rs 1800 to Rs 19,000, was lower in the apparel sector than in textile sector. Urban enterprises, DMEs and NDMEs were more labour-productive than rural enterprises, NDMEs and OAMEs, respectively.

During 2000–1, DMEs were more labour-productive than NDMEs which, in turn, were more labour-productive than OAMEs. With an exception of OAMEs, the apparel sector was more labour-productive than the textile sector. Urban enterprises were more labour-productive than rural ones. Labour productivity varied from Rs 2300 to Rs 24,000 during this year.

Between 1984-5 and 1989-90, labour productivity grew in all categories at average annual rates ranging from 1.8 per cent to 26 per cent except for the textile sector in the rural sample, where it declined at relatively lower rates. In contrast, labour productivity declined in all categories except rural textiles, where it had grown at about 6 per cent per year, from 1989–90 to 1994–5. This decline was a bit more pronounced in the apparel sector than in the textile sector.

In the period between 1994–5 and 2000–1, labour productivity has grown in the textile sector in all categories except rural NDMEs, in which it declined at an annual rate of less than 1 per cent. In the rural areas, the apparel sector had grown in this aspect, at 3-13 per cent per year, except in DMEs, which saw a decline of around 3 per cent per year. Urban apparel enterprises became less labour productive in all categories at 1–6 per cent per year.

### Overall Inferences on Partial Productivity Measures

With a few exceptions, NDMEs, rural enterprises, and the textile sector were more capital-productive than OAMEs, urban enterprises and the apparel sector, respectively, in 1984–5. While capital productivity grew in most categories during 1984-5 to 1989-90, the other observations are the same as for 1984–5, except that the apparel sector was more capital productive than the textile sector. From 1989-90 to 1994-5, capital productivity declined in almost all categories, with that of DMEs being the highest among all enterprise types. The observation that DMEs in urban areas are more capital-productive than those in rural areas is the only other difference between the figures in 1994-5 vis-à-vis those in 1989-90. In 2000-1, capital productivity conspicuously declined in all categories, more so in urban than in rural areas, explaining the fact that enterprises in rural areas were more capital-productive than those in urban areas. One striking observation is the fall in capital productivity in the apparel sector both in absolute and relative terms and hence the apparel sector was less capitalproductive in apparel sector than in textile sector.

In 1984–5, capital intensity was much higher in the apparel sector, urban areas, and NDMEs than, respectively, the textile sector, rural areas, and OAMEs with few exceptions. The same is true for 1989–90 with no exceptions, though capital intensity fell sharply in most categories since 1984–5. Between 1989–90 and 1994–5, there was little, no, or negative growth in the capital intensity.

The textile sector was more capital-intensive than the apparel sector in rural DMEs. While rural DMEs were more capital intensive than rural NDMEs, urban DMEs were less capital-intensive than urban NDMEs in 1994–5 and the other observations were identical to those in 1989–90. In 2000–1, the apparel sector was more capital-intensive than the textile sector in all categories except DMEs. Urban enterprises were much more capital-intensive than rural ones. Capital intensity was much higher during 2000–1 than that during 1994–5 across all categories.

While the textile sector was less labour-productive than the apparel sector in OAME, the reverse holds true for NDME, during 1984–5, when urban enterprises and NDMEs were more labour-productive than, respectively, rural enterprises and OAME. Labour productivity had increased in most categories from 1984–5 to 1989–90. Except for the fact that the apparel sector was more labour-productive than the textile sector in most cases, relative positions remain the same as in 1984–5. In 1994–5, labour productivity was lower in the apparel sector than in the textile sector for all categories except urban OAMEs and DMEs.

Urban enterprises, DMEs and NDMEs were more labour-productive than rural enterprises, NDMEs, and OAMEs, respectively. While labour productivity grew in most of the textile sector during the period 1994–5 to 2000–1, with the exception of OAMEs, the apparel sector was more labour-productive than the textile sector.

To highlight the findings of this section with a developmental perspective, two observations need to be mentioned. First, urban enterprises have been performing better than rural enterprises in most sub-sectors and measures in the unorganized textile sector. This reiterates the dominant problem of the rural—urban divide even in this section of the economy. Second, DMEs have performed better than

NDMEs, which have performed better than OAMEs in this sector. This supports the argument that smaller firms may not be in a position to perform better than larger ones. It highlights the need to encourage the relatively susceptible segments of the industry, so as to provide a level-playing field. To sum up, with a viewpoint of development, the unorganized textile sector has been facing an issue of polarization, with certain segments within it being in a better position than the others. This is not a very healthy trend for the development of the economy, given the immense contrubution of the unorganized textile sector to the aggregate textile sector as well as to the manufacturing sector. Policies are required to specifically address this issue in the near future.

# DOMESTIC CONSUMPTION OF TEXTILES IN INDIA

Household textile demand holds immense significance in the Indian economy. Given India's population, and more importantly its exploding growth rate, textiles, as a part of the subsistence trio (food, clothing, and shelter), are poised to be among the key factors of demand. Tables 11.10 and 11.11 reveal that the share of clothing in the total expenditure of an average Indian household is around 6–7 per cent in recent years.

The share of textiles and clothing in total expenditure can be considered an indicator of development for the countries, because the more the households in a country spend relatively on clothing, the more developed and comfortable they are with their other basic necessities, especially, food. Thus, there seems to be some scope of increasing the per capita demand for clothing, which could show up as an increase in the share of clothing in the total expenditure. In fact, as a share of non-food expenditure, clothing expenditure has fallen 10 per cent in both urban and rural households, which is clearly a cause for worry.

Sickness of various textile mills in the past has been largely attributed by a number of studies to lack of demand in the country. Though most of these studies were based on the data and scenario till the late 1980s, a demand constraint

 ${\it TABLE~11.10}$  Trends in Per capita Consumption Expenditures and Shares on Clothing in Rural India

(current prices)

|                               |         |        |           |        |        |        | · ·    |         |
|-------------------------------|---------|--------|-----------|--------|--------|--------|--------|---------|
| Per-capita Expenditure on     | 1989–90 | 1993–4 | 1999–2000 | 2000-1 | 2001-2 | 2002-3 | 2003–4 | 2004–5  |
| Clothing (Rs)                 | 10.52   | 21.20  | 33.28     | 35.94  | 35.33  | 37.68  | 38.58  | 62.48   |
| Non-food                      | 57.28   | 108.30 | 197.36    | 216.34 | 221.92 | 239.21 | 255.68 | 619.74  |
| Total (Rs)                    | 158.10  | 286.10 | 486.16    | 494.90 | 498.27 | 531.49 | 555.55 | 1104.84 |
| Share of Clothing in non-food | 0.18    | 0.20   | 0.17      | 0.17   | 0.16   | 0.16   | 0.15   | 0.10    |
| Share of Clothing in total    | 0.07    | 0.07   | 0.07      | 0.07   | 0.07   | 0.07   | 0.07   | 0.06    |

Source: Author's calculations from the Report on 60th Round of National Sample Survey on Consumption Expenditure.

TABLE 11.11 Trends in Per Capita Consumption Expenditures and Share of Clothing in Urban India

(current prices)

| Per-capita Expenditure on     | 1989–90 | 1993–4 | 1999–2000 | 2000-1 | 2001–2 | 2002–3  | 2003–4  | 2004–5  |
|-------------------------------|---------|--------|-----------|--------|--------|---------|---------|---------|
| Clothing (Rs)                 | 15.00   | 32.70  | 51.76     | 58.16  | 57.81  | 60.83   | 60.08   | 62.48   |
| Non-food                      | 110.18  | 214.00 | 444.08    | 514.01 | 530.48 | 582.18  | 593.56  | 619.74  |
| Total (Rs)                    | 249.92  | 464.30 | 854.92    | 914.57 | 932.79 | 1011.97 | 1022.68 | 1104.84 |
| Share of Clothing in non-food | 0.14    | 0.15   | 0.12      | 0.11   | 0.11   | 0.10    | 0.10    | 0.10    |
| Share of Clothing in total    | 0.06    | 0.07   | 0.06      | 0.06   | 0.06   | 0.06    | 0.06    | 0.06    |

Source: Author's calculations from the Report on 60th Round of National Sample Survey on Consumption Expenditure.

can be expected to have been persistent in the textile sector, at least till 2005, when the MFA quotas were phased out, leading to a boom in demand from the sector. This demand for clothing seems to have two dimensions relevant for a country's development: its own intrinsic value as an indicator of development; and its implications for the supplyside and hence the employment aspects.

Table 11.12 shows that the aggregate household purchases of textiles have grown over the years, though the per capita purchases have either been stagnant or have fallen, unlike exports, which have been increasing for decades, despite the quota system. The domestic demand trends are not in line with the trends in domestic production. Thus, there is clearly a domestic demand constraint for textiles in India.

TABLE 11.12 Indian Textile and Apparel Sector-Trends in Growth of Supply and Demand

| Period                                    | Aggregate<br>Household<br>Purchases | Per capita<br>Household<br>Purchases | Exports                            | Supply<br>(Produc-<br>tion)      |
|-------------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|----------------------------------|
| 1975–80<br>1980–5<br>1986–94<br>1995–2000 | 3.519<br>4.742<br>0.875<br>3.026    | 0.991<br>2.225<br>-1.08<br>1.129     | 3.877<br>0.402<br>14.478<br>19.045 | 6.35<br>4.841<br>10.518<br>5.033 |

Source: Author's calculations from Different yearbooks of ASI, Compendium of Textile Statistics and Consumer's Purchases in Textiles.

The demand constraints are attributed to the excise structure that is highly biased towards cotton and other natural fibres as well as textile commodities that are manufactured by relatively less efficient ways, such as without power and steam. Table 11.13 shows the excise structure over the years in different textile fibres, while Tables 11.14 and 11.15 show this for different yarns and fabrics, respectively.

Before an examination of the figures in these tables, it is imperative to note a few things. First, natural fibres, hank yarn (plain reel and cross reel up to 25s), all fabrics processed without aid of power and steam and products of factories owned by/registered to the National Handloom Development Corporation, State Government Handloom

Development Corporations and Khadi and Village Industries Commission have no excise duty to begin with. Second, since 1995-6, a provision was made in the budget to make a part of excise duty in lieu of sales tax for all fabrics and hence the figures from this year are slightly higher than what they effectively are, in comparison with those for the previous years. Third, handloom cotton fabrics and those processed by independent power processors approved by the government have an excise duty that is 40 per cent of that for the mill and powerloom sector.

Woollen fabrics made of shoddy yarn were exempted up to the value of Rs 60/sq. metres till 1992-3 and Rs 100/sq. metres since 1993-4. Hank yarn exemption was withdrawn from 2002-3, but the exemption to hank yarns of coarse counts up to 2s using condenser card machines is maintained. Since 2004-5, duties are applicable with centralized value added taxes for natural fibre yarns and all fabrics.

Considering the fact that the recent figures for excise duties consist of what was sales tax before as well, it can be observed that there is a falling trend in almost all commodity groups.

**TABLE 11.13** Trends in Excise Structure of Various Textile Staple Fibres in India, 1992-2005

| Year      | Acrylic,<br>Viscose | Polyester | Nylon | Acetate | Polypro-<br>pylene |
|-----------|---------------------|-----------|-------|---------|--------------------|
| 1992–3    | 15.6                | 13.65     | 59.15 | 15.6    | 17.87              |
| 1993-4    | 14.95               | 12.65     | 14.95 | 14.95   | 17.25              |
| 1994-5    | 23                  | 23        | 23    | 23      | 23                 |
| 1995–6    | 23                  | 23        | 23    | 23      | 23                 |
| 1996-7    | 23                  | 23        | 23    | 23      | 23                 |
| 1997-8    | 20.7                | 20.7      | 20.7  | 20.7    | 20.7               |
| 1998–9    | 20.7                | 20.7      | 20.7  | 20.7    | 20.7               |
| 1999-2000 | 18.4                | 18.4      | 18.4  | 18.4    | 18.4               |
| 2000-1    | 18.4                | 18.4      | 18.4  | 18.4    | 18.4               |
| 2001-2    | 18.4                | 18.4      | 18.4  | 18.4    | 18.4               |
| 2002-3    | 18.4                | 18.4      | 18.4  | 18.4    | 18.4               |
| 2003-4    | 18.4                | 18.4      | 18.4  | 18.4    | 18.4               |
| 2004-5    | 16.32               | 16.32     | 16.32 | 16.32   | 16.32              |

Source: Compendium of Textile Statistics, Annual Books published by the Office of Textile Commissioner, Ministry of Textiles, Government of India for the years from 1994 to 2005.

TABLE 11.14

Trends in Excise Structure of Various Textile Yarns Based on Filaments and Staple Fibres in India, 1992–2005

(in percentage ad valorem.)

Wool Year Hank Cone Polyester Polyester Polyester Polyester Nylon Viscose Yarn Yarn Viscose Cotton Wool Filament Filament Filament Yarn 1992 - 30.39 - 2.600.35 - 9.757.8 15.6 80.6 25-71.5 5.2 - 19.50 15.6 8.05 26.5-57.5 0.23 - 2.300.58 - 9.7816.1 16.1 69 5.18-19.55 0 1993-423 - 34.51994-5 3.45 5.75 23 23 23 69 11.5-17.25 11.5 1995-6 3.45 5.75 23 23 23 57.5 23 - 34.511.5-17.25 11.5 3.45 5.75 23 23 23 46 23 - 34.511.5-23 11.5 1996 - 71997 - 83.45 5.75 20.7 20.7 20.7 34.5 20.7 - 34.59.2 - 20.79.2 20.7-34.5 20.7 20.7 20.7 34.5 9.2 1998-9 3.45 5.75 9.2 - 20.79.2 9.2 18.4 18.4 34.5 1999-2000 0 18.4 27.6 18.4 0 2000-19.2 18.4 18.4 18.4 36.8 18.4 18.4 9.2 2001 - 20 9.2 18.4 18.4 18.4 36.8 18.4 18.4 18.4 2002 - 30 - 9.209.2 18.4 18.4 18.4 36.8 18.4 18.4 18.4 2003 - 40 - 9.209.2 13.8 13.8 13.8 27.6 13.8 13.8 13.8 2004 - 50 - 9.292 8.16 8.16 8.16 24.48 16.32 16.32 8.16

Source: Compendium of Textile Statistics, Annual Books published by the Office of Textile Commissioner, Ministry of Textiles, Government of India for the years from 1994 to 2005.

TABLE 11.15
Trends in Excise Structure of Various Textile Fabrics in India, 1992–2005

| Year      | Cotton Fabrics              | Blended/Synthetic<br>Fabrics | Woollen<br>Fabrics <sup>1</sup> | Woollen<br>Fabrics <sup>2</sup> | Woollen<br>Fabrics <sup>3</sup> |
|-----------|-----------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 1992–3    | 0.2-2.5+20%                 |                              |                                 |                                 |                                 |
|           | of value > Rs 40/sq. metres | 0.5-20%                      | 2.0-9.0                         | 7.1-14.4                        | 10.86-18.00                     |
| 1993-4    | 0.2-2.5+20 %                |                              |                                 |                                 |                                 |
|           | of value > Rs 40/sq. metres | 0.5-20 %                     | 2.0-9.4                         | 7.95-15.50                      | 10.75-18.80                     |
| 1994-5    | 10                          | 10–20%                       | 0-16.50                         | 16.5                            | 16.50-22.25                     |
| 1995-6    | 5–10%                       | 10-20%                       | 22.25                           | 22.25                           | 22.25                           |
| 1996-7    | 10–20%                      | 20                           | 22.25                           | 22.25                           | 22.25                           |
| 1997-8    | 10–20%                      | 20                           | 22.25                           | 22.25                           | 22.25                           |
| 1998–9    | 10–20%                      | 20                           | 22.25                           | 22.25                           | 22.25                           |
| 1999-2000 | 13–16                       | 16                           | 21                              | 21                              | 21                              |
| 2000-1    | 16                          | 16                           | 21                              | 21                              | 21                              |
| 2001-2    | 16                          | 16                           | 16                              | 16                              | 16                              |
| 2002-3    | 12                          | 12                           | 12                              | 12                              | 12                              |
| 2003-4    | 10                          | 10                           | 10                              | 10                              | 10                              |
| 2004-5    | 4.08                        | 8.16                         | 8.16                            | 8.16                            | 8.16                            |

*Notes:* The units are percentage ad valorem for all except woollen fabrics, for which the units are rupees per sq. metre, unless otherwise mentioned; <sup>1</sup> manufactured by independent processors; <sup>2</sup> manufactured by decentralized sector and processed by mills; <sup>3</sup> manufactured and processed by composite mills.

Source: Compendium of Textile Statistics, Annual Books for the years from 1994 to 2005.

Another inference is that the excise structure is now much simpler than it was before. For example, while it was different for each type of staple fibre before, it is the same for all the synthetic stable fibres in the recent years. Filament yarns in general and polyester in particular, are the commodity groups for which the excise duties appear to be the highest.

For simplicity, we have not shown the excise structure of the intermediates involved in the production of synthetics. For most of them, excise has remained static at around 15–18 per cent for the past ten years. Thus, it is very clear that the excise structure is still highly biased towards natural fibres, though this has been reduced to a large extent. Further, less efficient ways of manufacturing such as those that do not use power and steam pay less excise duties, leading to higher relative marginal costs of production for the more efficient manufacturers. This kind of differentiation is removed only in the case of woollen fabrics, as noted in Table 11.15.

A recent exercise on demand estimation, using a dynamic, almost-ideal demand system, performed for a monthly household-level survey data on textile purchases from 1994 to 2003, by the author, <sup>17</sup> shows that the cross-price elasticities among the twelve major commodity groups within textiles are negligible compared to the own-price elasticities, which are very high for synthetic and blended textiles and low for cotton textiles. These findings are in line with the older studies on textile demand, showing that not much has changed in the textile consumption pattern in India over years. This is summarized in Table 11.16, where the ownprice elasticities and expenditure elasticities are shown in bold. It is evident that the cross-price elasticities are negligible compared to these. Further, own-price elasticities are strikingly higher in synthetics than in cotton and wool.

All these observations, put together, point towards two major facts. The first is the biased nature of the excise structure that has kept not only synthetic/blended textiles more expensive than they should have been, but has also encouraged the less-efficient means of production, albeit for developmental purposes such as equity. The second is that a reduction of this bias by lowering the excise on synthetics/ blended textiles and more efficient means of production, would not cause a fall in demand for conventional textiles, as the cross-price elasticities hardly play a role. Further, such a reduction would enhance the demand for all noncotton commodity groups, without affecting the demand for cotton and other conventional commodity groups.

Thus, it is quite understandable that a cut in excise duties of synthetic and blended textiles will be beneficial to the Indian textile sector, as a whole. While presenting the Union Budget for the year 2006-7, the Finance Minister probably had these issues in mind while reducing the excise duty of manmade and blended fibres from 16 per cent to 8 per cent. This is, indeed, a welcome step. While we have focussed only on domestic demand, this has implications also for India's competitiveness vis-à-vis the other countries in the textile sector, in international trade.

Thus, it may be said with a reasonable degree of confidence that the Indian textile sector will benefit immensely from this step in the budget. The major point emphasized in this section, which is less obvious, is that a cut in duties will not affect the conventional textiles sector, owing to the low cross-price elasticities between the textile commodity groups. This is essential not only for the well-being and better performance of the sectors, per se, but also for the standards of living of the masses, in terms of textile consumption.

This observation is significant in terms of the developmental perspective as well. It should be highlighted that the consumption of textiles itself is as much a measure of development as is the consumption of food. Hence, enhancing textile consumption should be an inherent feature of developmental policies. In addition, enhanced textile demand would benefit the supply side as well, which is immensely significant for the development of the economy in general.

### **CONCLUSIONS**

This chapter aimed to analyse the integration of the Indian textile sector into the global economy, with the objectives of development being preserved. While doing this, the trends in annual value, shares, and monthly average value of exports from India were studied. It is illustrated that though there was a rapid rise in exports in 2003-4, they

**TABLE 11.16** Elasticities of Various Textile Commodity Groups to their Prices and Textile Expenditure

| Elasticity of: With Respect to: | Acrylic | Viscose | Cotton | Cotton-<br>Viscose | Nylon  | Polyester | Polyester<br>-Cotton | Silk   | Polyester<br>-Viscose | Polyester<br>-Wool | Wool    |
|---------------------------------|---------|---------|--------|--------------------|--------|-----------|----------------------|--------|-----------------------|--------------------|---------|
| Acrylic                         | -0.851  | 0.008   | 0.045  | 0.013              | 0.073  | -0.070    | -0.036               | -0.001 | -0.109                | -0.033             | -0.021  |
| Viscose                         | 0.010   | -0.920  | 0.035  | 0.025              | 0.134  | -0.056    | 0.046                | -0.024 | -0.031                | -0.002             | -0.027  |
| Cotton                          | 0.007   | -0.020  | -0.667 | -0.024             | -0.054 | 0.042     | -0.323               | 0.002  | 0.034                 | 0.036              | 0.021   |
| Cotton-Viscose                  | 0.006   | 0.010   | -0.010 | -0.876             | -0.099 | -0.001    | -0.017               | -0.001 | -0.001                | 0.003              | -0.012  |
| Nylon                           | 0.012   | 0.023   | -0.010 | -0.037             | -1.334 | 0.009     | -0.036               | 0.009  | 0.046                 | 0.036              | -0.0003 |
| Polyester                       | -0.061  | -0.053  | 0.117  | 0.001              | 0.054  | -0.948    | 0.188                | -0.019 | -0.043                | -0.032             | -0.055  |
| Polyester-Cotton                | -0.022  | 0.055   | -0.340 | -0.023             | -0.157 | 0.198     | -0.906               | 0.015  | -0.012                | 0.036              | -0.026  |
| Silk                            | -0.001  | -0.067  | 0.149  | 0.005              | 0.158  | -0.054    | 0.025                | -0.936 | 0.011                 | -0.133             | -0.089  |
| Polyester-Viscose               | -0.043  | -0.014  | 0.040  | 0.001              | 0.107  | -0.020    | -0.011               | 0.001  | -0.688                | -0.042             | -0.040  |
| Polyester-Wool                  | -0.021  | -0.004  | 0.044  | 0.004              | 0.126  | -0.024    | 0.021                | -0.033 | -0.066                | -0.730             | -0.045  |
| Wool                            | -0.035  | -0.049  | 0.110  | -0.045             | -0.001 | -0.109    | -0.059               | -0.057 | -0.179                | -0.126             | -0.713  |
| Textile Expenditure             | 1.000   | 1.039   | 0.487  | 0.982              | 0.941  | 1.018     | 1.129                | 1.037  | 1.005                 | 0.981              | 1.032   |

Source: Author's calculations.

<sup>&</sup>lt;sup>17</sup> Details of this model, not shown here for simplicity and space constraint, are available on request from the author.

have either been falling subsequently in most sub-sectors, or at best, they are stagnant.

Further, it is seen that the share of textile and apparel exports in the total exports from India has fallen over the years, despite the phasing out of MFA quotas and the subsequent rise in absolute value of textile exports. This is a significant observation, as it contradicts the expectation that textile exports must have exploded, at least in relation to other exports. This is possibly due to bottlenecks on the supply side, as there are no major external demand constraints, given the removal of quotas.

On examining the organized textile and apparel sector, it is seen that employment is stagnant, while capital and output have been increasing in the recent years. In the organized textile sector, employment has been falling for the past few decades, though the effective rate of protection has been falling, indicating elimination of rigidities in the economy. In the apparel sector, it is increasing, along with capital and output, despite a much lower increase in the number of factories. This indicates a structural change, in terms of huge investment and increase in scales of operation, since its dereservation from the SSI sector in 2000. Better prospects of employment seem possible in the apparel sector in the future, though they should be enhanced in the textile sector as well, through promoting investments.

Investment could be encouraged by better credit disbursement policies. In this connection, it should be noted, however, that credit disbursement through the TUFS scheme, as a fraction of credits applied for, has been decent enough (see Table 11.17). <sup>18</sup> A glance at the figures in the table suggest that the disbursement of credit has been fairly good especially in the case of the agencies that are meant for promoting the SSIs (SIDBI and NCDC), with an application-rejection rate of less than 2 per cent and credit disbursement

rate of around 70 per cent, though the figures are less impressive for agencies that lend to all industries (ICICI, IDBI, IFCI, IIBI, and EXIM Bank). To the extent that SSIs are more dependent on the sources of credit such as TUFS than the other industries, these figures show that credit disbursement is not a major issue. In fact, the same can be said for other industries too, though not to the extent as that for SSIs. Thus, the reasons for low investment may be a lack of awareness among entrepreneurs about these schemes and the government should take steps to promote them.

As for the unorganized textile sector, employment has been increasing, despite a fall in capital and output, an issue that is in striking contrast with that in the organized textile sector. In the late 1990s and till 2001, capital productivity had declined in this sector, more so in urban than in rural areas. Capital intensity was much higher during 2000-1 than that during 1994-5 in all categories. While labour productivity grew in most of the textile sector between 1994-5 and 2000-1, with the exception of OAME, the apparel sector was more labour-productive than the textile sector. Enterprises in rural areas were more capital-productive, less capital-intensive and less labour-productive than those in urban areas. The apparel sector was less capital-productive, more capital-intensive (except in DMEs) and more labourproductive than in the textile sector. These trends varied across enterprise types as well. A major observation relevant for the developmental perspective is that there has been a divide between various segments within the textile sector, in terms of performance.

The analysis of household demand has shown that per capita textile purchases have been declining in real terms during the past few years. The excise and customs duties on manmade fibre textiles have been a barrier in increasing their purchases due to the fact that they are reflected in their prices

| Nodal Agencies                       | Credit              | Credit Applications Received |                         |                     | Credits Disbursed   |                    |                       |  |
|--------------------------------------|---------------------|------------------------------|-------------------------|---------------------|---------------------|--------------------|-----------------------|--|
|                                      | No. of applications | Project<br>Cost              | Amount of loan required | No. of applications | Project<br>Cost     | Amount sanctioned  | applications rejected |  |
| Agencies that lend to all industries | 1290                | 23031.07                     | 12237.79                | 950<br>(73.64)      | 14224.00<br>(61.68) | 6682.58<br>(55.00) | 118<br>(9.15)         |  |
| Agencies that lend only to SSIs      | 2379                | 2498.38                      | 1480.32                 | 1930<br>(81.13)     | 1778.29<br>(71.18)  | 1006.88<br>(68.04) | 44<br>(1.85)          |  |
| Total                                | 3669                | 25529.45                     | 13718.11                | 2880<br>(78.50)     | 16002.29<br>(62.26) | 7689.46<br>(56.04) | 162<br>(4.42)         |  |

TABLE 11.17
Credit Applications that were Received and Disbursed under TUFS

*Note:* Figures corresponding to costs/amount in the table are in crores of rupees and those in brackets are percentages of the corresponding total.

Source: Author's calculations based on a report on 'Progress of TUFS as on 30.11.2004', issued by the Office of the Textile Commissioner, Mumbai.

<sup>&</sup>lt;sup>18</sup> See Narayanan (2005) for more details in this regard.

and the demand for these products is highly own-price elastic. Given the fact that the cross-price elasticity between cotton and such fibres is negligible compared to the ownprice elasticities, rise in demand for textiles in India without a fall in the demand for the conventional textiles could be ensured by fall in prices of manmade fibre textiles, which is possible only by a cut in excise duties and customs for these products, as has been done in the recent years. This appears to be a significant step in fostering development in the country, from the viewpoints of the supply side as well as the demand side.

# References

- Beena, P.L. (2006), 'Limits to Universal Trade Liberalisation: The Contemporary Scenario for Textiles & Clothing Sector in South Asia', Centre for Development Studies Working Paper No. 379. Thiruvanthapuram.
- Gokhale, C.S. and V. Katti (1995), 'Globalising Indian Textiles: Threats and Opportunities', Tecoya Disseminators, Bombay. Misra, S. (1993), India's Textile Sector: A Policy Analysis, Sage Publishers, New Delhi.
- Narayanan, G. Badri (2005), 'Questions on Textile Industry Competitiveness', Economic and Political Weekly, 26 February-4 March 2005.

- NSSO (1989), NSS 40th Round (July 1984-June 1985), Tables with Notes on Survey of Unorganized Manufacture: Non-Directory Establishments and Own Account Enterprises, Part I, Part II (Volume 1 and 2), Number 363/1, National Sample Survey Organization, Department of Statistics, Government of India, New Delhi.
  - (1994), NSS 45th Round (July 1989–June 1990), Tables with Notes on Survey of Unorganised Manufacture: Non-Directory Establishments and Own Account Enterprises, Part-I (All-India), Number 396/2, National Sample Survey Organization, Department of Statistics, Government of India, New Delhi.
- (1998), NSS 51st Round (July 1994–June 1995), Assets and Borrowings of the Unorganised Manufacturing Sector in India, Number 435, National Sample Survey Organization, Department of Statistics, Government of India, New Delhi.
- (2002), NSS 56th round (July 2000 June 2001), Unorganised Manufacturing Sector in India: Characteristics of Enterprises, Number 477, National Sample Survey Organization, Department of Statistics, Government of India, New Delhi.
- Roy, T. (1996), Cloth and Commerce: Textiles in Colonial India, Sage Publications, New Delhi.
- Sastry, D.U. (1984), The Cotton Mill Sector in India, Oxford University Press, New Delhi.

# Globalization, Employment, and Labour Market Flexibility The Case of India

K.V. Ramaswamy

### THE ISSUES

The impact of global integration of markets on the quantity and quality of jobs has been a contentious issue. This is not surprising as the labour market is one of the main channels through which globalization affects a country's economy and workers. Globalization (a world without barriers to trade and investment) is widely perceived to result in negative labour market outcomes, that is, job losses and reduction in earnings. (are your wage levels set in Beijing?) Three major areas of concern have been the loss of good jobs in industries losing competitiveness, biased technological change against unskilled workers and the informalization of the workforce 'race to the bottom'. All these reasons taken together suggest that globalization could put labour markets under pressure. This outcome could lead to greater social conflicts as a consequence of unemployment and increasing wage inequalities.

In the context of India, accelerating output growth in recent years has not been accompanied by a faster rate of job growth. In particular, the slow growth of regular jobs and the intensification of duality in labour markets (formal versus informal) has become a serious problem. This is evident from

the data on non-agricultural employment shown in Table 12.1. Formal sector jobs in the non-agricultural sector have grown by just 0.6 per cent per annum in the 1990s. Recent data suggest that meagre growth rates continue, with the exception of the IT sector (IT and IT enabled services). The Indian economy needs to create a large number of jobs for the unskilled workers who are currently unemployed or employed in the informal sector and those who will be entering the labour force in the next few years. The high rate of job creation in the IT sector will be for the educated (skilled) workers with specific skill sets. In this situation, the pressure is on the manufacturing sector—where currently the growth rate of jobs is only 2 per cent—to absorb unskilled labour. This underlines the need for policies that are conducive to faster growth of regular jobs in the Indian industry.

The employment effects of trade and investment liberalization (prime movers of globalization) may depend, among other factors, on the labour market institutions. Any analysis of globalization needs to recognize the crucial role of labour market institutions on employment outcomes. An inseparable factor complicating the entire issue has been the role of job security regulations (JSR). Countries differ with

<sup>&</sup>lt;sup>1</sup> The IT sector has registered high rates of employment growth of more than 25 per cent in recent years. Total employment of the IT sector is above 1 million (NASSCOM reports).

<sup>&</sup>lt;sup>2</sup> JSR are one component of labour market institutions. Other components are trade unions and wage bargaining rules, statutory minimum wages, regulations governing working condition, payroll taxes etc.

26.7

0.6

|                                        | 199                 | 3–4                 |                     | 1999–2000           |                 |  |
|----------------------------------------|---------------------|---------------------|---------------------|---------------------|-----------------|--|
|                                        | Total<br>(Millions) | Percentage<br>Share | Total<br>(Millions) | Percentage<br>Share | Growth<br>Rate* |  |
| Mining and Quarrying                   | 2.7                 | 2.0                 | 2.27                | 1.4                 | -2.85           |  |
| Manufacturing                          | 42.5                | 32.2                | 48.01               | 30.1                | 2.05            |  |
| Electricity                            | 1.35                | 1.0                 | 1.28                | 0.8                 | -0.88           |  |
| Construction                           | 11.68               | 8.8                 | 17.62               | 11.1                | 7.09            |  |
| Wholesale and Retail Trade             | 27.78               | 21.0                | 37.32               | 23.4                | 5.04            |  |
| Transport, Storage, and Communication  | 10.33               | 7.8                 | 14.69               | 9.2                 | 6.04            |  |
| Financial Services and Social Services | 3.52                | 2.7                 | 5.05                | 3.2                 | 6.2             |  |
| Personal Services                      | 32.13               | 24.3                | 33.2                | 20.8                | 0.55            |  |
| Total Non-agriculture                  | 131.99              | 100                 | 159.44              | 100                 | 3.2             |  |

80.5

**TABLE 12.1** Distribution and Crowth of Non-agricultural Employment 1994, 2000

Note: \*Average annual compound growth rate.

Organized Sector

Source: Report of the Task Force on Employment Opportunities, Planning Commission, 2001.

25.7

respect to the kind of institutions (legislative/administrative rules and procedures) set up to govern worker-employer relations and to regulate working conditions. The JSR may be defined to include all those legal provisions that increase the cost of workforce adjustment by retrenchment of workers. They are supposed to constrain adjustment responses of firms to competitive conditions and inhibit firing decisions (labour market inflexibility). Firms are reported to have responded by hiring more temporary or contract workers and outsourcing production to firms in the informal sector (outside the purview of labour regulations). This is argued to suggest de facto flexibility undermining the need for labour market reforms.<sup>3</sup> Arguably, the existence of de facto flexibility is not a justification for stringent labour laws if the social outcome is greater number of low quality jobs (temporary/ contract workers). This raises the question of how to provide social safety nets for workers<sup>4</sup> without harming hiring incentives for firms. This is a major challenge for countries such as India. In this context, it is useful to set out the interlinked factors that determine the employment outcomes of globalization.

### GLOBALIZATION AND EMPLOYMENT

### Causal Links and Alternative Outcomes

Globalization implies removal of barriers to international trade and investment. The traditional theories of trade predict resource reallocation between sectors. The Ricardian comparative advantage predicts resource movement towards sectors with comparative advantage. Resources move from relatively less productive to relatively more productive industries. This leads to changes in employment in different industries. The alternative approach (Hecksher-Ohlin approach or H-O model) is based on relative factor endowments. The H-O theory, assuming competitive product and factor markets, argues that trade liberalization generates demand for the abundant factor (unskilled labour in developing countries) because of expansion of export sectors, raising both employment and the relative price (wages) of unskilled labour. The demand for skilled workers and their relative wages will fall as the demand for skill intensive goods contracts due to contraction of import competing goods. Consequently, the wage differential between the skilled and unskilled will fall. Therefore, the prediction for developing countries is that the employment opportunity of unskilled workers increases and wage inequality declines. What other market conditions and institutions help or hinder this positive and desirable outcome of trade liberalization?

83.2

# AGGREGATE EMPLOYMENT

### Reinforcing Factors

1. Slicing up of the value chain. Globalization implies 'breaking up of the production process into many geographically separated steps'. A good is produced in a number of stages in a variety of locations, adding value at each stage. Producers locate the different stages such that it improves access to resources and facilitates penetration of newly expanding

<sup>&</sup>lt;sup>3</sup> In addition, firms have pursued downsizing by offering 'golden handshakes' or voluntary retirement schemes (VRS) to their employees. VRS are prominent in the public sector enterprises as also in large private sector enterprises such as Tata Steel. This immediately suggests that the use of VRS for workforce adjustment depends on the access to financial resources, which is not available to all firms.

<sup>&</sup>lt;sup>4</sup> As India does not have unemployment benefits/insurance system, job security law is a form of social security. At the same time, this restricts the job creation capacity of the economic system.

markets. In effect, globalization promotes specialization in terms of the development of market niches. This process of slicing up of the value chain provides greater room for developing countries to specialize in the labour intensive stages of the manufacturing process of a commodity which, as a whole, might be capital intensive. This should create more employment opportunities in low-wage (labour abundant) countries.

- 2. Pro-competitive Effect. Many protected industries are dominated by a few firms and concentrated market structures. Import liberalization, by reducing price mark-ups in imperfectly competitive industries, results in output expansion. This may create more employment. This positive employment effect depends on the employment share of such industries in total industry employment.
- 3. Foreign capital and exports. Openness induces flow of more FDI to the developing economies with large domestic markets. This stimulates output expansion and more employment (for both skilled and unskilled labour) in the aggregate. Employment in both import competing (IC) and export oriented (EO) sectors may experience growth. Export growth relaxes foreign exchange constraints and facilitates access to intermediate goods (machinery and raw materials). This would stimulate growth in output and employment.

# Offsetting Factors

- 1. Employment in IC Sectors. The IC sectors (protected industries) may experience large fall in employment. This is not offset by employment creation in industries with competitive advantage in the short to medium run. This could occur because of a variety of reasons, for example, the inadequacy of infrastructure (mainly power and transportation), inadequate financing of industrial investment by the financial sector or simply the short length of adjustment time available for expansion of industries with competitive advantage.
- 2. Technology bias and new work organization. The nature of production technologies that flow in from abroad may be skill-intensive. In other words, the new production methods that are used to improve the competitiveness of developing country exports in the global economy are biased against the use of unskilled labour. Therefore, the

- new demand for labour will benefit only skilled workers who constitute a small proportion of the workforce.<sup>5</sup>
- 3. Organizational Change. New forms of work organization and management practices introduced either by foreign or domestic firms to attain competitiveness may be biased against the use of unskilled labour.<sup>6</sup>
- 4. Dual Labour Markets and Informalization. Labour markets in developing countries are segmented into formal and informal sectors. In the formal sector of the labour market, government regulations (such as legislation on employment protection and minimum wages) and collective bargaining processes (trade unions) play a significant role in the determination of employment and wages. The informal segment is outside the job security regulations, pays lower wages, is free from union wage agreements, and largely escapes government regulations on health, environment, and safety. Consequently, firm size and quality of employment are positively associated. Globalization can change the composition of employment between formal and informal sectors. Greater competitive pressure forces formal sector firms to outsource labour and production to the informal sector. This will create only low quality jobs and an increasing informalization of workers. Workers laid off from the formal segment of import substituting industries may seek employment in the informal sector. This could cause wages to decline in an already low wage segment, thus increasing wage inequality. The occurrence of a shift from formal to informal sectors has been observed in many countries of Latin America, Asia, and Africa. Recent research on the impact of trade liberalization on labour markets has attempted to take into account the dual structure of labour markets in developing countries as well as the role of labour market regulations.

# JOB SECURITY REGULATIONS: IMPACT ON LABOUR MARKETS

JSR play an important role in differentiating formal sectors from non-formal sectors of industry. JSR are mandated by the state to provide protection to workers against unjust termination.<sup>7</sup> The key question is the cost of dismissing a worker for economic reasons, for example, decline in demand or a change in technology used. They are argued to

<sup>&</sup>lt;sup>5</sup> Often called 'skill-enhancing trade'. Note that technological change in the industrialized North also causes a widening of wage inequalities because of increasing demand for skilled workers relative to unskilled workers.

<sup>&</sup>lt;sup>6</sup> Globalization can affect workers, in a subtle way, by changing the elasticity of labour demand. Globalization makes demand for final products more elastic which, in turn, causes labour demand elasticity to go up (remember that demand for labour is derived demand that depends on the demand for final output that workers help produce). The question of whether globalization has actually led to an increase in labour demand elasticity is an empirical matter.

<sup>&</sup>lt;sup>7</sup> What constitutes 'unjust' or 'unfair' termination (dismissal) in the eyes of the law (courts) differs across countries. Job loss due to no fault of the worker is considered unjust. This excludes retirement due to superannuation, non-renewal of a pre-determined contract, termination due to misconduct/indiscipline/poor performance, and voluntary retirement.

inhibit the ability of firms to hire and fire workers in response to changing market conditions. JSR result in firing costs as they impose severance pay and procedural conditions on worker terminations. JSR include labour laws that determine the types of contracts offered by firms (permanent/contract (fixed term)/temporary/casual), the lengths of advance period prior to termination, and the compensation for dismissal. Labour laws specify the causes considered justified for dismissal, procedures to be followed for termination of services of a worker, the conditions of work, and the minimum wages.<sup>8</sup>

### The Cost of Labour Regulations

This refers to the cost of complying with labour laws. JSR increase the cost of dismissing a worker for economic reasons. JSR require the firm to incur at least four types of costs:<sup>9</sup> (i) administrative procedures for termination, (ii) advance notification, (iii) compensation for dismissal, and (iv) the legal costs of a trial when the firm or the workers contest the decisions of the state authorities. Administrative procedures require the firm to notify and seek the approval of state authorities. This prolongs the period between termination decisions and actual terminations. They may involve negotiations with the trade unions. Advance notification is included because compensation equivalent to wages in lieu of notice is required to be paid. The compensation amount is based on multiples of the most recent wage and the years of service. Firms may be asked to pay the worker a subsistence allowance during the trial period and the foregone wages during trial, depending on the final court decision.

# Predictions based on Theory

An important theoretical approach for understanding the impact of firing costs is the model of dynamic labour demand with adjustment costs. <sup>10</sup> The basic principle underlying labour demand when hiring and firing costs exist is that employers (firms) should take into account labour's marginal contribution to expected present discounted profits (shadow value of labour). Employment decisions should not be made on the basis of current profit conditions. The shadow value of labour is defined as the marginal increase in the discounted cash flow of the firm if it hires one additional unit of labour. In this framework, the employer compares the shadow value of labour to hiring (H) and firing (-F) costs. Firing would be optimal when the shadow value

of labour (V) is less than the firing costs (-F). That is the marginal cost of severance payments and other costs entailed by dismissals. Concern about future firing costs induces firms to employ fewer units even in periods of strong labour demand (good states of the world). In periods of weak labour demand (bad states of the world), the employer has less incentive to fire, as the annualized cost savings from not firing workers is perceived as lower wage costs. Firing costs, therefore, induce labour hoarding on the part of firms. Firing costs reduce both hiring as well as firing by firms. This microeconomic behaviour implies that employment fluctuations are much narrower than actual fluctuations in marginal productivities experienced by firms. In brief, JSR reduce employment volatility.

However, the impact of firing costs on aggregate average employment rate is ambiguous. The average employment rate increases or decreases depending on whether the decline in hiring rates in expanding firms more than offsets the decline in firings in contracting firms. The net effect of firing costs on aggregate employment is an empirical matter. The JSR may also affect employment through an effect on wages. Firing costs may strengthen the position of insiders (incumbent workers in unionized firms) and increase their wages while reducing employment prospects for outsiders (say, in the informal sector).<sup>11</sup> Actual outcomes depend on many factors, leading to ambiguity in theoretical results. We may note that theoretical models focus on homogenous workers and productivity shocks as reasons for terminations. In reality, the JSR may make worker dismissal difficult even for disciplinary/poor performance reasons, raising expected costs of firing.

# Efficiency Wages and Duality

The theory of efficiency wages is based on the idea that firms pay more than the competitive wages in order to prevent workers from shirking. They recognize that lower real wages are associated with lower productivity. Labour cost increases when a firm is expected to downsize by laying off workers. The intuition is that workers have a greater incentive to shirk when they expect the firm to downsize (probability of layoff is higher). To prevent workers from shirking, the firm has to raise future wages. Efficiency wages are, therefore, equivalent to costs of labour adjustment in a firm. In this framework, firms will have an incentive to set up a dual structure within the firm by employing tier-II workers who could be

<sup>&</sup>lt;sup>8</sup> The state also mandates social security contributions like contributions to old age pensions, disability and death, sickness and maternity, unemployment insurance, and other allowances.

<sup>&</sup>lt;sup>9</sup> This is based on Heckman and Pages (2004). The costs vary from country to country and across regions within a country. The costs are quantified in terms of monthly wages for Latin American and the OECD countries.

<sup>&</sup>lt;sup>10</sup> See Bertola (1999) for a detailed discussion.

<sup>&</sup>lt;sup>11</sup> This is the much discussed insider–outsider theory.

fired without cost. Firms will shift the burden of adjustment to tier-II workers and reduce the probability of dismissal of tier-I workers (thus, lowering labour costs).

The dual labour market models can be used to shed light on the response of labour markets in developing countries to trade liberalization and globalization. Consider the following set-up, close to conditions prevalent in India. 12 The firm can hire workers from two pools: a pool of formal workers and a pool of informal workers. The two pools differ in two important respects: first, the employment of workers is regulated by labour market regulations. Formal sector workers receive many benefits. They cannot be dismissed from service unless the firm has accumulated sufficient evidence. They will receive severance payment when dismissed. This implies that adjustment costs associated with the employment of such workers are higher relative to those associated with informal workers. Further, the cost of monitoring formal sector workers is higher. Therefore, the firms need to offer efficiency wages to motivate them. In this set-up, let us introduce tariff cuts (the first step in the move to globalize) that result in price shocks to the firm. Firms need to fire workers to remain in business. Given the efficiency wage, the expected marginal cost of hiring a formal worker increases. Firms will reduce hiring formal workers. Stricter labour market regulation implies probability of detecting and firing shirking workers is lower, which results in higher marginal cost of hiring formal sector workers. The share of the formal sector declines.

### **EMPIRICAL STUDIES**

Many recent studies have consistently shown a negative impact of JSR on average employment rates both in OECD as well as Latin American countries. 13 A recent study (Heckman and Pages 2004) of OECD countries finds a statistically significant negative effect of compensation (indemnities) on employment rates. Another important study (di tella and MacCulloch 2005), examined data for 21 EU countries over a seven-year period (1984-90) using a measure of flexibility given by employers. They found a significant negative relationship between the degree of inflexibility and employment rate (defined as: total civilian employment as a proportion of working age population). According to this study, if France were to make its labour market as flexible as the United States, its employment rate would increase by 1.6 percentage points. This study reports that inflexible labour markets also produce 'jobless recoveries'. In 1997, Spain introduced certain incentives for firms to hire workers using permanent contracts: (i) reduction of severance payments from 45 to 33 days for young workers (below the age of 30 years) and (ii) reduction of payroll taxes paid by the firm for selected categories of workers (young and women workers etc). This reduction of dismissal costs increased the probabilities of employment of young workers on permanent contracts (Kugler et al. 2002). Two studies of labour demand in Peru and Argentina merit mention.<sup>14</sup> Both use firm-level panel data to estimate labour demand equations.

# Box 12.1 Introducing Flexibility:The Case of Spain

The EU economies have attempted to introduce flexible provisions in their hiring regulations in recent years. Modification of hiring contract regulations for temporary workers is the chosen method. They are in effect 'marginal' reforms without touching the law on permanent contracts. The objective is 'flexibility at the margin'. In the first half of the 1990s, high unemployment in Spain triggered the adoption of deregulating measures. The key measure allowed the use of temporary workers in regular jobs. (Prior to this, fixed-term contracts could be used only for temporary/seasonal/transitory needs of the firm.) The result of this reform was a dramatic increase in the share of fixed-term contracts from less than 10 per cent prior to 1984 to more than 30 per cent in 1992. This is argued to have been detrimental to workers' welfare as it reduced employment stability (example, increase in the number of workers with jobs of less than 3 months tenure). In 1994, reforms again restricted the use fixed-term contracts to certain age groups and to temporary jobs. In 1997, further reforms led to the introduction of new permanent contracts with reduced 'dismissal costs' (a mandatory redundancy pay of 33 days per year instead of 45 days plus reduced social security contribution for new hires). By 2001, this policy reversal, in combination with the upturn in business cycle, created 1.5 million jobs (76 per cent of these were permanent jobs). In the private sector, a significant decline in the share of fixed contract workers (from 40 per cent to 32 per cent took place between 1995–2002. The lower dismissal costs offered by the new contract have acted as incentives to promote employment on a permanent basis. This case further suggested the possible negative effects of partial reforms that did not touch the nature of permanent contracts. Sources: Casals (2004) and Dolado et al. (2002).

<sup>&</sup>lt;sup>12</sup> Goldberg and Pavenick (2003).

<sup>&</sup>lt;sup>13</sup> Empirical studies are large in number. They differ with respect to data (cross-country or cross-firm within a country) and econometric methods. Econometric results of many studies show negative but not necessarily statistically significant impact of JSR on average employment. See Heckman and Pages (2004) for a detailed discussion. We have ignored the studies that focus on unemployment rate in OECD countries, as they are not relevant in the Indian context.

<sup>&</sup>lt;sup>14</sup> They are Saavedra and Torero (2004, Chapter 2) and Mondino and Montoya (2004, Chapter 6) in Heckman and Pages (2004).

Both introduce an explicit measure of the cost of JSR (expected severance payments/cost equivalence of regulations) on the right hand side of the equation in addition to average wage to explain labour demand. The Peru study includes all firms with more than 10 employees in all sectors and the Argentina study includes only manufacturing firms. They report statistically significant negative association between the cost of JSR and employment. These studies report that a 10 per cent increase in dismissal costs will reduce long-run employment rates by 3 to 6 per cent, keeping wages constant. In brief, the emerging set of labour market studies clearly suggests the negative impact of JSR on employment and hiring decisions of formal sector firms.

# MANUFACTURING EMPLOYMENT IN INDIA: PAST TRENDS AND THE DEBATE

A survey of past trends in Indian manufacturing sector output, employment, and investment is available in the India Development Report 2002 (Chapter 6). I focus here on some selected key arguments in the debate on jobless growth in the Indian manufacturing sector. 15 Slow growth of formal sector jobs in manufacturing has been the focus of debate in India. This is expected as the organized sector, though small in terms of size (formal factory sector's GDP share is around 16 per cent and it employed about 7 million out of a total workforce of 400 million in 2000), is a growing sector providing 'good jobs'. It is also the segment that was expected to absorb the surplus labour in the agricultural sector over time, as India industrialized. The growth rate of these supposedly good jobs has fluctuated during the last four decades. In the 1970s, the average growth rate of jobs in the formal sector was 3.8 per cent per annum while output was growing at 4.5 per cent. In the 1980s (1980–90) employment growth dropped to 0.53 per cent when output growth rate accelerated to 8.7 per cent. A recovery of employment growth rate was observed in the first half of the 1990s (2.1 per cent per annum between 1989–90 to 1994–5). This growth rate could not be sustained and declined in the second half of the 1990s to just 0.7 per cent. An important feature of the 1990s is the decline of employment in the public sector. Employment growth in public sector manufacturing was only 0.39 per cent in contrast to a growth rate of 3.7 per cent in the private sector during the period 1990–7. Since 1999, private sector employment has also declined.

On the basis of the studies that have analysed this jobless growth, several key determinants of formal sector jobs growth may be identified. They are: (i) wages per worker; (ii) labour utilization/working days per worker; (iii) investment/capital formation rate; (iv) relative price of manufacturing goods; (v) growth of small firms; and (vi) labour regulations. <sup>17</sup> Each of these determinants was shown to have had varying importance in impacting employment growth in the 1980s and the 1990s. From today's perspective, the following points may be made. First, the current cost of labour measured by real wages per worker does not show a rising trend. 18 Labour utilization has improved and firms have downsized using VRS etc. Second, the relative prices of manufacturing goods have declined with an improvement in supply and the weakening/reduction of price controls on agriculture and infrastructure goods. This has contributed to greater price competition in the manufacturing sector. Third, investment for modernization and new capacity creation picked up in the first half of the 1990s but slowed down in the second half. Investment for upgrading and modernization continues to be important. Third, evidence on the rapid growth of efficient small-medium scale firms is scarce or unclear at best. Fourth, given our above understanding, accepting the argument that many factors impact employment growth, the question remains why job creation has not picked up even when output growth rates have recovered in recent years? Labour regulations appear to be the crucial factor in influencing the hiring decisions of the firms as they contribute to the expected cost of hiring workers today.

# TRADE AND MANUFACTURING EMPLOYMENT IN INDIA IN THE 1990s<sup>19</sup>

A useful way of analysing the impact of trade liberalization on manufacturing employment is to classify industries by their trade orientation and estimate employment growth in two groups of industries; namely, EO and IC industries. An industry is classified as EO if its net exports to output ratio is significantly positive and it figures in the list of leading net

<sup>&</sup>lt;sup>15</sup> I provide only a capsule summary of this debate. A detailed accessible survey of this literature is available in Goldar (2000), Bhalotra (2003), and Rani and Jeeemol (2004) among others.

<sup>16</sup> Goldar (2000).

<sup>&</sup>lt;sup>17</sup> These are not mutually exclusive but interrelated factors.

<sup>&</sup>lt;sup>18</sup> See Tendulkar (2006) for an analysis of 2-digit industry groups up to 1998. His analysis supports the idea that slower rate of growth of real product wages in the 1990s facilitated employment growth.

<sup>&</sup>lt;sup>19</sup> This section draws partly from the study done for the World Bank (see Ramaswamy 2005). It uses the UNIDO database on industrial statistics at a 4-digit level of aggregation. UNIDO presents the data in a convenient format using the ISIC (Revised 2) classification up to the year 1997. For the period 1998 to 2001, the data are presented following the ISIC (Revised 3) classification. We have built the time series using the concordance table available for matching the two series. UNIDO industrial statistics are ASI statistics supplied by the CSO. We have checked the data for consistency using the ASI factory sector results published by the CSO.

export earners in the manufacturing sector in the year 1999. An industry is classified as IC if the net exports to output ratio is significantly negative. Some of the key industries based on this criterion are shown in Table 12.2 and the corresponding number of employees in each group for the year 2001–2 is shown in Table 12.3. The employment growth rates and the employment elasticity of output are estimated for each group of industries (see Tables 12.4 and Table 12.5).

Contrary to theoretical predictions, IC industries created more jobs in the first of the 1990s. Import liberalization in the first period presumably improved access to imported inputs and facilitated higher output growth and employment. In the latter half of the 1990s, employment in IC industries declined. A significant fact to note is the impressive employment performance of EO industries. Employment elasticity of output is higher in EO industries. More

TABLE 12.2 Key Industries in Six Industry Groups

| Category                             | Key Industries                                                                                                                                 |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Export-oriented                      | Textile fabrics, apparel, footwear, drugs, and pharmaceuticals                                                                                 |
| Import Competing                     | Paper, iron and steel, electrical and non-electrical machinery, office and computing machinery, TV communication, watches and plastic products |
| Food, Beverages, and Tobacco         | Grain mills, wine, soft drinks, cigarettes                                                                                                     |
| Petroleum Refining and Coal Products | Petroleum refining products (naphtha, gasoline, diesel etc.) and coal and coke products                                                        |
| Auto and Tyre                        | Four wheelers, two-wheelers, bicycles, tyre and tubes, auto components                                                                         |
| Others                               | Wood containers, cane, paper, rubber products, cement, glass, soap, and cosmetics.                                                             |

Source: Ramaswamy (2005).

TABLE 12.3 Employment in Six Industry Groups, 2001–2

| Industry Group   | Employment (Millions) |
|------------------|-----------------------|
| Export-oriented  | 2.3                   |
| Import-Competing | 1.8                   |
| Food             | 1.8                   |
| Petroleum        | 0.1                   |
| Auto-Tyres       | 0.5                   |
| Others           | 1.2                   |
| Totals           | 7.5                   |
|                  |                       |

Source: Author's estimates based on UNIDO Data.

recently available data also suggest positive employment growth in the automobile and tyre industries. Most of the job losses have occurred in the IC industries that are facing the brunt of structural adjustments. Job creation in other industries is expected to offset this job loss. More worrying factor is the type of structural shift in employment that is taking place within industries. First is the growth of informal sector employment relative to formal sector jobs (see Table 12.6). Second is the growth of contract labour within the factory sector (see Table 12.7). Most of the job gains in the factory sector have taken place in the form of contract

TABLE 12.4
Employment Growth Rates in Indian Manufacturing, 1989–2001\*

|              | Export oriented | Importcompeting | Food | Petroleum | Auto-Tyres | 'Others' |
|--------------|-----------------|-----------------|------|-----------|------------|----------|
| 1989 to 1994 | 2.3             | 2.6             | 2.6  | 5.8       | 4.5        | 2.0      |
| 1994 to 2001 | 1.9             | -1.4            | -1.0 | -0.5      | -0.2       | -2.3     |

Note: \*Average of year over year growth.

Source: Author's estimates based on UNIDO statistics.

TABLE 12.5
Employment Elasticity in Indian Manufacturing by Industry

| Years                | Industry Groups |                     |       |           |           |        |                      |
|----------------------|-----------------|---------------------|-------|-----------|-----------|--------|----------------------|
|                      | Export oriented | Import<br>Competing | Food  | Auto-Tyre | Petroleum | Others | All<br>Manufacturing |
| 1989–94 Elasticity   | 0.19            | 0.19                | 0.28  | 0.38      | 0.38      | 0.15   | 0.22                 |
| 1994–2001 Elasticity | 0.45            | -0.41               | -0.01 | -0.03     | -0.02     | -0.43  | -0.11                |

Source: Author's estimates based on UNIDO statistics.

<sup>&</sup>lt;sup>20</sup> Rani and Jeemol (2004) present estimates of informal sector employment in different 3-digit industries.

| TABLE 12.6                                   |
|----------------------------------------------|
| Organized Sector Jobs by Industry, 1994–2000 |
|                                              |

|                                       |       | 1993–4    | 199   | 99–2000   | Share of Organized |           |  |  |  |
|---------------------------------------|-------|-----------|-------|-----------|--------------------|-----------|--|--|--|
|                                       | Total | Organized | Total | Organized |                    |           |  |  |  |
|                                       | (mil  | lions)    | (mi   | illions)  | 1993–4             | 1999–2000 |  |  |  |
| Mining and Quarrying                  | 2.7   | 1.1       | 2.3   | 1.0       | 40.4               | 44.5      |  |  |  |
| Manufacturing                         | 42.5  | 6.4       | 48.0  | 6.8       | 15.1               | 14.1      |  |  |  |
| Electricity                           | 1.4   | 1.0       | 1.3   | 1.0       | 71.9               | 78.1      |  |  |  |
| Construction                          | 11.7  | 1.2       | 17.6  | 1.2       | 10.5               | 6.7       |  |  |  |
| Wholesale and Retail Trade            | 27.8  | 0.5       | 37.3  | 0.5       | 1.6                | 1.3       |  |  |  |
| Transport, Storage, and Communication | 10.3  | 3.1       | 14.7  | 3.2       | 30.1               | 21.4      |  |  |  |
| Financial and Social Services         | 3.5   | 1.5       | 5.1   | 1.7       | 43.5               | 32.7      |  |  |  |
| Personal Services                     | 32.1  | 10.9      | 33.2  | 11.5      | 34.0               | 34.6      |  |  |  |
| Total Non-agriculture                 | 132.0 | 25.7      | 159.4 | 26.7      | 19.5               | 16.8      |  |  |  |

Source: Report of the Task Force on Employment Opportunities, Planning Commission, 2001.

TABLE 12.7 Growth of Contract Labour in Factories (Average Daily Employment in Factory Sector)

|                      | 1999–2000 | 2000-1 | 2001–2 | 2002-3 |
|----------------------|-----------|--------|--------|--------|
|                      |           | Mill   | lions  |        |
| All Employees        | 8.2       | 8.0    | 7.8    | 7.9    |
| All Workers          | 6.3       | 6.1    | 6.0    | 6.2    |
| Contract Workers     | 1.2       | 1.3    | 1.3    | 1.4    |
| Share in All workers | 19.7      | 20.4   | 21.8   | 23.1   |

Source: http://labourbureau.nic.in/accessed on 12 May 2006.

worker jobs. Contract jobs have grown at more than 4.5 per cent per annum during the last three years while the regular employment growth rate is negative. This may be directly attributed to the stringent labour regulations and labour laws. The formal sector of the Indian manufacturing industry has responded to the rigidity of labour procedures by using more and more contract labour. Contract workers are not subject to firing regulations applicable to regular workers (see Box 12.2). Therefore, the use of contract labour is an important source of flexibility for Indian firms. The positive relationship between the strictness of JSR and the use of temporary workers is well established in the case of European countries (See Booth et al. 2002).

It is hard to attribute the growth of the informal sector (that is, informalization) entirely to globalization. Industrial firms (both private and public sector) in India have been observed to practice outsourcing of labour, that is, using contract workers, 'on-site only labour', and temporary workers in the 1980s. This process of shifting of labour from

the formal to informal segment had started much before the dramatic tariff liberalization and trade liberalization undertaken by India in the 1990s. A substantial shift of jobs from the factory to non-factory sector (informal) was observed between 1981 and 1991. <sup>22</sup> This trend has continued (perhaps accelerated) in recent years. It can be argued that in India, labour regulation is of primary importance in determining the incidence of informal sector employment rather than trade or tariff liberalization.

Labour regulations have restricted the size expansion of factories to take advantage of economies of scale. As is

# Box 12.2 Fixed-term Contract in Indian Industry

India has introduced a new provision in the Industrial Employment (Standing Orders) Central Rules, 1946, that enables a firm to employ workers on a fixed-term basis. A 'fixed-term employment' workman is a workman who has been engaged on the basis of contract employment for a fixed period. However, his working hours, wages, allowances, and other benefits shall not be less than those of a permanent workman. This provision came into effect in December 2003. It enables an industrial establishment, with more than 100 workers, to access the labour market directly for short-term employment, instead of contractors. Workers under this category can be retrenched without notice or compensation at the end of the contract period. However, most state governments are yet to make the corresponding change in their state rules.

Source: Malik (2006), Business India (16-29 February 2004).

<sup>&</sup>lt;sup>21</sup> Contract workers are regulated by a separate labour law called the 'Contract Labour (Regulation and Abolition) Act, 1970'. This empowers the state to prohibit the use of contract workers in core and perennial activities in a firm.

<sup>&</sup>lt;sup>22</sup> (Ramaswamy 1994 and 1999).

evident from Table 12.8, there is a greater concentration of factories in the size group of less than 100 workers across industry groups.<sup>23</sup> This has adverse effects on the competitiveness of firms, particularly EO firms. It is well-known that India has relatively fewer number of garment making factories with more than 1000 workers.

# Need for Flexibility by Consensus<sup>24</sup>

The slow growth of regular jobs in India strongly suggests the need for introducing flexibility in the current set of JSR (for a discussion of JSR in India, see Box 12.3). Firms are utilizing the available avenues of contract labour and product outsourcing to attain some flexibility at the margin.

Some states in India have modified their Contract Labour Act (Andhra Pradesh) to allow the use of contract labour in a wider range of activities of the firm. This will encourage greater use of contract labour in many peripheral activities without inducing the firm to increase regular jobs. The effect of introducing fixed-term employment in the Central government rules will be similar. Policy initiative is required to create incentives for the firms to absorb workers in regular jobs by reducing expected costs of hiring regular workers. This can be achieved by simplifying procedural requirements for retrenchment. International comparisons of severance payments (retrenchment benefits) mandated by the Indian labour laws suggest that they are on the lower

TABLE 12.8

Distribution of Factories by Employment Size and Trade Orientation, 2000–1

| Employment Size           | Export oriented | Share | Import competing | Share | Auto | Share | Food  | Share |
|---------------------------|-----------------|-------|------------------|-------|------|-------|-------|-------|
| 0–9                       | 7405            | 23.1  | 5182             | 21.6  | 751  | 19.4  | 7274  | 27.0  |
| 10–49                     | 15360           | 48.0  | 13060            | 54.4  | 2066 | 53.2  | 13167 | 48.8  |
| 50-99                     | 4050            | 12.7  | 2566             | 10.7  | 434  | 11.2  | 3060  | 11.3  |
| 100-199                   | 2300            | 7.2   | 1531             | 6.4   | 296  | 7.6   | 1751  | 6.5   |
| 200-499                   | 1862            | 5.8   | 1023             | 4.3   | 146  | 3.8   | 1074  | 4.0   |
| 500-999                   | 689             | 2.2   | 339              | 1.4   | 87   | 2.2   | 355   | 1.3   |
| 1000-1999                 | 207             | 0.6   | 166              | 0.7   | 50   | 1.3   | 147   | 0.5   |
| 2000–4999                 | 116             | 0.4   | 57               | 0.2   | 37   | 1.0   | 91    | 0.3   |
| Above 5000                | 18              | 0.1   | 96               | 0.4   | 1.4  | 0.4   | 49    | 0.2   |
| Total number of factories | 32007           | 100   | 24020            | 100   | 3881 | 100   | 26968 | 100   |

Source: Author's estimates based on ASI 2000-1, CSO.

# Box 12.3 Job Security Regulations in India

Job security in India is regulated by two key labour laws, namely, the Industrial Disputes Act 1947 (IDA, 1947) and the Industrial Employment (Standing Orders) Act, 1946. The 'Standing Orders' refer to classification of employees, hours of work, procedures for dismissal for disciplinary (misconduct) reasons, and other terms of employment. Section 5B of the IDA lays down rules and procedures for lay-off, retrenchment of workmen, and closure of industrial establishments, namely, factories, mines, and plantations. These provisions are applicable to all establishments having not less than 100 workers since the 1982 amendment (originally applicable to establishments with more than 300 workers; in West Bengal, it is applicable to establishments with not less than 50 workers). Here retrenchment means the termination of the services of a workman for any reasons other than disciplinary action (misconduct). Three conditions are required to be met before a firm can implement a valid retrenchment of any workman with more than 240 days of continuous service: (i) one month's notice indicating reasons for retrenchment or one month's wages in lieu of notice, (ii) payment of compensation (severance pay) equivalent to 15 days of average pay for every year of completed service (45 days in Gujarat), and (iii) obtaining prior permission of the appropriate government (or specified authority either central/state) authority. This requires an

(Box 12.3 contd.)

<sup>&</sup>lt;sup>23</sup> India continues to suffer from the 'missing middle' syndrome. That is, the smaller employment share of factories in the size class 100 to 500.

<sup>24</sup> In this context, the EU debate on labour market reforms and the concept of flexicurity, that is, flexibility for firing permanent workers and security for temporary workers has many useful lessons. Some scholars have suggested the move should be from 'job security within a job' to 'security of a job', that is security of finding a job easily. What incentives should be put in place such that temporary work becomes a stepping-stone to a permanent job?

<sup>&</sup>lt;sup>25</sup> The Contract Labour Act of 1970 did not clearly distinguish between core and non-core activities of the firm. An activity carried beyond 120 days is considered as a regular activity, therefore, firms are not permitted to use contract labour for that activity.

(Box 12.3 contd.)

application using the specified form, 'FORM P-A'. This form demands elaborate information on installed capacity, production, and sales for the preceding 3 years, position of the order book (item-wise and value-wise) for the next 18 months, financial conditions supported by balance sheet data, past history of retrenchment, anticipated savings due to retrenchment, proposed savings due to reduction of managerial remuneration, sales promotion, and general administrative expenses, balance sheets for previous six months and the following one year. The firm is required to explain the attempts made to avoid the proposed retrenchment. On receiving the application, the government conveys its decision within a period of sixty days or may chose to refer the matter to a tribunal for adjudication. The tribunal is required to give a decision within a period of thirty days from the date of such reference. However, such permissions to retrench workers are rarely given. (These rules are not applicable to workers employed through contractors or contract worker supplier firms.) The implicit cost of procedural delays on firms seeking to adjust seems to have received less attention. Further, under Section 9-A, firms are required to give notice to workers in case of rationalization, standardization, or improvement of plant/technique that is likely to lead to retrenchment. Firms are prohibited from introducing such changes in the conditions of service within 21 days of such notice (42 days in some states like Andhra Pradesh and West Bengal). In brief, the JSR have increased the expected cost of workforce adjustments (through lay-off or retrenchment) in industrial establishments.

Source: Malik (2006) and Mathur (1992).

side (Asher and Mukhopadhyay 2004). For example, in the case of a worker with four years of service, severance payments add up to six months of pay in Thailand and nine months in Sri Lanka. The same is only two months in India. The report of the Second National Labour Commission has proposed a higher severance payment depending on the size of the establishment, that, is 45–60 days for those working in firms with more than 300 workers and 22.5 to 30 days for those working in firms with less than 100 workers etc. However, as long as we have legal prerequisites of state permissions for retrenchment and lay-offs, firms will have lower incentives to create permanent jobs. The three entities involved in this reform process, namely, the state, the private corporate sector, and the workers need to arrive at a consensus for introducing flexibility. This calls for a constructive social dialogue between the stakeholders.

# References

- Asher, Mukul and Pundarik Mukhopadhyay (2004), 'Severance Pay in Selected Asian Counries: A Survey, Working Paper, No. 55, School of Public Policy, Singapore University, available at http://www.spp.nus.edu.sg (accessed on 25 May
- Booth, Alison, Juan Dolado, and Jeff Frank (2002), 'Symposium on Temporary work: Introduction', Economic Journal, Vol. 112 (June).
- Bardhan, Pranab (2001), 'Social Justice in the Globalising Economy', Economic and Political Weekly, 3–10 February.
- Bertola (1999), 'Microeconomic Perspectives on Aggregate Labour markets' in O. Ashenfelter and D. Card (eds), Handbook of Labor Economics, Vol. 3, Chapter 45, Elesvier Science, Holland.
- Bhalotra, Sonia (2003), 'The Impact of Economic Liberalization on Employment and Wages in India', Working paper No. 12, ILO, Geneva.
- Casals, Joaquim (2004), 'Fixed Term Contracts in Spain: a mixed blessing', ECFIN Country Focus, Vol. 1, Issue 1.

- Di Tellaa, Rafael and Robert MacCulloch (2005), 'The consequences of labor market Flexibility: Panel evidence based on survey data', European Economic Review, Vol. 49,
- Dolado, Juan, Garcia-Serrano, Juan Jimeno (2002), 'Drawing Lessons from the Boom of Temporary Jobs in Spain', Economic Journal, Vol. 112 (June).
- Goldar, Bishwanath (2000), 'Employment Growth in Organised Manufacturing in India', Economic and Political Weekly, 1 April, pp. 1191-5.
- Goldberg, Pinelopi and Nina Pavenick (2003), 'The response of the informal sector to trade liberalization', Journal of Development Economics, Vol. 72, pp. 463-96.
- Heckman, James and Carmen Pages (eds) (2004), Law and Employment: Lessons from Latin American and the Caribbean', NBER, the University of Chicago Press, Chicago.
- Kugler, Adriana, Juan Jimeno, and Virginia Hernan (2002), 'Employment Consequences of Restrictive Permanent Contracts: Evidence from Spanish Labor Market Reforms', Discussion Paper No. 657, Institute for the Study of Labour, Bonn, Available at http/www.iza.org.
- Malik, P.L. (2006), Industrial Law, Vols 1 and 2, Eastern Book Company, Lucknow.
- Mondino, G. and Silvia Montoyo, 'The Effect of labor Market Regulations on Employment Decisions by Firms: Empirical Evidence for Argentina', in Heckman and Pages (eds), Law and Employment, NBER.
- Mathur, Ajeet (1992), 'Employment Security and Industrial Restructuring in India: Separating Facts From Folklore', Paper prepared for Presentation at the national seminar on Restructuring Indian economy, IIM, Calcutta, 17-18 January 1992, Indian Institute of Management, Calcutta.
- Ramaswamy, K.V. (1994), 'Small-Scale Manufacturing Industries: Some Aspects of Size, Growth and Structure', Economic and Political Weekly, Vol. 29, 29 February,
- (1999),' The Search for flexibility in Indian Manufacturing: New Evidence on Outsourcing activities', Economic and Political Weekly, Vol. 34, No. 6, pp. 363-8.

- (2005), 'Employment in Indian manufacturing and New Services: Impact of Trade and Outsourcing', Unpublished Paper prepared for the World Bank, Washington, DC.
- Rani, Uma and Unni Jeemol (2004), 'Unorganized and Organized Manufacturing in India: Potential for Employment Generating Growth', Economic and Political Weekly, Vol. 39, No. 4, pp. 4568-80.
- Saavedra, James and Maximo Torero (2004), 'Labour Market Reforms and Their Impact over Formal Labour Demand and Job market Turnover: The Case of Peru', in Heckman and Pages (eds), Law and Employment.
- Tendulkar, Suresh (2006), 'Employment Growth in Factory Manufacturing Sector During Pre- and Post-Reform Periods', in Suresh D. Tendulkar, Arup Mitra, and K. Naryanan (eds) (2006), India: Industrialisation in a reforming economy; Essays for K.L. Krishna, Academic Foundation, New Delhi.
- Thomas Jayan Jose (2002), 'A Review of Indian Manufacturing', in K. Parikh and R. Radhakrishna (eds), India Development Report 2002, Oxford University Press, New Delhi.
- Zagha, Roberto (1999), 'Labour and India's Economic Reforms' in J.D. Sachs et al. (eds), India in the Era of Economic Reforms, Oxford University Press, New Delhi.

# A STATISTICAL PROFILE OF INDIA'S DEVELOPMENT

# REAL SECTOR A1 NATIOANAL INCOME

Table A1.1 Key National Accounts Aggregates (at Constant Prices)

(Rupees, crore)

| Year          | GDP at<br>factor<br>cost | ctor factor factor tion at at |                    | at<br>factor<br>cost | Indirect<br>taxes<br>less<br>subsidies | GDP at<br>market<br>prices<br>(2+8) | NDP at<br>market<br>prices<br>(7+8) | GNP at<br>market<br>prices<br>(4+8) | NNP at<br>market<br>prices<br>(6+8) |                   |                    |
|---------------|--------------------------|-------------------------------|--------------------|----------------------|----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------|--------------------|
| (1)           | (2)                      | (3)                           | (4)                | (5)                  | (6)                                    | (7)                                 | (8)                                 | (9)                                 | (10)                                | (11)              | (12)               |
| 1993–4 Series |                          |                               |                    |                      |                                        |                                     |                                     |                                     |                                     |                   |                    |
| 1950-1        | 140466                   | -554                          | 139912             | 7544                 | 132367                                 | 132921                              | 8037                                | 148503                              | 140958                              | 147949            | 140404             |
| 1951-2        | 143745                   | 2.3 -346                      | 143399 2.          | 5 7848               | 135551                                 | 135897 2.2                          | 9234 14.9                           | 152979 3.0                          | 145131 3.0                          | 152633 3.2        | 144785 3.1         |
| 1952-3        | 147824                   | 2.8 –281                      | 147544 2.          | 9 8165               | 139379                                 | 139660 2.8                          | 9136 -1.1                           | 156960 2.6                          | 148796 2.5                          | 156680 <i>2.7</i> | 148515 2.6         |
| 1953-4        | 156822                   | 6.1 –232                      | 156590 <i>6</i> .  | 1 8431               | 148159                                 | 148391 6.3                          | 9803 <i>7.3</i>                     | 166625 6.2                          | 158194 6.3                          | 166393 6.2        | 157962 6.4         |
| 1954–5        | 163479                   | 4.2 -354                      | 163126 4.          | 2 8942               | 154184                                 | 154537 4.1                          | 11266 14.9                          | 174745 <i>4.9</i>                   | 165803 4.8                          | 174392 4.8        | 165450 4.7         |
| 1955-6        | 167667                   | 2.6 –132                      | 167535 2.          | 7 9534               | 158001                                 | 158133 2.3                          | 12863 14.2                          | 180530 3.3                          | 170996 3.1                          | 180398 3.4        | 170864 3.3         |
| 1956–7        | 177211                   | 5.7 –205                      | 177006 5.          | 7 10213              | 166793                                 | 166998 5.6                          | 13367 3.9                           | 190578 5.6                          | 180365 5.5                          | 190373 5.5        | 180160 5.4         |
| 1957-8        | 175068 -                 | 1.2 -312                      | 174756 <i>−1</i> . | 3 10854              | 163902                                 | 164214 -1.7                         | 14892 11.4                          | 189960 -0.3                         | 179106 ##                           | 189648 -0.4       | 178794 <i>-0.8</i> |
| 1958-9        | 188354                   | 7.6 –429                      | 187925 <i>7</i> .  | 5 11442              | 176483                                 | 176913 7.7                          | 15604 4.8                           | 203958 7.4                          | 192517 <i>7.5</i>                   | 203529 7.3        | 192087 7.4         |
| 1959-60       | 192476                   | 2.2 -759                      | 191717 <i>2</i> .  | 0 12125              | 179592                                 | 180351 1.9                          | 16932 8.5                           | 209408 2.7                          | 197283 2.5                          | 208649 2.5        | 196524 2.3         |
| 1960-1        | 206103                   | 7.1 –907                      | 205196 <i>7</i> .  | 0 12961              | 192235                                 | 193142 7.1                          | 14457 ##                            | 220560 5.3                          | 207599 #                            | 219653 5.3        | 206692 5.2         |
| 1961-2        | 212499                   | 3.1 -1212                     | 211287 3.          | 0 13773              | 197514                                 | 198726 2.9                          | 16422 13.6                          | 228921 3.8                          | 215148 3.6                          | 227709 3.7        | 213936 3.5         |
| 1962-3        | 216994                   | 2.1 -1393                     | 215601 2.          | 0 14705              | 200895                                 | 202289 1.8                          | 18840 14.7                          | 235834 3.0                          | 221129 2.8                          | 234441 3.0        | 219735 2.7         |
| 1963-4        | 227980                   | 5.1 -1403                     | 226577 5.          | 1 15631              | 210946                                 | 212349 5.0                          | 22228 18.0                          | 250208 6.1                          | 234577 6.1                          | 248805 6.1        | 233174 6.1         |
| 1964–5        | 245270                   | 7.6 –1798                     | 243472 7.          | 5 16832              | 226640                                 | 228438 7.6                          | 23551 6.0                           | 268821 7.4                          | 251989 7.4                          | 267023 7.3        | 250191 7.3         |
| 1965-6        | 236306 -                 | 3.7 –1912                     | 234394 -3.         | 7 18150              | 216244                                 | 218156 -4.5                         | 25723 9.2                           | 262029 -2.5                         | 243879 ##                           | 260117 -2.6       | 241967 -3.3        |
| 1966–7        | 238710                   | 1.0 -1864                     | 236846 1.          | 0 19420              | 217427                                 | 219291 0.5                          | 22876 -11.1                         | 261586 -0.2                         | 242167 ##                           | 259722 -0.2       | 240303 -0.7        |
| 1967-8        | 258137                   | 8.1 –2293                     | 255843 8.          | 0 20425              | 235418                                 | 237712 8.4                          | 23834 4.2                           | 281971 7.8                          | 261546 8.0                          | 279677 <i>7.7</i> | 259252 7.9         |
| 1968-9        | 264873                   | 2.6 –2186                     | 262687 2.          | 7 21453              | 241234                                 | 243420 2.4                          | 26886 12.8                          | 291759 3.5                          | 270306 3.3                          | 289573 3.5        | 268120 3.4         |
| 1969-0        | 282134                   | 6.5 -2342                     | 279791 <i>6</i> .  | 5 22432              | 257359                                 | 259702 6.7                          | 28713 6.8                           | 310847 6.5                          | 288415 6.7                          | 308504 6.5        | 286072 6.7         |
| 1970-1        | 296278                   | 5.0 -2345                     | 293933 5.          | 1 23336              | 270597                                 | 272942 5.1                          | 30647 6.7                           | 326925 5.2                          | 303589 #                            | 324580 5.2        | 301244 5.3         |
| 1971-2        | 299269                   | 1.0 -2581                     | 296688 <i>0</i> .  | 9 24436              | 272252                                 | 274833 0.7                          | 33247 8.5                           | 332516 1.7                          | 308080 1.5                          | 329935 1.6        | 305499 1.4         |
| 1972-3        | 298316 -                 | 0.3 -2564                     | 295752 <i>−0</i> . | 3 25691              | 270061                                 | 272625 -0.8                         | 32278 -2.9                          | 330594 -0.6                         | 304903 -1.0                         | 328030 -0.6       | 302339 -1.0        |
| 1973-4        | 311894                   | 4.6 -1944                     | 309950 4.          | 8 26888              | 283061                                 | 285005 4.5                          | 29156 -9.7                          | 341050 3.2                          | 314161 3.0                          | 339106 3.4        | 312217 3.3         |
| 1974–5        | 315514                   | 1.2 -1005                     | 314509 1.          | 5 28092              | 286417                                 | 287422 0.8                          | 29587 1.5                           | 345101 1.2                          | 317009 0.9                          | 344096 1.5        | 316004 1.2         |
| 1975–6        | 343924                   | 9.0 -751                      | 343173 9.          | 1 29530              | 313643                                 | 314395 9.4                          | 32807 10.9                          | 376731 9.2                          | 347202 9.5                          | 375980 <i>9.3</i> | 346450 9.6         |
| 1976–7        | 348223                   | 1.2 –693                      | 347530 1.          | 3 31173              | 316358                                 | 317050 0.8                          | 34940 6.5                           | 383163 1.7                          | 351990 1.4                          | 382470 1.7        | 351298 1.4         |

(contd.)

TABLE A1.1 (contd.)

| (1)          | (2)     |      | (3)    | (4)     |      | (5)    | (6)     | (7)     |      | (8)    |      | (9)     |      | (10)    |     | (11)    |      | (12)    |      |
|--------------|---------|------|--------|---------|------|--------|---------|---------|------|--------|------|---------|------|---------|-----|---------|------|---------|------|
| 1977–8       | 374235  | 7.5  | -771   | 373464  | 7.5  | 32713  | 340751  | 341522  | 7.7  | 36638  | 4.9  | 410873  | 7.2  | 378160  | 7.4 | 410102  | 7.2  | 377389  | 7.4  |
| 1978-9       | 394828  | 5.5  | -493   | 394335  | 5.6  | 34603  | 359732  | 360225  | 5.5  | 39609  | 8.1  | 434437  | 5.7  | 399834  | 5.7 | 433944  | 5.8  | 399341  | 5.8  |
| 1979-80      | 374291  | -5.2 | 349    | 374640  | -5.0 | 36515  | 338124  | 337775  | -6.2 | 37372  | -5.6 | 411663  | -5.2 | 375147  | ##  | 412012  | -5.1 | 375496  | -6.0 |
| 1980-1       | 401128  | 7.2  | 842    | 401970  | 7.3  | 38553  | 363417  | 362575  | 7.3  | 38073  | 1.9  | 439201  | 6.7  | 400648  | #   | 440043  | 6.8  | 401490  | 6.9  |
| 1981-2       | 425073  | 6.0  | 95     | 425168  | 5.8  | 40776  | 384392  | 384297  | 6.0  | 42066  | 10.5 | 467139  | 6.4  | 426363  | 6.4 | 467234  | 6.2  | 426458  | 6.2  |
| 1982-3       | 438079  | 3.1  | -1503  | 436577  | 2.7  | 43303  | 393274  | 394777  | 2.7  | 46138  | 9.7  | 484217  | 3.7  | 440915  | 3.4 | 482715  | 3.3  | 439412  | 3.0  |
| 1983-4       | 471742  | 7.7  | -2449  | 469293  | 7.5  | 46028  | 423265  | 425714  | 7.8  | 46749  | 1.3  | 518491  | 7.1  | 472463  | 7.2 | 516042  | 6.9  | 470014  | 7.0  |
| 1984-5       | 492077  | 4.3  | -2871  | 489206  | 4.2  | 49087  | 440119  | 442990  | 4.1  | 47797  | 2.2  | 539874  | 4.1  | 490787  | 3.9 | 537003  | 4.1  | 487916  | 3.8  |
| 1985-6       | 513990  | 4.5  | -2930  | 511058  | 4.5  | 51873  | 459187  | 462117  | 4.3  | 56277  | 17.7 | 570267  | 5.6  | 518394  | 5.6 | 567338  | 5.6  | 515464  | 5.6  |
| 1986-7       | 536257  | 4.3  | -4235  | 532021  | 4.1  | 54863  | 477158  | 481393  | 4.2  | 61593  | 9.4  | 597850  | 4.8  | 542986  | 4.7 | 593614  | 4.6  | 538751  | 4.5  |
| 1987-8       | 556778  | 3.8  | -5369  | 551409  | 3.6  | 58097  | 493312  | 498681  | 3.6  | 66593  | 8.1  | 623371  | 4.3  | 565274  | 4.1 | 618002  | 4.1  | 559905  | 3.9  |
| 1988-9       | 615098  | 10.5 | -7891  | 607207  | 10.1 | 61635  | 545572  | 553463  | 11.0 | 69734  | 4.7  | 684832  | 9.9  | 623197  | ##  | 676941  | 9.5  | 615306  | 9.9  |
| 1989-90      | 656331  | 6.7  | -8223  | 648108  | 6.7  | 65591  | 582518  | 590741  | 6.7  | 72621  | 4.1  | 728952  | 6.4  | 663362  | 6.4 | 720729  | 6.5  | 655139  | 6.5  |
| 1990-1       | 692871  | 5.6  | -9201  | 683670  | 5.5  | 69465  | 614206  | 623407  | 5.5  | 78424  | 8.0  | 771295  | 5.8  | 701831  | #   | 762094  | 5.7  | 692630  | 5.7  |
| 1991-2       | 701863  | 1.3  | -10720 | 691143  | 1.1  | 73771  | 617372  | 628092  | 0.8  | 76426  | -2.5 | 778289  | 0.9  | 704518  | 0.4 | 767569  | 0.7  | 693798  | 0.2  |
| 1992-3       | 737792  | 5.1  | -11417 | 726375  | 5.1  | 78193  | 648182  | 659599  | 5.0  | 81526  | 6.7  | 819318  | 5.3  | 741125  | 5.2 | 807901  | 5.3  | 729708  | 5.2  |
| 1993-4       | 781345  | 5.9  | -12080 | 769265  | 5.9  | 83353  | 685912  | 697992  | 5.8  | 77875  | -4.5 | 859220  | 4.9  | 775867  | 4.7 | 847140  | 4.9  | 763787  | 4.7  |
| 1994–5       | 838031  | 7.3  | -13215 | 824816  | 7.2  | 90458  | 734358  | 747573  | 7.1  | 85318  | 9.6  | 923349  | 7.5  | 832891  | 7.3 | 910134  | 7.4  | 819676  | 7.3  |
| 1995-6       | 899563  | 7.3  | -12602 | 886961  | 7.5  | 99152  | 787809  | 800411  | 7.1  | 94383  | 10.6 | 993946  | 7.6  | 894794  | 7.4 | 981344  | 7.8  | 882192  | 7.6  |
| 1996-7       | 970082  | 7.8  | -10723 | 959359  | 8.2  | 107275 | 852084  | 862807  | 7.8  | 97362  | 3.2  | 1067444 | 7.4  | 960169  | 7.3 | 1056721 | 7.7  | 949446  | 7.6  |
| 1997-8       | 1016595 | 4.8  | -10649 | 1005946 | 4.9  | 114860 | 891086  | 901735  | 4.5  | 98653  | 1.3  | 1115248 | 4.5  | 1000388 | 4.2 | 1104599 | 4.5  | 989739  | 4.2  |
| 1998-9       | 1082747 | 6.5  | -11974 | 1070773 | 6.4  | 122193 | 948580  | 960554  | 6.5  | 99273  | 0.6  | 1182020 | 6.0  | 1059827 | 5.9 | 1170046 | 5.9  | 1047853 | 5.9  |
| 1999-2000    | 1148367 | 6.1  | -11182 | 1137185 | 6.2  | 129071 | 1008114 | 1019296 | 6.1  | 117916 | 18.8 | 1266283 | 7.1  | 1137212 | 7.3 | 1255101 | 7.3  | 1126030 | 7.5  |
| 2000-1       | 1198592 | 4.4  | -12154 | 1186438 | 4.3  | 136100 | 1050338 | 1062492 | 4.2  | 117609 | -0.3 | 1316201 | 3.9  | 1180101 | #   | 1304047 | 3.9  | 1167947 | 3.7  |
| 2001-2       | 1267945 | 5.8  | -10309 | 1257636 | 6.0  | 142465 | 1115171 | 1125480 | 5.9  | 115760 | -1.6 | 1383705 | 5.1  | 1241240 | 5.2 | 1373396 | 5.3  | 1230931 | 5.4  |
| 2002-3       | 1318362 | 4.0  | -7891  | 1310471 | 4.2  | 148569 | 1161902 | 1169793 | 3.9  | 122270 | 5.6  | 1440632 | 4.1  | 1292063 | 4.1 | 1432741 | 4.3  | 1284172 | 4.3  |
| 2003-4\$     | 1430548 | 8.5  | -8069  | 1422479 | 8.5  | 156474 | 1266005 | 1274074 | 8.9  | 134072 | 9.7  | 1564620 | 8.6  | 1408146 | 9.0 | 1556551 | 8.6  | 1400077 | 9.0  |
| 2004-5*\$    | 1529408 | 6.9  | -9659  | 1519749 | 6.8  | 165150 | 1354599 | 1364259 | 7.1  | 146092 | 9.0  | 1675500 | 7.1  | 1510351 | 7.3 | 1665841 | 7.0  | 1500691 | 7.2  |
| 1999–2000 Se | eries   |      |        |         |      |        |         |         |      |        |      |         |      |         |     |         |      |         |      |
| 1999-2000    | 1792292 |      | -15431 | 1776861 |      | 186649 | 1590212 | 1605643 |      | 166522 |      | 1958814 |      | 1772165 |     | 1943383 |      | 1756734 |      |
| 2000-1       | 1870387 | 4.4  | -22545 | 1847842 | 4.0  | 194755 | 1653087 | 1675632 | 4.4  | 166579 | 0.0  | 2036966 | 4.0  | 1842211 | #   | 2014421 | 3.7  | 1819666 | 3.6  |
| 2001-2       | 1978055 | 5.8  | -20671 | 1957384 | 5.9  | 202104 | 1755280 | 1775951 | 6.0  | 166428 | -0.1 | 2144483 | 5.3  | 1942379 | 5.4 | 2123812 | 5.4  | 1921708 | 5.6  |
| 2002-3       | 2052586 | 3.8  | -18805 | 2033781 | 3.9  | 210655 | 1823126 | 1841931 | 3.7  | 169735 | 2.0  | 2222321 | 3.6  | 2011666 | 3.6 | 2203516 | 3.8  | 1992861 | 3.7  |
| 2003-4       | 2226041 | 8.5  | -17845 | 2208196 | 8.6  | 221338 | 1986858 | 2004703 | 8.8  | 180283 | 6.2  | 2406324 | 8.3  | 2184986 | 8.6 | 2388479 | 8.4  | 2167141 | 8.7  |
| 2004-5\$     | 2393671 | 7.5  | -16942 | 2376729 | 7.6  | 234953 | 2141776 | 2158718 | 7.7  | 217840 | 20.8 | 2611511 | 8.5  | 2376558 | 8.8 | 2594569 | 8.6  | 2359616 | 8.9  |
| 2005-6\$\$   | 2595339 | 8.4  | -24029 | 2571310 | 8.2  | 246028 | 2325282 | 2349311 | 8.8  | 242883 | 11.5 | 2838222 | 8.7  | 2592194 | 9.1 | 2814193 | 8.5  | 2568165 | 8.8  |

(contd.)

TABLE A1.1 (contd.)

| Year             | GDP at factor cost  Public Per cent Private Per cent sector of GDP sector of GDP |            |        |           | Private final Government consumption final expenditure consumption in domestic expenditure market (GFCE) |             |                | Gross<br>domestic<br>capital<br>formation<br>(adjusted) |                | Net domestic capital formation (adjusted) |                | Per capita<br>GNP at<br>factor Cost |              | Per capita NNP at factor cost (in Rupees) *** |              | Per capita<br>NDP at<br>factor cost |              | Populat<br>(million |            |     |
|------------------|----------------------------------------------------------------------------------|------------|--------|-----------|----------------------------------------------------------------------------------------------------------|-------------|----------------|---------------------------------------------------------|----------------|-------------------------------------------|----------------|-------------------------------------|--------------|-----------------------------------------------|--------------|-------------------------------------|--------------|---------------------|------------|-----|
| (1)              | (13)                                                                             |            | (14)   |           | (PFCE)<br>(15)                                                                                           |             | (16)           |                                                         | (17)           |                                           | (18)           |                                     | (19)         |                                               | (20)         |                                     | (21)         |                     | (22)       |     |
|                  | (13)                                                                             |            | (14)   |           | (13)                                                                                                     |             | (10)           |                                                         | (17)           |                                           | (10)           |                                     | (19)         |                                               | (20)         |                                     | (21)         |                     | (22)       |     |
| 1993–4 Series    |                                                                                  |            |        |           |                                                                                                          |             |                |                                                         |                |                                           |                |                                     |              |                                               |              |                                     |              |                     |            |     |
| 950–1            | _                                                                                | _          | _      | -         | 128612                                                                                                   |             | 9067           |                                                         | 20755          |                                           | 13211          |                                     | 3897         |                                               | 3687         |                                     | 3703         |                     | 359        |     |
| 1951–2           | _                                                                                | _          | _      | -         | 136787                                                                                                   | 6.4         | 9161           | 1.0                                                     | 26579          | 28.1                                      | 18731          | 41.8                                | 3929         | 0.8                                           | 3714         | 0.7                                 | 3723         | 0.6                 | 365        |     |
| 1952–3           | _                                                                                | _          | _      | _         | 142307                                                                                                   | 4.0         | 9172           | 0.1                                                     | 19554          | -26.4                                     | 11389          | -39.2                               | 3966         | 1.0                                           | 3747         | 0.9                                 | 3754         | 0.8                 | 372        |     |
| 1953–4           | _                                                                                | _          | _      | -         | 150862                                                                                                   | 6.0         | 9287           | 1.3                                                     | 20993          | 7.4                                       | 12562          | 10.3                                | 4132         | 4.2                                           | 3909         | 4.3                                 | 3915         | 4.3                 | 379        |     |
| 1954–5           | _                                                                                | _          | _      | -         | 155811                                                                                                   | 3.3         | 9341           | 0.6                                                     | 22661          | 7.9                                       | 13719          | 9.2                                 | 4226         | 2.3                                           | 3994         | 2.2                                 | 4004         | 2.3                 | 386        |     |
| 1955–6           | _                                                                                | _          | _      | _         | 157301                                                                                                   | 1.0         | 9600           | 2.8                                                     | 30552          | 34.8                                      | 21018          | 53.2                                | 4263         | 0.9                                           | 4020         | 0.7                                 | 4024         | 0.5                 | 393        |     |
| 1956–7<br>1957–8 | _                                                                                | _          | _      | _         | 164259<br>161014                                                                                         | 4.4<br>-2.0 | 10268          | 7.0<br>12.6                                             | 39364<br>37667 | 28.8<br>-4.3                              | 29150<br>26813 | 38.7<br>-8.0                        | 4414<br>4273 | 3.5<br>-3.2                                   | 4159<br>4007 | 3.5<br>-3.7                         | 4165         | 3.5<br>-3.6         | 401<br>409 |     |
| 1957–8           | _                                                                                | _          | _      | _         | 175796                                                                                                   | -2.0<br>9.2 | 11563<br>11973 | 3.5                                                     | 32760          | -4.5<br>-13.0                             | 21319          | -0.0<br>-20.5                       | 4496         | -3.2<br>5.2                                   | 4007         | -3.7<br>5.4                         | 4015<br>4232 | -3.6<br>5.4         | 418        |     |
| 1959–60          | _                                                                                | _          | _      | _         | 177795                                                                                                   | 9.2<br>1.1  | 12188          | 3.3<br>1.8                                              | 34404          | -13.0<br>5.0                              | 22279          | -20.3<br>4.5                        | 4500         | 0.1                                           | 4222         | -0.1                                | 4232         | 0.0                 | 426        |     |
| 1960–1           | 18555                                                                            | 9.0        | 187548 | -<br>91.0 | 187909                                                                                                   | 5.7         | 12846          | 5.4                                                     | 40941          | 19.0                                      | 27981          | ##                                  | 4728         | 5.1                                           | 4429         | -0.1<br>5.1                         | 4450         | 5.1                 | 434        |     |
| 1961–2           | 20763                                                                            | 9.0<br>9.8 | 191736 | 90.2      | 191112                                                                                                   | 1.7         | 13757          | 7.1                                                     | 38502          | -6.0                                      | 24730          | ##<br>-11.6                         | 4728         | 0.6                                           | 4449         | 0.4                                 | 4476         | 0.6                 | 434        |     |
| 1962–3           | 24234                                                                            | 11.2       | 192760 | 88.8      | 193602                                                                                                   | 1.3         | 16693          | 21.3                                                    | 43775          | 13.7                                      | 29070          | -11.6<br>17.6                       | 4749         | -0.2                                          | 4425         | -0.5                                | 4456         | -0.4                |            |     |
| 1963–4           | 26607                                                                            | 11.7       | 201373 | 88.3      | 200804                                                                                                   | 3.7         | 20822          | 24.7                                                    | 45962          | 5.0                                       | 30330          | 4.3                                 | 4883         | 2.8                                           | 4546         | 2.7                                 | 4576         | 2.7                 | 464        |     |
| 1964–5           | 28969                                                                            | 11.8       | 216301 | 88.2      | 212800                                                                                                   | 6.0         | 21482          | 3.2                                                     | 50839          | 10.6                                      | 34006          | 12.1                                | 5137         | 5.2                                           | 4781         | 5.2                                 | 4819         | 5.3                 | 474        |     |
| 1965–6           | 31717                                                                            | 13.4       | 204589 | 86.6      | 212988                                                                                                   | 0.1         | 23458          | 9.2                                                     | 57911          | 13.9                                      | 39762          | 16.9                                | 4833         | -5.9                                          | 4459         | -6.8                                | 4498         | -6.7                |            |     |
| 1966–7           | 33697                                                                            | 14.1       | 205013 | 85.9      | 215756                                                                                                   | 1.3         | 23725          | 1.1                                                     | 60052          | 3.7                                       | 40632          | 2.2                                 | 4785         | -1.0                                          | 4392         | -1.5                                | 4430         | -1.5                |            |     |
| 1967–8           | 35916                                                                            | 13.9       | 222221 | 86.1      | 227962                                                                                                   | 5.7         | 24180          | 1.9                                                     | 56137          | -6.5                                      | 35712          | -12.1                               | 5056         | 5.7                                           | 4653         | 5.9                                 | 4698         | 6.0                 | 506        |     |
| 1968–9           | 38928                                                                            | 14.7       | 225945 | 85.3      | 233950                                                                                                   | 2.6         | 25473          | 5.3                                                     | 54839          | -2.3                                      | 33386          | -6.5                                | 5071         | 0.3                                           | 4657         | 0.1                                 | 4699         | 0.0                 | 518        | 2.4 |
| 1969–70          | 42032                                                                            | 14.9       | 240102 | 85.1      | 242640                                                                                                   | 3.7         | 27888          | 9.5                                                     | 62355          | 13.7                                      | 39923          | 19.6                                | 5289         | 4.3                                           | 4865         | 4.5                                 | 4909         | 4.5                 | 529        | 2.1 |
| 1970-1           | 45805                                                                            | 15.5       | 250473 | 84.5      | 250880                                                                                                   | 3.4         | 30453          | 9.2                                                     | 64638          | 3.7                                       | 41302          | 3.5                                 | 5433         | 2.7                                           | 5002         | 2.8                                 | 5045         | 2.8                 | 541        | 2.3 |
| 1971–2           | 48516                                                                            | 16.2       | 250753 | 83.8      | 255761                                                                                                   | 1.9         | 33663          | 10.5                                                    | 66704          | 3.2                                       | 42268          | 2.3                                 | 5355         | -1.4                                          | 4914         | -1.7                                | 4961         | -1.7                | 554        | 2.4 |
| 1972–3           | 51631                                                                            | 17.3       | 246685 | 82.7      | 257475                                                                                                   | 0.7         | 33761          | 0.3                                                     | 65287          | -2.1                                      | 39596          | -6.3                                | 5216         | -2.6                                          | 4763         | -3.1                                | 4808         | -3.1                | 567        | 2.3 |
| 1973–4           | 56891                                                                            | 18.2       | 255003 | 81.8      | 263793                                                                                                   | 2.5         | 33372          | -1.2                                                    | 77055          | 18.0                                      | 50167          | 26.7                                | 5344         | 2.5                                           | 4880         | 2.5                                 | 4914         | 2.2                 | 580        | 2.3 |
| 1974–5           | 58184                                                                            | 18.4       | 257330 | 81.6      | 263594                                                                                                   | -0.1        | 31862          | -4.5                                                    | 68649          | -10.9                                     | 40557          | -19.2                               | 5304         | -0.8                                          | 4830         | -1.0                                | 4847         | -1.4                | 593        | 2.2 |
| 1975–6           | 63313                                                                            | 18.4       | 280611 | 81.6      | 278563                                                                                                   | 5.7         | 35170          | 10.4                                                    | 71655          | 4.4                                       | 42126          | 3.9                                 | 5654         | 6.6                                           | 5167         | 7.0                                 | 5179         | 6.9                 | 607        | 2.4 |
| 1976–7           | 69958                                                                            | 20.1       | 278265 | 79.9      | 284118                                                                                                   | 2.0         | 37873          | 7.7                                                     | 80238          | 12.0                                      | 49065          | 16.5                                | 5605         | -0.9                                          | 5103         | -1.2                                | 5114         | -1.3                | 620        | 2.1 |
| 1977–8           | 73525                                                                            | 19.6       | 300710 | 80.4      | 307285                                                                                                   | 8.2         | 39011          | 3.0                                                     | 90648          | 13.0                                      | 57934          | 18.1                                | 5891         | 5.1                                           | 5375         | 5.3                                 | 5387         | 5.3                 | 634        | 2.3 |

(contd.)

TABLE A1.1 (contd.)

| (1)              | (13)   |      | (14)    |      | (15)    |      | (16)   |      | (17)   |       | (18)   |       | (19)  |      | (20)  |      | (21)  |      | (22) |     |
|------------------|--------|------|---------|------|---------|------|--------|------|--------|-------|--------|-------|-------|------|-------|------|-------|------|------|-----|
| 1978–9           | 78888  | 20.0 | 315940  | 80.0 | 326066  | 6.1  | 41862  | 7.3  | 105080 | 15.9  | 70477  | 21.6  | 6085  | 3.3  | 5551  | 3.3  | 5559  | 3.2  | 648  | 2.2 |
| 1979–80          | 82283  | 22.0 | 292008  | 78.0 | 318753  | -2.2 | 44482  | 6.3  | 92895  | -11.6 | 56379  | -20.0 | 5642  | -7.3 | 5092  | -8.3 | 5087  | -8.5 | 664  | 2.5 |
| 1980-1           | 88719  | 22.1 | 312409  | 77.9 | 347443  | 9.0  | 46581  | 4.7  | 99719  | 7.3   | 61166  | 8.5   | 5920  | 4.9  | 5352  | 5.1  | 5340  | 5.0  | 679  | 2.3 |
| 1981-2           | 93206  | 21.9 | 331867  | 78.1 | 362552  | 4.3  | 48675  | 4.5  | 100425 | 0.7   | 59649  | -2.5  | 6144  | 3.8  | 5555  | 3.8  | 5553  | 4.0  | 692  | 1.9 |
| 1982-3           | 102535 | 23.4 | 335544  | 76.6 | 366178  | 1.0  | 53280  | 9.5  | 100271 | -0.2  | 56968  | -4.5  | 6166  | 0.4  | 5555  | 0.0  | 5576  | 0.4  | 708  | 2.3 |
| 1983-4           | 109445 | 23.2 | 362297  | 76.8 | 394599  | 7.8  | 55605  | 4.4  | 103784 | 3.5   | 57756  | 1.4   | 6491  | 5.3  | 5854  | 5.4  | 5888  | 5.6  | 723  | 2.1 |
| 1984–5           | 117738 | 23.9 | 374339  | 76.1 | 405973  | 2.9  | 59620  | 7.2  | 112567 | 8.5   | 63480  | 9.9   | 6620  | 2.0  | 5956  | 1.7  | 5994  | 1.8  | 739  | 2.2 |
| 1985–6           | 127845 | 24.9 | 386145  | 75.1 | 422916  | 4.2  | 66255  | 11.1 | 123113 | 9.4   | 71240  | 12.2  | 6769  | 2.3  | 6082  | 2.1  | 6121  | 2.1  | 755  | 2.2 |
| 1986–7           | 138862 | 25.9 | 397395  | 74.1 | 436262  | 3.2  | 72802  | 9.9  | 123552 | 0.4   | 68689  | -3.6  | 6900  | 1.9  | 6189  | 1.8  | 6244  | 2.0  | 771  | 2.1 |
| 1987–8           | 147945 | 26.6 | 408833  | 73.4 | 451215  | 3.4  | 78698  | 8.1  | 142152 | 15.1  | 84055  | 22.4  | 6998  | 1.4  | 6260  | 1.2  | 6328  | 1.4  | 788  | 2.2 |
| 1988–9           | 158483 | 25.8 | 456615  | 74.2 | 479378  | 6.2  | 82775  | 5.2  | 160762 | 13.1  | 99127  | 17.9  | 7543  | 7.8  | 6777  | 8.3  | 6875  | 8.6  | 805  | 2.2 |
| 1989–90          | 171575 | 26.1 | 484756  | 73.9 | 503167  | 5.0  | 86659  | 4.7  | 172046 | 7.0   | 106455 | 7.4   | 7885  | 4.5  | 7087  | 4.6  | 7187  | 4.5  | 822  | 2.1 |
| 1990-1           | 176720 | 25.5 | 516151  | 74.5 | 525641  | 4.5  | 89601  | 3.4  | 195650 | 13.7  | 126185 | 18.5  | 8149  | 3.3  | 7321  | 3.3  | 7430  | 3.4  | 839  | 2.1 |
| 1991–2           | 187758 | 26.8 | 514105  | 73.2 | 536980  | 2.2  | 89008  | -0.7 | 171553 | -12.3 | 97782  | -22.5 | 8074  | -0.9 | 7212  | -1.5 | 7338  | -1.2 | 856  | 2.0 |
| 1992-3           | 192708 | 26.1 | 545084  | 73.9 | 550828  | 2.6  | 91795  | 3.1  | 187478 | 9.3   | 109285 | 11.8  | 8330  | 3.2  | 7433  | 3.1  | 7564  | 3.1  | 872  | 1.9 |
| 1993–4           | 202512 | 25.9 | 578833  | 74.1 | 574772  | 4.3  | 97725  | 6.5  | 198412 | 5.8   | 115059 | 5.3   | 8624  | 3.5  | 7690  | 3.4  | 7825  | 3.4  | 892  | 2.3 |
| 1994–5           | 216995 | 25.9 | 621036  | 74.1 | 601481  | 4.6  | 98935  | 1.2  | 243882 | 22.9  | 153424 | 33.3  | 9064  | 5.1  | 8070  | 4.9  | 8215  | 5.0  | 910  | 2.0 |
| 1995–6           | 230051 | 25.6 | 669512  | 74.4 | 638938  | 6.2  | 106881 | 8.0  | 271015 | 11.1  | 171863 | 12.0  | 9558  | 5.4  | 8489  | 5.2  | 8625  | 5.0  | 928  | 2.0 |
| 1996–7           | 240452 | 24.8 | 729630  | 75.2 | 689566  | 7.9  | 111640 | 4.5  | 268435 | -1.0  | 161160 | -6.2  | 10141 | 6.1  | 9007  | 6.1  | 9121  | 5.7  | 946  | 1.9 |
| 1997–8           | 269001 | 26.5 | 747594  | 73.5 | 707285  | 2.6  | 123978 | 11.1 | 289058 | 7.7   | 174198 | 8.1   | 10435 | 2.9  | 9244  | 2.6  | 9354  | 2.6  | 964  | 1.9 |
| 1998–9           | 288505 | 26.6 | 794242  | 73.4 | 752440  | 6.4  | 139963 | 12.9 | 290971 | 0.7   | 168778 | -3.1  | 10893 | 4.4  | 9650  | 4.4  | 9772  | 4.5  | 983  | 2.0 |
| 1999-2000        | 304955 | 26.6 | 843412  | 73.4 | 797653  | 6.0  | 158432 | 13.2 | 351624 | 20.8  | 222553 | 31.9  | 11360 | 4.3  | 10071 | 4.4  | 10183 | 4.2  | 1001 | 1.8 |
| 2000-1           | 307177 | 25.6 | 891415  | 74.4 | 819637  | 2.8  | 159209 | 0.5  | 346682 | -1.4  | 210582 | -5.4  | 11643 | 2.5  | 10308 | 2.3  | 10427 | 2.4  | 1019 | 1.8 |
| 2001-2           | 328395 | 25.9 | 939550  | 74.1 | 866977  | 5.8  | 164146 | 3.1  | 336486 | -2.9  | 194021 | -7.9  | 12128 | 4.2  | 10754 | 4.3  | 10853 | 4.1  | 1037 | 1.8 |
| 2002-3           | 351018 | 26.6 | 967344  | 73.4 | 891419  | 2.8  | 160175 | -2.4 | 395163 | 17.4  | 246594 | 27.1  | 12422 | 2.4  | 11013 | 2.4  | 11088 | 2.2  | 1055 | 1.7 |
| 2003-4\$         | 357482 | 25.0 | 1073066 | 75.0 | 964865  | 8.2  | 166085 | 3.7  | 449539 | 13.8  | 293065 | 18.8  | 13257 | 6.7  | 11799 | 7.1  | 11874 | 7.1  | 1073 | 1.7 |
| 2004-5\$\$       | _      |      | _       |      | -       |      | _      |      | _      |       | _      |       | 13930 | 5.1  | 12416 | 5.2  | 12505 | 5.3  | 1091 | 1.7 |
| 1999–2000 Series |        |      |         |      |         |      |        |      |        |       |        |       |       |      |       |      |       |      |      |     |
| 1999-2000        | 454283 | 25.3 | 1338009 | 74.7 | 1266294 |      | 252285 |      | 509289 |       | 322640 |       | 17751 |      | 15886 |      | 16040 |      | 1001 | 2.0 |
| 2000-1           | _      |      | _       |      | 1E+06   | 2.3  | 253001 | 0.3  | 486369 | -4.5  | 291614 | -9.6  | 18134 | 2.2  | 16223 | 2.1  | 16444 | 2.5  | 1019 | 1.8 |
| 2001–2           | _      |      | _       |      | 1371638 | 5.9  | 257334 | 1.7  | 477158 | -1.9  | 275054 | -5.7  | 18857 | 4.0  | 16910 | 4.2  | 17109 | 4.0  | 1038 | 1.9 |
| 2002-3           | _      |      | _       |      | 1393047 | 1.6  | 255847 | -0.6 | 555762 | 16.5  | 345107 | 25.5  | 19278 | 2.2  | 17281 | 2.2  | 17459 | 2.0  | 1055 | 1.6 |
| 2003–4           | _      |      | _       |      | 1502502 | 7.9  | 262015 | 2.4  | 643480 | 15.8  | 422142 | 22.3  | 20580 | 6.8  | 18517 | 7.2  | 18683 | 7.0  | 1073 | 1.7 |
| 2004-5\$         | _      |      | _       |      | 1596802 | 6.3  | 286196 | 9.2  | 744522 | 15.7  | 509569 | 20.7  | 21805 | 6.0  | 19649 | 6.1  | 19805 | 6.0  | 1090 | 1.6 |
| 2005-6\$\$       | _      |      | _       |      | _       |      | _      |      | _      |       | _      |       | 23228 | 6.5  | 21005 | 6.9  | 21222 | 7.2  | 1107 | 1.6 |

Notes: \*\*\* Based on mid-financial year (as on October 1 each year); \$ Quick Estimates; \$ Revised Estimates; —Information not available; Figures in italics denote percentage changes over previous years. Sources: NAS (2005), CSO and their various press notes, and NAS 1950–1 to 2002–3, EPWRF, December 2004.

 ${\it TABLE~A1.2}$  Gross and Net Domestic Savings by Type of Institutions (at Current Prices)

(Rupees, crore)

| Year      | GDP at current   | NDP at current   |       |      | Domestic | saving | gs    |      |       | House | ehold sec | tor sav | vings |      |       |     | vate cor | 1   |      |     |       | Pı  | ıblic se | ector sa | vings |     |
|-----------|------------------|------------------|-------|------|----------|--------|-------|------|-------|-------|-----------|---------|-------|------|-------|-----|----------|-----|------|-----|-------|-----|----------|----------|-------|-----|
|           | market<br>prices | market<br>prices | GDS   |      | CFC**    |        | NDS   |      | Gross |       | CFC**     |         | Net   |      | Gross |     | CFC**    |     | Net  |     | Gross |     | CFC      | **       | Net   |     |
| (1)       | (2)              | (3)              | (4)   |      | (5)      |        | (6)   |      | (7)   |       | (8)       |         | (9)   |      | (10)  |     | (11)     |     | (12) |     | (13)  |     | (14)     |          | (15)  |     |
| 1993–4 Se | ries             |                  |       |      |          |        |       |      |       |       |           |         |       |      |       |     |          |     |      |     |       |     |          |          |       |     |
| 1950-1    | 9934             | 9570             | 887   | 8.9  | 364      | 3.7    | 523   | 5.5  | 612   | 6.2   | 256       | 2.6     | 356   | 3.7  | 93    | 0.9 | 45       | 0.5 | 48   | 0.5 | 182   | 1.8 | 63       | 0.6      | 119   | 1.2 |
| 1951-2    | 10566            | 10155            | 985   | 9.3  | 411      | 3.9    | 574   | 5.7  | 583   | 5.5   | 285       | 2.7     | 298   | 2.9  | 136   | 1.3 | 52       | 0.5 | 84   | 0.8 | 266   | 2.5 | 74       | 0.7      | 192   | 1.9 |
| 1952-3    | 10366            | 9924             | 861   | 8.3  | 442      | 4.3    | 419   | 4.2  | 637   | 6.1   | 305       | 2.9     | 332   | 3.3  | 64    | 0.6 | 55       | 0.5 | 9    | 0.1 | 160   | 1.5 | 82       | 0.8      | 78    | 0.8 |
| 1953-4    | 11282            | 10818            | 888   | 7.9  | 465      | 4.1    | 423   | 3.9  | 655   | 5.8   | 321       | 2.8     | 334   | 3.1  | 90    | 0.8 | 56       | 0.5 | 34   | 0.3 | 143   | 1.3 | 88       | 0.8      | 55    | 0.5 |
| 1954–5    | 10678            | 10167            | 1005  | 9.4  | 511      | 4.8    | 494   | 4.9  | 719   | 6.7   | 354       | 3.3     | 365   | 3.6  | 118   | 1.1 | 64       | 0.6 | 54   | 0.5 | 168   | 1.6 | 93       | 0.9      | 75    | 0.7 |
| 1955-6    | 10873            | 10327            | 1370  | 12.6 | 546      | 5.0    | 824   | 8.0  | 1046  | 9.6   | 371       | 3.4     | 675   | 6.5  | 134   | 1.2 | 72       | 0.7 | 62   | 0.6 | 190   | 1.7 | 103      | 1.0      | 87    | 0.8 |
| 1956–7    | 12951            | 12340            | 1584  | 12.2 | 611      | 4.7    | 973   | 7.9  | 1178  | 9.1   | 408       | 3.2     | 770   | 6.2  | 155   | 1.2 | 80       | 0.6 | 75   | 0.6 | 251   | 1.9 | 123      | 1.0      | 128   | 1.0 |
| 1957-8    | 13349            | 12687            | 1384  | 10.4 | 661      | 5.0    | 723   | 5.7  | 997   | 7.5   | 430       | 3.2     | 567   | 4.5  | 121   | 0.9 | 88       | 0.7 | 33   | 0.3 | 266   | 2.0 | 142      | 1.1      | 124   | 1.0 |
| 1958-9    | 14874            | 14102            | 1407  | 9.5  | 772      | 5.2    | 635   | 4.5  | 1016  | 6.8   | 514       | 3.5     | 502   | 3.6  | 140   | 0.9 | 99       | 0.7 | 41   | 0.3 | 251   | 1.7 | 159      | 1.1      | 92    | 0.7 |
| 1959–60   | 15675            | 14832            | 1748  | 11.2 | 843      | 5.4    | 905   | 6.1  | 1301  | 8.3   | 544       | 3.5     | 757   | 5.1  | 185   | 1.2 | 113      | 0.7 | 72   | 0.5 | 262   | 1.7 | 186      | 1.2      | 76    | 0.5 |
| 1960-1    | 17167            | 16223            | 1989  | 11.6 | 944      | 5.5    | 1045  | 6.4  | 1254  | 7.3   | 592       | 3.4     | 662   | 4.1  | 281   | 1.6 | 136      | 0.8 | 145  | 0.9 | 454   | 2.6 | 217      | 1.3      | 237   | 1.5 |
| 1961-2    | 18196            | 17138            | 2127  | 11.7 | 1058     | 5.8    | 1069  | 6.2  | 1281  | 7.0   | 634       | 3.5     | 647   | 3.8  | 320   | 1.8 | 172      | 0.9 | 148  | 0.9 | 526   | 2.9 | 252      | 1.4      | 274   | 1.6 |
| 1962-3    | 19566            | 18401            | 2479  | 12.7 | 1164     | 5.9    | 1315  | 7.1  | 1533  | 7.8   | 673       | 3.4     | 860   | 4.7  | 344   | 1.8 | 198      | 1.0 | 146  | 0.8 | 602   | 3.1 | 293      | 1.5      | 309   | 1.7 |
| 1963-4    | 22482            | 21169            | 2763  | 12.3 | 1313     | 5.8    | 1450  | 6.8  | 1618  | 7.2   | 725       | 3.2     | 893   | 4.2  | 394   | 1.8 | 245      | 1.1 | 149  | 0.7 | 751   | 3.3 | 343      | 1.5      | 408   | 1.9 |
| 1964-5    | 26220            | 24743            | 3129  | 11.9 | 1477     | 5.6    | 1652  | 6.7  | 1875  | 7.2   | 776       | 3.0     | 1099  | 4.4  | 389   | 1.5 | 286      | 1.1 | 103  | 0.4 | 865   | 3.3 | 415      | 1.6      | 450   | 1.8 |
| 1965-6    | 27668            | 25998            | 3870  | 14.0 | 1671     | 6.0    | 2199  | 8.5  | 2602  | 9.4   | 872       | 3.2     | 1730  | 6.7  | 405   | 1.5 | 304      | 1.1 | 101  | 0.4 | 863   | 3.1 | 495      | 1.8      | 368   | 1.4 |
| 1966–7    | 31305            | 29330            | 4375  | 14.0 | 1975     | 6.3    | 2400  | 8.2  | 3223  | 10.3  | 1039      | 3.3     | 2184  | 7.4  | 424   | 1.4 | 348      | 1.1 | 76   | 0.3 | 728   | 2.3 | 587      | 1.9      | 141   | 0.5 |
| 1967-8    | 36649            | 34427            | 4355  | 11.9 | 2222     | 6.1    | 2133  | 6.2  | 3210  | 8.8   | 1174      | 3.2     | 2036  | 5.9  | 410   | 1.1 | 369      | 1.0 | 41   | 0.1 | 735   | 2.0 | 679      | 1.9      | 56    | 0.2 |
| 1968–9    | 38823            | 36407            | 4721  | 12.2 | 2416     | 6.2    | 2305  | 6.3  | 3349  | 8.6   | 1267      | 3.3     | 2082  | 5.7  | 439   | 1.1 | 394      | 1.0 | 45   | 0.1 | 933   | 2.4 | 755      | 1.9      | 178   | 0.5 |
| 1969-70   | 42750            | 40072            | 6104  | 14.3 | 2678     | 6.3    | 3426  | 8.5  | 4440  | 10.4  | 1428      | 3.3     | 3012  | 7.5  | 549   | 1.3 | 413      | 1.0 | 136  | 0.3 | 1115  | 2.6 | 837      | 2.0      | 278   | 0.7 |
| 1970-1    | 45677            | 42707            | 6649  | 14.6 | 2970     | 6.5    | 3679  | 8.6  | 4634  | 10.1  | 1521      | 3.3     | 3113  | 7.3  | 672   | 1.5 | 462      | 1.0 | 210  | 0.5 | 1343  | 2.9 | 988      | 2.2      | 355   | 0.8 |
| 1971-2    | 48932            | 45640            | 7367  | 15.1 | 3292     | 6.7    | 4075  | 8.9  | 5219  | 10.7  | 1658      | 3.4     | 3561  | 7.8  | 769   | 1.6 | 502      | 1.0 | 267  | 0.6 | 1379  | 2.8 | 1133     | 2.3      | 246   | 0.5 |
| 1972-3    | 53947            | 50226            | 7872  | 14.6 | 3721     | 6.9    | 4151  | 8.3  | 5624  | 10.4  | 1845      | 3.4     | 3779  | 7.5  | 806   | 1.5 | 564      | 1.0 | 242  | 0.5 | 1442  | 2.7 | 1312     | 2.4      | 130   | 0.3 |
| 1973-4    | 65613            | 61274            | 10999 | 16.8 | 4339     | 6.6    | 6660  | 10.9 | 7985  | 12.2  | 2096      | 3.2     | 5889  | 9.6  | 1083  | 1.7 | 656      | 1.0 | 427  | 0.7 | 1931  | 2.9 | 1588     | 2.4      | 343   | 0.6 |
| 1974-5    | 77479            | 71919            | 12380 | 16.0 | 5560     | 7.2    | 6820  | 9.5  | 8080  | 10.4  | 2634      | 3.4     | 5446  | 7.6  | 1465  | 1.9 | 876      | 1.1 | 589  | 0.8 | 2835  | 3.7 | 2049     | 2.6      | 786   | 1.1 |
| 1975–6    | 83269            | 76820            | 14346 | 17.2 | 6449     | 7.7    | 7897  | 10.3 | 9743  | 11.7  | 2980      | 3.6     | 6763  | 8.8  | 1083  | 1.3 | 1053     | 1.3 | 30   | 0.0 | 3520  | 4.2 | 2416     | 2.9      | 1104  | 1.4 |
| 1976–7    | 89739            | 82833            | 17408 | 19.4 | 6907     | 7.7    | 10501 | 12.7 | 11849 | 13.2  | 3180      | 3.5     | 8669  | 10.5 | 1181  | 1.3 | 1068     | 1.2 | 113  | 0.1 | 4378  | 4.9 | 2659     | 3.0      | 1719  | 2.1 |
| 1977-8    | 101597           | 94100            | 20142 | 19.8 | 7497     | 7.4    | 12645 | 13.4 | 14354 | 14.1  | 3405      | 3.4     | 10949 | 11.6 | 1413  | 1.4 | 1083     | 1.1 | 330  | 0.4 | 4375  | 4.3 | 3009     | 3.0      | 1366  | 1.5 |
| 1978–9    | 110133           | 101560           | 23676 | 21.5 | 8573     | 7.8    | 15103 | 14.9 | 17015 | 15.4  | 3903      | 3.5     | 13112 | 12.9 | 1652  | 1.5 | 1203     | 1.1 | 449  | 0.4 | 5009  | 4.5 | 3467     | 3.1      | 1542  | 1.5 |
| 1979-80   | 120841           | 110392           | 24314 | 20.1 | 10449    | 8.6    | 13865 | 12.6 | 16690 | 13.8  | 4748      | 3.9     | 11942 | 10.8 | 2398  | 2.0 | 1457     | 1.2 | 941  | 0.9 | 5226  | 4.3 | 4244     | 3.5      | 982   | 0.9 |

TABLE A1.2 (contd.)

| (1)        | (2)     | (3)     | (4)    |         | (5)  | (         | 5)             | (7)      |      | (8)    | (9)               |      | (10)   | (11)      |     | (12)  |         | (13)  | (1               | 4)    | (15)    |              |
|------------|---------|---------|--------|---------|------|-----------|----------------|----------|------|--------|-------------------|------|--------|-----------|-----|-------|---------|-------|------------------|-------|---------|--------------|
| 1980–1     | 143764  | 131477  | 27136  | 18.9 1  | 2288 | 8.5 148   | 48 11.         | 3 19868  | 13.8 | 5579   | 3.9 14289         | 10.9 | 2339   | 1.6 1717  | 1.2 | 622   | 0.5     | 4929  | 3.4 499          | 2 3.5 | -63     | 0.0          |
| 1981-2     | 168600  | 153892  | 31355  | 18.6    | 4708 | 8.7 166   | 47 10.         | 8 21225  | 12.6 | 6709   | 4.0 14516         | 9.4  | 2560   | 1.5 2022  | 1.2 | 538   | 0.3     | 7570  | 4.5 597          | 7 3.5 | 1593    | 1.0          |
| 1982-3     | 188262  | 171087  | 34368  | 18.3    | 7175 | 9.1 171   | 93 10.         | 23216    | 12.3 | 7690   | 4.1 15526         | 9.1  | 2980   | 1.6 2364  | 1.3 | 616   | 0.4     | 8172  | 4.3 712          | 3.8   | 1051    | 0.6          |
| 1983-4     | 219496  | 199931  | 38587  | 17.6    | 9565 | 8.9 190   | 22 9.          | 5 28165  | 12.8 | 8531   | 3.9 19634         | 9.8  | 3254   | 1.5 2811  | 1.3 | 443   | 0.2     | 7168  | 3.3 822          | 2 3.7 | -1054   | -0.5         |
| 1984-5     | 245515  | 223028  | 46063  | 18.8 2  | 2487 | 9.2 235   | 76 10.         | 35067    | 14.3 | 9650   | 3.9 25417         | 11.4 | 4040   | 1.6 3231  | 1.3 | 809   | 0.4     | 6956  | 2.8 960          | 5 3.9 | -2650   | -1.2         |
| 1985–6     | 277991  | 251274  | 54167  | 19.5 2  | 6717 | 9.6 274   | 50 10.         | 9 39795  | 14.3 | 11109  | 4.0 28686         | 11.4 | 5426   | 2.0 3976  | 1.4 | 1450  | 0.6     | 8946  | <i>3.2</i> 1163  | 2 4.2 | -2686   | -1.1         |
| 1986-7     | 311177  | 280788  | 58951  | 18.9 3  | 0389 | 9.8 285   | 62 10.         | 2 45072  | 14.5 | 12327  | 4.0 32745         | 11.7 | 5336   | 1.7 4675  | 1.5 | 661   | 0.2     | 8543  | 2.7 1338         | 3 4.3 | -4845   | -1.7         |
| 1987-8     | 354343  | 320369  | 72908  | 20.6 3  | 3974 | 9.6 389   | 34 12.         | 2 59157  | 16.7 | 13665  | 3.9 45492         | 14.2 | 5932   | 1.7 5052  | 1.4 | 880   | 0.3     | 7819  | 2.2 1525         | 7 4.3 | -7438   | -2.3         |
| 1988–9     | 421567  | 381874  | 87913  | 20.9 3  | 9693 | 9.4 482   | 20 12.         | 70657    | 16.8 | 15607  | <i>3.7</i> 55050  | 14.4 | 8486   | 2.0 6130  | 1.5 | 2356  | 0.6     | 8770  | 2.1 1795         | 5 4.3 | -9185   | -2.4         |
| 1989–90    | 486179  | 439619  | 106979 | 22.0 4  | 6560 | 9.6 604   | 19 13.         | 7 86955  | 17.9 | 17813  | 3.7 69142         | 15.7 | 11845  | 2.4 7401  | 1.5 | 4444  | 1.0     | 8179  | 1.7 2134         | 5 4.4 | -13167  | -3.0         |
| 1990-1     | 568674  | 515410  | 131340 | 23.1 5  | 3264 | 9.4 780   | 76 <i>15</i> . | 1 109897 | 19.3 | 20092  | 3.5 89805         | 17.4 | 15164  | 2.7 8861  | 1.6 | 6303  | 1.2     | 6279  | 1.1 2431         | 1 4.3 | -18032  | -3.5         |
| 1991–2     | 653117  | 588715  | 143908 | 22.0 6  | 4402 | 9.9 795   | 06 13.         | 5 110736 | 17.0 | 23356  | 3.6 87380         | 14.8 | 20304  | 3.1 11577 | 1.8 | 8727  | 1.5     | 12868 | 2.0 2947         | ) 4.5 | -16602  | -2.8         |
| 1992-3     | 748367  | 673855  | 162906 | 21.8 7  | 4512 | 10.0 883  | 94 13.         | 1 131073 | 17.5 | 26170  | 3.5 104903        | 15.6 | 19968  | 2.7 14451 | 1.9 | 5517  | 0.8     | 11865 | 1.6 3389         | 4.5   | -22026  | -3.3         |
| 1993–4     | 859220  | 775867  | 193621 | 22.5 8  | 3353 | 9.7 1102  | 68 14.         | 2 158310 | 18.4 | 28941  | 3.4 129369        | 16.7 | 29866  | 3.5 17028 | 2.0 | 12838 | 1.7     | 5445  | 0.6 3738         | 4.4   | -31939  | <b>-4.</b> 1 |
| 1994–5     | 1012770 | 914776  | 251463 | 24.8 9  | 7994 | 9.7 1534  | 69 16.         | 8 199358 | 19.7 | 33933  | 3.4 165425        | 18.1 | 35260  | 3.5 20628 | 2.0 | 14632 | 1.6     | 16845 | 1.7 4343         | 3 4.3 | -26588  | -2.9         |
| 1995–6     | 1188012 | 1070086 | 298747 | 25.1 11 | 7926 | 9.9 1808  | 21 16.         | 9 216140 | 18.2 | 41929  | 3.5 174211        | 16.3 | 58542  | 4.9 26059 | 2.2 | 32483 | 3.0     | 24065 | 2.0 4993         | 3 4.2 | -25873  | -2.4         |
| 1996–7     | 1368209 | 1231706 | 317261 | 23.2 13 | 6503 | 10.0 1807 | 58 14.         | 7 233252 | 17.0 | 47552  | <i>3.5</i> 185700 | 15.1 | 61092  | 4.5 32381 | 2.4 | 28711 | 2.3     | 22917 | 1.7 5657         | ) 4.1 | -33653  | -2.7         |
| 1997–8     | 1522547 | 1370550 | 352178 | 23.1 15 | 1997 | 10.0 2001 | 81 14.         | 5 268437 | 17.6 | 52437  | 3.4 216000        | 15.8 | 63486  | 4.2 37826 | 2.5 | 25660 | 1.9     | 20255 | 1.3 6173         | 4.1   | -41479  | -3.0         |
| 1998–9     | 1740985 | 1572919 | 374659 | 21.5 16 | 8066 | 9.7 2065  | 93 13.         | 1 326802 | 18.8 | 57251  | 3.3 269551        | 17.1 | 65026  | 3.7 43583 | 2.5 | 21443 | 1.4-    | 17169 | -1.0 6723        | 2 3.9 | -84401  | -5.4         |
| 1999–2000  | 1936831 | 1754472 | 468681 | 24.2 18 | 2359 | 9.4 2863  | 22 16.         | 3 404401 | 20.9 | 61814  | 3.2 342587        | 19.5 | 84329  | 4.4 48674 | 2.5 | 35655 | 2.0 - 2 | 20049 | -1.0 7187        | 1 3.7 | -91920  | -5.2         |
| 2000-1     | 2089500 | 1891605 | 490049 | 23.5 19 | 7895 | 9.5 2921  | 54 <i>15</i> . | 4 452268 | 21.6 | 66081  | 3.2 386187        | 20.4 | 86142  | 4.1 55563 | 2.7 | 30579 | 1.6-4   | 48361 | <i>−2.3</i> 7625 | 3.6   | -124612 | -6.6         |
| 2001-2     | 2271984 | 2054305 | 532274 | 23.4 21 | 7679 | 9.6 3145  | 95 <i>15</i> . | 3 513110 | 22.6 | 76822  | 3.4 436288        | 21.2 | 81076  | 3.6 58156 | 2.6 | 22920 | 1.1 - 6 | 61912 | <i>–2.7</i> 8270 | 3.6   | -144613 | -7.0         |
| 2002-3     | 2463324 | 2230372 | 642298 | 26.1 23 | 2952 | 9.5 4093  | 46 18.         | 4 574681 | 23.3 | 82517  | 3.3 492164        | 22.1 | 94269  | 3.8 62780 | 2.5 | 31489 | 1.4 - 2 | 26652 | -1.1 8765        | 3.6   | -114307 | -5.1         |
| 2003-4     | 2760025 | 2506388 | 776420 | 28.1 25 | 3637 | 9.2 5227  | 83 20.         | 9 671692 | 24.3 | 91775  | 3.3 579917        | 23.1 | 114157 | 4.1 67410 | 2.4 | 46747 | 1.9 -   | -9429 | -0.3 9445        | 2 3.4 | -103881 | -4.1         |
| 1999–2000  | Series  |         |        |         |      |           |                |          |      |        |                   |      |        |           |     |       |         |       |                  |       |         |              |
| 1999-2000  | 1958814 | 1772165 | 487301 | 24.9 18 | 6649 | 9.5 3006  | 52 <i>17</i> . | 9 416726 | 21.3 | 71461  | 3.6 345265        | 19.5 | 87234  | 4.5 41827 | 2.1 | 45407 | 2.6-    | 16659 | -0.9 7336        | 3.7   | -90020  | -5.1         |
| 2000-1     | 2107661 | 1904929 | 496272 | 23.5 20 | 2732 | 9.6 2935  | 40 15.         | 4 446317 | 21.2 | 77438  | 3.7 368879        | 19.4 | 87017  | 4.1 47681 | 2.3 | 39336 | 2.1 –3  | 37062 | -1.8 7761        | 3.7   | -114675 | -6.0         |
| 2001-2     | 2281305 | 2060144 | 537966 | 23.6 22 | 1161 | 9.7 3168  | 05 15.         | 4 502674 | 22.0 | 83986  | 3.7 418688        | 20.3 | 81669  | 3.6 53434 | 2.3 | 28235 | 1.4-4   | 46377 | -2.0 8374        | 3.7   | -130118 | -6.3         |
| 2002-3     | 2449736 | 2214134 | 648994 | 26.5 23 | 5602 | 9.6 4133  | 92 18.         | 7 565408 | 23.1 | 90058  | 3.7 475350        | 21.5 | 99767  | 4.1 57216 | 2.3 | 42551 | 1.9-    | 16181 | -0.7 8832        | 3.6   | -104509 | -4.7         |
| 2003-4     | 2760224 | 2503654 | 797512 | 28.9 25 | 6570 | 9.3 5409  | 42 21.         | 6 648634 | 23.5 | 99085  | 3.6 549549        | 21.9 | 120852 | 4.4 62578 | 2.3 | 58274 | 2.3     | 28026 | 1.0 9490         | 7 3.4 | -66881  | -2.7         |
| 2004-5\$   | 3121414 | 2826656 | 907416 | 29.1 29 | 4758 | 9.4 6126  | 58 21.         | 7 687079 | 22.0 | 115644 | 3.7 571435        | 20.2 | 150947 | 4.8 72439 | 2.3 | 78508 | 2.8     | 69390 | 2.210667         | 5 3.4 | -37285  | -1.3         |
| 2005-6\$\$ | 3531451 | 3207364 | _      |         | -    |           | -              | -        |      | -      | _                 |      | -      | _         |     | -     |         | -     | -                | -     |         |              |

Notes: \*\* This has been worked out from the estimated value of capital stock and the expected age of various types of assets (see CSO 1989); Quick Estimates; —Information not available; Figures in italics are as percentages to GDP at current prices except those for net savings in columns (6), (9), (12), and (15) which are as percentages to NDP at current market prices.

Source: Central Statistical Organisation (CSO), National Accounts Statistics, various issues.

Table A1.3
Gross Capital Formation by Type of Institutions at Current Prices

(Rupees, crore)

| Section   Sect | ear          |       |      |      | Gı  | oss capital form | nation ( | GCF) |     |            | Gross | Net                        | Finances                           | Errors         | GCF             |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------|------|-----|------------------|----------|------|-----|------------|-------|----------------------------|------------------------------------|----------------|-----------------|------|
| 1993-4 Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 00 0  |      |      |     | corporate        |          |      |     | Valuables* |       | capital inflow (-) outflow | gross<br>capital<br>forma-<br>tion | omis-<br>sions | adjusted (2+10) |      |
| 195-1   1044   10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1)           | (2)   |      | (3)  |     | (4)              |          | (5)  |     | (6)        | (7)   | (8)                        | (9)                                | (10)           | (11)            |      |
| 1951-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 993–4 Series |       |      |      |     |                  |          |      |     |            |       |                            |                                    |                |                 |      |
| 1952-3         917         8.8         274         2.6         78         0.8         565         5.4         861         -34         827         -90         827           1953-4         833         7.4         311         2.8         9         0.1         513         4.5         888         -13         875         42         875           1954-5         1063         102         477         4.5         149         1.4         437         4.1         105         16         1021         -42         105           1954-6         1361         12.5         522         4.8         222         2.0         617         5.7         1370         39         1409         48         140           1954-7         1881         14.5         691         5.3         345         2.7         845         6.5         1584         360         1944         63         1944           1957-8         1959         14.7         894         6.4         394         3.0         706         5.3         1384         473         1817         142         1975           1958-9         140         1.1         8.4         5.7         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 950–1        | 1044  | 10.5 | 276  | 2.8 | 218              | 2.2      | 550  | 5.5 |            | 887   | -21                        | 866                                | -178           | 866             | 8.7  |
| 1953-4         833         7.4         311         2.8         9         0.1         513         4.5         888         -13         875         42         875           1954-5         1063         10.0         477         4.5         149         1.4         437         4.1         1005         16         1021         -42         1021           1955-6         1361         12.5         522         4.8         222         2.0         617         5.7         1370         39         140         48         140           1956-7         1881         14.5         691         5.3         345         2.7         845         6.5         1584         360         194         63         1946           1957-8         1959         14.7         899         6.4         394         3.0         706         5.3         1384         473         1857         -102         1857           1958-9         14.7         1178         6.9         503         1.9         868         5.5         1748         231         199         -124         1973           1960-1         2516         14.7         11178         6.9         503 <td< td=""><td>951–2</td><td>1146</td><td>10.8</td><td>321</td><td>3.0</td><td>256</td><td>2.4</td><td>569</td><td>5.4</td><td></td><td>985</td><td>183</td><td>1168</td><td>22</td><td>1168</td><td>11.1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 951–2        | 1146  | 10.8 | 321  | 3.0 | 256              | 2.4      | 569  | 5.4 |            | 985   | 183                        | 1168                               | 22             | 1168            | 11.1 |
| 1954-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 952–3        | 917   | 8.8  | 274  | 2.6 | 78               | 0.8      | 565  | 5.4 |            | 861   | -34                        | 827                                | -90            | 827             | 8.0  |
| 1955-6         1361         12.5         522         4.8         222         2.0         617         5.7         1370         39         1409         48         1405           1956-7         1881         14.5         691         5.3         345         2.7         845         6.5         1584         360         1944         63         1944           1957-8         1959         14.7         859         6.4         394         3.0         706         5.3         1384         473         1857         -102         1852           1958-9         1740         11.7         844         5.7         242         1.6         654         4.4         1407         376         1738         43         1783         178         185         1748         231         1979         -124         1967         1967         1962         1962         196         540         3.1         798         4.6         1989         481         2470         -46         2470         1962         1962         1963         186         5.5         144         4.1         792         4.4         12127         345         2472         -251         2472         1962         1962 <td>953–4</td> <td>833</td> <td>7.4</td> <td>311</td> <td>2.8</td> <td>9</td> <td>0.1</td> <td>513</td> <td>4.5</td> <td></td> <td>888</td> <td>-13</td> <td>875</td> <td>42</td> <td>875</td> <td>7.8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 953–4        | 833   | 7.4  | 311  | 2.8 | 9                | 0.1      | 513  | 4.5 |            | 888   | -13                        | 875                                | 42             | 875             | 7.8  |
| 1956-7         1881         14.5         691         5.3         345         2.7         845         6.5         1584         360         1944         63         1944           1957-8         1959         14.7         859         6.4         394         3.0         706         5.3         1384         473         1857         -102         1857           1958-9         1740         11.7         844         5.7         242         1.6         654         4.4         1407         376         1783         43         1783           1959-90         2103         13.4         932         5.9         303         1.9         868         5.5         1748         231         1979         -124         1973           1960-1         2516         14.7         1178         6.9         540         3.1         798         4.6         1989         481         2470         -46         2470           1961-2         2723         15.0         1187         6.5         744         4.1         792         4.4         2127         345         2472         -251         2472           1962-3         303         15.7         1490         7.6<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 954–5        | 1063  | 10.0 | 477  | 4.5 | 149              | 1.4      | 437  | 4.1 |            | 1005  | 16                         | 1021                               | -42            | 1021            | 9.6  |
| 1957-8         1959         147         859         64         394         3.0         706         5.3         1384         473         1857         -102         1857           1958-9         1740         11.7         844         5.7         242         1.6         654         4.4         1407         376         1783         43         1783           1959-60         2103         13.4         932         5.9         303         1.9         868         5.5         1748         231         1979         -124         1975           1960-1         2516         14.7         1178         6.9         540         3.1         798         4.6         1989         481         2470         -46         2470           1961-2         2723         15.0         1187         6.5         744         4.1         792         4.4         2127         345         2472         -251         2472           1961-2         2723         15.0         1733         7.7         869         3.9         875         3.9         2676         440         2919         -144         2919           1964-5         4074         15.5         2077         7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 955–6        | 1361  | 12.5 | 522  | 4.8 | 222              | 2.0      | 617  | 5.7 |            | 1370  | 39                         | 1409                               | 48             | 1409            | 13.0 |
| 1958-9         1740         11.7         844         5.7         242         1.6         654         4.4         1407         376         1783         43         1783           1959-60         2103         13.4         932         5.9         303         1.9         868         5.5         1748         231         1979         -124         1975           1960-1         2516         14.7         1178         6.9         540         3.1         798         4.6         1989         481         2470         -46         2470           1961-2         2723         15.0         1187         6.5         744         4.1         792         4.4         2127         345         2472         -251         2472           1962-3         3063         15.7         1490         7.6         539         2.8         1034         5.3         2479         440         2919         -144         2919           1963-4         3477         15.5         1733         7.7         869         3.9         875         3.9         2763         440         3203         -274         3203           1964-5         4074         15.5         2077 <t< td=""><td>956–7</td><td>1881</td><td>14.5</td><td>691</td><td>5.3</td><td>345</td><td>2.7</td><td>845</td><td>6.5</td><td></td><td>1584</td><td>360</td><td>1944</td><td>63</td><td>1944</td><td>15.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 956–7        | 1881  | 14.5 | 691  | 5.3 | 345              | 2.7      | 845  | 6.5 |            | 1584  | 360                        | 1944                               | 63             | 1944            | 15.0 |
| 1959-60         2103         13.4         932         5.9         303         1.9         868         5.5         1748         231         1979         -124         1975         1960-1         2516         14.7         1178         6.9         540         3.1         798         4.6         1989         481         2470         -46         2470         1961-2         1961-2         2723         15.0         1187         6.5         744         4.1         792         4.4         2127         345         2472         -251         2472         1962-3         3063         15.7         1490         7.6         539         2.8         1034         5.3         2479         440         2919         -144         2919         1944         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         2919         -144         4165         123         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 957–8        | 1959  | 14.7 | 859  | 6.4 | 394              | 3.0      | 706  | 5.3 |            | 1384  | 473                        | 1857                               | -102           | 1857            | 13.9 |
| 1960-1         2516         14.7         1178         6.9         540         3.1         798         4.6         1989         481         2470         -46         2470           1961-2         2723         15.0         1187         6.5         744         4.1         792         4.4         2127         345         2472         -251         2472           1962-3         3063         15.7         1490         7.6         539         2.8         1034         5.3         2479         440         2919         -144         2919           1963-4         3477         15.5         1733         7.7         869         3.9         875         3.9         2763         440         3203         -274         3203           1964-5         4074         15.5         2007         7.7         906         3.5         1161         4.4         3129         600         3729         -345         3725           1965-6         4517         16.3         2282         8.2         705         2.5         1530         5.5         3870         599         4469         -48         4466           1966-7         5193         16.6         820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 958–9        | 1740  | 11.7 | 844  | 5.7 | 242              | 1.6      | 654  | 4.4 |            | 1407  | 376                        | 1783                               | 43             | 1783            | 12.0 |
| 1961-2         2723         15.0         1187         6.5         744         4.1         792         4.4         2127         345         2472         -251         2472           1962-3         3063         15.7         1490         7.6         539         2.8         1034         5.3         2479         440         2919         -144         2919           1963-4         3477         15.5         1733         7.7         869         3.9         875         3.9         2763         440         3203         -274         3203           1964-5         4074         15.5         2007         7.7         906         3.5         1161         4.4         3129         600         3729         -345         3729           1965-6         4517         16.3         2282         8.2         705         2.5         1530         5.5         3870         599         4469         -48         4469           1966-7         5193         16.6         2209         7.1         625         2.0         2359         7.5         4375         923         5298         105         2598         192         449         4469         4469         448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 959–60       | 2103  | 13.4 | 932  | 5.9 | 303              | 1.9      | 868  | 5.5 |            | 1748  | 231                        | 1979                               | -124           | 1979            | 12.6 |
| 1962-3         3063         15.7         1490         7.6         539         2.8         1034         5.3         2479         440         2919         -144         2919         1963-4         3477         15.5         1733         7.7         869         3.9         875         3.9         2763         440         3203         -274         3203         1964-5         4074         15.5         2007         7.7         906         3.5         1161         4.4         3129         600         3729         -345         3725         1965-6         4517         16.3         2282         8.2         705         2.5         1530         5.5         3870         599         4469         -48         4466         1966-7         5193         16.6         2209         7.1         625         2.0         2359         7.5         4375         923         5298         105         5298         1966-7         5193         16.6         820         2.2         2345         6.4         4355         837         5192         -388         5192         1988-9         1989-9         446         4456         5137         416         5137         445         5137         1999-9         445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 960–1        | 2516  | 14.7 | 1178 | 6.9 | 540              | 3.1      | 798  | 4.6 |            | 1989  | 481                        | 2470                               | -46            | 2470            | 14.4 |
| 1963-4         3477         15.5         1733         7.7         869         3.9         875         3.9         2763         440         3203         -274         3203           1964-5         4074         15.5         2007         7.7         906         3.5         1161         4.4         3129         600         3729         -345         3729           1965-6         4517         16.3         2282         8.2         705         2.5         1530         5.5         3870         599         4469         -48         4466           1966-7         5193         16.6         2209         7.1         625         2.0         2359         7.5         4375         923         5298         105         5298           1967-8         5580         15.2         2415         6.6         820         2.2         2345         6.4         4355         837         5192         -388         5192           1968-9         5582         14.4         2259         5.8         769         2.0         2554         6.6         4721         416         5137         -445         5137           1969-70         6557         15.3         2361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 961–2        | 2723  | 15.0 | 1187 | 6.5 | 744              | 4.1      | 792  | 4.4 |            | 2127  | 345                        | 2472                               | -251           | 2472            | 13.6 |
| 1964-5         4074         15.5         2007         7.7         906         3.5         1161         4.4         3129         600         3729         -345         3729           1965-6         4517         16.3         2282         8.2         705         2.5         1530         5.5         3870         599         4469         -48         4469           1966-7         5193         16.6         2209         7.1         625         2.0         2359         7.5         4375         923         5298         105         5298           1967-8         5580         15.2         2415         6.6         820         2.2         2345         6.4         4355         837         5192         -388         5192           1968-9         5582         14.4         2259         5.8         769         2.0         2554         6.6         4721         416         5137         -445         5137           1969-70         6557         15.3         2361         5.5         675         1.6         3521         8.2         6104         241         6345         -212         6345           1970-1         7227         15.8         2919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 962–3        | 3063  | 15.7 | 1490 | 7.6 | 539              | 2.8      | 1034 | 5.3 |            | 2479  | 440                        | 2919                               | -144           | 2919            | 14.9 |
| 1965-6       4517       16.3       2282       8.2       705       2.5       1530       5.5       3870       599       4469       -48       4469         1966-7       5193       16.6       2209       7.1       625       2.0       2359       7.5       4375       923       5298       105       5298         1967-8       5580       15.2       2415       6.6       820       2.2       2345       6.4       4355       837       5192       -388       5192         1968-9       5582       14.4       2259       5.8       769       2.0       2554       6.6       4721       416       5137       -445       5137         1969-70       6557       15.3       2361       5.5       675       1.6       3521       8.2       6104       241       6345       -212       6345         1970-1       7227       15.8       2919       6.4       1045       2.3       3263       7.1       6649       394       7043       -184       7043         1971-2       8283       16.9       3415       7.0       1204       2.5       3664       7.5       7367       478       7845       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 963–4        | 3477  | 15.5 | 1733 | 7.7 | 869              | 3.9      | 875  | 3.9 |            | 2763  | 440                        | 3203                               | -274           | 3203            | 14.2 |
| 1966-7       5193       16.6       2209       7.1       625       2.0       2359       7.5       4375       923       5298       105       5298         1967-8       5580       15.2       2415       6.6       820       2.2       2345       6.4       4355       837       5192       -388       5192         1968-9       5582       14.4       2259       5.8       769       2.0       2554       6.6       4721       416       5137       -445       5137         1969-70       6557       15.3       2361       5.5       675       1.6       3521       8.2       6104       241       6345       -212       6345         1970-1       7227       15.8       2919       6.4       1045       2.3       3263       7.1       6649       394       7043       -184       7043         1971-2       8283       16.9       3415       7.0       1204       2.5       3664       7.5       7367       478       7845       -438       7845         1972-3       8721       16.2       3875       7.2       1350       2.5       3496       6.5       7872       297       8169 <td< td=""><td>964–5</td><td>4074</td><td>15.5</td><td>2007</td><td>7.7</td><td>906</td><td>3.5</td><td>1161</td><td>4.4</td><td></td><td>3129</td><td>600</td><td>3729</td><td>-345</td><td>3729</td><td>14.2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 964–5        | 4074  | 15.5 | 2007 | 7.7 | 906              | 3.5      | 1161 | 4.4 |            | 3129  | 600                        | 3729                               | -345           | 3729            | 14.2 |
| 1967-8       5580       15.2       2415       6.6       820       2.2       2345       6.4       4355       837       5192       -388       5192         1968-9       5582       14.4       2259       5.8       769       2.0       2554       6.6       4721       416       5137       -445       5137         1969-70       6557       15.3       2361       5.5       675       1.6       3521       8.2       6104       241       6345       -212       6345         1970-1       7227       15.8       2919       6.4       1045       2.3       3263       7.1       6649       394       7043       -184       7043         1971-2       8283       16.9       3415       7.0       1204       2.5       3664       7.5       7367       478       7845       -438       7845         1972-3       8721       16.2       3875       7.2       1350       2.5       3496       6.5       7872       297       8169       -552       8169         1973-4       10928       16.7       4904       7.5       1651       2.5       4373       6.7       10999       392       11391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 965–6        | 4517  | 16.3 | 2282 | 8.2 | 705              | 2.5      | 1530 | 5.5 |            | 3870  | 599                        | 4469                               | -48            | 4469            | 16.2 |
| 1968-9         5582         14.4         2259         5.8         769         2.0         2554         6.6         4721         416         5137         -445         5137           1969-70         6557         15.3         2361         5.5         675         1.6         3521         8.2         6104         241         6345         -212         6345           1970-1         7227         15.8         2919         6.4         1045         2.3         3263         7.1         6649         394         7043         -184         7043           1971-2         8283         16.9         3415         7.0         1204         2.5         3664         7.5         7367         478         7845         -438         7845           1972-3         8721         16.2         3875         7.2         1350         2.5         3496         6.5         7872         297         8169         -552         8169           1973-4         10928         16.7         4904         7.5         1651         2.5         4373         6.7         10999         392         11391         463         1139           1974-5         14192         18.3         575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 966–7        | 5193  | 16.6 | 2209 | 7.1 | 625              | 2.0      | 2359 | 7.5 |            | 4375  | 923                        | 5298                               | 105            | 5298            | 16.9 |
| 1969-70         6557         15.3         2361         5.5         675         1.6         3521         8.2         6104         241         6345         -212         6345           1970-1         7227         15.8         2919         6.4         1045         2.3         3263         7.1         6649         394         7043         -184         7043           1971-2         8283         16.9         3415         7.0         1204         2.5         3664         7.5         7367         478         7845         -438         7845           1972-3         8721         16.2         3875         7.2         1350         2.5         3496         6.5         7872         297         8169         -552         8169           1973-4         10928         16.7         4904         7.5         1651         2.5         4373         6.7         10999         392         11391         463         1139           1974-5         14192         18.3         5753         7.4         2733         3.5         5706         7.4         12380         653         13033         -1159         1303           1975-6         15800         19.0 <t< td=""><td>967–8</td><td>5580</td><td>15.2</td><td>2415</td><td>6.6</td><td>820</td><td>2.2</td><td>2345</td><td>6.4</td><td></td><td>4355</td><td>837</td><td>5192</td><td>-388</td><td>5192</td><td>14.2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 967–8        | 5580  | 15.2 | 2415 | 6.6 | 820              | 2.2      | 2345 | 6.4 |            | 4355  | 837                        | 5192                               | -388           | 5192            | 14.2 |
| 1970-1         7227         15.8         2919         6.4         1045         2.3         3263         7.1         6649         394         7043         -184         7043           1971-2         8283         16.9         3415         7.0         1204         2.5         3664         7.5         7367         478         7845         -438         7845           1972-3         8721         16.2         3875         7.2         1350         2.5         3496         6.5         7872         297         8169         -552         8169           1973-4         10928         16.7         4904         7.5         1651         2.5         4373         6.7         10999         392         11391         463         1139           1974-5         14192         18.3         5753         7.4         2733         3.5         5706         7.4         12380         653         13033         -1159         1303           1975-6         15800         19.0         7806         9.4         2169         2.6         5825         7.0         14346         -117         14229         -1571         14229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 968–9        | 5582  | 14.4 | 2259 | 5.8 | 769              | 2.0      | 2554 | 6.6 |            | 4721  | 416                        | 5137                               | -445           | 5137            | 13.2 |
| 1971-2       8283       16.9       3415       7.0       1204       2.5       3664       7.5       7367       478       7845       -438       7845         1972-3       8721       16.2       3875       7.2       1350       2.5       3496       6.5       7872       297       8169       -552       8169         1973-4       10928       16.7       4904       7.5       1651       2.5       4373       6.7       10999       392       11391       463       1139         1974-5       14192       18.3       5753       7.4       2733       3.5       5706       7.4       12380       653       13033       -1159       1303         1975-6       15800       19.0       7806       9.4       2169       2.6       5825       7.0       14346       -117       14229       -1571       14229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 969–70       | 6557  | 15.3 | 2361 | 5.5 | 675              | 1.6      | 3521 | 8.2 |            | 6104  | 241                        | 6345                               | -212           | 6345            | 14.8 |
| 1972-3         8721         16.2         3875         7.2         1350         2.5         3496         6.5         7872         297         8169         -552         8169           1973-4         10928         16.7         4904         7.5         1651         2.5         4373         6.7         10999         392         11391         463         1139           1974-5         14192         18.3         5753         7.4         2733         3.5         5706         7.4         12380         653         13033         -1159         1303           1975-6         15800         19.0         7806         9.4         2169         2.6         5825         7.0         14346         -117         14229         -1571         1422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970–1        | 7227  | 15.8 | 2919 | 6.4 | 1045             | 2.3      | 3263 | 7.1 |            | 6649  | 394                        | 7043                               | -184           | 7043            | 15.4 |
| 1973-4     10928     16.7     4904     7.5     1651     2.5     4373     6.7     10999     392     11391     463     1139       1974-5     14192     18.3     5753     7.4     2733     3.5     5706     7.4     12380     653     13033     -1159     1303       1975-6     15800     19.0     7806     9.4     2169     2.6     5825     7.0     14346     -117     14229     -1571     14229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 971–2        | 8283  | 16.9 | 3415 | 7.0 | 1204             | 2.5      | 3664 | 7.5 |            | 7367  | 478                        | 7845                               | -438           | 7845            | 16.0 |
| 1974-5     14192     18.3     5753     7.4     2733     3.5     5706     7.4     12380     653     13033     -1159     1303       1975-6     15800     19.0     7806     9.4     2169     2.6     5825     7.0     14346     -117     14229     -1571     14229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 972–3        | 8721  | 16.2 | 3875 | 7.2 | 1350             | 2.5      | 3496 | 6.5 |            | 7872  | 297                        | 8169                               | -552           | 8169            | 15.1 |
| 1975-6 15800 19.0 7806 9.4 2169 2.6 5825 7.0 14346 -117 14229 -1571 1422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 973–4        | 10928 | 16.7 | 4904 | 7.5 | 1651             | 2.5      | 4373 | 6.7 |            | 10999 | 392                        | 11391                              | 463            | 11391           | 17.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 974–5        | 14192 | 18.3 | 5753 | 7.4 | 2733             | 3.5      | 5706 | 7.4 |            | 12380 | 653                        | 13033                              | -1159          | 13033           | 16.8 |
| 1976-7 17144 19.1 8822 9.8 1325 1.5 6997 7.8 17408 -1309 16099 -1045 1609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 975–6        | 15800 | 19.0 | 7806 | 9.4 | 2169             | 2.6      | 5825 | 7.0 |            | 14346 | -117                       | 14229                              | -1571          | 14229           | 17.1 |
| 1710 1711 1711 0022 7.0 1325 1.0 0777 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 976–7        | 17144 | 19.1 | 8822 | 9.8 | 1325             | 1.5      | 6997 | 7.8 |            | 17408 | -1309                      | 16099                              | -1045          | 16099           | 17.9 |

TABLE A1.3 (contd.)

| (1)              | (2)    |      | (3)    |      | (4)    |     | (5)    |      | (6)   |     | (7)    | (8)    | (9)    | (10)   |        | (11) |
|------------------|--------|------|--------|------|--------|-----|--------|------|-------|-----|--------|--------|--------|--------|--------|------|
| 1977–8           | 18979  | 18.7 | 8101   | 8.0  | 2377   | 2.3 | 8501   | 8.4  |       |     | 20142  | -1465  | 18677  | -302   | 18677  | 18.4 |
| 1978-9           | 22810  | 20.7 | 10165  | 9.2  | 2288   | 2.1 | 10357  | 9.4  |       |     | 23676  | 128    | 23804  | 994    | 23804  | 21.6 |
| 1979-80          | 25824  | 21.4 | 12137  | 10.0 | 3078   | 2.5 | 10609  | 8.8  |       |     | 24314  | 580    | 24894  | -930   | 24894  | 20.6 |
| 1980-1           | 26868  | 18.7 | 12105  | 8.4  | 3505   | 2.4 | 11258  | 7.8  |       |     | 27136  | 2094   | 29230  | 2362   | 29230  | 20.3 |
| 1981-2           | 37783  | 22.4 | 16986  | 10.1 | 9186   | 5.4 | 11611  | 6.9  |       |     | 31355  | 2611   | 33966  | -3817  | 33966  | 20.1 |
| 1982-3           | 40786  | 21.7 | 20139  | 10.7 | 10170  | 5.4 | 10477  | 5.6  |       |     | 34368  | 2566   | 36934  | -3852  | 36934  | 19.6 |
| 1983-4           | 43196  | 19.7 | 21265  | 9.7  | 7060   | 3.2 | 14871  | 6.8  |       |     | 38587  | 2517   | 41104  | -2092  | 41104  | 18.7 |
| 1984–5           | 53026  | 21.6 | 25600  | 10.4 | 10238  | 4.2 | 17188  | 7.0  |       |     | 46063  | 3292   | 49355  | -3671  | 49355  | 20.1 |
| 1985–6           | 65803  | 23.7 | 29990  | 10.8 | 14556  | 5.2 | 21257  | 7.6  |       |     | 54167  | 6234   | 60401  | -5402  | 60401  | 21.7 |
| 1986–7           | 72203  | 23.2 | 34772  | 11.2 | 15695  | 5.0 | 21736  | 7.0  |       |     | 58951  | 6355   | 65306  | -6897  | 65306  | 21.0 |
| 1987-8           | 78357  | 22.1 | 33757  | 9.5  | 12263  | 3.5 | 32337  | 9.1  |       |     | 72908  | 6825   | 79733  | 1376   | 79733  | 22.5 |
| 1988–9           | 99876  | 23.7 | 40136  | 9.5  | 16266  | 3.9 | 43474  | 10.3 |       |     | 87913  | 12304  | 100217 | 341    | 100217 | 23.8 |
| 1989–90          | 115035 | 23.7 | 46405  | 9.5  | 19673  | 4.0 | 48957  | 10.1 |       |     | 106979 | 12279  | 119258 | 4223   | 119258 | 24.5 |
| 1990-1           | 136854 | 24.1 | 53099  | 9.3  | 23498  | 4.1 | 60257  | 10.6 |       |     | 131340 | 18196  | 149536 | 12682  | 149536 | 26.3 |
| 1991–2           | 143260 | 21.9 | 57633  | 8.8  | 36992  | 5.7 | 48635  | 7.4  |       |     | 143908 | 3377   | 147285 | 4025   | 147285 | 22.6 |
| 1992–3           | 178019 | 23.8 | 63997  | 8.6  | 48316  | 6.5 | 65706  | 8.8  |       |     | 162906 | 13816  | 176722 | -1297  | 176722 | 23.6 |
| 1993–4           | 182619 | 21.3 | 70834  | 8.2  | 48213  | 5.6 | 63572  | 7.4  |       |     | 193621 | 4791   | 198412 | 15793  | 198412 | 23.1 |
| 1994–5           | 236784 | 23.4 | 88206  | 8.7  | 69953  | 6.9 | 78625  | 7.8  |       |     | 251463 | 11893  | 263356 | 26572  | 263356 | 26.0 |
| 1995–6           | 315179 | 26.5 | 90977  | 7.7  | 113781 | 9.6 | 110421 | 9.3  |       |     | 298747 | 20780  | 319527 | 4348   | 319527 | 26.9 |
| 1996–7           | 297862 | 21.8 | 96187  | 7.0  | 110084 | 8.0 | 91591  | 6.7  |       |     | 317261 | 17738  | 334999 | 37137  | 334999 | 24.5 |
| 1997–8           | 343712 | 22.6 | 100653 | 6.6  | 121399 | 8.0 | 121660 | 8.0  |       |     | 352178 | 22302  | 374480 | 30768  | 374480 | 24.6 |
| 1998–9           | 372209 | 21.4 | 114545 | 6.6  | 111208 | 6.4 | 146456 | 8.4  |       |     | 374659 | 18362  | 393021 | 20812  | 393021 | 22.6 |
| 1999-2000        | 458262 | 23.7 | 134484 | 6.9  | 125120 | 6.5 | 198658 | 10.3 |       |     | 468681 | 21988  | 490669 | 32407  | 490669 | 25.3 |
| 2000-1           | 472708 | 22.6 | 131505 | 6.3  | 105709 | 5.1 | 235494 | 11.3 |       |     | 490049 | 8130   | 498179 | 25471  | 498179 | 23.8 |
| 2001–2           | 504012 | 22.2 | 140095 | 6.2  | 104771 | 4.6 | 259146 | 11.4 |       |     | 532274 | -18731 | 513543 | 9531   | 513543 | 22.6 |
| 2002-3           | 557958 | 22.7 | 131966 | 5.4  | 105750 | 4.3 | 320242 | 13.0 |       |     | 642298 | -32010 | 610288 | 52330  | 610288 | 24.8 |
| 2003-4           | 635694 | 23.0 | 154086 | 5.6  | 124177 | 4.5 | 357431 | 13.0 |       |     | 776420 | -49552 | 726868 | 91174  | 726868 | 26.3 |
| 1999-2000 Series |        |      |        |      |        |     |        |      |       |     |        |        |        |        |        |      |
| 1999–2000        | 512214 | 26.1 | 146483 | 7.5  | 140088 | 7.2 | 210124 | 10.7 | 15519 | 0.8 | 487301 | 21988  | 509289 | -2925  | 509289 | 26.0 |
| 2000-1           | 511590 | 24.3 | 145775 | 6.9  | 119993 | 5.7 | 231098 | 11.0 | 14724 | 0.7 | 496272 | 12754  | 509026 | -2564  | 509026 | 24.2 |
| 2001-2           | 554468 | 24.3 | 157580 | 6.9  | 127503 | 5.6 | 255198 | 11.2 | 14187 | 0.6 | 537966 | -14229 | 523737 | -30731 | 523737 | 23.0 |
| 2002-3           | 619014 | 25.3 | 151246 | 6.2  | 141659 | 5.8 | 312152 | 12.7 | 13957 | 0.6 | 648994 | -28486 | 620508 | 1494   | 620508 | 25.3 |
| 2003-4\$         | 725630 | 26.3 | 180228 | 6.5  | 188728 | 6.8 | 332190 | 12.0 | 24484 | 0.9 | 797512 | -45380 | 752132 | 26502  | 752132 | 27.2 |
| 2004-5*\$        | 889245 | 28.5 | 225319 | 7.2  | 257478 | 8.2 | 366302 | 11.7 | 40146 | 1.3 | 907416 | 32139  | 939555 | 50310  | 939555 | 30.1 |

TABLE A1.3 (contd.)

| Year          | Con-<br>sumption             | Net<br>Capital               | NCF<br>Adjusted |                      |      | Deflators<br>-4=100)       |        |                      |                      |                       |                       |                         |
|---------------|------------------------------|------------------------------|-----------------|----------------------|------|----------------------------|--------|----------------------|----------------------|-----------------------|-----------------------|-------------------------|
|               | of Fixed<br>Capital<br>(CFC) | Formation<br>(NCF)<br>(2–12) | (13+10)         | GDCF<br>(unadjusted) |      | GDP at<br>market<br>prices |        | GDP<br>C Mkt P<br>CP | NDP<br>C Mkt P<br>CP | GDP<br>C Mkt P<br>Con | NDP<br>C Mkt P<br>Con | Aggregate<br>GCF<br>Con |
| (1)           | (12)                         | (13)                         |                 | (14)                 |      | (15)                       | (16)   | (17)                 | (18)                 | (19)                  | (20)                  | (21)                    |
| 1993–4 Series |                              |                              |                 |                      |      | (1993–                     | 4=100) |                      |                      |                       |                       |                         |
| 1950–1        | 364                          | 680                          | 7.1             | 502                  | 5.2  | 4.1                        | 6.7    | 9934                 | 9570                 | 148503                | 140958                | 25360                   |
| 1951–2        | 411                          | 735                          | 7.2             | 757                  | 7.5  | 4.4                        | 6.9    | 10566                | 10155                | 152979                | 145131                | 26032                   |
| 1952–3        | 442                          | 475                          | 4.8             | 385                  | 3.9  | 4.2                        | 6.6    | 10366                | 9924                 | 156960                | 148796                | 21681                   |
| 1953–4        | 465                          | 368                          | 3.4             | 410                  | 3.8  | 4.2                        | 6.8    | 11282                | 10818                | 166625                | 158194                | 20003                   |
| 1954–5        | 511                          | 552                          | 5.4             | 510                  | 5.0  | 4.5                        | 6.1    | 10678                | 10167                | 174745                | 165803                | 23606                   |
| 1955–6        | 546                          | 815                          | 7.9             | 863                  | 8.4  | 4.6                        | 6.0    | 10873                | 10327                | 180530                | 170996                | 29498                   |
| 1956–7        | 611                          | 1270                         | 10.3            | 1333                 | 10.8 | 4.9                        | 6.8    | 12951                | 12340                | 190578                | 180365                | 38026                   |
| 1957–8        | 662                          | 1297                         | 10.2            | 1195                 | 9.4  | 4.9                        | 7.0    | 13349                | 12687                | 189960                | 179106                | 39825                   |
| 1958–9        | 772                          | 968                          | 6.9             | 1011                 | 7.2  | 5.4                        | 7.3    | 14874                | 14102                | 203958                | 192517                | 31971                   |
| 959–60        | 843                          | 1260                         | 8.5             | 1136                 | 7.7  | 5.7                        | 7.5    | 15675                | 14832                | 209408                | 197283                | 36641                   |
| 960–1         | 944                          | 1572                         | 9.7             | 1526                 | 9.4  | 6.0                        | 7.8    | 17167                | 16223                | 220560                | 207599                | 41729                   |
| 961–2         | 1058                         | 1665                         | 9.7             | 1414                 | 8.3  | 6.4                        | 7.9    | 18196                | 17138                | 228921                | 215148                | 42581                   |
| 1962–3        | 1164                         | 1899                         | 10.3            | 1755                 | 9.5  | 6.7                        | 8.3    | 19566                | 18401                | 235834                | 221129                | 46030                   |
| 1963–4        | 1313                         | 2164                         | 10.2            | 1890                 | 8.9  | 7.0                        | 9.0    | 22482                | 21169                | 250208                | 234577                | 50001                   |
| 1964–5        | 1477                         | 2597                         | 10.5            | 2252                 | 9.1  | 7.3                        | 9.8    | 26220                | 24743                | 268821                | 251989                | 55697                   |
| 1965–6        | 1671                         | 2846                         | 10.9            | 2798                 | 10.8 | 7.7                        | 10.6   | 27668                | 25998                | 262029                | 243879                | 58543                   |
| 1966–7        | 1975                         | 3218                         | 11.0            | 3323                 | 11.3 | 8.8                        | 12.0   | 31305                | 29330                | 261586                | 242167                | 58824                   |
| 1967–8        | 2222                         | 3358                         | 9.8             | 2970                 | 8.6  | 9.2                        | 13.0   | 36649                | 34427                | 281971                | 261546                | 60461                   |
| 1968–9        | 2416                         | 3166                         | 8.7             | 2721                 | 7.5  | 9.4                        | 13.3   | 38823                | 36407                | 291759                | 270306                | 59613                   |
| 1969–70       | 2678                         | 3879                         | 9.7             | 3667                 | 9.2  | 10.2                       | 13.8   | 42750                | 40072                | 310847                | 288415                | 64492                   |
| 1970–1        | 2970                         | 4257                         | 10.0            | 4073                 | 9.5  | 10.9                       | 14.0   | 45677                | 42707                | 326925                | 303589                | 66382                   |
| 1971–2        | 3292                         | 4991                         | 10.9            | 4553                 | 10.0 | 11.7                       | 14.7   | 48932                | 45640                | 332516                | 308080                | 70570                   |
| 1972–3        | 3721                         | 5000                         | 10.0            | 4448                 | 8.9  | 12.5                       | 16.3   | 53947                | 50226                | 330594                | 304903                | 69738                   |
| 1973–4        | 4339                         | 6589                         | 10.8            | 7052                 | 11.5 | 14.8                       | 19.2   | 65613                | 61274                | 341050                | 314161                | 73811                   |
| 1974–5        | 5560                         | 8632                         | 12.0            | 7473                 | 10.4 | 18.9                       | 22.5   | 77479                | 71919                | 345101                | 317009                | 75127                   |
| 1975–6        | 6449                         | 9351                         | 12.2            | 7780                 | 10.1 | 19.8                       | 22.1   | 83269                | 76820                | 376731                | 347202                | 79714                   |
| 1976–7        | 6907                         | 10237                        | 12.4            | 9192                 | 11.1 | 20.1                       | 23.4   | 89739                | 82833                | 383163                | 351990                | 85485                   |
| 1977–8        | 7497                         | 11482                        | 12.2            | 11180                | 11.9 | 20.6                       | 24.7   | 101597               | 94100                | 410873                | 378160                | 92134                   |
| 1978–9        | 8573                         | 14237                        | 14.0            | 15231                | 15.0 | 22.7                       | 25.4   | 110133               | 101560               | 434437                | 399834                | 100639                  |
| 1979–80       | 10449                        | 15375                        | 13.9            | 14445                | 13.1 | 26.8                       | 29.4   | 120841               | 110392               | 411663                | 375147                | 96429                   |

TABLE A1.3 (contd.)

| (1)                    | (12)   | (13)   |      | (14)   |      | (15)     | (16)     | (17)               | (18)               | (19)               | (20)               | (21)   |
|------------------------|--------|--------|------|--------|------|----------|----------|--------------------|--------------------|--------------------|--------------------|--------|
| 1980–1                 | 12288  | 14580  | 11.1 | 16942  | 12.9 | 29.3     | 32.7     | 143764             | 131477             | 439201             | 400648             | 91673  |
| 1981-2                 | 14708  | 23075  | 15.0 | 19258  | 12.5 | 33.7     | 36.1     | 168600             | 153892             | 467139             | 426363             | 112085 |
| 1982-3                 | 17175  | 23611  | 13.8 | 19759  | 11.5 | 36.8     | 38.9     | 188262             | 171087             | 484217             | 440915             | 110918 |
| 1983–4                 | 19565  | 23631  | 11.8 | 21539  | 10.8 | 39.6     | 42.3     | 219496             | 199931             | 518491             | 472463             | 109094 |
| 1984–5                 | 22487  | 30539  | 13.7 | 26868  | 12.0 | 43.8     | 45.5     | 245515             | 223028             | 539874             | 490787             | 121019 |
| 1985–6                 | 26717  | 39086  | 15.6 | 33684  | 13.4 | 49.0     | 48.7     | 277991             | 251274             | 570267             | 518394             | 134197 |
| 1986–7                 | 30389  | 41814  | 14.9 | 34917  | 12.4 | 52.9     | 52.0     | 311177             | 280788             | 597850             | 542986             | 136610 |
| 1987-8                 | 33974  | 44383  | 13.9 | 45759  | 14.3 | 56.1     | 56.8     | 354343             | 320369             | 623371             | 565274             | 139701 |
| 1988–9                 | 39693  | 60183  | 15.8 | 60524  | 15.8 | 62.3     | 61.6     | 421567             | 381874             | 684832             | 623197             | 160214 |
| 1989–90                | 46560  | 68475  | 15.6 | 72698  | 16.5 | 69.3     | 66.7     | 486179             | 439619             | 728952             | 663362             | 165963 |
| 1990-1                 | 53264  | 83590  | 16.2 | 96272  | 18.7 | 76.4     | 73.7     | 568674             | 515410             | 771295             | 701831             | 179075 |
| 1991-2                 | 64402  | 78858  | 13.4 | 82883  | 14.1 | 85.9     | 83.9     | 653117             | 588715             | 778289             | 704518             | 166866 |
| 1992-3                 | 74512  | 103507 | 15.4 | 102210 | 15.2 | 94.3     | 91.3     | 748367             | 673855             | 819318             | 741125             | 188852 |
| 1993-4                 | 83353  | 99266  | 12.8 | 115059 | 14.8 | 100.0    | 100.0    | 859220             | 775867             | 859220             | 775867             | 182619 |
| 1994–5                 | 97994  | 138790 | 15.2 | 165362 | 18.1 | 108.0    | 109.7    | 1012770            | 914776             | 923349             | 832891             | 219245 |
| 1995–6                 | 117926 | 197253 | 18.4 | 201601 | 18.8 | 117.9    | 119.5    | 1188012            | 1070086            | 993946             | 894794             | 267323 |
| 1996–7                 | 136503 | 161359 | 13.1 | 198496 | 16.1 | 124.8    | 128.2    | 1368209            | 1231706            | 1067444            | 960169             | 238724 |
| 1997–8                 | 151997 | 191715 | 14.0 | 222483 | 16.2 | 129.5    | 136.5    | 1522547            | 1370550            | 1115248            | 1000388            | 265331 |
| 1998–9                 | 168066 | 204143 | 13.0 | 224955 | 14.3 | 135.1    | 147.3    | 1740985            | 1572919            | 1182020            | 1059827            | 275574 |
| 1999–2000              | 182359 | 275903 | 15.7 | 308310 | 17.6 | 139.6    | 153.0    | 1936831            | 1754472            | 1266283            | 1137212            | 328366 |
| 2000-1                 | 197895 | 274813 | 14.5 | 300284 | 15.9 | 143.6    | 158.8    | 2089500            | 1891605            | 1316201            | 1180101            | 329198 |
| 2001-2                 | 217679 | 286333 | 13.9 | 295864 | 14.4 | 152.6    | 164.2    | 2271984            | 2054305            | 1383705            | 1241240            | 330238 |
| 2002-3                 | 232952 | 325006 | 14.6 | 377336 | 16.9 | 154.4    | 171.0    | 2463324            | 2230372            | 1440632            | 1292063            | 361347 |
| 2003–4                 | 253637 | 382057 | 15.2 | 473231 | 18.9 | 161.5    | 176.4    | 2760025            | 2506388            | 1564620            | 1408146            | 393723 |
|                        |        |        |      |        |      |          |          | 3108561            |                    |                    |                    |        |
| 1999–2000 Series       |        |        |      |        |      | (1999–20 | 000=100) |                    |                    |                    |                    |        |
| 1999–2000              | 186649 | 325565 | 18.4 | 322640 | 18.2 | 100.0    | 100.0    | 1958814            | 1772165            | 1958814            | 1772165            | 512214 |
| 2000-1                 | 202732 | 308858 | 16.2 | 306294 | 16.1 | 104.7    | 103.5    | 2107661            | 1904929            | 2036966            | 1842211            | 488818 |
| 2001-2                 | 221161 | 333307 | 16.2 | 302576 | 14.7 | 109.8    | 106.4    | 2281305            | 2060144            | 2144483            | 1942379            | 505141 |
| 2002-3                 | 235602 | 383412 | 17.3 | 384906 | 17.4 | 111.6    | 110.2    | 2449736            | 2214134            | 2222321            | 2011666            | 554425 |
| 2003–4\$               | 256570 | 469060 | 18.7 | 495562 | 19.8 | 116.9    | 114.7    | 2760224            | 2503654            | 2406324            | 2184986            | 620655 |
| 2004–5 <sup>\$\$</sup> | 294758 | 594487 | 21.0 | 644797 | 22.8 | 126.2    | 119.5    | 3121414<br>3531451 | 2826656<br>3207364 | 2611511<br>2838222 | 2376558<br>2592194 | 704431 |

Notes: \*\* (Domestic Savings + Net Capital Inflow—Domestic Capital Formation); \* Excluding works of art & antiques (valuables are a new item in the 1999–2000 series); \$ Quick Estimates; Figures in italics are as percentage to GDP at current prices, except for net capital formation in columns (13) and (14) which are as percentages to NDP at current market prices.

Source: Central Statistical Organisation (CSO), National Accounts Statistics, various issues.

 ${\it TABLE~A1.4}$  Net Capital Stock by Type of Institution and Capital—Output Ratio

| Year<br>(As on |                    |                    |                    |                  |                    | Amount in 1       |                    |                  |                  |                |                  |                | Fiscal<br>year   |              |                       | Avei<br>–output | ratio (      |                      |              | me           | ental         |
|----------------|--------------------|--------------------|--------------------|------------------|--------------------|-------------------|--------------------|------------------|------------------|----------------|------------------|----------------|------------------|--------------|-----------------------|-----------------|--------------|----------------------|--------------|--------------|---------------|
| 31             |                    | Net cap            | oital stock        |                  |                    | Net fixed ca      |                    |                  |                  | Inve           | ntory            |                |                  |              | Net                   |                 |              | Net Fixe             |              | -            | oital–        |
| March)         |                    |                    |                    | vate<br>ctor     |                    |                   | Priv<br>sect       |                  |                  |                |                  | vate<br>ctor   |                  |              | apital sto<br>o Outpu |                 |              | apital St<br>o Outpu |              |              | itput<br>COR) |
|                | Total              | Public             |                    | House-           | Total              | Public            |                    | House-           | Total            | Public         |                  | House-         |                  |              |                       | Private         |              |                      |              | - `          | NFCF          |
|                | (3+4)              | sector             |                    | hold             | (7+8)              | sector            |                    | hold             | (11+12)          | sector         |                  | hold           |                  |              |                       | sector          |              |                      | sector       | CF           | to            |
|                |                    |                    |                    | sector           |                    |                   |                    | sector           |                  |                |                  | sector         |                  |              |                       |                 |              |                      |              | to           | outpu         |
|                |                    |                    |                    |                  |                    |                   |                    |                  |                  |                |                  |                |                  |              |                       |                 |              |                      |              | output       | t \$          |
| (1)            | (2)                | (3)                | (4)                | (5)              | (6)                | (7)               | (8)                | (9)              | (10)             | (11)           | (12)             | (13)           | (14)             | (15)         | (16)                  | (17)            | (18)         | (19)                 | (20)         | (21)         | (22)          |
|                |                    |                    |                    |                  | At                 | t 1993–4 pri      | ices               |                  |                  |                |                  |                |                  |              |                       | At 19           | 93–4 p       | rices                |              |              |               |
| 1981           | 1231085            | 512169             | 718916             | 612928           | 1121610            | 471861            | 649749             | 577767           | 109475           | 40308          | 69167            | 35161          | 1980–1           | _            | _                     | _               | _            | _                    | _            | 2.47         | 2.10          |
| 1982           | 1312238            | 545386             | 766852             | 642779           | 1188209            | 500219            | 687990             | 606093           | 124029           | 45167          | 78862            | 36686          | 1981–2           | 3.31         | 6.95                  | 2.41            | 3.01         | 6.39                 | 2.17         | 2.75         | 2.61          |
| 1983           | 1379366            | 580645             | 798721             | 656008           | 1244576            | 532944            | 711632             | 617431           | 134790           | 47701          | 87089            | 38577          | 1982–3           | 3.41         | 6.71                  | 2.52            | 3.08         | 6.16                 | 2.25         | 5.44         | 5.43          |
| 1984           | 1433963            | 613846             | 820117             | 668652           | 1295600            | 565457            | 730143             | 627167           | 138363           | 48389          | 89974            | 41485          | 1983–4           | 3.30         | 6.69                  | 2.41            | 2.98         | 6.15                 | 2.14         | 1.87         | 1.91          |
| 1985           | 1496083            | 650509             | 845574             | 680021           | 1347822            | 598708            | 749114             | 635736           | 148261           | 51801          | 96460            | 44285          | 1984–5           | 3.31         | 6.59                  | 2.40            | 2.98         | 6.07                 | 2.13         | 3.67         | 3.57          |
| 1986           | 1568302            | 687969             | 880333             | 694032           | 1402628            | 632494            | 770134             | 645308           | 165674           | 55475          | 110199           | 48724          | 1985–6           | 3.32         | 6.41                  | 2.41            | 2.98         | 5.89                 | 2.12         | 3.72         | 3.44          |
| 1987           | 1640960            | 729394             | 911566             | 705716           | 1462759            | 672294            | 790465             | 652300           | 178201           | 57100          | 121101           | 53416          | 1986–7           | 3.33         | 6.23                  | 2.44            | 2.98         | 5.74                 | 2.12         | 3.56         | 3.59          |
| 1988           | 1699672            | 702288             | 937384             | 719174           | 1517223            | 707803            | 809420             | 662039           | 182449           | 54485          | 127964           | 57135          | 1987–8           | 3.35         | 5.91                  | 2.45            | 2.99         | 5.70                 | 2.12         | 4.86         | 4.47          |
| 1989           | 1771459            | 798155             | 973304             | 739929           | 1575554            | 744439            | 831115             | 674199           | 195905           | 53716          | 142189           | 65730          | 1988–9           | 3.14         | 5.78                  | 2.26            | 2.79         | 5.59                 | 1.94         | 1.81         | 1.55          |
| 1990           | 1839659            | 834418             | 1005241            | 754625           | 1634309            | 778117            | 856192             | 687930           | 205350           | 56301          | 149049           | 66695          | 1989–90          | 3.06         | 5.79                  | 2.20            | 2.72         | 5.40                 | 1.88         | 2.86         | 2.45          |
| 1991           | 1918761            | 872496             | 1046265            | 777430           | 1704760            | 813524            | 891236             | 707661           | 214001           | 58972          | 155029           | 69769          | 1990–1           | 3.01         | 5.90                  | 2.14            | 2.68         | 5.50                 | 1.83         | 3.86         | 3.09          |
| 1992           | 1995190            | 904901             | 1090289            | 792377           | 1781854            | 848542            | 933312             | 722573           | 213336           | 56359          | 156977           | 69804          | 1991–2           | 3.12         | 5.78                  | 2.25            | 2.78         | 5.40                 | 1.92         | 20.87        | 20.01         |
| 1993           | 2077675            | 936973             | 1140702            | 807065           | 1853469            | 877739            | 975730             | 735804           | 224206           | 59234          | 164972           | 71261          | 1992–3           | 3.09         | 5.86                  | 2.22            | 2.76         | 5.49                 | 1.90         | 3.47         | 3.17          |
| 1994           | 2144285            | 970452             | 1173833            | 808478           | 1921762            | 909237            | 1012525            | 737706           | 222523           | 61215          | 161308           | 70772          | 1993–4           | 3.02         | 5.78                  | 2.17            | 2.70         | 5.41                 | 1.87         | 3.00         | 2.63          |
| 1995           | 2283999            | 1011406            | 1272593            | 861463           | 2048289            | 950773            | 1097516            | 786379           | 235710           | 60633          | 175077           | 75084          | 1994–5           | 2.96         | 5.59                  | 2.14            | 2.66         | 5.25                 | 1.85         | 3.09         | 2.33          |
| 1996<br>1997   | 2470063<br>2611101 | 1045338<br>1075323 | 1424725<br>1535778 | 938056<br>983904 | 2212699<br>2365943 | 985081<br>1013446 | 1227618<br>1352497 | 854650<br>907745 | 257364<br>245158 | 60257<br>61877 | 197107<br>183281 | 83406<br>76159 | 1995–6<br>1996–7 | 2.97<br>2.94 | 5.46<br>5.37          | 2.20            | 2.66<br>2.65 | 5.14<br>5.06         | 1.90<br>1.94 | 3.24<br>2.58 | 2.77<br>2.28  |
| 1998           | 2754003            | 1103351            | 1650652            | 1029843          | 2498316            | 1013440           | 1459816            | 946589           | 255687           | 64851          | 190836           | 83254          | 1997–8           | 2.94         | 4.85                  | 2.35            | 2.70         | 4.57                 | 2.08         | 4.47         | 3.59          |
| 1999           | 2878178            | 1135160            | 1743018            | 1067948          | 2623861            | 1068576           | 1555285            | 985633           | 254317           | 66584          | 187733           | 82315          | 1998–9           | 2.93         | 4.61                  | 2.36            | 2.67         | 4.34                 | 2.10         | 2.87         | 2.63          |
| 2000           | 3017238            | 1175841            | 1841397            | 1108153          | 2737349            | 1099229           | 1638120            | 1021470          | 279889           | 76612          | 203277           | 86683          | 1999–2000        |              | 4.49                  | 2.35            | 2.63         | 4.21                 | 2.10         | 3.79         | 2.96          |
| 2001           | 3138233            | 1208598            | 1929635            | 1160453          | 2848732            | 1128608           | 1720124            | 1069887          | 289501           | 79990          | 209511           | 90566          | 2000-1           | 2.90         | 4.61                  | 2.34            | 2.63         | 4.31                 | 2.09         | 4.88         | 4.15          |
| 2002           | 3255205            | 1243954            | 2011251            | 1207622          | 2958839            | 1159688           | 1799151            | 1114480          | 296366           | 84266          | 212100           | 93142          | 2001–2           | 2.84         | 4.41                  | 2.33            | 2.58         | 4.11                 | 2.08         | 3.08         | 2.96          |
| 2003           | 3347520            | 1270531            | 2076989            | 1247140          | 3044377            | 1189686           | 1854691            | 1148379          | 303143           | 80845          | 222298           | 98761          | 2002–3           | 2.82         | 4.20                  | 2.35            | 2.57         | 3.92                 | 2.10         | 5.56         | 4.64          |
| 2004           | 3478797            | 1303113            | 2175684            | 1312270          | 3171098            | 1228473           | 1942625            | 1209341          | 307699           | 74640          | 233059           | 102929         | 2003–4           | 2.68         | _                     | _               | 2.44         | _                    | _            | 2.81         | 2.22          |
|                |                    |                    |                    |                  |                    |                   |                    |                  |                  |                |                  |                |                  |              |                       |                 |              |                      |              | (            | contd         |

TABLE A1.4 (contd.)

| (1)  | (2)     | (3)     | (4)     | (5)     | (6)     | (7)        | (8)     | (9)     | (10)   | (11)   | (12)   | (13)   | (14)     | (15) | (16) | (17) | (18) | (19)  | (20)     | (21) | (22) |
|------|---------|---------|---------|---------|---------|------------|---------|---------|--------|--------|--------|--------|----------|------|------|------|------|-------|----------|------|------|
|      |         |         |         |         | At      | current pr | ices    |         |        |        |        |        |          |      |      |      |      | At cu | rrent pr | ices |      |
| 1981 | 351395  | 146629  | 204766  | 167777  | 310669  | 131043     | 179626  | 155538  | 40726  | 15586  | 25140  | 12239  | 1980-1   | -    |      |      | -    | -     | -        | 0.87 | 0.74 |
| 1982 | 431181  | 176163  | 255018  | 206678  | 381653  | 157436     | 224217  | 192966  | 49528  | 18727  | 30801  | 13712  | 1981–2   | 2.85 | 6.38 | 2.05 | 2.52 | 5.70  | 1.80     | 0.99 | 0.89 |
| 1983 | 509014  | 208603  | 300411  | 240552  | 452612  | 188002     | 264610  | 225388  | 56402  | 20601  | 35801  | 15164  | 1982–3   | 3.09 | 6.27 | 2.28 | 2.74 | 5.63  | 2.01     | 1.32 | 1.27 |
| 1984 | 582900  | 240272  | 342628  | 274984  | 520828  | 218097     | 302731  | 257327  | 62072  | 22175  | 39897  | 17657  | 1983–4   | 3.05 | 6.29 | 2.24 | 2.72 | 5.69  | 1.98     | 0.81 | 0.82 |
| 1985 | 669406  | 279996  | 389410  | 309836  | 597918  | 254689     | 343229  | 289447  | 71488  | 25307  | 46181  | 20389  | 1984–5   | 3.13 | 6.29 | 2.30 | 2.79 | 5.71  | 2.03     | 1.27 | 1.21 |
| 1986 | 777279  | 333360  | 443919  | 347659  | 693136  | 304679     | 388457  | 323763  | 84143  | 28681  | 55462  | 23896  | 1985–6   | 3.25 | 6.29 | 2.39 | 2.90 | 5.74  | 2.10     | 1.49 | 1.35 |
| 1987 | 886426  | 381767  | 504659  | 391916  | 791770  | 350925     | 440845  | 364289  | 94656  | 30842  | 63814  | 27627  | 1986–7   | 3.36 | 6.21 | 2.49 | 3.00 | 5.69  | 2.18     | 1.39 | 1.40 |
| 1988 | 993908  | 431337  | 562571  | 435781  | 890329  | 399979     | 490350  | 404162  | 103579 | 31358  | 72221  | 31619  | 1987–8   | 3.33 | 6.12 | 2.48 | 2.98 | 5.65  | 2.16     | 1.34 | 1.23 |
| 1989 | 1127961 | 495583  | 632378  | 482372  | 1005150 | 461908     | 543242  | 441403  | 122811 | 33675  | 89136  | 40969  | 1988–9   | 3.13 | 5.87 | 2.30 | 2.80 | 5.46  | 1.99     | 1.07 | 0.91 |
| 1990 | 1286196 | 576172  | 710024  | 533239  | 1144039 | 537748     | 606291  | 486433  | 142157 | 38424  | 103733 | 46806  | 1989–90  | 3.08 | 5.89 | 2.23 | 2.75 | 5.50  | 1.91     | 1.38 | 1.18 |
| 1991 | 1457212 | 653192  | 804020  | 598616  | 1296299 | 609291     | 687008  | 545606  | 160913 | 43901  | 117012 | 53010  | 1990–1   | 3.00 | 5.91 | 2.14 | 2.67 | 5.51  | 1.83     | 1.45 | 1.16 |
| 1992 | 1711605 | 772374  | 939231  | 681228  | 1534234 | 725219     | 809015  | 624143  | 177371 | 47155  | 130216 | 57085  | 1991–2   | 3.02 | 5.74 | 2.18 | 2.70 | 5.37  | 1.87     | 1.24 | 1.19 |
| 1993 | 1944754 | 880457  | 1064297 | 747259  | 1737747 | 825616     | 912131  | 681975  | 207007 | 54841  | 152166 | 65284  | 1992–3   | 3.05 | 5.85 | 2.19 | 2.73 | 5.49  | 1.88     | 1.38 | 1.26 |
| 1994 | 2144285 | 970452  | 1173833 | 808478  | 1921762 | 909237     | 1012525 | 737706  | 222523 | 61215  | 161308 | 70772  | 1993–4   | 2.93 | 5.60 | 2.10 | 2.62 | 5.25  | 1.81     | 1.16 | 1.02 |
| 1995 | 2479822 | 1109118 | 1370704 | 926943  | 2222611 | 1041958    | 1180653 | 848783  | 257211 | 67160  | 190051 | 78160  | 1994–5   | 2.82 | 5.44 | 2.03 | 2.53 | 5.11  | 1.75     | 1.37 | 1.03 |
| 1996 | 2998698 | 1270492 | 1728206 | 1159654 | 2696837 | 1199172    | 1497665 | 1067742 | 301861 | 71320  | 230541 | 91912  | 1995–6   | 2.87 | 5.40 | 2.11 | 2.57 | 5.09  | 1.82     | 1.48 | 1.26 |
| 1997 | 3384845 | 1426154 | 1958691 | 1290942 | 3086238 | 1350268    | 1735970 | 1201887 | 298607 | 75886  | 222721 | 89055  | 1996–7   | 2.88 | 5.60 | 2.13 | 2.61 | 5.29  | 1.87     | 1.31 | 1.16 |
| 1998 | 3745028 | 1563424 | 2181604 | 1420215 | 3422806 | 1481724    | 1941082 | 1317796 | 322222 | 81700  | 240522 | 102419 | 1997–8   | 2.88 | 5.14 | 2.19 | 2.63 | 4.87  | 1.94     | 1.70 | 1.36 |
| 1999 | 4125124 | 1714274 | 2410850 | 1551295 | 3794555 | 1626912    | 2167643 | 1449121 | 330569 | 87362  | 243207 | 102174 | 1998–9   | 2.75 | 4.83 | 2.11 | 2.52 | 4.58  | 1.88     | 1.17 | 1.07 |
| 2000 | 4507095 | 1851659 | 2655436 | 1704478 | 4119239 | 1747838    | 2371401 | 1581303 | 387856 | 103821 | 284035 | 123175 | 1999–200 | 2.73 | 4.73 | 2.11 | 2.51 | 4.48  | 1.89     | 2.06 | 1.60 |
| 2001 | 4834349 | 1960193 | 2874156 | 1824727 | 4412871 | 1844383    | 2568488 | 1689167 | 421478 | 115810 | 305668 | 135560 | 2000-1   | 2.74 | 4.90 | 2.10 | 2.50 | 4.61  | 1.88     | 2.39 | 2.08 |
| 2002 | 5265179 | 2113146 | 3152033 | 2054620 | 4823129 | 1987244    | 2835885 | 1912190 | 442050 | 125902 | 316148 | 142430 | 2001–2   | 2.71 | 4.82 | 2.09 | 2.48 | 4.53  | 1.88     | 1.86 | 1.79 |
| 2003 | 5566103 | 2228075 | 3338028 | 2167093 | 5103954 | 2105347    | 2998607 | 2013056 | 462149 | 122728 | 339421 | 154037 | 2002–3   | 2.68 | 4.62 | 2.09 | 2.45 | 4.36  | 1.88     | 2.39 | 1.99 |
| 2004 | 6071158 | 2417339 | 3653819 | 2397555 | 5579659 | 2298744    | 3280915 | 2231791 | 491499 | 118595 | 372904 | 165764 | 2003–4   | 2.57 | _    | _    | 2.36 | -     | _        | 1.94 | 1.53 |

Notes: Data as per 1999–2000 series are not available; —data are not available; \*Average of beginning and year–end capital stock as ratio of the year's NDP at factor cost for respective sectors; \*Based on increase in NDP at factor cost.

Source: Central Statistical Organisation (CSO), National Accounts Statistics, various issues.

Table A1.5
Rank of States in Descending order of Per Capita State Domestic Product in Real Terms

(Three-yearly Annual Averages)

|    |                        |                                                     |    | Per Capita GSDP at 19  | 980–1 prices                                        |                                                              |         |                        |                                                     |    | Per Capita GSDP at 1993 | 4 prices                                            |                                                              |
|----|------------------------|-----------------------------------------------------|----|------------------------|-----------------------------------------------------|--------------------------------------------------------------|---------|------------------------|-----------------------------------------------------|----|-------------------------|-----------------------------------------------------|--------------------------------------------------------------|
|    | Rank State             | Annual<br>Averages<br>for<br>1980–1<br>to<br>1982–3 |    | Rank State             | Annual<br>Averages<br>for<br>1990–1<br>to<br>1992–3 | Relative<br>Increase<br>Between<br>Two Periods<br>(per cent) |         | Rank State             | Annual<br>Averages<br>for<br>1993–4<br>to<br>1995–6 |    | Rank State              | Annual<br>Averages<br>for<br>2001–2<br>to<br>2003–4 | Relative<br>Increase<br>Between<br>Two Periods<br>(per cent) |
|    |                        |                                                     |    |                        | Part A: Pe                                          | r Capita Gross St                                            | ate Dor | mestic Product (GSDP)  |                                                     |    |                         |                                                     |                                                              |
| 1  | Delhi                  | 4600                                                | 1  | Delhi                  | 6375                                                | 38.6                                                         | 1       | Chandigarh             | 22616                                               | 1  | Goa                     | 34029                                               | 64.2                                                         |
| 2  | Goa                    | 3895                                                | 2  | Goa                    | 5987                                                | 53.7                                                         | 2       | Delhi                  | 21041                                               | 2  | Chandigarh              | 33140                                               | 46.5                                                         |
| 3  | Punjab                 | 3174                                                | 3  | Punjab                 | 4286                                                | 35.0                                                         | 3       | Goa                    | 20721                                               | 3  | Delhi                   | 30371                                               | 44.3                                                         |
| 4  | Pondicherry            | 3097                                                | 4  | Maharashtra            | 3931                                                | 45.8                                                         | 4       | Andaman & Nicobar      | 16982                                               | 4  | Pondicherry             | 26937                                               | 128.6                                                        |
| 5  | Andaman & Nicobar      | 2759                                                | 5  | Haryana                | 3843                                                | 42.1                                                         | 5       | Punjab                 | 14405                                               | 5  | Maharashtra             | 17847                                               | 27.3                                                         |
| 6  | Haryana                | 2705                                                | 6  | Sikkim                 | 3729                                                | 112.3                                                        | 6       | Maĥarashtra            | 14019                                               | 6  | Punjab                  | 17775                                               | 23.4                                                         |
| 7  | Maharashtra            | 2695                                                | 7  | Pondicherry            | 3213                                                | 3.7                                                          | 7       | Haryana                | 13000                                               | 7  | Gujarat                 | 17664                                               | 39.5                                                         |
| 8  | Gujarat                | 2280                                                | 8  | Arunachal Pradesh      | 3150                                                | 70.3                                                         | 8       | Gujarat                | 12661                                               | 8  | Andaman & Nicobar       | 17549                                               | 3.3                                                          |
| 9  | I & K                  | 2019                                                | 9  | Guiarat                | 3118                                                | 36.8                                                         | 9       | Pondicherry            | 11784                                               | 9  | Haryana                 | 17186                                               | 32.2                                                         |
| 10 | Himachal Pradesh       | 1888                                                | 10 | A & N islands          | 3012                                                | 9.2                                                          | 10      | Tamil Nadu             | 10815                                               | 10 | Tamil Nadu              | 14563                                               | 34.7                                                         |
| 11 | West Bengal            | 1871                                                | 11 | Tamil Nadu             | 2579                                                | 48.0                                                         | 11      | Nagaland               | 10088                                               | 11 | Karnataka               | 14133                                               | 56.1                                                         |
| 12 | Arunachal Pradesh      | 1850                                                | 12 | Himachal Pradesh       | 2507                                                | 32.8                                                         | 12      | Arunachal Pradesh      | 9739                                                | 12 | Himachal Pradesh        | 13657                                               | 44.5                                                         |
|    | Average for all states | 1776                                                | 13 | Karnataka              | 2462                                                | 41.6                                                         | 13      | Himachal Pradesh       | 9454                                                | 13 | Kerala                  | 13192                                               | 41.0                                                         |
|    | All-India GDP (CSO)    | 1857                                                | 14 | West Bengal            | 2448                                                | 30.8                                                         | 14      | Sikkim                 | 9441                                                | 14 | Nagaland                | 13127                                               | 30.1                                                         |
| 13 | Sikkim                 | 1757                                                |    | Average for all states | 2395                                                | 34.8                                                         | 15      | Kerala                 | 9357                                                | 15 | Sikkim                  | 12611                                               | 33.6                                                         |
| 14 | Tamil Nadu             | 1743                                                |    | All-India GDP(CSO)     | 2538                                                | 36.7                                                         |         | All-India GDP(CSO)     | 9221                                                |    | Average for all states  | 12592                                               | 38.9                                                         |
| 15 | Nagaland               | 1742                                                | 15 | Andhra Pradesh         | 2312                                                | 38.2                                                         |         | Average for all states | 9065                                                |    | All-India GDP(CSO)      | 12685                                               | 37.6                                                         |
| 16 | Karnataka              | 1739                                                | 16 | J & K                  | 2189                                                | 8.4                                                          | 16      | Karnataka              | 9054                                                | 16 | Andhra Pradesh          | 12427                                               | 43.6                                                         |
| 17 | Kerala                 | 1683                                                | 17 | Kerala                 | 2158                                                | 28.2                                                         | 17      | Andhra Pradesh         | 8653                                                | 17 | West Bengal             | 12094                                               | 54.2                                                         |
| 18 | Andhra Pradesh         | 1673                                                | 18 | Nagaland               | 2151                                                | 23.5                                                         | 18      | Meghalaya              | 8214                                                | 18 | Mizoram                 | 11923                                               | _                                                            |
| 19 | Manipur                | 1586                                                | 19 | Rajasthan              | 2129                                                | 50.4                                                         | 19      | Uttaranchal            | 7966                                                | 19 | Meghalaya               | 11460                                               | 39.5                                                         |
| 20 | Madhya Pradesh         | 1529                                                | 20 | Manipur                | 2048                                                | 29.2                                                         | 20      | West Bengal            | 7844                                                | 20 | Tripura                 | 10965                                               | 79.5                                                         |
| 21 | Meghalaya              | 1529                                                | 21 | Meghalaya              | 2011                                                | 31.5                                                         | 21      | Rajasthan              | 7749                                                | 21 | Arunachal Pradesh       | 10674                                               | 9.6                                                          |
| 22 | Assam                  | 1485                                                | 22 | Madhya Pradesh         | 1882                                                | 23.1                                                         | 22      | J & K                  | 7664                                                | 22 | Uttaranchal             | 10213                                               | 28.2                                                         |
| 23 | Uttar Pradesh          | 1449                                                | 23 | Tripura                | 1836                                                | 30.2                                                         | 23      | Chattisgarh            | 7626                                                | 23 | Rajasthan               | 9935                                                | 28.2                                                         |
| 24 | Rajasthan              | 1416                                                | 24 | Uttar Pradesh          | 1833                                                | 26.5                                                         | 24      | Madhya Pradesh         | 7490                                                | 24 | Chattisgarh             | 9128                                                | 19.7                                                         |
| 25 | Tripura                | 1411                                                | 25 | Assam                  | 1719                                                | 15.8                                                         | 25      | Jharkhand              | 7277                                                | 25 | Manipur                 | 9118                                                | 39.7                                                         |
| 26 | Orissa                 | 1371                                                | 26 | Orissa                 | 1639                                                | 19.6                                                         | 26      | Manipur                | 6526                                                | 26 | J & K                   | 9069                                                | 18.3                                                         |
| 27 | Bihar                  | 1080                                                | 27 | Bihar                  | 1291                                                | 19.6                                                         | 27      | Assam                  | 6476                                                | 27 | Jharkhand               | 8772                                                | 20.5                                                         |
| 28 | Mizoram                | _                                                   | 28 | Mizoram                | _                                                   | _                                                            | 28      | Tripura                | 6109                                                | 28 | Madhya Pradesh          | 8761                                                | 17.0                                                         |
|    |                        |                                                     | -  |                        |                                                     |                                                              | 29      | Uttar Pradesh          | 5902                                                | 29 | Assam                   | 7258                                                | 12.1                                                         |
|    |                        |                                                     |    |                        |                                                     |                                                              | 30      | Orissa                 | 5815                                                | 30 | Orissa                  | 7014                                                | 20.6                                                         |
|    |                        |                                                     |    |                        |                                                     |                                                              | 31      | Bihar                  | 3326                                                | 31 | Uttar Pradesh           | 6753                                                | 14.4                                                         |
|    |                        |                                                     |    |                        |                                                     |                                                              | 32      | Mizoram                | _                                                   | 32 | Bihar                   | 3990                                                | 20.0                                                         |

TABLE A1.5 (contd.)

|    |                        |                                                     |    | Per Capita NSDP at 1   | 980–1 prices                                        |                                                              |        |                        |                                                     |    | Per Capita GSDP at 1993 | 4 prices                                            |                                                              |
|----|------------------------|-----------------------------------------------------|----|------------------------|-----------------------------------------------------|--------------------------------------------------------------|--------|------------------------|-----------------------------------------------------|----|-------------------------|-----------------------------------------------------|--------------------------------------------------------------|
|    | Rank State             | Annual<br>Averages<br>for<br>1980–1<br>to<br>1982–3 |    | Rank State             | Annual<br>Averages<br>for<br>1990–1<br>to<br>1992–3 | Relative<br>Increase<br>Between<br>Two Periods<br>(per cent) |        | Rank State             | Annual<br>Averages<br>for<br>1993–4<br>to<br>1995–6 |    | Rank State              | Annual<br>Averages<br>for<br>2001–2<br>to<br>2003–4 | Relative<br>Increase<br>Between<br>Two Periods<br>(per cent) |
| _  |                        |                                                     |    |                        | Part B : P                                          | er Capita Net Sta                                            | te Dom | estic Product (NSDP)   |                                                     |    |                         |                                                     |                                                              |
| 1  | Delhi                  | 4229                                                | 1  | Delhi                  | 5845                                                | 38.2                                                         | 1      | Chandigarh             | 21102                                               | 1  | Chandigarh              | 30973                                               | 46.8                                                         |
| 2  | Goa                    | 3083                                                | 2  | Goa                    | 5017                                                | 62.7                                                         | 2      | Delhi                  | 18968                                               | 2  | Goa                     | 29110                                               | 69.7                                                         |
| 3  | Punjab                 | 2818                                                | 3  | Punjab                 | 3829                                                | 35.8                                                         | 3      | Goa                    | 17155                                               | 3  | Delhi                   | 27688                                               | 46.0                                                         |
| 4  | Pondicherry            | 2817                                                | 4  | Maharashtra            | 3573                                                | 45.7                                                         | 4      | Andaman & Nicobar      | 15579                                               | 4  | Pondicherry             | 25558                                               | 161.4                                                        |
| 5  | Andaman & Nicobar      | 2544                                                | 5  | Haryana                | 3476                                                | 43.7                                                         | 5      | Punjab                 | 12834                                               | 5  | Andaman & Nicobar       | 15881                                               | 1.9                                                          |
| 6  | Maharashtra            | 2452                                                | 6  | Sikkim                 | 3431                                                | 108.7                                                        | 6      | Maharashtra            | 12521                                               | 6  | Punjab                  | 15611                                               | 21.6                                                         |
| 7  | Haryana                | 2419                                                | 7  | Arunachal Pradesh      | 2912                                                | 72.1                                                         | 7      | Haryana                | 11407                                               | 7  | Maharashtra             | 15567                                               | 24.3                                                         |
| 8  | Gujarat                | 2011                                                | 8  | Pondicherry            | 2833                                                | 0.6                                                          | 8      | Gujarat                | 10993                                               | 8  | Haryana                 | 14897                                               | 30.6                                                         |
| 9  | J & K                  | 1777                                                | 9  | Gujarat                | 2704                                                | 34.5                                                         | 9      | Pondicherry            | 9777                                                | 9  | Gujarat                 | 14850                                               | 35.1                                                         |
| 10 | West Bengal            | 1727                                                | 10 | Andaman & Nicobar      | 2589                                                | 1.8                                                          | 10     | Tamil Nadu             | 9678                                                | 10 | Tamil Nadu              | 12719                                               | 31.4                                                         |
| 11 | Himachal Pradesh       | 1718                                                | 11 | Tamil Nadu             | 2290                                                | 47.3                                                         | 11     | Nagaland               | 9395                                                | 11 | Karnataka               | 12563                                               | 55.1                                                         |
| 12 | Arunachal Pradesh      | 1692                                                | 12 | Himachal Pradesh       | 2240                                                | 30.4                                                         | 12     | Arunachal Pradesh      | 8809                                                | 12 | Nagaland                | 12303                                               | 30.9                                                         |
| 13 | Sikkim                 | 1644                                                | 13 | West Bengal            | 2236                                                | 29.5                                                         | 13     | Sikkim                 | 8500                                                | 13 | Himachal Pradesh        | 11970                                               | 42.7                                                         |
|    | Average for all states | 1595                                                | 14 | Karnataka              | 2193                                                | 40.3                                                         | 14     | Kerala                 | 8483                                                | 14 | Kerala                  | 11565                                               | 36.3                                                         |
|    | All-India NDP(CSO)     | 1672                                                |    | Average for all states | 2132                                                | 33.6                                                         | 15     | Himachal Pradesh       | 8387                                                | 15 | Sikkim                  | 11269                                               | 32.6                                                         |
| 14 | Karnataka              | 1563                                                |    | All-India NDP(CSO)     | 2264                                                | 35.4                                                         | 16     | Karnataka              | 8101                                                |    | Average for all states  | 11189                                               | 38.4                                                         |
| 15 | Tamil Nadu             | 1555                                                | 15 | Andhra Pradesh         | 2078                                                | 38.1                                                         |        | Average for all states | 8083                                                |    | All-India NDP(CSO)      | 11272                                               | 37.1                                                         |
| 16 | Nagaland               | 1553                                                | 16 | Nagaland               | 2074                                                | 33.6                                                         |        | All-India NDP(CSO)     | 8222                                                | 16 | Andhra Pradesh          | 11080                                               | 43.3                                                         |
| 17 | Andhra Pradesh         | 1504                                                | 17 | Rajasthan              | 1891                                                | 49.9                                                         | 17     | Andhra Pradesh         | 7733                                                | 17 | West Bengal             | 10981                                               | 54.4                                                         |
| 18 | Kerala                 | 1487                                                | 18 | Kerala                 | 1858                                                | 24.9                                                         | 18     | Uttaranchal            | 7143                                                | 18 | Mizoram                 | 10836                                               | _                                                            |
| 19 | Manipur                | 1443                                                | 19 | Manipur                | 1822                                                | 26.3                                                         | 19     | Meghalaya              | 7123                                                | 19 | Meghalaya               | 10321                                               | 44.9                                                         |
| 20 | Assam                  | 1374                                                | 20 | I & K                  | 1793                                                | 0.9                                                          | 20     | West Bengal            | 7114                                                | 20 | Tripura                 | 9972                                                | 80.2                                                         |
| 21 | Madhya Pradesh         | 1369                                                | 21 | Meghalaya              | 1705                                                | 24.7                                                         | 21     | Rajasthan              | 6844                                                | 21 | Arunachal Pradesh       | 9388                                                | 6.6                                                          |
| 22 | Meghalaya              | 1367                                                | 22 | Tripura                | 1650                                                | 27.1                                                         | 22     | Madhya Pradesh         | 6641                                                | 22 | Rajasthan               | 8788                                                | 28.4                                                         |
| 23 | Uttar Pradesh          | 1299                                                | 23 | Uttar Pradesh          | 1631                                                | 25.6                                                         | 23     | J&K                    | 6631                                                | 23 | Uttaranchal             | 8787                                                | 23.0                                                         |
| 24 | Tripura                | 1298                                                | 24 | Madhya Pradesh         | 1617                                                | 18.2                                                         | 24     | Chattisgarh            | 6486                                                | 24 | Manipur                 | 8081                                                | 42.6                                                         |
| 25 | Orissa                 | 1265                                                | 25 | Assam                  | 1559                                                | 13.4                                                         | 25     | Iharkhand              | 6017                                                | 25 | I & K                   | 7702                                                | 16.1                                                         |
| 26 | Rajasthan              | 1261                                                | 26 | Orissa                 | 1463                                                | 15.7                                                         | 26     | Assam                  | 5737                                                | 26 | Chattisgarh             | 7678                                                | 18.4                                                         |
| 27 | Bihar                  | 933                                                 | 27 | Bihar                  | 1106                                                | 18.6                                                         | 27     | Manipur                | 5668                                                | 27 | Madhya Pradesh          | 7666                                                | 15.4                                                         |
| 28 | Mizoram                | _                                                   | 28 | Mizoram                | _                                                   | _                                                            | 28     | Tripura                | 5535                                                | 28 | Jharkhand               | 7273                                                | 20.9                                                         |
|    |                        |                                                     |    |                        |                                                     |                                                              | 29     | Uttar Pradesh          | 5177                                                | 29 | Assam                   | 6281                                                | 9.5                                                          |
|    |                        |                                                     |    |                        |                                                     |                                                              | 30     | Orissa                 | 5051                                                | 30 | Orissa                  | 5985                                                | 18.5                                                         |
|    |                        |                                                     |    |                        |                                                     |                                                              | 31     | Bihar                  | 3024                                                | 31 | Uttar Pradesh           | 5803                                                | 12.1                                                         |
|    |                        |                                                     |    |                        |                                                     |                                                              | 32     | Mizoram                | _                                                   | 32 | Bihar                   | 3609                                                | 19.4                                                         |

Note: - not available.

Source: EPWRF (2003) and CSO's Website (http://mospi.gov.in/mospi\_nad\_main.htm).

# A2 PRODUCTION

TABLE A2.1 Production Trends in Major Agricultural Crops

(Million tonnes)

| Year    | Rice  | Wheat | Coarse<br>cereals | Cereals | Pulses | Food-<br>grains | Oil-<br>seeds# | Cotton<br>(Lint)@ | Jute<br>and<br>mesta* | Tobacco | Sugar-<br>cane | Tea*<br>(Jan.–Dec.<br>Mn.kgs) | Coffee |
|---------|-------|-------|-------------------|---------|--------|-----------------|----------------|-------------------|-----------------------|---------|----------------|-------------------------------|--------|
| (1)     | (2)   | (3)   | (4)               | (5)     | (6)    | (7)             | (8)            | (9)               | (10)                  | (11)    | (12)           | (13)                          | (14)   |
| 1950–1  | 20.58 | 6.46  | 15.38             | 42.42   | 8.41   | 50.83           | 5.16           | 3.04              | 3.31                  | 0.26    | 57.05          | 279.00                        | 24.00  |
| 1951–2  | 21.30 | 6.18  | 16.09             | 43.57   | 8.42   | 51.99           | 5.03           | 3.28              | 4.72                  | 0.21    | 61.63          | 291.00                        | 24.00  |
| 1952–3  | 22.90 | 7.50  | 19.61             | 50.01   | 9.19   | 59.20           | 4.73           | 3.34              | 5.32                  | 0.25    | 51.00          | 306.00                        | 21.00  |
| 1953–4  | 28.21 | 8.02  | 22.97             | 59.20   | 10.62  | 69.82           | 5.37           | 4.13              | 3.77                  | 0.27    | 44.41          | 267.00                        | 25.00  |
| 1954–5  | 25.22 | 9.04  | 22.82             | 57.08   | 10.95  | 68.03           | 6.40           | 4.45              | 3.86                  | 0.26    | 58.74          | 293.00                        | 26.00  |
| 1955–6  | 27.56 | 8.76  | 19.49             | 55.81   | 11.05  | 66.85           | 5.73           | 4.18              | 5.39                  | 0.30    | 60.54          | 308.00                        | 35.00  |
| 1956–7  | 29.04 | 9.40  | 19.87             | 58.31   | 11.55  | 69.86           | 6.36           | 4.92              | 5.81                  | 0.31    | 69.05          | 309.00                        | 43.00  |
| 1957–8  | 25.53 | 7.99  | 21.23             | 54.75   | 9.56   | 64.31           | 6.35           | 4.96              | 5.33                  | 0.24    | 71.16          | 311.00                        | 44.00  |
| 1958–9  | 30.85 | 9.96  | 23.18             | 63.99   | 13.15  | 77.14           | 7.30           | 4.88              | 6.91                  | 0.32    | 73.36          | 325.00                        | 47.00  |
| 1959–60 | 31.68 | 10.32 | 22.87             | 64.87   | 11.80  | 76.67           | 6.56           | 3.68              | 5.69                  | 0.29    | 77.82          | 326.00                        | 50.00  |
| 1960-1  | 34.57 | 11.00 | 23.74             | 69.31   | 12.70  | 82.02           | 6.98           | 5.60              | 5.26                  | 0.31    | 110.00         | 321.00                        | 68.00  |
| 1961–2  | 35.66 | 12.07 | 23.22             | 70.95   | 11.76  | 82.71           | 7.28           | 4.85              | 8.24                  | 0.34    | 103.97         | 354.00                        | 46.00  |
| 1962-3  | 33.21 | 10.78 | 24.63             | 68.62   | 11.53  | 80.15           | 7.39           | 5.54              | 7.19                  | 0.34    | 91.91          | 347.00                        | 56.00  |
| 1963–4  | 37.00 | 9.85  | 23.72             | 70.57   | 10.07  | 80.64           | 7.13           | 5.75              | 7.98                  | 0.36    | 104.23         | 346.00                        | 69.00  |
| 1964–5  | 39.31 | 12.26 | 25.37             | 76.94   | 12.42  | 89.36           | 8.56           | 6.01              | 7.66                  | 0.36    | 121.91         | 372.00                        | 61.00  |
| 1965–6  | 30.59 | 10.40 | 21.42             | 62.41   | 9.94   | 72.35           | 6.40           | 4.85              | 5.78                  | 0.29    | 123.99         | 366.00                        | 64.00  |
| 1966–7  | 30.44 | 11.39 | 24.05             | 65.88   | 8.35   | 74.23           | 6.43           | 5.27              | 6.58                  | 0.35    | 92.83          | 376.00                        | 78.00  |
| 1967–8  | 37.61 | 16.54 | 28.80             | 82.95   | 12.10  | 95.05           | 8.30           | 5.78              | 7.59                  | 0.37    | 95.50          | 385.00                        | 71.00  |
| 1968–9  | 39.76 | 18.65 | 25.18             | 83.59   | 10.42  | 94.01           | 6.85           | 5.45              | 3.84                  | 0.36    | 124.68         | 402.00                        | 73.00  |
| 1969–70 | 40.43 | 20.09 | 27.29             | 87.81   | 11.69  | 99.50           | 7.73           | 5.56              | 6.79                  | 0.34    | 135.02         | 396.00                        | 63.00  |
| 1970-1  | 42.22 | 23.83 | 30.55             | 96.60   | 11.82  | 108.42          | 9.63           | 4.76              | 6.19                  | 0.36    | 126.37         | 419.00                        | 110.20 |
| 1971-2  | 43.07 | 26.41 | 24.60             | 94.08   | 11.09  | 105.17          | 9.08           | 6.95              | 6.84                  | 0.42    | 113.57         | 435.00                        | 68.90  |
| 1972-3  | 39.24 | 24.74 | 23.14             | 87.12   | 9.91   | 97.03           | 7.14           | 5.74              | 6.09                  | 0.37    | 124.87         | 456.00                        | 91.10  |
| 1973–4  | 44.05 | 21.78 | 28.83             | 94.66   | 10.01  | 104.67          | 9.39           | 6.31              | 7.68                  | 0.46    | 140.81         | 472.00                        | 86.40  |
| 1974–5  | 39.58 | 24.10 | 26.13             | 89.81   | 10.02  | 99.83           | 9.15           | 7.16              | 5.83                  | 0.36    | 144.29         | 489.00                        | 92.50  |
| 1975–6  | 48.74 | 28.84 | 30.41             | 107.99  | 13.04  | 121.03          | 10.61          | 5.95              | 5.91                  | 0.35    | 140.60         | 487.00                        | 84.00  |
| 1976–7  | 41.92 | 29.01 | 28.88             | 99.81   | 11.36  | 111.17          | 8.43           | 5.84              | 7.10                  | 0.42    | 153.01         | 512.00                        | 102.20 |
| 1977–8  | 52.67 | 31.75 | 30.02             | 114.44  | 11.97  | 126.41          | 9.66           | 7.24              | 7.15                  | 0.49    | 176.97         | 556.00                        | 125.10 |
| 1978–9  | 53.77 | 35.51 | 30.44             | 119.72  | 12.18  | 131.90          | 10.10          | 7.96              | 8.33                  | 0.45    | 151.66         | 564.00                        | 110.50 |
| 1979–80 | 42.33 | 31.83 | 26.97             | 101.13  | 8.57   | 109.70          | 8.74           | 7.65              | 7.96                  | 0.44    | 128.83         | 544.00                        | 149.80 |
| 1980-1  | 53.63 | 36.31 | 29.02             | 118.96  | 10.63  | 129.59          | 9.37           | 7.01              | 8.16                  | 0.48    | 154.25         | 569.60                        | 118.60 |
| 1981–2  | 53.25 | 37.45 | 31.09             | 121.79  | 11.51  | 133.30          | 12.08          | 7.88              | 8.37                  | 0.52    | 186.36         | 560.40                        | 150.00 |
| 1982–3  | 47.12 | 42.79 | 27.75             | 117.66  | 11.86  | 129.52          | 10.00          | 7.53              | 7.17                  | 0.58    | 189.51         | 560.70                        | 130.00 |
| 1983–4  | 60.10 | 45.48 | 33.90             | 139.48  | 12.89  | 152.37          | 12.69          | 6.39              | 7.72                  | 0.49    | 174.08         | 581.50                        | 105.00 |
| 1984–5  | 58.34 | 44.07 | 31.17             | 133.58  | 11.96  | 145.54          | 12.95          | 8.51              | 7.79                  | 0.49    | 170.32         | 639.90                        | 195.10 |
| 1985–6  | 63.83 | 47.05 | 26.20             | 137.08  | 13.36  | 150.44          | 10.83          | 8.73              | 12.65                 | 0.44    | 170.65         | 656.20                        | 122.30 |
| 1986–7  | 60.56 | 44.32 | 26.83             | 131.71  | 11.71  | 143.42          | 11.27          | 6.91              | 8.62                  | 0.46    | 186.09         | 624.60                        | 192.30 |
| 1987–8  | 56.86 | 46.17 | 26.36             | 129.39  | 10.96  | 140.35          | 12.65          | 6.38              | 6.78                  | 0.37    | 196.74         | 674.30                        | 123.00 |
| 1988–9  | 70.49 | 54.11 | 31.47             | 156.07  | 13.85  | 169.92          | 18.03          | 8.74              | 7.86                  | 0.49    | 203.04         | 701.10                        | 215.00 |
| 1989–90 | 73.57 | 49.85 | 34.76             | 158.18  | 12.86  | 171.04          | 16.92          | 11.42             | 8.29                  | 0.55    | 225.57         | 684.10                        | 180.00 |

### 206 APPENDIX TABLES

Table A2.1: contd.

| (1)                    | (2)          | (3)      | (4)   | (5)    | (6)   | (7)    | (8)   | (9)   | (10)  | (11)  | (12)   | (13)   | (14)   |
|------------------------|--------------|----------|-------|--------|-------|--------|-------|-------|-------|-------|--------|--------|--------|
| 1990–1                 | 74.29        | 55.14    | 32.70 | 162.13 | 14.26 | 176.39 | 18.61 | 9.84  | 9.23  | 0.56  | 241.05 | 720.34 | 170.00 |
| 1991–2                 | 74.68        | 55.69    | 25.99 | 156.36 | 12.02 | 168.38 | 18.60 | 9.71  | 10.29 | 0.58  | 254.00 | 754.19 | 208.00 |
| 1992–3                 | 72.86        | 57.21    | 36.59 | 166.66 | 12.82 | 179.48 | 20.11 | 11.40 | 8.59  | 0.60  | 228.03 | 703.93 | 169.40 |
| 1993–4                 | 80.30        | 59.84    | 30.81 | 170.95 | 13.31 | 184.26 | 21.50 | 10.74 | 8.42  | 0.56  | 229.66 | 760.83 | 208.00 |
| 1994–5                 | 81.81        | 65.77    | 29.88 | 177.46 | 14.04 | 191.50 | 21.34 | 11.89 | 9.08  | 0.57  | 275.54 | 752.90 | 180.00 |
| 1995–6                 | 76.98        | 62.10    | 29.03 | 168.11 | 12.31 | 180.42 | 22.10 | 12.86 | 8.81  | 0.54  | 281.10 | 756.02 | 223.00 |
| 1996–7                 | 81.73        | 69.35    | 34.11 | 185.19 | 14.25 | 199.44 | 24.38 | 14.23 | 11.13 | 0.62  | 277.56 | 780.14 | 205.00 |
| 1997-8                 | 82.54        | 66.35    | 30.40 | 179.29 | 12.97 | 192.26 | 21.32 | 10.85 | 11.02 | 0.64  | 279.54 | 835.60 | 228.30 |
| 1998–9                 | 86.08        | 71.29    | 31.33 | 188.70 | 14.91 | 203.61 | 24.75 | 12.29 | 9.81  | 0.74  | 288.72 | 855.20 | 265.00 |
| 1999–2000              | 89.68        | 76.37    | 30.34 | 196.39 | 13.41 | 209.80 | 20.71 | 11.53 | 10.56 | 0.52  | 299.32 | 836.80 | 292.00 |
| 2000-1                 | 84.98        | 69.68    | 31.08 | 185.74 | 11.07 | 196.81 | 18.44 | 9.52  | 10.56 | 0.34  | 295.96 | 848.40 | 301.00 |
| 2001–2                 | 93.34        | 72.77    | 33.37 | 199.48 | 13.37 | 212.85 | 20.66 | 10.00 | 11.68 | 0.55  | 297.21 | 847.40 | 301.00 |
| 2002-3                 | 71.82        | 65.76    | 26.07 | 163.65 | 11.13 | 174.77 | 14.84 | 8.62  | 11.28 | 0.50  | 287.38 | 846.00 | 275.00 |
| 2003–4                 | 88.53        | 72.15    | 37.60 | 198.28 | 14.91 | 213.19 | 25.19 | 13.73 | 11.17 | 0.54  | 233.86 | 850.50 | 270.00 |
| 2004–5                 | 83.13        | 68.64    | 33.46 | 185.23 | 13.13 | 198.36 | 24.35 | 16.43 | 10.27 |       | 237.09 | 906.84 | 281.90 |
| 2005–6A                | 89.88        | 71.54    | 34.67 | 196.09 | 13.92 | 210.01 | 26.70 | 18.93 | 10.83 |       | 273.16 | 930.85 | 294.00 |
| Decadal Growth Rates i | n per cent p | er annum |       |        |       |        |       |       |       |       |        |        |        |
| 1950-1 to 1959-60      | 4.34         | 4.93     | 2.51  | 3.75   | 3.51  | 3.72   | 4.11  | 3.98  | 4.82  | 2.81  | 6.98   | 1.73   | 11.96  |
| 1960-1 to 1969-70      | 1.92         | 9.46     | 1.92  | 3.35   | -0.22 | 2.89   | 1.47  | 0.21  | -2.60 | 0.91  | 2.29   | 2.21   | 4.16   |
| 1970-1 to 1979-80      | 2.58         | 5.02     | 1.56  | 2.98   | 0.12  | 2.72   | 1.53  | 2.85  | 2.90  | 2.43  | 2.59   | 2.99   | 5.98   |
| 1980-1 to 1989-90      | 4.03         | 3.29     | 0.43  | 2.97   | 1.27  | 2.83   | 6.10  | 3.50  | 0.91  | -0.10 | 3.31   | 2.84   | 4.44   |
| 1990-1 to 2005-6       | 1.03         | 1.73     | 0.41  | 1.18   | -0.02 | 1.09   | 0.43  | 0.98  | 1.88  | -1.48 | 0.74   | 1.61   | 4.17   |

Notes: Decadal growth rate is worked out on three year moving averages. It indicates compound growth rate in the production data calculated for the specified period using the semi-log model lnY = a+bt, where t = time, Y = production, and the compound growth is obtained by taking antilog of 'b', deducting one from it and multiplying it with 100; A: Third advance estimate; \* Production in million bales of 180 kgs each; ® Production in million bales of 170 kgs each; \* Total of nine oilseeds out of eleven.

Source: GOI (2005), Agricultural Statistics at a Glance, Ministry of Agriculture and GOI (2006), Economic Survey 2005–6, Ministry of Finance and various earlier issues.

TABLE A2.2 Trends in Yields of Major Crops

Note: - Not Available.

Source: GOI (2005), Agricultural Statistics at a Glance, Ministry of Agriculture and GOI (2006), Economic Survey 2005–6, Ministry of Finance and various other issues.

TABLE A2.3 Horticulture and Livestock Production

(000 'tonnes)

|                         |        |        |        |        |        |        |           |        |        |        |        |        |        | ,      | 000 10111103) |
|-------------------------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------|---------------|
|                         | 2005-6 | 2004-5 | 2003-4 | 2002-3 | 2001-2 | 2000-1 | 1999–2000 | 1998–9 | 1997–8 | 1996–7 | 1995–6 | 1994–5 | 1993–4 | 1992-3 | 1991–2        |
| Horticulture Production |        |        |        |        |        |        |           |        |        |        |        |        |        |        |               |
| Total                   | 178100 | 164100 | 152000 | 144400 | 146500 | 143806 | 149187    | 146020 | 128611 | 128482 | 125483 | 118394 | 114616 | 107388 | 96562         |
| Fruits                  | 57600  | 53100  | 49200  | 45200  | 43100  | 45370  | 45496     | 44042  | 43263  | 40458  | 41507  | 38603  | 37255  | 32955  | 28632         |
| Apple                   | na     | na     | na     | na     | 1420   | 1230   | 1047      | 1380   | 1321   | 1308   | 1215   | 1183   | 1298   | 1168   | 1148          |
| Banana                  | na     | na     | na     | na     | 16450  | 16170  | 16814     | 15073  | 13340  | 12440  | 13095  | 13168  | 11901  | 10460  | 7790          |
| Citrus Fruit            | na     | na     | na     | na     | 4580   | 4400   | 4651      | 4575   | 4311   | 4456   | 3798   | 3701   | 3912   | 2979   | 2822          |
| Lemon                   | na     | na     | na     | na     | na     | na     | 1492      | 1260   | 1101   | 1048   | 920    | 970    | 924    | na     | na            |
| Mosambi                 | na     | na     | na     | na     | na     | na     | 1017      | 773    | 882    | 844    | 880    | 887    | 825    | na     | na            |
| Orange                  | na        | 1674   | 1472   | 1720   | 1162   | 709    | 1058   | na     | na            |
| Grapes                  | na     | na     | na     | na     | 1100   | 1060   | 1138      | 1083   | 969    | 1135   | 604    | 673    | 703    | 653    | 668           |
| Guava                   | na     | na     | na     | na     | 1680   | 1630   | 1711      | 1801   | 1614   | 1601   | 1501   | 1388   | 1273   | 1204   | 1095          |
| Litchi                  | na     | na     | na     | na     | 420    | 400    | 433       | 429    | 455    | 378    | 365    | 333    | 313    | 261    | 244           |
| Mango                   | na     | na     | na     | na     | 10640  | 10240  | 10504     | 9782   | 10234  | 9981   | 10811  | 10993  | 10113  | 9223   | 8716          |
| Papaya                  | na     | na     | na     | na     | 1820   | 1770   | 1666      | 1582   | 1619   | 1299   | 1330   | 1373   | 1266   | 804    | 805           |
| Pineapple               | na     | na     | na     | na     | 1260   | 1220   | 1025      | 1006   | 937    | 925    | 1071   | 1055   | 1007   | 859    | 769           |
| Sapota                  | na     | na     | na     | na     | 700    | 670    | 800       | 668    | 644    | 589    | 570    | 496    | 481    | 423    | 396           |
| Vegetables              | 99400  | 91600  | 84800  | 84800  | 88600  | 93920  | 90831     | 87536  | 72683  | 75074  | 71594  | 67286  | 65787  | 63806  | 58532         |
| Brinjal                 | na     | na     | na     | na     | 7800   | 7700   | 8117      | 7882   | 7735   | 6586   | 6443   | 6232   | 4612   | na     | na            |
| Cabbage                 | na     | na     | na     | na     | 5700   | 5620   | 5909      | 5624   | 5324   | 3613   | 3862   | 3906   | 3593   | 3237   | 2771          |
| Cauliflower             | na     | na     | na     | na     | 4700   | 4690   | 4718      | 4691   | 4471   | 3419   | 2474   | 3244   | 2873   | 3612   | 2998          |
| Okra                    | na     | na     | na     | na     | 3420   | 3340   | 3419      | 3380   | 3211   | 3040   | 4032   | 3989   | 3029   | 2738   | 1887          |
| Onion                   | na     | na     | na     | na     | 4850   | 4720   | 4900      | 5467   | 3140   | 4180   | 4080   | 4036   | 4006   | 5705   | 4706          |
| Peas                    | na     | na     | na     | na     | 3110   | 3010   | 2712      | 2706   | 2422   | 2339   | 2341   | 2306   | 1528   | 1492   | 852           |
| Tomato                  | na     | na     | na     | na     | 7420   | 7280   | 7427      | 8272   | 6184   | 5788   | 5442   | 5261   | 4934   | 4550   | 4243          |
| Potato                  | na     | na     | na     | na     | 24000  | 22240  | 25000     | 22495  | 17652  | 24216  | 18843  | 17401  | 17392  | 18479  | 18195         |
| Sweet Potato            | na     | na     | na     | na     | na     | na     | 1007      | 1152   | 1048   | 1102   | 1138   | 1166   | 1221   | 1216   | 1131          |
| Tapioca                 | na     | na     | na     | na     | na     | na     | 6181      | 5830   | 6682   | 5663   | 5443   | 5857   | 6029   | 5413   | 5833          |
| Coconuts*               | na     | na     | na     | na     | 8800   | 8700   | 12252     | 14925  | 12717  | 13061  | 12952  | 13300  | 11975  | 11241  | 10080         |
| Flowers                 | na     | na     | na     | na     | 570    | 560    | 509       | 419    | 366    | 367    | 334    | 261    | 233    | na     | na            |
| Plantation Crops        | na     | na     | na     | na     | na     | na     | 9278      | 11063  | 9449   | 9730   | 9630   | 9767   | 8866   | 8347   | 7498          |
| Spices                  | 4400   | 4100   | 3800   | 2900   | 3200   | 3020   | 2911      | 2911   | 2801   | 2805   | 2410   | 2477   | 2470   | 2280   | 1900          |
| Livestock Production    |        |        |        |        |        |        |           |        |        |        |        |        |        |        |               |
| Milk                    | na     | 91     | 88     | 86     | 84     | 81     | 78        | 75     | 72     | 69     | 66     | 64     | 61     | 58     | 56            |
| Fish ('000 tonnes)      | na     | 6304   | 6399   | 6200   | 5956   | 5656   | 5675      | 5298   | 5388   | 5348   | 4949   | 4789   | 4644   | 4365   | 4157          |
| Eggs (Bn. Nos)          | na     | 45     | 40     | 40     | 39     | 37     | 30        | 30     | 29     | 28     | 27     | 26     | 24     | 23     | 22            |

Notes: \* Coconut production is in number of nuts in thousands (1453.24 nuts = 1 ton); na—not available.

Source: National Horticulture Board, Ministry of Agriculture, Government of India, Indian Horticulture Data Base, 2001 and Economic Survey 2005–6.

 $\label{thm:thm:continuity} \text{Table A2.4}$  Value of Output from Agriculture, Horticulture, and Livestock

(Rs crore)

|                  |                                                          |                                |                 |                |                |                |               |                                |                                  |                 |                                                                 | (Rs crore)      |
|------------------|----------------------------------------------------------|--------------------------------|-----------------|----------------|----------------|----------------|---------------|--------------------------------|----------------------------------|-----------------|-----------------------------------------------------------------|-----------------|
| Year             |                                                          |                                |                 |                | At             | Constant (1    | 993–4) Pric   | es                             |                                  |                 |                                                                 |                 |
|                  | Agri-<br>culture,<br>Horti-<br>culture,<br>and Livestock | Agri-<br>culture,<br>(4 to 11) | Cereals         | Pulses         | Oilseeds       | Sugars         | Fibres        | Drugs<br>and<br>Nar-<br>cotics | Condi-<br>ments<br>and<br>Spices | Others          | Horti-<br>culture <sup>#</sup><br>(Fruits<br>and<br>Vegetables) | Live-<br>stock  |
| (1)              | (2)                                                      | (3)                            | (4)             | (5)            | (6)            | (7)            | (8)           | (9)                            | (10)                             | (11)            | (12)                                                            | (13)            |
| 1950–1           | 75462                                                    | 55056                          | 19186           | 7947           | 6437           | 4402           | 2817          | 1312                           | 1790                             | 11165           | 9529                                                            | 20406           |
|                  | (100.0)                                                  | (73.0)                         | (25.4)          | (10.5)         | (8.5)          | (5.8)          | (3.7)         | (1.7)                          | (2.4)                            | (14.8)          | (12.6)                                                          | (27.0)          |
| 1955-6           | 87963                                                    | 66515                          | 24446           | 10043          | 7318           | 5406           | 3766          | 1498                           | 1957                             | 12081           | 8914                                                            | 21448           |
|                  | (100.0)                                                  | (75.6)                         | (27.8)          | (11.4)         | (8.3)          | (6.1)          | (4.3)         | (1.7)                          | (2.2)                            | (13.7)          | (10.1)                                                          | (24.4)          |
| 1960-1           | 101953                                                   | 78217                          | 30355           | 11147          | 8655           | 7224           | 4780          | 1576                           | 2254                             | 12226           | 10164                                                           | 23736           |
|                  | (100.0)                                                  | (76.7)                         | (29.8)          | (10.9)         | (8.5)          | (7.1)          | (4.7)         | (1.5)                          | (2.2)                            | (12.0)          | (10.0)                                                          | (23.3)          |
| 1965–6           | 96816                                                    | 72990                          | 27067           | 8796           | 8175           | 8628           | 4041          | 1717                           | 2190                             | 12376           | 12552                                                           | 23826           |
|                  | (100.0)                                                  | (75.4)                         | (28.0)          | (9.1)          | (8.4)          | (8.9)          | (4.2)         | (1.8)                          | (2.3)                            | (12.8)          | (13.0)                                                          | (24.6)          |
| 1970–1           | 120802                                                   | 95231                          | 41162           | 10500          | 11733          | 8517           | 4432          | 2186                           | 2972                             | 13729           | 20010                                                           | 25571           |
|                  | (100.0)                                                  | (78.8)                         | (34.1)          | (8.7)          | (9.7)          | (7.1)          | (3.7)         | (1.8)                          | (2.5)                            | (11.4)          | (16.6)                                                          | (21.2)          |
| 1975–6           | 134664                                                   | 104628                         | 46357           | 11735          | 12264          | 9766           | 4783          | 2389                           | 3068                             | 14266           | 22706                                                           | 30036           |
| 1000 1           | (100.0)                                                  | (77.7)                         | (34.4)          | (8.7)          | (9.1)          | (7.3)          | (3.6)         | (1.8)                          | (2.3)                            | (10.6)          | (16.9)                                                          | (22.3)          |
| 1980–1           | 153023                                                   | 116341                         | 51263           | 9903           | 11301          | 10180          | 5865          | 2810                           | 3722                             | 21297           | 26214                                                           | 36682           |
| 1001 2           | (100.0)                                                  | (76.0)                         | (33.5)          | (6.5)          | (7.4)          | (6.7)          | (3.8)         | (1.8)                          | (2.4)                            | (13.9)          | (17.1)                                                          | (24.0)          |
| 1981–2<br>1982–3 | 162189                                                   | 123179                         | 52109<br>49935  | 10619          | 13465          | 12030          | 6703          | 3071                           | 3737<br>4073                     | 21445           | 26466                                                           | 39010           |
| 1982–3<br>1983–4 | 160912                                                   | 120243                         |                 | 10800          | 11927          | 12319          | 6674          | 3139                           |                                  | 21376           | 27485<br>28929                                                  | 40669<br>43625  |
| 1983–4<br>1984–5 | 175923<br>176831                                         | 132298<br>130298               | 59703<br>57146  | 11692<br>10878 | 14556<br>14930 | 11418<br>11040 | 5524<br>7125  | 2971<br>3514                   | 4260<br>4229                     | 22174<br>21436  | 31666                                                           | 46533           |
| 1984–5<br>1985–6 | 180379                                                   | 130298                         | 59379           | 11974          | 12798          | 1040           | 7754          | 3070                           | 4703                             | 20856           | 30116                                                           | 48928           |
| 1985-0           |                                                          |                                |                 |                |                |                |               |                                |                                  |                 |                                                                 |                 |
| 1986–7           | (100.0)<br>177763                                        | (72.9)<br>126668               | (32.9)<br>56816 | (6.6)<br>10679 | (7.1)<br>13162 | (6.1)<br>11670 | (4.3)<br>5867 | (1.7)<br>3184                  | (2.6)<br>4548                    | (11.6)<br>20742 | (16.7)<br>32576                                                 | (27.1)<br>51095 |
| 1987–8           | 177765                                                   | 125574                         | 55424           | 9860           | 14844          | 12320          | 5320          | 2966                           | 4928                             | 19912           | 29117                                                           | 52291           |
| 1988–9           | 206650                                                   | 152084                         | 67783           | 12636          | 20487          | 12893          | 7219          | 3733                           | 5583                             | 21750           | 32702                                                           | 54566           |
| 1989–90          | 209858                                                   | 153218                         | 68216           | 11642          | 19609          | 14273          | 9298          | 3445                           | 5558                             | 21177           | 31928                                                           | 56640           |
| 1990–1           | 217745                                                   | 158849                         | 70273           | 13010          | 21253          | 15200          | 8248          | 3649                           | 5561                             | 21655           | 34141                                                           | 58896           |
| 1770-1           | (100.0)                                                  | (73.0)                         | (32.3)          | (6.0)          | (9.8)          | (7.0)          | (3.8)         | (1.7)                          | (2.6)                            | (9.9)           | (15.7)                                                          | (27.0)          |
| 1991–2           | 215328                                                   | 154439                         | 68437           | 10771          | 21366          | 15799          | 8247          | 3798                           | 5388                             | 20633           | 33720                                                           | 60889           |
| 1//1 2           | (100.0)                                                  | (71.7)                         | (31.8)          | (5.0)          | (9.9)          | (7.3)          | (3.8)         | (1.8)                          | (2.5)                            | (9.6)           | (15.7)                                                          | (28.3)          |
| 1992-3           | 225154                                                   | 161256                         | 71474           | 11751          | 22881          | 14462          | 9372          | 3595                           | 6267                             | 21454           | 36746                                                           | 63898           |
| 1,,,2            | (100.0)                                                  | (71.6)                         | (31.7)          | (5.2)          | (10.2)         | (6.4)          | (4.2)         | (1.6)                          | (2.8)                            | (9.5)           | (16.3)                                                          | (28.4)          |
| 1993-4           | 233419                                                   | 166454                         | 74523           | 12281          | 24096          | 14627          | 8961          | 4066                           | 6740                             | 21160           | 38420                                                           | 66965           |
|                  | (100.0)                                                  | (71.3)                         | (31.9)          | (5.3)          | (10.3)         | (6.3)          | (3.8)         | (1.7)                          | (2.9)                            | (9.1)           | (16.5)                                                          | (28.7)          |
| 1994-5           | 244678                                                   | 175037                         | 77698           | 12868          | 24843          | 17161          | 9972          | 3959                           | 6803                             | 21733           | 40298                                                           | 69641           |
|                  | (100.0)                                                  | (71.5)                         | (31.8)          | (5.3)          | (10.2)         | (7.0)          | (4.1)         | (1.6)                          | (2.8)                            | (8.9)           | (16.5)                                                          | (28.5)          |
| 1995-6           | 241680                                                   | 169651                         | 73212           | 11313          | 25151          | 17543          | 10749         | 4081                           | 6492                             | 21110           | 42593                                                           | 72029           |
|                  | (100.0)                                                  | (70.2)                         | (30.3)          | (4.7)          | (10.4)         | (7.3)          | (4.4)         | (1.7)                          | (2.7)                            | (8.7)           | (17.6)                                                          | (29.8)          |
| 1996-7           | 258938                                                   | 184378                         | 80252           | 13213          | 27780          | 17501          | 11944         | 4571                           | 7276                             | 21841           | 48455                                                           | 74560           |
|                  | (100.0)                                                  | (71.2)                         | (31.0)          | (5.1)          | (10.7)         | (6.8)          | (4.6)         | (1.8)                          | (2.8)                            | (8.4)           | (18.7)                                                          | (28.8)          |
| 1997-8           | 253442                                                   | 176789                         | 78630           | 12301          | 24774          | 17609          | 9377          | 4667                           | 7278                             | 22153           | 48958                                                           | 76653           |
|                  | (100.0)                                                  | (69.8)                         | (31.0)          | (4.9)          | (9.8)          | (6.9)          | (3.7)         | (1.8)                          | (2.9)                            | (8.7)           | (19.3)                                                          | (30.2)          |
| 1998-9           | 269471                                                   | 189605                         | 82645           | 14201          | 27935          | 18227          | 10589         | 4871                           | 8696                             | 22441           | 53545                                                           | 79866           |
|                  | (100.0)                                                  | (70.4)                         | (30.7)          | (5.3)          | (10.4)         | (6.8)          | (3.9)         | (1.8)                          | (3.2)                            | (8.3)           | (19.9)                                                          | (29.6)          |
| 1999–200         | 0 270160                                                 | 187832                         | 85728           | 12422          | 23460          | 19056          | 9825          | 5314                           | 8625                             | 23402           | 54138                                                           | 82328           |
|                  | (100.0)                                                  | (69.5)                         | (31.7)          | (4.6)          | (8.7)          | (7.1)          | (3.6)         | (2.0)                          | (3.2)                            | (8.7)           | (20.0)                                                          | (30.5)          |
| 2000-1           | 261736                                                   | 176285                         | 80608           | 10351          | 21490          | 19920          | 8344          | 5130                           | 8253                             | 22189           | 59183                                                           | 85451           |
|                  | (100.0)                                                  | (67.4)                         | (30.8)          | (4.0)          | (8.2)          | (7.6)          | (3.2)         | (2.0)                          | (3.2)                            | (8.5)           | (22.6)                                                          | (32.6)          |
| 2001-2           | 280591                                                   | 189901                         | 86536           | 12621          | 24235          | 19535          | 8830          | 5579                           | 9421                             | 23144           | 58386                                                           | 90690           |
|                  | (100.0)                                                  | (67.7)                         | (30.8)          | (4.5)          | (8.6)          | (7.0)          | (3.1)         | (2.0)                          | (3.4)                            | (8.2)           | (20.8)                                                          | (32.3)          |
| 2002-3           | 255288                                                   | 162411                         | 70165           | 10523          | 18303          | 17891          | 7644          | 7123                           | 8581                             | 22181           | 60634                                                           | 92877           |
|                  | (100.0)                                                  | (63.6)                         | (27.5)          | (4.1)          | (7.2)          | (7.0)          | (3.0)         | (2.8)                          | (3.4)                            | (8.7)           | (23.8)                                                          | (36.4)          |
| 2003-4           | 285621                                                   | 190312                         | 84964           | 12636          | 28212          | 14778          | 11607         | 7163                           | 8630                             | 22322           | 60920                                                           | 95309           |
|                  | (100.0)                                                  | (66.6)                         | (29.7)          | (4.4)          | (9.9)          | (5.2)          | (4.1)         | (2.5)                          | (3.0)                            | (7.8)           | (21.3)                                                          | (33.4)          |

 ${\it TABLE~A2.4~(contd.)}$  Value of Output from Agriculture, Horticulture, and Livestock

(Rs crore)

|                  |                    |                  |                 |                |                |                |                |                |               |                |                 | (Rs crore)      |
|------------------|--------------------|------------------|-----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|-----------------|-----------------|
| Year             |                    |                  |                 |                |                | At Curre       |                |                |               |                |                 |                 |
|                  | Agri-              | Agri-            | Cereals         | Pulses         | Oilseeds       | Sugars         | Fibres         | Drugs          | Condi-        | Others         | Horti-          | Live-           |
|                  | culture,           | culture,         |                 |                |                |                |                | and            | ments         |                | culture#        | stock           |
|                  | Horti-<br>culture, | (4 to 11)        |                 |                |                |                |                | Nar-<br>cotics | and<br>Spices |                | (Fruits<br>and  |                 |
|                  | and Livestoc       | k                |                 |                |                |                |                | cotics         | Spices        |                | Vegetables)     |                 |
| (1)              | (14)               | (15)             | (16)            | (17)           | (18)           | (19)           | (20)           | (21)           | (22)          | (23)           | (24)            | (25)            |
| 1950–1           | 6385               | 5301             | 2082            | 335            | 464            | 248            | 214            | 138            | 173           | 1045           | 437             | 1084            |
| 1730-1           | (100.0)            | (83.0)           | (32.6)          | (5.2)          | (7.3)          | (3.9)          | (3.4)          | (2.2)          | (2.7)         | (16.4)         | (6.8)           | (17.0)          |
| 1955–6           | 5801               | 4737             | 1870            | 239            | 313            | 295            | 253            | 128            | 107           | 862            | 627             | 1064            |
|                  | (100.0)            | (81.7)           | (32.2)          | (4.1)          | (5.4)          | (5.1)          | (4.4)          | (2.2)          | (1.8)         | (14.9)         | (10.8)          | (18.3)          |
| 1960-1           | 8962               | 7493             | 3220            | 461            | 623            | 439            | 378            | 176            | 212           | 1005           | 829             | 1469            |
|                  | (100.0)            | (83.6)           | (35.9)          | (5.1)          | (7.0)          | (4.9)          | (4.2)          | (2.0)          | (2.4)         | (11.2)         | (9.3)           | (16.4)          |
| 1965-6           | 13301              | 11272            | 4951            | 706            | 1004           | 717            | 427            | 253            | 286           | 1312           | 1506            | 2029            |
|                  | (100.0)            | (84.7)           | (37.2)          | (5.3)          | (7.5)          | (5.4)          | (3.2)          | (1.9)          | (2.2)         | (9.9)          | (11.3)          | (15.3)          |
| 1970–1           | 22065              | 18786            | 8247            | 996            | 1865           | 1053           | 856            | 393            | 493           | 1916           | 2922            | 3279            |
|                  | (100.0)            | (85.1)           | (37.4)          | (4.5)          | (8.5)          | (4.8)          | (3.9)          | (1.8)          | (2.2)         | (8.7)          | (13.2)          | (14.9)          |
| 1975–6           | 35903              | 29623            | 13358           | 1589           | 2368           | 2007           | 1024           | 668            | 850           | 3037           | 4600            | 6280            |
| 1000 1           | (100.0)            | (82.5)           | (37.2)          | (4.4)          | (6.6)          | (5.6)          | (2.9)          | (1.9)          | (2.4)         | (8.5)          | (12.8)          | (17.5)          |
| 1980–1           | 60779              | 50236            | 19021           | 3186           | 4370           | 4025           | 1907           | 1000           | 1061          | 7177           | 8488            | 10543           |
| 1001 2           | (100.0)            | (82.7)<br>55295  | (31.3)          | (5.2)          | (7.2)<br>5256  | (6.6)<br>3783  | (3.1)          | (1.6)          | (1.7)<br>1247 | (11.8)         | (14.0)          | (17.3)<br>12757 |
| 1981–2<br>1982–3 | 68052<br>71800     | 55295<br>57494   | 21495<br>22403  | 3150<br>3202   | 4999           | 3/83<br>3644   | 2203<br>2129   | 1107<br>1200   | 1422          | 7685<br>7907   | 9369            | 14306           |
| 1982–3<br>1983–4 | 85337              | 68740            | 27591           | 4332           | 7210           | 3796           | 2129           | 1379           | 1782          | 9025           | 10589<br>11429  | 16597           |
| 1984–5           | 91464              | 71953            | 25723           | 4607           | 7210           | 4250           | 3401           | 1691           | 2160          | 9216           | 13639           | 19511           |
| 1985–6           | 98221              | 76389            | 28790           | 4975           | 5895           | 4722           | 2696           | 1652           | 2186          | 9887           | 15585           | 21832           |
| 1705-0           | (100.0)            | (77.8)           | (29.3)          | (5.1)          | (6.0)          | (4.8)          | (2.7)          | (1.7)          | (2.2)         | (10.1)         | (15.9)          | (22.2)          |
| 1986–7           | 105715             | 81268            | 28635           | 4619           | 8210           | 5007           | 2274           | 1844           | 2180          | 10308          | 18193           | 24447           |
| 1987–8           | 116794             | 88951            | 31378           | 5289           | 10309          | 5569           | 2908           | 1626           | 2828          | 11502          | 17541           | 27843           |
| 1988-9           | 142343             | 110327           | 40584           | 7770           | 12195          | 6408           | 3808           | 2219           | 3222          | 13430          | 20691           | 32016           |
| 1989-90          | 155447             | 117850           | 42707           | 7894           | 13416          | 8547           | 5010           | 2343           | 2980          | 13906          | 21047           | 37597           |
| 1990-1           | 181755             | 139822           | 48824           | 9353           | 18554          | 9411           | 5482           | 2947           | 3889          | 16135          | 25229           | 41933           |
|                  | (100.0)            | (76.9)           | (26.9)          | (5.1)          | (10.2)         | (5.2)          | (3.0)          | (1.6)          | (2.1)         | (8.9)          | (13.9)          | (23.1)          |
| 1991-2           | 213614             | 162811           | 60849           | 8276           | 20935          | 10159          | 6850           | 3226           | 5679          | 17804          | 29034           | 50803           |
|                  | (100.0)            | (76.2)           | (28.5)          | (3.9)          | (9.8)          | (4.8)          | (3.2)          | (1.5)          | (2.7)         | (8.3)          | (13.6)          | (23.8)          |
| 1992-3           | 236830             | 178658           | 66566           | 9656           | 20626          | 11686          | 6398           | 3249           | 6518          | 20201          | 33758           | 58172           |
|                  | (100.0)            | (75.4)           | (28.1)          | (4.1)          | (8.7)          | (4.9)          | (2.7)          | (1.4)          | (2.8)         | (8.5)          | (14.3)          | (24.6)          |
| 1993–4           | 271839             | 204874           | 74523           | 12281          | 24096          | 14627          | 8961           | 4066           | 6740          | 21160          | 38420           | 66965           |
| 1004 5           | (100.0)            | (75.4)           | (27.4)          | (4.5)          | (8.9)          | (5.4)          | (3.3)          | (1.5)          | (2.5)         | (7.8)          | (14.1)          | (24.6)          |
| 1994–5           | 312654             | 236608           | 84983           | 13614          | 26911          | 18123          | 13005          | 3884           | 8218          | 24390          | 43479           | 76046           |
| 1995–6           | (100.0)<br>342535  | (75.7)<br>256698 | (27.2)<br>86986 | (4.4)<br>14018 | (8.6)<br>28817 | (5.8)<br>18276 | (4.2)<br>13358 | (1.2)<br>5312  | (2.6)<br>8770 | (7.8)<br>27959 | (13.9)<br>53202 | (24.3)<br>85837 |
| 1993-0           | (100.0)            | (74.9)           | (25.4)          | (4.1)          | (8.4)          | (5.3)          | (3.9)          | (1.6)          | (2.6)         | (8.2)          | (15.5)          | (25.1)          |
| 1996–7           | 399900             | 302743           | 107499          | 17204          | 34459          | 19474          | 14437          | 6227           | 10451         | 30718          | 62275           | 97157           |
| 1770 7           | (100.0)            | (75.7)           | (26.9)          | (4.3)          | (8.6)          | (4.9)          | (3.6)          | (1.6)          | (2.6)         | (7.7)          | (15.6)          | (24.3)          |
| 1997–8           | 426792             | 319586           | 106283          | 15171          | 30218          | 22330          | 12281          | 7787           | 11092         | 33276          | 81147           | 107206          |
|                  | (100.0)            | (74.9)           | (24.9)          | (3.6)          | (7.1)          | (5.2)          | (2.9)          | (1.8)          | (2.6)         | (7.8)          | (19.0)          | (25.1)          |
| 1998-9           | 488732             | 370365           | 128505          | 19591          | 36926          | 23076          | 13691          | 8152           | 14815         | 35584          | 90025           | 118367          |
|                  | (100.0)            | (75.8)           | (26.3)          | (4.0)          | (7.6)          | (4.7)          | (2.8)          | (1.7)          | (3.0)         | (7.3)          | (18.4)          | (24.2)          |
| 1999-2000        |                    | 384766           | 138767          | 18275          | 29996          | 24381          | 12636          | 9219           | 17468         | 40464          | 93560           | 129952          |
|                  | (100.0)            | (74.8)           | (27.0)          | (3.6)          | (5.8)          | (4.7)          | (2.5)          | (1.8)          | (3.4)         | (7.9)          | (18.2)          | (25.2)          |
| 2000-1           | 518693             | 378712           | 127704          | 16865          | 27264          | 27828          | 10920          | 9587           | 14147         | 41767          | 102630          | 139981          |
|                  | (100.0)            | (73.0)           | (24.6)          | (3.3)          | (5.3)          | (5.4)          | (2.1)          | (1.8)          | (2.7)         | (8.1)          | (19.8)          | (27.0)          |
| 2001-2           | 562023             | 412268           | 140293          | 22353          | 30626          | 27292          | 11570          | 10263          | 15106         | 40248          | 114516          | 149755          |
|                  | (100.0)            | (73.4)           | (25.0)          | (4.0)          | (5.4)          | (4.9)          | (2.1)          | (1.8)          | (2.7)         | (7.2)          | (20.4)          | (26.6)          |
| 2002-3           | 557036             | 397870           | 119200          | 18292          | 28649          | 25365          | 10851          | 15041          | 14145         | 41446          | 124881          | 159166          |
|                  | (100.0)            | (71.4)           | (21.4)          | (3.3)          | (5.1)          | (4.6)          | (1.9)          | (2.7)          | (2.5)         | (7.4)          | (22.4)          | (28.6)          |
| 2003–4           | 635104             | 470595           | 146948          | 21519          | 50890          | 22924          | 20147          | 14731          | 15128         | 46413          | 131896          | 164509          |
|                  | (100.0)            | (74.1)           | (23.1)          | (3.4)          | (8.0)          | (3.6)          | (3.2)          | (2.3)          | (2.4)         | (7.3)          | (20.8)          | (25.9)          |

Notes: 'Others' include other crops (rubber, gaurseed, and misc. crops), by product (straw and stalks, and others), kitchen garden products, and indigo, dyes and tannin material; \* Horticulture includes floriculture; Figures in brackets are percentage shares in total value of output of agriculture, horticulture, and live stock. Source: CSO (Various Issues), Ministry of Statistics and Programming implementation, Government of India.

TABLE A2.5
Structural Changes in Indian Industry and Decadal Growth

| Sector group                          |               | Weigh         | nt as per index nu | ımbers       |                |                        | (                      | Growth rates (per      | r cent per annum       | 1)                     |                        |
|---------------------------------------|---------------|---------------|--------------------|--------------|----------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                                       | 1956=100      | 1960=100      | 1970=100           | 1980-1=100   | 1993–4=100     | 1970–1<br>to<br>1980–1 | 1980–1<br>to<br>1990–1 | 1990–1<br>to<br>1993–4 | 1993–4<br>to<br>2003–4 | 2004–5<br>to<br>2005–6 | 1993–4<br>to<br>2005–6 |
| Mining and quarrying<br>Manufacturing | 7.47<br>88.85 | 9.72<br>84.91 | 9.69<br>81.08      | 11.5<br>77.1 | 10.47<br>79.36 | 4.6<br>4.7             | 7.6<br>7.7             | 1.4<br>2.4             | 3.1<br>6.6             | 0.70<br>9.00           | 3.2<br>6.7             |
| Electricity                           | 3.68          | 5.37          | 9.23               | 11.4         | 10.17          | 4.2                    | 9.1                    | 6.8                    | 5.5                    | 5.10                   | 5.3                    |
| General Index                         | 100           | 100           | 100                | 100          | 100            | 7.6                    | 7.9                    | 2.9                    | 6.1                    | 8.00                   | 6.2                    |
| Use-based category                    |               |               |                    |              |                |                        |                        |                        |                        |                        |                        |
| Basic goods                           | 22.33         | 25.11         | 32.28              | 39.42        | 35.51          | 6.0                    | 7.9                    | 5.8                    | 4.9                    | 6.60                   | 4.9                    |
| Capital goods                         | 4.71          | 11.76         | 15.25              | 16.43        | 9.69           | 5.6                    | 11.3                   | -3.9                   | 6.7                    | 15.50                  | 7.5                    |
| Intermediate goods                    | 24.59         | 25.88         | 20.95              | 20.51        | 26.44          | 3.5                    | 6.3                    | 4.9                    | 7.1                    | 2.30                   | 6.5                    |
| Consumer goods                        | 48.37         | 37.25         | 31.52              | 23.65        | 28.36          | 3.4                    | 6.5                    | 2.2                    | 6.6                    | 11.90                  | 7.1                    |
| Consumer durables                     | 2.21          | 5.68          | 3.41               | 2.55         | 5.12           | 4.6                    | 14.8                   | 0.7                    | 9.9                    | 14.60                  | 9.9                    |
| Consumer non-durables                 | 46.16         | 31.57         | 28.11              | 21.1         | 23.25          | 3.3                    | 5.1                    | 2.6                    | 5.6                    | 11.00                  | 6.2                    |

*Note*: Growth indicates compound growth rate in index numbers of industrial production for groups and general index calculated for the specified period using the semi-log model  $\ln Y = a + bt$ , where t = time, Y + index value, and the compound growth is obtained by taking antilog of 'b', deducting one from it and mutiplying it with 100.

Source: (i) EPWRF (2002): Annual Survey of Industries 1993-4 to 1997-8, A Data Base on the Industrial Sector in India, EPW Research Foundation, Mumbai; and as in Table A2.6.

Table A2.6 Index of Industrial Production with Major Groups and Sub-groups

| Major groups                                  | Weights | ave                    | nual<br>rage<br>owth   |                 |                 |                 |                 | Full fisc       | cal year ave    | erages base     | ed on 1993      | -4=100          |                 |                 |                 |        |
|-----------------------------------------------|---------|------------------------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
|                                               |         | 1993–4<br>to<br>2005–6 | 1980–1<br>to<br>1992–3 | 2005–6<br>(QE)  | 2004–5          | 2003–4          | 2002–3          | 2001–2          | 2000-1          | 1999–<br>2000   | 1998–9          | 1997–8          | 1996–7          | 1995–6          | 1994–5          | 1993–4 |
| (1)                                           | (2)     | (3)                    | (4)                    | (5)             | (6)             | (7)             | (8)             | (9)             | (10)            | (11)            | (12)            | (13)            | (14)            | (15)            | (16)            | (17)   |
| General Index                                 | 100.00  | 6.9                    | 6.8                    | 221.2 (8.0)     | 204.8 (8.4)     | 189.0<br>(7.0)  | 176.6<br>(5.7)  | 167.0<br>(2.7)  | 162.6<br>(5.0)  | 154.9<br>(6.7)  | 145.2<br>(4.1)  | 139.5<br>(6.7)  | 130.8 (6.1)     | 123.3<br>(13.0) | 109.1 (9.1)     | 100.0  |
| Mining and Quarrying                          | 10.47   | 3.8                    | 7.0                    | 154.5 (0.7)     | 153.4 (4.4)     | 146.9 (5.2)     | 139.6 (5.8)     | 131.9 (1.2)     | 130.3 (2.8)     | 126.7           | 125.4           | 126.4 (6.9)     | 118.2           | 120.5 (9.7)     | 109.8 (9.8)     | 100.0  |
| Manufacturing                                 | 79.36   | 7.4                    | 6.5                    | 233.9 (9.0)     | 214.6<br>(9.2)  | 196.6<br>(7.4)  | 183.1 (6.0)     | 172.7<br>(2.9)  | 167.9<br>(5.3)  | 159.4<br>(7.1)  | 148.8 (4.4)     | 142.5<br>(6.7)  | 133.6 (7.3)     | 124.5<br>(14.1) | 109.1 (9.1)     | 100.0  |
| Electricity                                   | 10.17   | 5.5                    | 8.6                    | 190.8 (5.1)     | 181.5 (5.2)     | 172.6 (5.1)     | 164.3           | 159.2           | 154.4<br>(4.0)  | 148.5 (7.3)     | 138.4 (6.5)     | 130.0 (6.6)     | 122.0 (4.0)     | 117.3 (8.1)     | 108.5           | 100.0  |
| Use-Based Classification Basic Goods          | 35.57   | 5.5                    | 7.3                    | 189.6           | 177.9           | 168.6           | 159.9           | 152.5           | 148.7           | 143.3           | 135.8           | 133.6           | 125.0           | 121.4           | 109.6           | 100.0  |
|                                               |         |                        |                        | (6.6)           | (5.5)           | (5.4)           | (4.9)           | (2.6)           | (3.8)           | (5.5)           | (1.6)           | (6.9)           | (3.0)           | (10.8)          | (9.6)           |        |
| Capital Goods                                 | 9.26    | 8.6                    | 8.8                    | 265.1<br>(15.5) | 229.6<br>(13.9) | 201.5<br>(13.6) | 177.4<br>(10.5) | 160.6<br>(-3.0) | 165.6<br>(1.4)  | 163.3<br>(6.9)  | 152.7<br>(12.6) | 135.6<br>(5.8)  | 128.2<br>(11.5) | 115.0<br>(5.3)  | 109.2<br>(9.2)  | 100.0  |
| Intermediate Goods                            | 26.51   | 6.7                    | 5.2                    | 215.9<br>(2.3)  | 211.1<br>(6.1)  | 199.0<br>(6.4)  | 187.1<br>(3.9)  | 180.1<br>(1.6)  | 177.2<br>(4.5)  | 169.5<br>(8.8)  | 155.8<br>(6.1)  | 146.8<br>(8.0)  | 135.9<br>(8.1)  | 125.7<br>(19.4) | 105.3<br>(5.3)  | 100.0  |
| Consumer Goods                                | 28.66   | 8.0                    | 5.8                    | 251.2<br>(11.9) | 224.4<br>(11.7) | 200.9<br>(7.1)  | 187.5<br>(7.1)  | 175.1<br>(6.1)  | 165.1<br>(7.9)  | 153.0<br>(5.7)  | 144.8<br>(2.2)  | 141.7<br>(5.5)  | 134.3<br>(6.2)  | 126.5<br>(12.8) | 112.1<br>(12.1) | 100.0  |
| Consumer Durables                             | 5.36    | 11.2                   | 10.6                   | 347.9<br>(14.6) | 303.5<br>(14.4) | 265.4<br>(11.6) | 237.8<br>(-6.3) | 253.7<br>(12.0) | 226.5<br>(14.0) | 198.7<br>(14.1) | 174.1<br>(5.6)  | 164.9<br>(7.8)  | 152.9<br>(4.6)  | 146.2<br>(25.8) | 116.2<br>(16.2) | 100.0  |
| Consumer Non-durables                         | 23.30   | 7.2                    | 5.1                    | 228.9<br>(11.0) | 206.2 (10.8)    | 186.1<br>(5.8)  | 175.9<br>(12.0) | 157.0<br>(4.0)  | 151.0<br>(6.0)  | 142.5<br>(3.2)  | 138.1<br>(1.2)  | 136.5<br>(4.8)  | 130.2 (6.6)     | 122.1<br>(9.8)  | 111.2<br>(11.2) | 100.0  |
| Groupwise Index Number of Industrial Producti | ion     |                        |                        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |        |
| Food Products                                 | 9.08    | 4.7                    | 5.0                    | 170.7<br>(2.0)  | 167.3<br>(-0.4) | 167.9<br>(-0.5) | 168.7<br>(11.0) | 152.0<br>(-1.6) | 154.5<br>(10.1) | 140.3<br>(4.2)  | 134.7<br>(0.7)  | 133.8<br>(-0.4) | 134.3<br>(3.5)  | 129.8<br>(6.7)  | 121.6<br>(21.6) | 100.0  |
| Beverages, Tobacco, and Related Products      | 2.38    | 12.5                   | 1.4                    | 402.5 (16.4)    | 345.9<br>(10.8) | 312.1 (8.5)     | 287.6<br>(27.9) | 224.8 (12.2)    | 200.4 (4.3)     | 192.1<br>(7.6)  | 178.5<br>(12.9) | 158.1<br>(19.4) | 132.4<br>(13.5) | 116.7<br>(13.3) | 103.0 (3.0)     | 100.0  |
| Cotton Textiles                               | 5.52    | 2.8                    | 3.7                    | 137.0<br>(8.5)  | 126.3 (7.6)     | 117.4 (-3.1)    | 121.2 (-2.7)    | 124.5 (-2.2)    | 127.3 (2.9)     | 123.7<br>(6.7)  | 115.9<br>(-7.7) | 125.6<br>(2.4)  | 122.7<br>(12.1) | 109.5<br>(10.5) | 99.1<br>(-0.9)  | 100.0  |
| Wool, Silk, and Man-made Fibre Textiles       | 2.26    | 8.1                    | -0.6                   | 249.4<br>(0.2)  | 249.0<br>(3.5)  | 240.5 (6.8)     | 225.1 (3.0)     | 218.5 (4.4)     | 209.3 (5.8)     | 197.8<br>(11.9) | 176.8<br>(2.8)  | 172.0<br>(18.5) | 145.1<br>(10.5) | 131.3<br>(14.7) | 114.5<br>(14.5) | 100.0  |

TABLE A2.6 (contd.)

| (1)                                          | (2)   | (3)  | (4)  | (5)    | (6)    | (7)    | (8)     | (9)     | (10)   | (11)    | (12)   | (13)   | (14)   | (15)   | (16)    | (17)  |
|----------------------------------------------|-------|------|------|--------|--------|--------|---------|---------|--------|---------|--------|--------|--------|--------|---------|-------|
| Jute and Other Vegetable Fibre Textiles      | 0.59  | 0.8  | -0.3 | 107.7  | 107.2  | 103.4  | 107.9   | 99.6    | 105.8  | 105.0   | 106.0  | 114.3  | 97.8   | 102.4  | 95.1    | 100.0 |
|                                              |       |      |      | (0.5)  | (3.7)  | (-4.2) | (8.3)   | (-5.9)  | (0.8)  | (-0.9)  | (-7.3) | (16.9) | (-4.5) | (7.7)  | (-4.9)  |       |
| Textile Products (including wearing apparel) | 2.54  | 8.7  | 7.4  | 255.6  | 219.6  | 184.3  | 190.3   | 166.3   | 162.4  | 156.1   | 153.1  | 158.7  | 146.3  | 133.7  | 98.5    | 100.0 |
|                                              |       |      |      | (16.4) | (19.2) | (-3.2) | (14.4)  | (2.4)   | (4.0)  | (2.0)   | (-3.5) | (8.5)  | (9.4)  | (35.7) | (-1.5)  |       |
| Wood and Wood Products, Furniture,           | 2.70  | -2.4 | 6.6  | 69.7   | 74.8   | 81.7   | 76.5    | 92.8    | 104.3  | 101.4   | 121.0  | 128.5  | 131.9  | 123.2  | 99.3    | 100.0 |
| and Fixtures                                 |       |      |      | (-6.8) | (-8.4) | (6.8)  | (-17.6) | (-11.0) | (2.9)  | (-16.2) | (-5.8) | (-2.6) | (7.1)  | (24.1) | (-0.7)  |       |
| Paper and Paper Products and Printing,       | 2.65  | 7.4  | 6.2  | 228.2  | 230.7  | 208.7  | 180.5   | 169.0   | 164.0  | 180.5   | 169.8  | 146.4  | 136.9  | 125.5  | 108.6   | 100.0 |
| Publishing and Allied Industries             |       |      |      | (-1.1) | (10.5) | (15.6) | (6.8)   | (3.0)   | (-9.1) | (6.3)   | (16.0) | (6.9)  | (9.1)  | (15.6) | (8.6)   |       |
| Leather and Leather and Fur Products         | 1.14  | 3.7  | 4.9  | 148.4  | 156.9  | 147.0  | 152.9   | 158.0   | 150.0  | 135.5   | 119.1  | 110.2  | 107.8  | 98.5   | 86.6    | 100.0 |
|                                              |       |      |      | (-5.4) | (6.7)  | (-3.9) | (-3.2)  | (5.3)   | (10.7) | (13.8)  | (8.1)  | (2.2)  | (9.4)  | (13.7) | (-13.4) |       |
| Basic Chemicals and Chemical Products        | 14.00 | 8.3  | 9.0  | 258.0  | 238.6  | 208.4  | 191.8   | 185.0   | 176.6  | 164.6   | 149.7  | 140.4  | 122.7  | 117.1  | 105.3   | 100.0 |
| (except products of petroleum and coal)      |       |      |      | (8.1)  | (14.5) | (8.7)  | (3.7)   | (4.8)   | (7.3)  | (10.0)  | (6.6)  | (14.4) | (4.8)  | (11.2) | (5.3)   |       |
| Rubber, Plastic, Petroleum, and              | 5.73  | 6.0  | 6.6  | 200.4  | 192.2  | 187.7  | 179.7   | 170.4   | 153.4  | 137.2   | 138.7  | 124.6  | 118.4  | 116.1  | 107.7   | 100.0 |
| Coal Products                                |       |      |      | (4.3)  | (2.4)  | (4.5)  | (5.5)   | (11.1)  | (11.8) | (-1.1)  | (11.3) | (5.2)  | (2.0)  | (7.8)  | (7.7)   |       |
| Non-metallic Mineral Products                | 4.40  | 8.9  | 4.6  | 270.1  | 244.3  | 240.6  | 232.0   | 220.7   | 218.2  | 220.8   | 177.5  | 163.9  | 144.5  | 133.9  | 108.3   | 100.0 |
|                                              |       |      |      | (10.6) | (1.5)  | (3.7)  | (5.1)   | (1.1)   | (-1.2) | (24.4)  | (8.3)  | (13.4) | (7.9)  | (23.6) | (8.3)   |       |
| Basic Metal and Alloy Industries             | 7.45  | 7.2  | 2.1  | 226.9  | 196.1  | 186.0  | 170.4   | 156.0   | 149.6  | 146.9   | 139.9  | 143.5  | 139.8  | 131.0  | 113.1   | 100.0 |
|                                              |       |      |      | (15.7) | (5.4)  | (9.2)  | (9.2)   | (4.3)   | (1.8)  | (5.0)   | (-2.5) | (2.6)  | (6.7)  | (15.8) | (13.1)  |       |
| Metal Products and Parts except              | 2.81  | 4.6  | 5.2  | 166.1  | 166.3  | 157.3  | 151.7   | 142.6   | 158.5  | 137.8   | 139.5  | 119.2  | 110.5  | 100.7  | 105.6   | 100.0 |
| Machinery & Equipment                        |       |      |      | (-0.1) | (5.7)  | (3.7)  | (6.4)   | (-10.0) | (15.0) | (-1.2)  | (17.0) | (7.9)  | (9.7)  | (-4.6) | (5.6)   |       |
| Machinery and Equipment other than           | 9.57  | 10.1 | 15.0 | 311.1  | 279.4  | 233.3  | 201.4   | 198.3   | 195.8  | 182.5   | 155.0  | 152.7  | 144.3  | 137.4  | 115.8   | 100.0 |
| Transport Equipment                          |       |      |      | (11.3) | (19.8) | (15.8) | (1.6)   | (1.3)   | (7.3)  | (17.7)  | (1.5)  | (5.8)  | (5.0)  | (18.7) | (15.8)  |       |
| Transport Equipment and Parts                | 3.98  | 10.3 | 6.0  | 319.1  | 283.7  | 272.6  | 232.9   | 203.3   | 190.3  | 194.1   | 183.6  | 152.9  | 149.1  | 132.5  | 112.9   | 100.0 |
|                                              |       |      |      | (12.5) | (4.1)  | (17.0) | (14.6)  | (6.8)   | (-2.0) | (5.7)   | (20.1) | (2.5)  | (12.5) | (17.4) | (12.9)  |       |
| Other Manufacturing Industries               | 2.56  | 9.5  | 11.5 | 275.3  | 221.2  | 186.6  | 173.3   | 173.2   | 159.1  | 142.5   | 169.7  | 168.0  | 170.2  | 136.5  | 108.5   | 100.0 |
|                                              |       |      |      | (24.5) | (18.5) | (7.7)  | (0.1)   | (8.9)   | (11.6) | (-16.0) | (1.0)  | (-1.3) | (24.7) | (25.8) | (8.5)   |       |

TABLE A2.6 (contd.)

|                                                  | Weight |        |         |         |         | Fu      | ll fiscal ye | ar averages | based on | 1993–4=10 | 00     |         |         |        |        |
|--------------------------------------------------|--------|--------|---------|---------|---------|---------|--------------|-------------|----------|-----------|--------|---------|---------|--------|--------|
|                                                  |        | 1993–4 | 1992-3  | 1991–2  | 1990–1  | 1989–90 | 1988–9       | 1987–8      | 1986–7   | 1985–6    | 1984–5 | 1983–4  | 1982–3  | 1981–2 | 1980–1 |
|                                                  |        | (14)   | (15)    | (16)    | (17)    | (18)    | (19)         | (20)        | (21)     | (22)      | (23)   | (24)    | (25)    | (26)   | (27)   |
| General Index                                    | 100.00 | 232.0  | 218.9   | 213.9   | 212.6   | 196.4   | 180.9        | 166.4       | 155.1    | 142.1     | 130.7  | 120.4   | 112.8   | 109.3  | 100.0  |
|                                                  |        | (6.0)  | (2.3)   | (0.6)   | (8.2)   | (8.6)   | (8.7)        | (7.3)       | (9.1)    | (8.7)     | (8.6)  | (6.7)   | (3.2)   | (9.3)  |        |
| Mining and Quarrying                             | 11.46  | 231.5  | 223.7   | 222.5   | 221.2   | 211.6   | 199.1        | 184.6       | 177.9    | 167.5     | 160.9  | 147.8   | 132.3   | 117.7  | 100.0  |
|                                                  |        | (3.5)  | (0.5)   | (0.6)   | (4.5)   | (6.3)   | (7.9)        | (3.8)       | (6.2)    | (4.1)     | (8.9)  | (11.7)  | (12.4)  | (17.7) |        |
| Manufacturing                                    | 77.11  | 223.5  | 210.7   | 206.2   | 207.8   | 190.7   | 175.6        | 161.5       | 149.7    | 136.9     | 124.8  | 115.6   | 109.4   | 107.9  | 100.0  |
|                                                  |        | (6.1)  | (2.2)   | (-0.8)  | (9.0)   | (8.6)   | (8.7)        | (7.9)       | (9.3)    | (9.7)     | (8.0)  | (5.7)   | (1.4)   | (7.9)  |        |
| Electricity                                      | 11.43  | 290.0  | 269.9   | 257.0   | 236.8   | 219.7   | 198.2        | 181.0       | 168.1    | 152.4     | 140.4  | 125.4   | 116.5   | 110.2  | 100.0  |
|                                                  |        | (7.4)  | (5.0)   | (8.5)   | (7.8)   | (10.8)  | (9.5)        | (7.7)       | (10.3)   | (8.5)     | (12.0) | (7.6)   | (5.7)   | (10.2) |        |
| Use-Based Classification                         |        |        |         |         |         |         |              |             |          |           |        |         |         |        |        |
| Basic Goods                                      | 39.42  | 254.9  | 232.9   | 226.9   | 213.1   | 199.4   | 189.2        | 172.2       | 163.2    | 149.3     | 139.8  | 125.8   | 118.7   | 110.9  | 100.0  |
|                                                  |        | (9.4)  | (2.6)   | (6.5)   | (6.9)   | (5.4)   | (9.9)        | (5.5)       | (9.3)    | (6.8)     | (11.1) | (6.0)   | (7.0)   | (10.9) |        |
| Capital Goods                                    | 16.43  | 255.4  | 266.4   | 266.8   | 291.8   | 251.5   | 206.4        | 192.8       | 166.3    | 140.7     | 127.2  | 123.5   | 110.6   | 106.7  | 100.0  |
| -                                                |        | (-4.1) | (-0.1)  | (-8.6)  | (16.0)  | (21.9)  | (7.1)        | (15.9)      | (18.2)   | (10.6)    | (3.0)  | (11.7)  | (3.7)   | (6.7)  |        |
| Intermediate Goods                               | 20.51  | 203.9  | 182.6   | 173.2   | 176.9   | 168.9   | 161.9        | 145.0       | 141.2    | 135.7     | 126.2  | 115.0   | 104.7   | 103.7  | 100.0  |
|                                                  |        | (11.7) | (5.4)   | (-2.1)  | (4.7)   | (4.3)   | (11.7)       | (2.7)       | (4.1)    | (7.5)     | (9.7)  | (9.8)   | (1.0)   | (3.7)  |        |
| Consumer Goods                                   | 23.65  | 202.0  | 194.2   | 190.8   | 189.0   | 177.0   | 166.2        | 160.0       | 145.7    | 137.3     | 122.0  | 113.8   | 112.0   | 113.8  | 100.0  |
|                                                  |        | (4.0)  | (1.8)   | (1.0)   | (6.8)   | (6.5)   | (3.9)        | (9.8)       | (6.1)    | (12.5)    | (7.2)  | (1.6)   | (-1.6)  | (13.8) |        |
| Consumer Durables                                | 2.55   | 369.4  | 318.1   | 320.5   | 359.7   | 325.0   | 317.5        | 259.6       | 241.3    | 212.2     | 178.8  | 140.5   | 121.0   | 110.9  | 100.0  |
|                                                  |        | (16.1) | (-0.7)  | (-10.9) | (10.7)  | (2.4)   | (22.3)       | (7.6)       | (13.7)   | (18.7)    | (27.3) | (16.1)  | (9.1)   | (10.9) |        |
| Consumer Non-Durables                            | 21.1   | 181.7  | 179.3   | 175.1   | 168.3   | 159.1   | 148.0        | 147.9       | 134.1    | 129.5     | 116.1  | 110.5   | 110.9   | 114.1  | 100.0  |
|                                                  |        | (1.3)  | (2.4)   | (4.0)   | (5.8)   | (7.5)   | (0.1)        | (10.3)      | (3.6)    | (11.5)    | (5.1)  | (-0.4)  | (-2.8)  | (14.1) |        |
| Groupwise Index Number of Industrial Production  |        | ( ,    | ( ' )   | ( /     | (***)   | ( )     | ()           | (,          | ()       | (,        | ()     | ( 11 )  | ( '''   |        |        |
| Food Products                                    | 5.33   | 160.0  | 175.3   | 178.0   | 169.7   | 150.9   | 148.5        | 139.0       | 133.2    | 125.6     | 120.0  | 121.1   | 129.5   | 113.5  | 100.0  |
|                                                  |        | (-8.7) | (-1.5)  | (4.9)   | (12.5)  | (1.6)   | (6.8)        | (4.4)       | (6.1)    | (4.7)     | (-0.9) | (-6.5)  | (14.1)  | (13.5) |        |
| Beverages, Tobacco, and Tobacco Products         | 1.57   | 137.8  | 113.7   | 107.3   | 104.3   | 103.0   | 92.1         | 84.9        | 98.5     | 112.1     | 111.7  | 104.5   | 107.8   | 104.3  | 100.0  |
|                                                  |        | (21.2) | (6.0)   | (2.9)   | (1.3)   | (11.8)  | (8.5)        | (-13.8)     | (-12.1)  | (0.4)     | (6.9)  | (-3.1)  | (3.4)   | (4.3)  |        |
| Cotton Textiles                                  | 12.31  | 160.5  | 150.1   | 139.0   | 128.7   | 112.3   | 107.8        | 111.3       | 112.5    | 110.4     | 102.2  | 100.2   | 89.4    | 99.7   | 100.0  |
|                                                  |        | (6.9)  | (8.0)   | (8.0)   | (14.6)  | (4.2)   | (-3.1)       | (-1.1)      | (1.9)    | (8.0)     | (2.0)  | (12.1)  | (-10.3) | (-0.3) |        |
| Jute, Hemp, and Mesta Textiles                   | 2.00   | 103.2  | 87.0    | 90.8    | 101.7   | 97.5    | 101.9        | 91.1        | 101.1    | 97.2      | 99.4   | 78.2    | 92.9    | 95.7   | 100.0  |
| ,, <sub>F</sub> ,                                |        | (18.6) | (-4.2)  | (-10.7) | (4.3)   | (-4.3)  | (11.9)       | (-9.9)      | (4.0)    | (-2.2)    | (27.1) | (-15.8) | (-2.9)  | (-4.3) |        |
| Textile Products (including wearing apparel)     | 0.82   | 73.4   | 75.8    | 97.2    | 103.2   | 151.7   | 134.2        | 91.7        | 87.1     | 112.8     | 95.6   | 92.1    | 96.3    | 96.7   | 100.0  |
| and appearing appeared)                          | 0.02   | (-3.2) | (-22.0) | (-5.8)  | (-32.0) | (13.0)  | (46.3)       | (5.3)       | (-22.8)  | (18.0)    | (3.8)  | (-4.4)  | (-0.4)  | (-3.3) | 100.0  |
| Wood and Wood Products, Furnitures, and Fixtures | 0.45   | 199.3  | 190.5   | 185.0   | 198.4   | 176.0   | 171.7        | 161.7       | 246.1    | 223.2     | 216.5  | 167.5   | 153.0   | 153.2  | 100.0  |
| and I roducto, I difficulto, and I fatures       | 0.13   | (4.6)  | (3.0)   | (-6.8)  | (12.7)  | (2.5)   | (6.2)        | (-34.3)     | (10.3)   | (3.1)     | (29.3) | (9.5)   | (-0.1)  | (53.2) | 100.0  |
|                                                  |        | (4.0)  | (3.0)   | ( 0.0)  | (12.7)  | (2.3)   | (0.2)        | ( 34.3)     | (10.5)   | (3.1)     | (27.5) | (7.5)   | ( 0.1)  | (33.2) |        |

TABLE A2.6 (contd.)

|                                                    |        | (14)   | (15)    | (16)    | (17)   | (18)   | (19)   | (20)   | (21)   | (22)   | (23)    | (24)   | (25)    | (26)   | (27)  |
|----------------------------------------------------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|---------|--------|---------|--------|-------|
| Paper and Paper Products and Printing, Publishing, | 3.24   | 224.8  | 210.9   | 203.0   | 197.9  | 181.5  | 171.3  | 166.3  | 163.2  | 148.4  | 131.9   | 109.3  | 105.5   | 108.2  | 100.0 |
| and Allied Industries                              |        | (6.6)  | (3.9)   | (2.6)   | (9.0)  | (6.0)  | (3.0)  | (1.9)  | (10.0) | (12.5) | (20.7)  | (3.6)  | (-2.5)  | (8.2)  |       |
| Leather and Leather and Fur Products               | 0.49   | 204.3  | 187.7   | 181.3   | 194.2  | 188.3  | 177.4  | 185.5  | 178.7  | 169.2  | 139.7   | 116.3  | 100.1   | 128.1  | 100.0 |
|                                                    |        | (8.8)  | (3.5)   | (-6.6)  | (3.1)  | (6.1)  | (-4.4) | (3.8)  | (5.6)  | (21.1) | (20.1)  | (16.2) | (-21.9) | (28.1) |       |
| Rubber, Plastic, Petroleum and Coal Products       | 4.00   | 176.4  | 174.6   | 172.0   | 173.6  | 173.5  | 168.3  | 155.4  | 149.6  | 153.0  | 147.2   | 136.1  | 119.0   | 119.1  | 100.0 |
|                                                    |        | (1.0)  | (1.5)   | (-0.9)  | (0.1)  | (3.1)  | (8.3)  | (3.9)  | (-2.2) | (3.9)  | (8.2)   | (14.4) | (-0.1)  | (19.1) |       |
| Chemicals and Chemical Products                    | 12.51  | 297.9  | 276.9   | 261.2   | 254.3  | 247.6  | 233.4  | 200.9  | 175.5  | 154.3  | 142.8   | 131.0  | 121.2   | 116.9  | 100.0 |
|                                                    |        | (7.6)  | (6.0)   | (2.7)   | (2.7)  | (6.1)  | (16.2) | (14.5) | (13.7) | (8.1)  | (9.0)   | (8.1)  | (3.7)   | (16.9) |       |
| Non-metallic Mineral Products                      | 3.00   | 218.5  | 209.0   | 205.2   | 193.2  | 189.9  | 184.6  | 158.1  | 160.3  | 157.3  | 138.4   | 122.5  | 103.7   | 106.7  | 100.0 |
|                                                    |        | (4.5)  | (1.9)   | (6.2)   | (1.7)  | (2.9)  | (16.8) | (-1.4) | (1.9)  | (13.7) | (13.0)  | (18.1) | (-2.8)  | (6.7)  |       |
| Basic Metal and Alloy Products                     | 9.80   | 224.2  | 168.5   | 167.8   | 159.1  | 143.7  | 145.0  | 135.6  | 126.8  | 117.0  | 107.3   | 95.1   | 104.2   | 100.0  | 100.0 |
|                                                    |        | (33.1) | (0.4)   | (5.5)   | (10.7) | (-0.9) | (6.9)  | (6.9)  | (8.4)  | (9.0)  | (12.8)  | (-8.7) | (4.2)   | (0.0)  |       |
| Metal Products and Parts except Machinery          | 2.29   | 126.5  | 124.6   | 133.1   | 143.2  | 142.6  | 133.5  | 129.6  | 124.4  | 114.7  | 105.0   | 88.1   | 89.9    | 94.6   | 100.0 |
| & Equipment                                        |        | (1.5)  | (-6.4)  | (-7.1)  | (0.4)  | (6.8)  | (3.0)  | (4.2)  | (8.5)  | (9.2)  | (19.2)  | (-2.0) | (-5.0)  | (-5.4) |       |
| Machinery, Machine Tools, and parts excluding      | 6.24   | 189.2  | 181.1   | 183.3   | 187.0  | 171.9  | 161.1  | 139.2  | 141.8  | 130.2  | 127.6   | 119.6  | 112.0   | 111.1  | 100.0 |
| Electrical Machinery                               |        | (4.5)  | (-1.2)  | (-2.0)  | (8.8)  | (6.7)  | (15.7) | (-1.8) | (8.9)  | (2.0)  | (6.7)   | (6.8)  | (0.8)   | (11.1) |       |
| Electrical Machinery, Apparatus Appliances         | 5.78   | 460.1  | 483.6   | 493.7   | 562.0  | 459.2  | 348.7  | 335.2  | 254.7  | 200.6  | 148.8   | 143.1  | 115.9   | 103.9  | 100.0 |
|                                                    |        | (-4.9) | (-2.0)  | (-12.2) | (22.4) | (31.7) | (4.0)  | (31.6) | (27.0) | (34.8) | (4.0)   | (23.5) | (11.5)  | (3.9)  |       |
| Transport Equipment and Parts                      | 6.39   | 211.2  | 200.6   | 191.1   | 192.5  | 181.1  | 172.5  | 151.7  | 144.9  | 135.8  | 131.6   | 123.4  | 111.3   | 108.1  | 100.0 |
|                                                    | (5.3)  | (5.0)  | (-0.7)  | (6.3)   | (5.0)  | (13.7) | (4.7)  | (6.7)  | (3.2)  | (6.6)  | (10.9)  | (3.0)  | (8.1)   |        |       |
| Other Manufacturing Industries                     | 0.91   | 267.0  | 281.3   | 269.9   | 323.7  | 333.2  | 305.6  | 272.1  | 235.4  | 152.7  | 122.8   | 104.6  | 155.0   | 149.2  | 100.0 |
|                                                    | (-5.1) | (4.2)  | (-16.6) | (-2.9)  | (9.0)  | (12.3) | (15.6) | (54.2) | (24.3) | (17.4) | (-32.5) | (3.9)  | (49.2)  |        |       |

*Note:* Figures in brackets are percentage variations over the previous year; (QE = Quick Estimate).

## A3 BUDGETARY TRANSACTIONS

TABLE A3.1 Budgetary Position of Government of India

(Rupees crore)

|                                             |                    |                     |                    |                     |                     |                     |                     |                     | (rapeco crore)         |
|---------------------------------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
| Budget Heads                                | 2006–7<br>(Budget) | 2005–6<br>(Revised) | 2005–6<br>(Budget) | 2004–5<br>(Actuals) | 2003–4<br>(Actuals) | 2002–3<br>(Actuals) | 2001–2<br>(Actuals) | 2000–1<br>(Actuals) | 1999–2000<br>(Actuals) |
| (1)                                         | (2)                | (3)                 | (4)                | (5)                 | (6)                 | (7)                 | (8)                 | (9)                 | (10)                   |
| (1) Revenue receipts 403465                 | 348474             | 351200              | 306013             | 263878              | 231748              | 201449              | 192624              | 181513              |                        |
| (a) Tax revenue (net to centre)             | 327205             | 274139              | 273466             | 224798              | 186982              | 159425              | 133662              | 136916              | 128271                 |
| (b) Non-tax revenue                         | 76260              | 74335               | 77734              | 81215               | 76896               | 72323               | 67787               | 55708               | 53242                  |
| (2) Capital receipts 160526                 | 160231             | 163144              | 191669             | 207490              | 182414              | 161004              | 132987              | 116571              |                        |
| (a) Non-debt Capital Receipts of which:     | 11840              | 14056               | 12000              | 66467               | 84218               | 37342               | 20049               | 14171               | 11854                  |
| (a.1) Recovery of loans                     | 8000               | 11700               | 12000              | 62043               | 67265               | 34191               | 16403               | 12046               | 10131                  |
| (a.2) Other Receipts of which:              | 3840               | 2356                | 0                  | 4424                | 16953               | 3151                | 3646                | 2125                | 1723                   |
| (a.2.1) Disinvestment of equity of PSEs     | 3840               | 2356                | 0                  | 4424                | 16953               | 3151                | 3646                | 2125                | 1723                   |
| (b) Borrowings and Other Liabilities        | 148686             | 146175              | 151144             | 125202              | 123272              | 145072              | 140955              | 118816              | 104717                 |
| (3) Total Receipts                          | 563991             | 508705              | 514344             | 497682              | 471368              | 414162              | 362453              | 325611              | 298084                 |
| (4) Non-plan expenditure                    | 391263             | 364914              | 370847             | 365406              | 349088              | 302708              | 261259              | 242942              | 221902                 |
| (a) On revenue account of which:            | 344430             | 326142              | 330530             | 296857              | 283502              | 268074              | 239954              | 226782              | 202309                 |
| (a.1) Interest payment                      | 139823             | 130032              | 133945             | 126934              | 124088              | 117804              | 107460              | 99314               | 90249                  |
| (b) On capital account                      | 46833              | 38772               | 40317              | 68549               | 65586               | 34634               | 21305               | 16160               | 19593                  |
| (5) Plan expenditure 172728                 | 143791             | 143497              | 132276             | 122280              | 111455              | 101194              | 82669               | 76182               |                        |
| (a) On revenue account                      | 143762             | 114153              | 115982             | 87495               | 78638               | 71554               | 61657               | 51076               | 46800                  |
| (b) On capital account                      | 28966              | 29638               | 27515**            | 44781               | 43642               | 39901               | 39537               | 31593               | 29382                  |
| (6) Total expenditure (4+5)                 | 563991             | 508705              | 514344             | 497682              | 471368              | 414163              | 362453              | 325611              | 298084                 |
|                                             | (10.9)             | (2.2)               | (3.3)              | (5.6)               | (13.8)              | (14.3)              | (11.3)              | (9.2)               | (6.7)                  |
|                                             | [14.3]             | [14.4]              | [14.6]             | [15.9]              | [17.1]              | [16.9]              | [15.9]              | [15.4]              | [15.2]                 |
| (7) Revenue deficit (1–6.a)                 | 84727              | 91821               | 95312              | 78338               | 98262               | 107880              | 100162              | 85234               | 67596                  |
|                                             | [2.1]              | [2.6]               | [2.7]              | [2.5]               | [3.6]               | [4.4]               | [4.4]               | [4.0]               | [3.5]                  |
| (8) Fiscal deficit (2.c+8) or (1+2.a+2.b-6) | 148686             | 146175              | 151144             | 125202              | 123272              | 145072              | 140955              | 118816              | 104717                 |
|                                             | [3.8]              | [4.1]               | [4.3]              | [4.0]               | [4.5]               | [5.9]               | [6.2]               | [5.6]               | [5.3]                  |
| (9) Primary deficit (9–4.a1)                | 8863               | 16143               | 17199              | -1732               | -816                | 27268               | 33495               | 19502               | 14468                  |
|                                             | [0.2]              | [0.5]               | [0.5]              | [-0.1]              | [-0.0]              | [1.1]               | [1.5]               | [0.9]               | [0.7]                  |

TABLE A3.1 (contd.)

| Budget Heads                                  | 1998–9<br>(Actuals) | 1997–8<br>(Actuals) | 1996–7<br>(Actuals) | 1995–6<br>(Actuals) | 1994–5<br>(Actuals) | 1993–4<br>(Actuals) | 1992–3<br>(Actuals) | 1991–2<br>(Actuals) | 1990–1<br>(Actuals) |
|-----------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (1)                                           | (11)                | (12)                | (13)                | (14)                | (15)                | (16)                | (17)                | (18)                | (19)                |
| (1) Revenue receipts                          | 149510              | 133901              | 126279              | 110130              | 91083               | 75453               | 74128               | 66047               | 54954               |
| (a) Tax revenue (net to centre)               | 104652              | 95672               | 93701               | 81939               | 67454               | 53449               | 54044               | 50070               | 42978               |
| (b) Non-tax revenue                           | 44858               | 38229               | 32578               | 28191               | 23629               | 22004               | 20084               | 15977               | 11976               |
| (2) Capital receipts                          | 129856              | 98167               | 74728               | 58338               | 68695               | 55440               | 36178               | 38528               | 39015               |
| (a) Non-debt Capital Receipts of which:       | 16507               | 9230                | 7995                | 7902                | 11952               | 6143                | 8317                | 9058                | 5712                |
| (a.1) Recovery of loans                       | 10633               | 8318                | 7540                | 6505                | 6345                | 6191                | 6356                | 6020                | 5712                |
| (a.2) Other Receipts of which:                | 5874                | 912                 | 455                 | 1397                | 5607                | -48                 | 1961                | 3038                | 0                   |
| (a.2.1) Disinvestment of equity of PSEs       | 5874                | 912                 | 455                 | 1397                | 5607                | -48                 | 1961                | 3038                | 0                   |
| (b) Borrowings and Other Liabilities          | 113349              | 88937               | 66733               | 50436               | 56743               | 49297               | 27861               | 29470               | 33303               |
| (3) Total Receipts                            | 279366              | 232068              | 201007              | 168468              | 159778              | 130893              | 110306              | 104575              | 93969               |
| (4) Non-plan expenditure                      | 212548              | 172991              | 147473              | 131901              | 113361              | 98998               | 85958               | 80469               | 76198               |
| (a) On revenue account of which:              | 176900              | 145176              | 127298              | 110839              | 93847               | 83545               | 72925               | 67234               | 60850               |
| (a.1) Interest payment                        | 77882               | 65637               | 59478               | 50031               | 44049               | 36695               | 31035               | 26563               | 21471               |
| (b) On capital account                        | 35648               | 27815               | 20175               | 21062               | 19514               | 15453               | 13033               | 13235               | 15348               |
| (5) Plan expenditure 66818                    | 59077               | 53534               | 46374               | 47378               | 42855               | 36660               | 30961               | 29118               |                     |
| (a) On revenue account                        | 40519               | 35174               | 31635               | 29021               | 28265               | 24624               | 19777               | 15074               | 12666               |
| (b) On capital account                        | 26299               | 23903               | 21899               | 17353               | 19113               | 18231               | 16883               | 15887               | 16452               |
| (6) Total expenditure (4+5)                   | 279366              | 232068              | 201007              | 178275              | 160739              | 141853              | 122618              | 111430              | 105316              |
|                                               | (20.4)              | (15.5)              | (12.8)              | (10.9)              | (13.3)              | (15.7)              | (10.0)              | (5.8)               | (13.4)              |
|                                               | [6.0]               | [15.2]              | [14.7]              | [15.0]              | [15.9]              | [16.5]              | [16.4]              | [17.1]              | [18.5]              |
| (7) Revenue deficit (1–6.a)                   | 67909               | 46449               | 32654               | 29730               | 31029               | 32716               | 18574               | 16261               | 18562               |
|                                               | [3.9]               | [3.1]               | [2.4]               | [2.5]               | [3.1]               | [3.8]               | [2.5]               | [2.5]               | [3.3]               |
| (8) Fiscal deficit (2.c + 8) or (1+2.a+2.b-6) | 113349              | 88937               | 66733               | 60243               | 57703               | 60257               | 40173               | 36325               | 44650               |
|                                               | [6.5]               | [5.8]               | [4.9]               | [5.1]               | [5.7]               | [7.0]               | [5.4]               | [5.6]               | [7.9]               |
| (9) Primary deficit (9–4.a1)                  | 35467               | 23300               | 7255                | 10212               | 13655               | 23562               | 9138                | 9762                | 23134               |
|                                               | [2.0]               | [1.5]               | [0.5]               | [0.9]               | [1.3]               | [2.7]               | [1.2]               | [1.5]               | [4.1]               |

Notes: Figures in round brackets are variations over the previous year in percentages; Figures in square brackets are percentages to GDP at current market prices; GDP data is as per the revised series from 1999–2000 and it is at 1993–4 series before 1999–2000; GDP is estimated at 12 per cent growth from previous year for 2006–7.

Source: Budget at a Glance and Expenditure Budget, Vol. 1, Ministry of Finance, GOI (2006–7 and earlier budgets).

Table A3.2 Consolidated Budgetary Position of State Governments at a Glance

(Rs crore)

| Year       |          | Re     | venue acc         | ount   |                                 |          | Cap   | ital accou | ınt <sup>@</sup> |                                 |          | Agg    | gregate   |        | Overall                        | Gross                      |       | Revenue         | RD as                                     | GFD as                                    |
|------------|----------|--------|-------------------|--------|---------------------------------|----------|-------|------------|------------------|---------------------------------|----------|--------|-----------|--------|--------------------------------|----------------------------|-------|-----------------|-------------------------------------------|-------------------------------------------|
|            | Receipts | 3      | Expend-<br>itures |        | Sur-<br>plus(+)/<br>deficit (-) | Receipts | I     | Expenditu  | res              | Sur-<br>plus(+)/<br>deficit (-) | Receipts |        | Expenditu | res    | sur-<br>plus(+)/<br>deficit(-) | fiscal<br>deficit<br>(GFD) |       | deficit<br>(RD) | per cent<br>to aggregate<br>lisbursements | per cent<br>to aggregate<br>disbursements |
| (1)        | (2)      |        | (3)               |        | (4)                             | (5)      |       | (6)        |                  | (7)                             | (8)      |        | (9)       |        | (10)                           | (11)                       |       | (12)            | (13)                                      | (14)                                      |
| 1980–1     | 16294    | (11.3) | 14808             | (10.3) | 1486                            | 5473     | (3.8) | 7856       | (5.5)            | -2383                           | 21767    | (15.1) | 22664     | (15.8) | -897                           | 3713                       | (2.6) | -1486 (-1.0     | ) -6.6                                    | 16.4                                      |
| 1981-2     | 18455    | (10.9) | 17075             | (10.1) | 1380                            | 5695     | (3.4) | 8095       | (4.8)            | -2400                           | 24150    | (14.3) | 25170     | (14.9) | -1020                          | 4062                       | (2.4) | -1379 (-0.8     | ) -5.5                                    | 16.1                                      |
| 1982-3     | 21125    | (11.2) | 20238             | (10.7) | 887                             | 6796     | (3.6) | 8504       | (4.5)            | -1708                           | 27921    | (14.8) | 28742     | (15.3) | -821                           | 4986                       | (2.6) | -888 (-0.5      | ) -3.1                                    | 17.3                                      |
| 1983-4     | 24014    | (10.9) | 23803             | (10.8) | 211                             | 8966     | (4.1) | 9737       | (4.4)            | -771                            | 32980    | (15.0) | 33540     | (15.3) | -560                           | 6359                       | (2.9) | -210 (-0.1      | ) -0.6                                    | 19.0                                      |
| 1984-5     | 27425    | (11.2) | 28349             | (11.5) | -924                            | 10993    | (4.5) | 11508      | (4.7)            | -515                            | 38418    | (15.6) | 39857     | (16.2) | -1439                          | 8199                       | (3.3) | 923 (0.4        | ) 2.3                                     | 20.6                                      |
| 1985–6     | 33424    | (12.0) | 32770             | (11.8) | 654                             | 13131    | (4.7) | 12097      | (4.4)            | 1034                            | 46555    | (16.7) | 44867     | (16.1) | 1688                           | 7521                       | (2.7) | -654 (-0.2      | ) -1.5                                    | 16.8                                      |
| 1986-7     | 38226    | (12.3) | 38057             | (12.2) | 169                             | 12892    | (4.1) | 13729      | (4.4)            | -837                            | 51118    | (16.4) | 51786     | (16.6) | -668                           | 9269                       | (3.0) | -170 (-0.1      | ) -0.3                                    | 17.9                                      |
| 1987-8     | 44000    | (12.4) | 45088             | (12.7) | -1088                           | 15806    | (4.5) | 14783      | (4.2)            | 1023                            | 59806    | (16.9) | 59871     | (16.9) | -65                            | 11219                      | (3.2) | 1088 (0.3       | ) 1.8                                     | 18.7                                      |
| 1988-9     | 50421    | (12.0) | 52228             | (12.4) | -1807                           | 17037    | (4.0) | 14850      | (3.5)            | 2187                            | 67458    | (16.0) | 67078     | (15.9) | 380                            | 11672                      | (2.8) | 1807 (0.4       | ) 2.7                                     | 17.4                                      |
| 1989-90    | 56535    | (11.6) | 60217             | (12.4) | -3682                           | 20086    | (4.1) | 16565      | (3.4)            | 3521                            | 76621    | (15.8) | 76782     | (15.8) | -161                           | 15433                      | (3.2) | 3682 (0.8       | 4.8                                       | 20.1                                      |
| 1990-1     | 66467    | (11.7) | 71776             | (12.6) | -5309                           | 24693    | (4.3) | 19312      | (3.4)            | 5381                            | 91160    | (16.0) | 91088     | (16.0) | 72                             | 18787                      | (3.3) | 5309 (0.9       | 5.8                                       | 20.6                                      |
| 1991-2     | 80535    | (12.3) | 86186             | (13.2) | -5651                           | 27238    | (4.2) | 21743      | (3.3)            | 5495                            | 107773   | (16.5) | 107929    | (16.5) | -156                           | 18900                      | (2.9) | 5651 (0.9       | 5.2                                       | 17.5                                      |
| 1992-3     | 91090    | (12.2) | 96205             | (12.9) | -5115                           | 30073    | (4.0) | 23129      | (3.1)            | 6944                            | 121163   | (16.2) | 119334    | (15.9) | 1829                           | 20892                      | (2.8) | 5114 (0.7       | ) 4.3                                     | 17.5                                      |
| 1993-4     | 105564   | (12.3) | 109376            | (12.7) | -3812                           | 28623    | (3.3) | 25272      | (2.9)            | 3351                            | 134187   | (15.6) | 134648    | (15.7) | -461                           | 20596                      | (2.4) | 3813 (0.4       | ) 2.8                                     | 15.3                                      |
| 1994-5     | 122284   | (12.1) | 128440            | (12.7) | -6156                           | 43738    | (4.3) | 33114      | (3.3)            | 10624                           | 166022   | (16.4) | 161554    | (16.0) | 4468                           | 27697                      | (2.7) | 6156 (0.6       | 3.8                                       | 17.1                                      |
| 1995-6     | 136803   | (11.5) | 145004            | (12.2) | -8201                           | 43630    | (3.7) | 32580      | (2.7)            | 11050                           | 180433   | (15.2) | 177584    | (14.9) | 2849                           | 31426                      | (2.6) | 8201 (0.7       | ) 4.6                                     | 17.7                                      |
| 1996-7     | 152836   | (11.2) | 168950            | (12.3) | -16114                          | 42891    | (3.1) | 33819      | (2.5)            | 9072                            | 195727   | (14.3) | 202769    | (14.8) | -7042                          | 37251                      | (2.7) | 16114 (1.2      | 7.9                                       | 18.4                                      |
| 1997-8     | 170301   | (11.2) | 186634            | (12.3) | -16333                          | 59937    | (3.9) | 41501      | (2.7)            | 18436                           | 230238   | (15.1) | 228135    | (15.0) | 2103                           | 44200                      | (2.9) | 16333 (1.1      | 7.2                                       | 19.4                                      |
| 1998-9     | 176448   | (10.1) | 220090            | (12.6) | -43642                          | 86394    | (5.0) | 46271      | (2.7)            | 40123                           | 262842   | (15.1) | 266361    | (15.3) | -3519                          | 74254                      | (4.3) | 43642 (2.5      | ) 16.4                                    | 27.9                                      |
| 1999-2000  | 207201   | (10.6) | 260998            | (13.3) | -53797                          | 103575   | (5.3) | 52891      | (2.7)            | 50684                           | 310776   | (15.9) | 313889    | (16.0) | -3113                          | 91480                      | (4.7) | 53797 (2.7      | ) 17.1                                    | 29.1                                      |
| 2000-1     | 237953   | (11.3) | 291522            | (13.8) | -53569                          | 111591   | (5.3) | 55677      | (2.6)            | 55914                           | 349544   | (16.6) | 347199    | (16.5) | 2345                           | 89532                      | (4.2) | 53569 (2.5      | ) 15.4                                    | 25.8                                      |
| 2001-2     | 255675   | (11.2) | 314863            | (13.8) | -59188                          | 118211   | (5.2) | 62448      | (2.7)            | 55763                           | 373886   | (16.4) | 377311    | (16.5) | -3425                          | 95994                      | (4.2) | 59188 (2.6      | ) 15.7                                    | 25.4                                      |
| 2002-3     | 280340   | (11.4) | 335451            | (13.7) | -55111                          | 144734   | (5.9) | 85011      | (3.5)            | 59723                           | 425074   | (17.4) | 420462    | (17.2) | 4612                           | 102123                     | (4.2) | 55111 (2.2      | ) 13.1                                    | 24.3                                      |
| 2003-4     | 309230   | (11.2) | 370468            | (13.4) | -61238                          | 208333   | (7.5) | 145883     | (5.3)            | 62450                           | 517563   | (18.8) | 516351    | (18.7) | 1212                           | 121420                     | (4.4) | 61238 (2.2      | ) 11.9                                    | 23.5                                      |
| 2004-5 (RE | 377132   | (12.1) | 420322            | (13.5) | -43190                          | 200937   | (6.4) | 163751     | (5.2)            | 37186                           | 578069   | (18.5) | 584073    | (18.7) | -6004                          | 119288                     | (3.8) | 43190 (1.4      | ) 7.4                                     | 20.4                                      |
| 2005–6 (BE | ) 421324 | (11.9) | 445818            | (12.6) | -24494                          | 149155   | (4.2) | 122017     | (3.5)            | 27138                           | 570479   | (16.2) | 567835    | (16.1) | 2644                           | 107041                     | (3.0) | 24494 (0.7      | ) 4.3                                     | 18.9                                      |

Notes: Excluding (i) ways and means advances (WMA) from the RBI and (ii) purchases and sales of securities from cash balance investment account; these serve as financing items for overall deficit (see cols. 11 and 12); Figures in brackets are percentages to GDP at current market prices; GDP data are as per revised series from 1999–2000 and as per 1993–4 series before 1999–2000, for 2006–7, GDP is estimated at 12 per cent growth from the previous year; In column 12 negative signs represent surpluses; Overall surplus or deficits shown in col. 10 represents conventional deficit, that is, difference between aggregate disbursements and aggregate receipts without any adjustments except for entries relating to temporary financing items mentioned above; The above aggregate disbursements and aggregate receipts are adjusted somewhat for deriving the figures of gross fiscal deficit (GFD). Thus, GFD is the difference between aggregate disbursements and recovery of loans and total receipts consisting of revenue receipts and non-debt capital receipts (that is, in practice, only disinvestment proceeds); BE: Budget estimates; RE: Revised estimates.

Source: With a view to maintaining consistency in the series, this table has been prepared using RBI's Handbook of Statistics on the Indian Economy 2004-5.

## A4 MONEY AND BANKING

TABLE A4.1 Money Stock Measures

(Rs.crore)

|           |                           | Curren                               | cy with th    | e Public                         |                        | Deposit N                               | Ioney with                       | the Public     | $M_1$  |        | Post                                  | $M_2$   | Time                          | $M_3$   |        | Total                      | $\mathrm{M}_4$ |        |
|-----------|---------------------------|--------------------------------------|---------------|----------------------------------|------------------------|-----------------------------------------|----------------------------------|----------------|--------|--------|---------------------------------------|---------|-------------------------------|---------|--------|----------------------------|----------------|--------|
| 31 March  | Notes<br>Circula-<br>tion | Circula-<br>tion of<br>Rupee<br>Coin | Small<br>Coin | Cash in<br>Hand<br>with<br>Banks | Total<br>(2+3+<br>4-5) | Demand<br>Deposits<br>with the<br>Banks | Other<br>Deposits<br>with<br>RBI | Total<br>(7+8) | (6+9)  |        | Office<br>Savings<br>Bank<br>Deposits | (10+11) | Deposits<br>with the<br>Banks | (10+13) |        | Post<br>Office<br>Deposits | (14+15)        |        |
| (1)       | (2)                       | (3)                                  | (4)           | (5)                              | (6)                    | (7)                                     | (8)                              | (9)            | (10)   |        | (11)                                  | (12)    | (13)                          | (14)    |        | (15)                       | (16)           | (17)   |
| 2005–6    | 421922                    | 6143                                 | 2553          | 17525                            | 413093                 | 405267                                  | 6914                             | 412181         | 825273 | (27.7) | 5041                                  | 830314  | 1904700                       | 2729972 | (21.1) | 25969                      | 2755941        | (20.9) |
| 2004-5    | 361213                    | 5984                                 | 1464          | 12893                            | 355768                 | 284017                                  | 6478                             | 290495         | 646263 | (11.7) | 5041                                  | 651304  | 1607675                       | 2253938 | (12.4) | 25969                      | 2279907        | (12.2) |
| 2003-4    | 319732                    | 5832                                 | 1464          | 12057                            | 314971                 | 258626                                  | 5119                             | 263745         | 578716 | (22.2) | 5041                                  | 583757  | 1426960                       | 2005676 | (16.7) | 25969                      | 2031645        | (16.5) |
| 2002-3    | 275402                    | 5613                                 | 1458          | 10892                            | 271581                 | 198757                                  | 3242                             | 201999         | 473580 | (12.0) | 5041                                  | 478621  | 1244379                       | 1717959 | (14.7) | 25969                      | 1743928        | (14.4) |
| 2001-2    | 244608                    | 4926                                 | 1440          | 10179                            | 240795                 | 179199                                  | 2850                             | 182049         | 422844 | (11.4) | 5041                                  | 427885  | 1075512                       | 1498356 | (14.1) | 25969                      | 1524325        | (13.8) |
| 2000-1    | 212851                    | 4053                                 | 1300          | 8654                             | 209550                 | 166270                                  | 3629                             | 169899         | 379449 | (11.0) | 5041                                  | 384490  | 933771                        | 1313220 | (16.8) | 25969                      | 1339189        | (16.4) |
| 1999–2000 | 192483                    | 3390                                 | 1188          | 7979                             | 189082                 | 149681                                  | 3033                             | 152714         | 341796 | (10.6) | 5041                                  | 346837  | 782378                        | 1124174 | (14.6) | 25969                      | 1150143        | (14.2) |
| 1998–9    | 172000                    | 2730                                 | 1116          | 6902                             | 168944                 | 136388                                  | 3736                             | 140124         | 309068 | (15.4) | 5041                                  | 314109  | 671892                        | 980960  | (19.4) | 25969                      | 1006929        | (18.8) |
| 1997-8    | 147704                    | 2297                                 | 1055          | 5477                             | 145579                 | 118724                                  | 3541                             | 122265         | 267844 | (11.3) | 5041                                  | 272885  | 553488                        | 821332  | (18.0) | 25969                      | 847301         | (17.4) |
| 1996-7    | 134299                    | 1927                                 | 991           | 5130                             | 132087                 | 105334                                  | 3194                             | 108528         | 240615 | (12.0) | 5041                                  | 245656  | 455397                        | 696012  | (15.2) | 25969                      | 721981         | (14.6) |
| 1995–6    | 120066                    | 1563                                 | 940           | 4311                             | 118258                 | 93233                                   | 3344                             | 96577          | 214835 | (11.7) | 5041                                  | 219876  | 389172                        | 604007  | (13.7) | 25969                      | 629976         | (13.0) |
| 1994–5    | 102302                    | 1498                                 | 881           | 4000                             | 100681                 | 88193                                   | 3383                             | 91576          | 192257 | (27.5) | 5041                                  | 197298  | 339169                        | 531426  | (22.3) | 25969                      | 557395         | (21.6) |
| 1993-4    | 83405                     | 1161                                 | 829           | 3094                             | 82301                  | 65952                                   | 2525                             | 68477          | 150778 | (21.5) | 5041                                  | 155819  | 283629                        | 434407  | (18.4) | 24029                      | 458436         | (18.0) |
| 1992-3    | 69502                     | 1044                                 | 780           | 3053                             | 68273                  | 54480                                   | 1313                             | 55793          | 124066 | (8.4)  | 4824                                  | 128890  | 242759                        | 366825  | (15.7) | 21589                      | 388414         | (15.2) |
| 1991–2    | 62034                     | 975                                  | 729           | 2640                             | 61098                  | 52423                                   | 885                              | 53308          | 114406 | (23.2) | 4620                                  | 119026  | 202643                        | 317049  | (19.3) | 20141                      | 337190         | (20.2) |
| 1990-1    | 53661                     | 936                                  | 685           | 2234                             | 53048                  | 39170                                   | 674                              | 39844          | 92892  | (14.6) | 4205                                  | 97097   | 172936                        | 265828  | (15.1) | 14681                      | 280509         | (15.0) |
| 1989-90   | 46730                     | 916                                  | 639           | 1986                             | 46299                  | 34162                                   | 598                              | 34760          | 81059  | (21.7) | 3994                                  | 85053   | 149890                        | 230949  | (20.2) | 12980                      | 243929         | (19.6) |
| 1988–9    | 38728                     | 893                                  | 582           | 1788                             | 38415                  | 27730                                   | 462                              | 28192          | 66607  | (15.2) | 3794                                  | 70401   | 125478                        | 192085  | (18.1) | 11942                      | 204027         | (17.2) |
| 1987-8    | 33812                     | 839                                  | 541           | 1542                             | 33650                  | 23855                                   | 297                              | 24152          | 57802  | (12.9) | 3639                                  | 61441   | 104858                        | 162660  | (15.7) | 11490                      | 174150         | (14.5) |
| 1986-7    | 28762                     | 709                                  | 483           | 1369                             | 28585                  | 22240                                   | 352                              | 22592          | 51177  | (16.1) | 3234                                  | 54411   | 89456                         | 140633  | (17.8) | 11518                      | 152151         | (16.1) |
| 1985–6    | 25584                     | 531                                  | 409           | 1465                             | 25059                  | 18747                                   | 289                              | 19036          | 44095  | (11.2) | 2971                                  | 47066   | 75299                         | 119394  | (17.1) | 11687                      | 131081         | (16.8) |
| 1984-5    | 23088                     | 426                                  | 351           | 1202                             | 22663                  | 16382                                   | 603                              | 16985          | 39648  | (19.9) | 2832                                  | 42480   | 62308                         | 101956  | (18.7) | 10284                      | 112240         | (18.1) |
| 1983-4    | 19888                     | 386                                  | 333           | 1054                             | 19553                  | 13195                                   | 318                              | 13513          | 33066  | (15.9) | 2648                                  | 35714   | 52833                         | 85899   | (17.9) | 9112                       | 95011          | (17.1) |
| 1982-3    | 16957                     | 362                                  | 321           | 980                              | 16660                  | 11690                                   | 186                              | 11876          | 28536  | (15.4) | 2496                                  | 31032   | 44333                         | 72869   | (16.7) | 8296                       | 81165          | (16.1) |
| 1981-2    | 14709                     | 351                                  | 306           | 874                              | 14492                  | 10087                                   | 150                              | 10237          | 24729  | (5.6)  | 2351                                  | 27080   | 37697                         | 62426   | (11.9) | 7470                       | 69896          | (12.0) |
| 1980-1    | 13688                     | 333                                  | 286           | 881                              | 13426                  | 9587                                    | 411                              | 9998           | 23424  | (17.4) | 2334                                  | 25758   | 32350                         | 55774   | (19.2) | 6632                       | 62406          | (19.0) |
| 1979-80   | 11777                     | 324                                  | 268           | 682                              | 11687                  | 7855                                    | 411                              | 8266           | 19953  | (15.8) | 2036                                  | 21989   | 26848                         | 46801   | (17.4) | 5658                       | 52459          | (17.5) |
| 1978–9    | 10232                     | 350                                  | 253           | 615                              | 10220                  | 6843                                    | 166                              | 7009           | 17229  | (-6.3) | 1850                                  | 19079   | 22632                         | 39861   | (21.1) | 4777                       | 44638          | (20.5) |
| 1977-8    | 8559                      | 353                                  | 240           | 521                              | 8631                   | 9683                                    | 70                               | 9753           | 18384  | (17.8) | 1677                                  | 20061   | 14522                         | 32906   | (20.6) | 4130                       | 37036          | (19.9) |
| 1976–7    | 7700                      | 335                                  | 233           | 395                              | 7873                   | 7636                                    | 100                              | 7736           | 15609  | (17.1) | 1537                                  | 17146   | 11671                         | 27280   | (21.4) | 3607                       | 30887          | (20.4) |
| 1975–6    | 6498                      | 331                                  | 224           | 348                              | 6705                   | 6543                                    | 77                               | 6620           | 13325  | (12.2) | 1475                                  | 14800   | 9155                          | 22480   | (15.7) | 3179                       | 25659          | (16.7) |
| 1974–5    | 6147                      | 322                                  | 210           | 332                              | 6347                   | 5483                                    | 44                               | 5527           | 11874  | (6.3)  | 1221                                  | 13095   | 7550                          | 19424   | (10.5) | 2571                       | 21995          | (10.8) |
| 1973-4    | 6083                      | 314                                  | 188           | 277                              | 6308                   | 4819                                    | 45                               | 4864           | 11172  | (15.4) | 1252                                  | 12424   | 6399                          | 17571   | (16.9) | 2272                       | 19843          | (18.1) |
| 1972-3    | 5210                      | 290                                  | 167           | 247                              | 5420                   | 4213                                    | 51                               | 4264           | 9684   | (16.4) | 1107                                  | 10791   | 5349                          | 15033   | (18.5) | 1772                       | 16805          | (19.1) |
| 1971-2    | 4594                      | 263                                  | 148           | 205                              | 4800                   | 3441                                    | 79                               | 3520           | 8320   | (12.8) | 1046                                  | 9366    | 4370                          | 12690   | (15.2) | 1416                       | 14106          | (15.6) |
| 1970-1    | 4173                      | 247                                  | 137           | 186                              | 4371                   | 2943                                    | 60                               | 3003           | 7374   |        | 990                                   | 8364    | 3646                          | 11020   |        | 1184                       | 12204          |        |

Note: Figures in brackets are percentage variations over the previous year.

Source: RBI Bullettins.

 $\label{eq:Table A4.2}$  Selected Indicators of Scheduled Commercial Banks Operations (Year-End) (Outstandings)

(Rs crore)

| Year      | 00 0    | Growth<br>(per cent) |        |       | Time<br>Deposits | Growth (per cent) | Bank<br>Credit<br>(11+12) | Growth (per cent) | C–D<br>Ratio | Food<br>Credit | Non-<br>food<br>Credit | Growth<br>(per cent) | Invest-<br>ment<br>(16+17) | Invest-<br>ment<br>Deposit<br>Ratio | Govt.<br>Secur-<br>ities | Other<br>Secur-<br>ities | Cash<br>in<br>Hand | Bal-<br>ances<br>with<br>RBI | Borrow-<br>ings<br>from<br>RBI |
|-----------|---------|----------------------|--------|-------|------------------|-------------------|---------------------------|-------------------|--------------|----------------|------------------------|----------------------|----------------------------|-------------------------------------|--------------------------|--------------------------|--------------------|------------------------------|--------------------------------|
| (1)       | (2)     | (3)                  | (4)    | (5)   | (6)              | (7)               | (8)                       | (9)               | (10)         | (11)           | (12)                   | (13)                 | (14)                       | (15)                                | (16)                     | (17)                     | (18)               | (19)                         | (20)                           |
| 2005–6    | 2109049 | 24.0                 | 364640 | 47.0  | 1744409          | 20.1              | 1507077                   | 37.0              | 71.5         | 40691          | 1466386                | 38.4                 | 717454                     | 34.0                                | 700742                   | 16712                    | 13046              | 127061                       | 1488                           |
| 2004-5    | 1700199 | 13.0                 | 248028 | 10.2  | 1452171          | 13.5              | 1100428                   | 30.9              | 64.7         | 41121          | 1059307                | 31.6                 | 739154                     | 43.5                                | 718982                   | 20172                    | 8472               | 88105                        | 50                             |
| 2003-4    | 1504416 | 17.5                 | 225022 | 32.1  | 1279394          | 15.2              | 840785                    | 15.3              | 55.9         | 35961          | 804824                 | 18.4                 | 677588                     | 45.0                                | 654758                   | 22830                    | 7898               | 68997                        | 0                              |
| 2002-3    | 1280853 | 16.1                 | 170289 | 11.3  | 1110564          | 16.9              | 729215                    | 23.7              | 56.9         | 49479          | 679736                 | 26.9                 | 547546                     | 42.7                                | 523417                   | 24129                    | 7567               | 58335                        | 79                             |
| 2001-2    | 1103360 | 14.6                 | 153048 | 7.4   | 950312           | 15.9              | 589723                    | 15.3              | 53.4         | 53978          | 535745                 | 13.6                 | 438269                     | 39.7                                | 411176                   | 27093                    | 6245               | 62402                        | 3616                           |
| 2000-1    | 962618  | 18.4                 | 142552 | 11.9  | 820066           | 19.5              | 511434                    | 17.3              | 53.1         | 39991          | 471443                 | 14.9                 | 370160                     | 38.5                                | 340035                   | 30125                    | 5658               | 59544                        | 3896                           |
| 1999-2000 | 813344  | 13.9                 | 127366 | 8.5   | 685978           | 15.0              | 435958                    | 18.2              | 53.6         | 25691          | 410267                 | 16.5                 | 308944                     | 38.0                                | 278456                   | 30488                    | 5330               | 57419                        | 6491                           |
| 1998-9    | 714025  | 19.3                 | 117423 | 14.5  | 596602           | 20.3              | 368837                    | 13.8              | 51.7         | 16816          | 352021                 | 13.0                 | 254594                     | 35.7                                | 223217                   | 31377                    | 4362               | 63548                        | 2894                           |
| 1997-8    | 598485  | 18.4                 | 102513 | 13.1  | 495972           | 19.5              | 324079                    | 16.4              | 54.1         | 12485          | 311594                 | 15.1                 | 218705                     | 36.5                                | 186957                   | 31748                    | 3608               | 57698                        | 395                            |
| 1996-7    | 505599  | 16.5                 | 90610  | 12.4  | 414989           | 17.5              | 278402                    | 9.6               | 55.1         | 7597           | 270805                 | 10.9                 | 190514                     | 37.7                                | 158890                   | 31624                    | 3347               | 49848                        | 560                            |
| 1995-6    | 433819  | 12.1                 | 80614  | 4.8   | 353205           | 14.0              | 254015                    | 20.1              | 58.6         | 9791           | 244224                 | 22.5                 | 164782                     | 38.0                                | 132227                   | 32555                    | 3113               | 50667                        | 4847                           |
| 1994-5    | 386859  | 22.8                 | 76903  | 35.9  | 309956           | 19.9              | 211561                    | 28.7              | 54.7         | 12275          | 199286                 | 29.8                 | 149253                     | 38.6                                | 117685                   | 31568                    | 2972               | 60029                        | 7415                           |
| 1993-4    | 315132  | 17.3                 | 56572  | 21.8  | 258560           | 16.4              | 164417                    | 8.2               | 52.2         | 10907          | 153510                 | 5.7                  | 132523                     | 42.1                                | 101202                   | 31321                    | 2283               | 47760                        | 1813                           |
| 1992-3    | 268572  | 16.4                 | 46461  | 3.0   | 222111           | 19.6              | 151982                    | 21.0              | 56.6         | 6743           | 145239                 | 20.1                 | 105656                     | 39.3                                | 75945                    | 29711                    | 2293               | 28535                        | 1619                           |
| 1991-2    | 230758  | 19.8                 | 45088  | 35.8  | 185670           | 16.5              | 125592                    | 8.0               | 54.4         | 4670           | 120922                 | 8.2                  | 90196                      | 39.1                                | 62727                    | 27469                    | 2008               | 34179                        | 577                            |
| 1990-1    | 192541  | 15.3                 | 33192  | 15.0  | 159349           | 15.4              | 116301                    | 14.6              | 60.4         | 4506           | 111795                 | 12.4                 | 75065                      | 39.0                                | 49998                    | 25067                    | 1804               | 23861                        | 3468                           |
| 1989–90   | 166959  | 19.1                 | 28856  | 23.6  | 138103           | 18.2              | 101452                    | 19.8              | 60.8         | 2006           | 99446                  | 18.5                 | 64370                      | 38.6                                | 42292                    | 22078                    | 1649               | 23463                        | 2399                           |
| 1988-9    | 140150  | 18.7                 | 23342  | 15.3  | 116808           | 19.4              | 84719                     | 20.1              | 60.4         | 769            | 83950                  | 22.8                 | 54662                      | 39.0                                | 35815                    | 18847                    | 1444               | 21376                        | 3527                           |
| 1987-8    | 118045  | 14.9                 | 20247  | 5.3   | 97798            | 17.1              | 70536                     | 11.4              | 59.8         | 2190           | 68346                  | 17.4                 | 46504                      | 39.4                                | 30517                    | 15987                    | 1306               | 17656                        | 1753                           |
| 1986–7    | 102723  | 20.3                 | 19227  | 23.2  | 83496            | 19.6              | 63308                     | 12.9              | 61.6         | 5104           | 58204                  | 15.2                 | 38582                      | 37.6                                | 24847                    | 13735                    | 1174               | 14381                        | 1293                           |
| 1985–6    | 85404   | 18.2                 | 15612  | 10.5  | 69792            | 20.1              | 56068                     | 14.5              | 65.7         | 5535           | 50533                  | 16.7                 | 30554                      | 35.8                                | 19045                    | 11509                    | 1127               | 11053                        | 954                            |
| 1984-5    | 72245   | 19.2                 | 14132  | 24.9  | 58113            | 17.9              | 48952                     | 18.5              | 67.8         | 5665           | 43287                  | 16.1                 | 28138                      | 38.9                                | 18697                    | 9441                     | 1044               | 6884                         | 1558                           |
| 1983-4    | 60596   | 18.0                 | 11312  | 13.3  | 49284            | 19.1              | 41294                     | 16.3              | 68.1         | 4022           | 37272                  | 14.6                 | 21245                      | 35.1                                | 13473                    | 7772                     | 928                | 7783                         | 1336                           |
| 1982-3    | 51358   | 17.4                 | 9984   | 19.1  | 41374            | 17.0              | 35493                     | 19.6              | 69.1         | 2965           | 32528                  | 18.0                 | 18335                      | 35.7                                | 12078                    | 6257                     | 878                | 5208                         | 815                            |
| 1981–2    | 43733   | 15.1                 | 8383   | 7.5   | 35350            | 17.1              | 29682                     | 17.0              | 67.9         | 2127           | 27555                  | 16.7                 | 15141                      | 34.6                                | 10157                    | 4984                     | 788                | 4883                         | 831                            |
| 1980-1    | 37988   | 19.6                 | 7798   | 17.4  | 30190            | 20.2              | 25371                     | 17.8              | 66.8         | 1759           | 23612                  | 21.5                 | 13186                      | 34.7                                | 9219                     | 3967                     | 766                | 4092                         | 589                            |
| 1979–80   | 31759   | 17.6                 | 6643   | 14.0  | 25116            | 18.5              | 21537                     | 21.0              | 67.8         | 2100           | 19437                  | 24.7                 | 10625                      | 33.5                                | 7444                     | 3181                     | 616                | 3634                         | 739                            |
| 1978–9    | 27016   | 21.6                 | 5826   | 19.6  | 21190            | 22.2              | 17795                     | 19.1              | 65.9         | 2210           | 15585                  | 20.3                 | 9110                       | 33.7                                | 6622                     | 2488                     | 557                | 2634                         | 546                            |
| 1977–8    | 22212   | 26.4                 | 4872   | -29.8 | 17340            | 63.2              | 14939                     | 13.4              | 67.3         | 1984           | 12955                  | 18.0                 | 7897                       | 35.6                                | 5907                     | 1990                     | 469                | 1674                         | 331                            |
| 1976–7    | 17566   | 24.1                 | 6943   | 19.4  | 10623            | 27.4              | 13173                     | 21.1              | 75.0         | 2191           | 10982                  | 17.4                 | 5536                       | 31.5                                | 3930                     | 1606                     | 354                | 1146                         | 967                            |
| 1975–6    | 14155   | 19.7                 | 5817   | 17.2  | 8338             | 21.5              | 10877                     | 24.1              | 76.8         | 1521           | 9356                   | 14.8                 | 4607                       | 32.5                                | 3283                     | 1324                     | 305                | 608                          | 798                            |
| 1974–5    | 11828   | 16.7                 | 4963   | 14.5  | 6865             | 18.3              | 8762                      | 18.4              | 74.1         | 613            | 8149                   | 15.9                 | 3915                       | 33.1                                | 2826                     | 1089                     | 296                | 612                          | 473                            |
| 1973-4    | 10139   | 17.3                 | 4336   | 14.3  | 5803             | 19.7              | 7399                      | 21.0              | 73.0         | 367            | 7032                   | 21.8                 | 3286                       | 32.4                                | 2362                     | 924                      | 246                | 610                          | 409                            |
| 1972-3    | 8643    | 21.6                 | 3794   | 21.3  | 4849             | 21.9              | 6115                      |                   | 70.8         | 340            | 5775                   | 17.4                 | 2897                       | 33.5                                | 2161                     | 736                      | 221                | 279                          | 139                            |
| 1971–2    | 7106    | 20.3                 | 3127   | 19.1  | 3979             | 21.3              | 5263                      | 12.4              | 74.1         | 345            | 4918                   | 10.0                 | 2190                       | 30.8                                | 1650                     | 540                      | 181                | 267                          | 208                            |
| 1970-1    | 5906    |                      | 2626   |       | 3280             |                   | 4683                      |                   | 79.3         | 214            | 4469                   |                      | 1772                       | 30.0                                | 1362                     | 410                      | 167                | 197                          | 368                            |

 $\it Note:$  Data pertain to last Friday of march up to 1984–5 and last reporting Friday of March thereafter.

Source: RBI Bulletins.

TABLE A4.3 Trends in Statewise Bank Deposits and Credit and Credit–Deposit Ratios (For Scheduled Commercial Banks)

(Amount in rupees lakh; C–D ratio in per cent)

A. Credit as per Sanction

|    | Name of the State           |           |           |               |          | All India |              |          |              |              |
|----|-----------------------------|-----------|-----------|---------------|----------|-----------|--------------|----------|--------------|--------------|
|    |                             |           | 2005      |               |          | 1995      |              |          | 1985         |              |
|    |                             | Deposits  | Credit    | C–D<br>Ratio  | Deposits | Credit    | C–D<br>Ratio | Deposits | Credit       | C–D<br>Ratio |
|    | (1)                         | (2)       | (3)       | (4)           | (5)      | (6)       | (7)          | (8)      | (9)          | (10)         |
|    | Northern Region             | 41040510  | 24420976  | 59.5          | 8496009  | 4128755   | 48.6         | 1859738  | 1010473      | 54.3         |
| 1  | Haryana                     | 3675305   | 1890786   | 51.4          | 747904   | 340650    | 45.5         | 155289   | 100950       | 65.0         |
| 2  | Himachal Pradesh            | 1231437   | 447364    | 36.3          | 274413   | 71261     | 26.0         | 56274    | 21427        | 38.1         |
| 3  | Jammu and Kashmir           | 1667324   | 778578    | 46.7          | 363038   | 103901    | 28.6         | 82175    | 29416        | 35.8         |
| 4  | Punjab                      | 6577064   | 3293518   | 50.1          | 1788454  | 740098    | 41.4         | 448194   | 202887       | 45.3         |
| 5  | Rajasthan                   | 4282322   | 2941210   | 68.7          | 1061994  | 506078    | 47.7         | 218088   | 145242       | 66.6         |
| 6  | Chandigarh                  | 1240825   | 1103352   | 88.9          | 321323   | 288820    | 89.9         | 63246    | 86332        | 136.5        |
| 7  | Delhi                       | 22366233  | 13966168  | 62.4          | 3938883  | 2077947   | 52.8         | 836472   | 424219       | 50.7         |
|    | North-eastern Region        | 2780098   | 973268    | 35.0          | 608496   | 216379    | 35.6         | 137655   | 64613        | 46.9         |
| 8  | Arunachal Pradesh           | 119822    | 26336     | 22.0          | 32305    | 4017      | 12.4         | 4109     | 656          | 16.0         |
| 9  | Assam                       | 1778165   | 627076    | 35.3          | 395587   | 153024    | 38.7         | 96949    | 48627        | 50.2         |
| 10 | Manipur                     | 99666     | 42237     | 42.4          | 18277    | 10636     | 58.2         | 3179     | 2302         | 72.4         |
| 11 | Meghalaya                   | 306465    | 133712    | 43.6          | 65429    | 11142     | 17.0         | 12818    | 3197         | 24.9         |
| 12 | Mizoram                     | 78859     | 37720     | 47.8          | 18009    | 2969      | 16.5         | 3270     | 809          | 24.7         |
| 13 | Nagaland                    | 131276    | 30046     | 22.9          | 30002    | 11353     | 37.8         | 7769     | 2766         | 35.6         |
| 14 | Tripura                     | 265845    | 76141     | 28.6          | 48887    | 23238     | 47.5         | 9561     | 6256         | 65.4         |
|    | Eastern Region              | 20901201  | 9509073   | 45.5          | 4887888  | 2301647   | 47.1         | 1382531  | 674298       | 48.8         |
| 15 | Bihar                       | 4100740   | 1137856   | 27.7          | 1527408  | 496438    | 32.5         | 386206   | 140107       | 36.3         |
| 16 | Jharkhand                   | 2747344   | 812772    | 29.6          |          |           |              |          |              |              |
| 17 | Orissa                      | 2661883   | 1644214   | 61.8          | 527523   | 287573    | 54.5         | 103370   | 84483        | 81.7         |
| 18 | Sikkim                      | 126428    | 37281     | 29.5          | 14703    | 3534      | 24.0         | 4550     | 713          | 15.7         |
| 19 | West Bengal                 | 11191940  | 5857456   | 52.3          | 2806177  | 1512051   | 53.9         | 886420   | 448304       | 50.6         |
| 20 | Andaman and Nicobar Islands | 72866     | 19494     | 26.8          | 12077    | 2051      | 17.0         | 1985     | 691          | 34.8         |
|    | Central Region              | 21950636  | 8954631   | 40.8          | 4944747  | 1929024   | 39.0         | 1160680  | 570567       | 49.2         |
| 21 | Chhattisgarh                | 1654586   | 721110    | 43.6          |          |           |              |          |              |              |
| 22 | Madhya Pradesh              | 4795096   | 2620869   | 54.7          | 1338697  | 663359    | 49.6         | 302364   | 179243       | 59.3         |
| 23 | Uttar Pradesh               | 13536012  | 5134490   | 37.9          | 3606050  | 1265665   | 35.1         | 858316   | 391324       | 45.6         |
| 24 | Uttaranchal                 | 1964942   | 478162    | 24.3          | 2000020  | 1200000   | 55.1         | 000010   | 0,1021       | 10.10        |
|    | Western Region              | 49263353  | 41129124  | 83.5          | 10623635 | 6715172   | 63.2         | 2243637  | 1710312      | 76.2         |
| 25 | Goa                         | 1162373   | 291631    | 25.1          | 274998   | 67921     | 24.7         | 72255    | 22586        | 31.3         |
| 26 | Gujarat                     | 9768793   | 4539042   | 46.5          | 2344573  | 1092991   | 46.6         | 536799   | 273190       | 50.9         |
| 27 | Maharashtra                 | 38220925  | 36277139  | 94.9          | 7984183  | 5550971   | 69.5         | 1634037  | 1414155      | 86.5         |
| 28 | Dadra and Nagar Haveli      | 36508     | 12709     | 34.8          | 6088     | 992       | 16.3         | 546      | 381          | 69.8         |
| 29 | Daman and Diu               | 74754     | 8603      | 11.5          | 13793    | 2297      | 16.7         | 340      | 301          | 07.0         |
| 2) | Southern Region             | 38745604  | 30259724  | 78.1          | 8356637  | 5802937   | 69.4         | 1807941  | 1385972      | 76.7         |
| 30 | Andhra Pradesh              | 9822473   | 7346195   | 74.8          | 2017765  | 1472382   | 73.0         | 488164   | 361010       | 74.0         |
| 31 | Karnataka                   | 10768336  | 7946111   | 73.8          | 1969942  | 1295556   | 65.8         | 424701   | 357248       | 84.1         |
| 32 | Kerala                      | 6905845   | 3773650   | 73.8<br>54.6  | 1725008  | 772991    | 65.8<br>44.8 | 343002   | 208542       | 60.8         |
| 33 | Tamil Nadu                  | 10958511  | 11085222  | 34.6<br>101.2 | 2580659  | 2235367   | 86.6         | 539377   | 453872       | 84.1         |
| 34 | Lakshadweep                 | 9432      | 911       | 101.2<br>9.7  | 2081     | 160       | 86.6<br>7.7  | 348      | 453872<br>79 | 84.1<br>22.7 |
| 35 | Pondicherry                 | 281007    | 107635    | 38.3          | 61182    | 26481     | 43.3         | 12349    | 79<br>5221   | 42.3         |
|    | ·                           |           |           |               |          |           |              |          |              |              |
|    | All India Total             | 174681402 | 115246796 | 66.0          | 37917412 | 21093914  | 55.6         | 8592182  | 5416235      | 63.0         |

## 222 APPENDIX TABLES

Table A4.3 (contd.)

B. Credit as per Utilization\*

|    | Name of the State               |           |           |              |          | All India |              |           |         |              |
|----|---------------------------------|-----------|-----------|--------------|----------|-----------|--------------|-----------|---------|--------------|
|    |                                 |           | 2005      |              |          | 1995      |              |           | 1985    |              |
|    |                                 | Deposits  | Credit    | C–D<br>Ratio | Deposits | Credit    | C–D<br>Ratio | Deposits  | Credit  | C–D<br>Ratio |
|    | (1)                             | (2)       | (3)       | (4)          | (5)      | (6)       | (7)          | (8)       | (9)     | (10)         |
|    | Northern Region                 | 41040510  | 25527598  | 62.2         | 8496009  | 4032323   | 47.5         | 1859738   | 1007940 | 54.2         |
| 1  | Haryana                         | 3675305   | 2322831   | 63.2         | 747904   | 418588    | 56.0         | 155289    | 134721  | 86.8         |
| 2  | Himachal Pradesh                | 1231437   | 626426    | 50.9         | 274413   | 81484     | 29.7         | 56274     | 22174   | 39.4         |
| 3  | Jammu and Kashmir               | 1667324   | 847890    | 50.9         | 363038   | 103265    | 28.4         | 82175     | 29810   | 36.3         |
| 4  | Punjab                          | 6577064   | 3266345   | 49.7         | 1788454  | 774998    | 43.3         | 448194    | 252148  | 56.3         |
| 5  | Rajasthan                       | 4282322   | 3275858   | 76.5         | 1061994  | 541988    | 51.0         | 218088    | 149957  | 68.8         |
| 6  | Chandigarh                      | 1240825   | 1203864   | 97.0         | 321323   | 279223    | 86.9         | 63246     | 32703   | 51.7         |
| 7  | Delhi                           | 22366233  | 13984384  | 62.5         | 3938883  | 1832777   | 46.5         | 836472    | 386427  | 46.2         |
|    | North-eastern Region            | 2780098   | 1240785   | 44.6         | 608496   | 279077    | 45.9         | 137655    | 86186   | 62.6         |
| 8  | Arunachal Pradesh               | 119822    | 36005     | 30.0         | 32305    | 6505      | 20.1         | 4109      | 1175    | 28.6         |
| 9  | Assam                           | 1778165   | 745575    | 41.9         | 395587   | 187459    | 47.4         | 96949     | 69084   | 71.3         |
| 10 | Manipur                         | 99666     | 42420     | 42.6         | 18277    | 10763     | 58.9         | 3179      | 2370    | 74.6         |
| 11 | Meghalaya                       | 306465    | 262668    | 85.7         | 65429    | 30868     | 47.2         | 12818     | 3014    | 23.5         |
| 12 | Mizoram                         | 78859     | 46623     | 59.1         | 18009    | 6322      | 35.1         | 3270      | 901     | 27.6         |
| 13 | Nagaland                        | 131276    | 30495     | 23.2         | 30002    | 13448     | 44.8         | 7769      | 3222    | 41.5         |
| 14 | Tripura                         | 265845    | 76999     | 29.0         | 48887    | 23712     | 48.5         | 9561      | 6420    | 67.1         |
|    | Eastern Region                  | 20901201  | 10540768  | 50.4         | 4887888  | 2276998   | 46.6         | 1382531   | 659195  | 47.7         |
| 15 | Bihar                           | 4100740   | 1286846   | 31.4         | 1527408  | 516784    | 33.8         | 386206    | 150561  | 39.0         |
| 16 | Jharkhand                       | 2747344   | 840347    | 30.6         | 1527 100 | 310/01    | 55.0         | 300200    | 150501  | 37.0         |
| 17 | Orissa                          | 2661883   | 1988673   | 74.7         | 527523   | 294926    | 55.9         | 103370    | 87147   | 84.3         |
| 18 | Sikkim                          | 126428    | 36990     | 29.3         | 14703    | 3654      | 24.9         | 4550      | 1821    | 40.0         |
| 19 | West Bengal                     | 11191940  | 6356021   | 56.8         | 2806177  | 1459568   | 52.0         | 886420    | 418837  | 47.3         |
| 20 | Andaman and Nicobar Island      | 72866     | 31891     | 43.8         | 12077    | 2066      | 17.1         | 1985      | 829     | 41.8         |
| 20 |                                 | 21950636  | 9951797   | 45.3         |          | 2036906   | 41.2         | 1160680   | 583748  | 50.3         |
| 21 | Central Region                  |           |           | 49.9         | 4944747  | 2030900   | 41.2         | 1100000   | 303/40  | 30.3         |
| 21 | Chhattisgarh                    | 1654586   | 825481    |              | 1220/07  | (02212    | <i>51.0</i>  | 202264    | 105257  | (1.2         |
| 22 | Madhya Pradesh<br>Uttar Pradesh | 4795096   | 2835907   | 59.1         | 1338697  | 693212    | 51.8         | 302364    | 185257  | 61.3         |
| 23 |                                 | 13536012  | 5718136   | 42.2         | 3606050  | 1343694   | 37.3         | 858316    | 398491  | 46.4         |
| 24 | Uttaranchal                     | 1964942   | 572273    | 29.1         | 10/22/25 | ((21240   | <i>(2.4</i>  | 22.42.627 | 1/0222/ | 75.0         |
| 25 | Western Region                  | 49263353  | 35386292  | 71.8         | 10623635 | 6631240   | 62.4         | 2243637   | 1683336 | 75.0         |
| 25 | Goa                             | 1162373   | 352498    | 30.3         | 274998   | 70162     | 25.5         | 72255     | 23011   | 31.8         |
| 26 | Gujarat                         | 9768793   | 5947194   | 60.9         | 2344573  | 1163293   | 49.6         | 536799    | 295422  | 55.0         |
| 27 | Maharashtra                     | 38220925  | 29010025  | 75.9         | 7984183  | 5385046   | 67.4         | 1634037   | 1364294 | 83.5         |
| 28 | Dadra and Nagar Haveli          | 36508     | 40446     | 110.8        | 6088     | 5771      | 94.8         | 546       | 609     | 111.5        |
| 29 | Daman and Diu                   | 74754     | 36129     | 48.3         | 13793    | 6968      | 50.5         |           |         |              |
|    | Southern Region                 | 38745604  | 22099554  | 57.0         | 8356637  | 5837367   | 69.9         | 1807941   | 1395830 | 77.2         |
| 30 | Andhra Pradesh                  | 9822473   | 8185712   | 83.3         | 2017765  | 1504608   | 74.6         | 488164    | 364469  | 74.7         |
| 31 | Karnataka                       | 10768336  | 8664858   | 80.5         | 1969942  | 1282572   | 65.1         | 424701    | 363477  | 85.6         |
| 32 | Kerala                          | 6905845   | 3971471   | 57.5         | 1725008  | 779774    | 45.2         | 343002    | 212242  | 61.9         |
| 33 | Tamil Nadu                      | 10958511  | 1151963   | 10.5         | 2580659  | 2239392   | 86.8         | 539377    | 449806  | 83.4         |
| 34 | Lakshadweep                     | 9432      | 2234      | 23.7         | 2081     | 201       | 9.7          | 348       | 71      | 20.4         |
| 35 | Pondicherry                     | 281007    | 123316    | 43.9         | 61182    | 30820     | 50.4         | 12349     | 5765    | 46.7         |
|    | All India Total                 | 174681402 | 104746794 | 60.0         | 37917412 | 21093911  | 55.6         | 8592182   | 5416235 | 63.0         |

Notes: \$ Data for the year 1985 includes Daman and Diu; \* Use of bank credit in another place from the place of sanction captures utilization of bank credit and C–D ratio as per utilization; Data for 1995 and 2005 relate to end-March and those for 1985, to end-December.

Source: RBI: Basic Statistical Returns of Scheduled Commercial Banks in India, various issues.

TABLE A4.4 Trends in Districtwise Deposits and Credit (as per utilization) and Credit–Deposit Ratios

(Amount in rupees lakh; C–D ratio in per cent)

## PUNJAB

| Na | me of the District |          | 2005    |              |          | 1995   |              |          | 1985   |              |
|----|--------------------|----------|---------|--------------|----------|--------|--------------|----------|--------|--------------|
|    |                    | Deposits | Credit  | C–D<br>Ratio | Deposits | Credit | C–D<br>Ratio | Deposits | Credit | C–D<br>Ratio |
|    | (1)                | (2)      | (3)     | (4)          | (5)      | (6)    | (7)          | (8)      | (9)    | (10)         |
| 1  | Amritsar           | 740092   | 338557  | 45.7         | 213348   | 82373  | 38.6         | 61267    | 25215  | 41.2         |
| 2  | Bathinda           | 167713   | 105778  | 63.1         | 46956    | 33737  | 71.8         | 15217    | 17286  | 113.6        |
| 3  | Faridkot           | 72275    | 44444   | 61.5         | 86210    | 36586  | 42.4         | 23817    | 16461  | 69.1         |
| 4  | Fatehgarh Sahib    | 89683    | 66496   | 74.1         | 25734    | 7479   | 29.1         |          |        |              |
| 5  | Ferozpur           | 160985   | 120246  | 74.7         | 50981    | 29637  | 58.1         | 15700    | 13319  | 84.8         |
| 6  | Gurdaspur          | 316256   | 137101  | 43.4         | 94123    | 24140  | 25.6         | 23674    | 9215   | 38.9         |
| 7  | Hoshiarpur         | 464129   | 114573  | 24.7         | 129586   | 28969  | 22.4         | 32399    | 5839   | 18.0         |
| 8  | Jalandhar          | 1434741  | 355664  | 24.8         | 435771   | 93983  | 21.6         | 103339   | 25260  | 24.4         |
| 9  | Kapurthala         | 397833   | 78067   | 19.6         | 95726    | 18809  | 19.6         | 21285    | 6362   | 29.9         |
| 10 | Ludhiana           | 1135894  | 1026559 | 90.4         | 318292   | 287260 | 90.3         | 77863    | 50075  | 64.3         |
| 11 | Mansa              | 43650    | 33936   | 77.7         | 12418    | 4926   | 39.7         |          |        |              |
| 12 | Moga               | 156470   | 69591   | 44.5         |          |        |              |          |        |              |
| 13 | Muktsar            | 74356    | 50741   | 68.2         |          |        |              |          |        |              |
| 14 | Nawanshahar        | 244861   | 39954   | 16.3         |          |        |              |          |        |              |
| 15 | Patiala            | 493816   | 397196  | 80.4         | 138172   | 63187  | 45.7         | 38964    | 22075  | 56.7         |
| 16 | Rupnagar           | 351828   | 120719  | 34.3         | 74700    | 23587  | 31.6         | 16328    | 7817   | 47.9         |
| 17 | Sangrur            | 232485   | 166724  | 71.7         | 66437    | 40325  | 60.7         | 18342    | 13246  | 72.2         |
|    | Punjab Total       | 6577064  | 3266345 | 49.7         | 1788454  | 774998 | 43.3         | 448195   | 212170 | 47.3         |

Source and Notes: As in Table A4.3.

Table A4.5
Distribution of Outstanding Credit of Scheduled Commercial Banks According to Occupation

(Amount in rupees crore)

|      | Occupation                                          | No. of<br>Accounts | Credit<br>Limit<br>Amount | Amount<br>Outstandi |        | No. of<br>Accounts | Credit<br>Limit<br>Amount | Amount<br>Outstandin |        | No. of<br>Accounts | Credit<br>Limit<br>Amount | Amount<br>Outstanding | ;      |
|------|-----------------------------------------------------|--------------------|---------------------------|---------------------|--------|--------------------|---------------------------|----------------------|--------|--------------------|---------------------------|-----------------------|--------|
|      |                                                     |                    | March 200                 | 5                   |        |                    | March 200                 | 2                    |        |                    | March 2000                | )                     |        |
| I.   | Agriculture (Direct, Indirect)                      | 26656308           | 149143                    | 124385              | (10.8) | 20351184           | 78759                     | 64009                | (9.8)  | 20532891           | 53554                     | 45638                 | (9.9)  |
| II.  | Industry                                            | 3716669            | 714005                    | 446825              | (38.8) | 4232501            | 371630                    | 271626               | (41.4) | 5354140            | 271867                    | 213779                | (46.5) |
|      | 1. Mining and Quarrying                             | 18141              | 31760                     | 15817               | (1.4)  | 9120               | 20819                     | 11654                | (1.8)  | 6611               | 6377                      | 4852                  | (1.1)  |
|      | 2. Food Manufacturing and Processing                | 232424             | 66490                     | 31050               | (2.7)  | 217315             | 27548                     | 20742                | (3.2)  | 108750             | 22804                     | 17624                 | (3.8)  |
|      | 3. Textiles                                         | 225788             | 91265                     | 52407               | (4.5)  | 236252             | 46881                     | 34122                | (5.2)  | 186917             | 38887                     | 30586                 | (6.6)  |
|      | 4. Paper Paper Products and Printing                | 47359              | 15948                     | 10615               | (0.9)  | 44921              | 9213                      | 7445                 | (1.1)  | 45509              | 6033                      | 4907                  | (1.1)  |
|      | 5. Leather and Leather Products                     | 25988              | 6221                      | 4148                | (0.4)  | 29092              | 3867                      | 2918                 | (0.4)  | 19693              | 3607                      | 2731                  | (0.6)  |
|      | 6. Rubber and Rubber Products                       | 45811              | 15272                     | 8986                | (0.8)  | 40795              | 9104                      | 7435                 | (1.1)  | 14395              | 3687                      | 2767                  | (0.6)  |
|      | 7. Chemicals and Chemical Products                  | 97054              | 70565                     | 39233               | (3.4)  | 109160             | 43244                     | 29895                | (4.6)  | 94993              | 35783                     | 26758                 | (5.8)  |
|      | 8. Basic Metals and Metal Products                  | 133686             | 85590                     | 53855               | (4.7)  | 126761             | 41972                     | 33262                | (5.1)  | 93764              | 29842                     | 24792                 | (5.4)  |
|      | 9. Engineering                                      | 229269             | 60410                     | 40415               | (3.5)  | 193984             | 49833                     | 31852                | (4.9)  | 112711             | 33734                     | 25138                 | (5.5)  |
|      | 10. Vehicles, Vehicle Parts, and Transport equipmen | nts 40873          | 29420                     | 18897               | (1.6)  | 49430              | 14918                     | 11090                | (1.7)  | 41942              | 11713                     | 8056                  | (1.8)  |
|      | 11. Other Industries                                | 2313243            | 78474                     | 52691               | (4.6)  | 3042647            | 33747                     | 26197                | (4.0)  | 4546356            | 36708                     | 30609                 | (6.7)  |
|      | 12. Electricity, Gas, and Water                     | 5140               | 50744                     | 36317               | (3.2)  | 3376               | 26492                     | 18824                | (2.9)  | 2686               | 11296                     | 8574                  | (1.9)  |
|      | 13. Construction                                    | 282672             | 76442                     | 58376               | (5.1)  | 110906             | 18614                     | 15075                | (2.3)  | 63972              | 6616                      | 5599                  | (1.2)  |
| III. | . Transport Operations                              | 577543             | 17762                     | 13721               | (1.2)  | 657229             | 12451                     | 9323                 | (1.4)  | 974401             | 10524                     | 8075                  | (1.8)  |
| IV.  | . Professional and Other Services                   | 1469713            | 80093                     | 55266               | (4.8)  | 1485331            | 36784                     | 27702                | (4.2)  | 1831185            | 18422                     | 14653                 | (3.2)  |
| V.   | Personal Loans                                      | 32835257           | 347598                    | 255982              | (22.2) | 17594205           | 107950                    | 82518                | (12.6) | 14420051           | 61077                     | 51639                 | (11.2) |
|      | (i) Loans for Purchase of Consumer Durables         | 1510200            | 8057                      | 6349                | (0.6)  | 1213842            | 4168                      | 3214                 | (0.5)  | 1187325            | 3426                      | 2781                  | (0.6)  |
|      | (ii) Loans for Housing                              | 3666450            | 145034                    | 126797              | (11.0) | 1816315            | 37566                     | 32826                | (5.0)  | 2253390            | 21001                     | 18525                 | (4.0)  |
|      | (iii) Rest of the Personal Loans                    | 27658607           | 194507                    | 122836              | (10.7) | 14564048           | 66217                     | 46478                | (7.1)  | 10979336           | 36650                     | 30332                 | (6.6)  |
| VI.  | . Trade                                             | 6091108            | 173357                    | 129646              | (11.2) | 6162035            | 118786                    | 100872               | (15.4) | 7072533            | 85882                     | 71618                 | (15.6) |
|      | 1. Retail Trade                                     | 5591844            | 78494                     | 56127               | (4.9)  | 5791236            | 34075                     | 27368                | (4.2)  | 6595516            | 31197                     | 25662                 | (5.6)  |
| VII  | I. Finance                                          | 107968             | 91440                     | 73277               | (6.4)  | 100761             | 49718                     | 37614                | (5.7)  | 70485              | 30166                     | 21873                 | (4.8)  |
| VII  | II. Miscellaneous                                   | 5696228            | 72867                     | 53368               | (4.6)  | 5805133            | 79351                     | 62330                | (9.5)  | 4114711            | 37604                     | 32806                 | (7.1)  |
| Tot  | tal Bank Credit                                     | 77150794           | 1646266                   | 1152468             | (100)  | 56388379           | 855428                    | 655993               | (100)  | 54370397           | 569096                    | 460081                | (100)  |
| Of   | which: 1. Artisans and Village Industries           | 1288321            | 7904                      | 6149                | (0.5)  | 1455000            | 6906                      | 5600                 | (0.9)  | 2013171            | 3016                      | 2677                  | (0.6)  |
|      | 2. Other Small Scale Industries                     | 939186             | 62853                     | 47076               | (4.1)  | 1572798            | 39931                     | 31970                | (4.9)  | 2126150            | 43600                     | 35070                 | (7.6)  |

TABLE A4.5 (contd.)

|         | Occupation                                          |          | March 1990 |        |        | Ι        | December 198 | 30    |        | De      | ecember 197 | 5     |        |
|---------|-----------------------------------------------------|----------|------------|--------|--------|----------|--------------|-------|--------|---------|-------------|-------|--------|
| I. A    | griculture (Direct, Indirect)                       | 24520595 | 19313      | 16626  | (15.9) | 10339615 | 4920         | 3722  | (15.7) | 3042170 | 1493        | 1071  | (10.7) |
| II. In  | dustry                                              | 4125322  | 59762      | 50846  | (48.7) | 837313   | 17124        | 11555 | (48.8) | 304873  | 9009        | 5777  | (57.7) |
| 1.      | Mining and Quarrying                                | 8858     | 982        | 877    | (0.8)  | 3987     | 267          | 191   | (0.8)  | 1985    | 188         | 132   | (1.3)  |
| 2.      | Food Manufacturing and Processing                   | 94534    | 5454       | 4288   | (4.1)  | 37993    | 1737         | 955   | (4.0)  | 18060   | 877         | 379   | (3.8)  |
| 3.      | Textiles                                            | 87634    | 8611       | 7495   | (7.2)  | 54963    | 2943         | 1983  | (8.4)  | 31457   | 1619        | 1056  | (10.5) |
| 4.      | Paper Paper Products and Printing                   | 36906    | 1860       | 1623   | (1.6)  | 20952    | 550          | 417   | (1.8)  | 10103   | 255         | 178   | (1.8)  |
| 5.      | Leather and Leather Products                        | 11173    | 1093       | 1004   | (1.0)  | 5117     | 234          | 169   | (0.7)  | 2691    | 91          | 71    | (0.7)  |
| 6.      | Rubber and Rubber Products                          | 11853    | 1002       | 887    | (0.9)  | 6458     | 320          | 245   | (1.0)  | 3330    | 145         | 104   | (1.0)  |
| 7.      | Chemicals and Chemical Products                     | 64825    | 7493       | 6352   | (6.1)  | 43149    | 2176         | 1410  | (6.0)  | 20827   | 933         | 590   | (5.9)  |
| 8.      | Basic Metals and Metal Products                     | 74936    | 6166       | 5398   | (5.2)  | 45392    | 1962         | 1324  | (5.6)  | 23462   | 1070        | 755   | (7.5)  |
| 9.      | Engineering                                         | 88135    | 10613      | 8926   | (8.6)  | 54149    | 3454         | 2389  | (10.1) | 27082   | 1868        | 1231  | (12.3) |
| 10      | . Vehicles, Vehicle Parts, and Transport equipments | 25597    | 2667       | 2306   | (2.2)  | 13991    | 855          | 550   | (2.3)  | 8510    | 433         | 311   | (3.1)  |
| 11      | . Other Industries                                  | 3577835  | 8740       | 7384   | (7.1)  | 529390   | 1065         | 767   | (3.2)  | 146478  | 829         | 547   | (5.5)  |
| 12      | . Electricity, Gas, and Water                       | 2773     | 1121       | 843    | (0.8)  | 702      | 291          | 125   | (0.5)  | 1650    | 174         | 106   | (1.1)  |
| 13      | . Construction                                      | 23431    | 1566       | 1438   | (1.4)  | 12638    | 230          | 180   | (0.8)  | 5477    | 90          | 70    | (0.7)  |
| III. Tr | ansport Operations                                  | 1240476  | 4146       | 3286   | (3.2)  | 378273   | 1324         | 1078  | (4.6)  | 103758  | 328         | 259   | (2.6)  |
| IV. Pe  | rsonal Loans and Professional Other Services        | 8125421  | 11200      | 9791   | (9.4)  | 1344474  | 637          | 527   | (2.2)  | 262798  | 242         | 180   | (1.8)  |
| 1.      | Professional Services*                              | 1592015  | 1129       | 967    | (0.9)  | 187091   | 115          | 93    | (0.4)  | 45752   | 38          | 30    | (0.3)  |
| 2.      | Other Services                                      | 1664209  | 2413       | 2126   | (2.0)  | 1157383  | 522          | 433   | (1.8)  | 217046  | 204         | 150   | (1.5)  |
| 3.      | Personal Loan                                       | 4869197  | 7,658      | 6698   | (6.4)  |          |              |       |        |         |             |       |        |
|         | (i) Loans for Purchase of Consumer Durables         | 420095   | 507        | 443    | (0.4)  | _        | _            | -     |        | _       | -           | -     |        |
|         | (ii) Loans for Housing                              | 547114   | 2908       | 2536   | (2.4)  | _        | _            | -     |        | _       | -           | -     |        |
|         | (iii) Rest of the Personal Loans                    | 3901988  | 4243       | 3719   | (3.6)  | _        | _            | -     |        | _       | _           | _     |        |
| V. Tr   | ade                                                 | 8837621  | 17121      | 14486  | (13.9) | 1886767  | 7224         | 4653  | (19.7) | 444255  | 3252        | 1820  | (18.2) |
| 1.      | Retail Trade                                        | 8438399  | 6319       | 5560   | (5.3)  | 1735156  | 1050         | 801   | (3.4)  | 360391  | 385         | 263   | (2.6)  |
| VI. Fi  | nancial Institutions                                | 14122    | 2708       | 2234   | (2.1)  | 2267767  | 937          | 810   | (3.4)  | 12060   | 315         | 151   | (1.5)  |
| 1.      | Leasing/Hire Purchase and Finance Units             | 3801     | 920        | 771    | (0.7)  | _        | _            | _     |        | _       | _           | _     |        |
| 2.      | Housing Finance Companies/Corporations              | 186      | 144        | 134    | (0.1)  | _        | _            | -     |        | _       | _           | _     |        |
| VII. M  | iscellaneous                                        | 6987129  | 7405       | 7042   | (6.8)  | 3194086  | 1702         | 1328  | (5.6)  | 3189168 | 1064        | 81    | (0.8)  |
|         | nk Credit                                           | 53850686 | 121654     | 104312 | (100)  | 20248295 | 33867        | 23674 | (100)  | 7359082 | 15703       | 10015 | (100)  |
| Of whic | h: 1. Artisans and Village Industries               | 2151263  | 1061       | 926    | (0.9)  | _        | -            | -     |        | _       | -           | -     |        |
|         | 2. Other Small Scale Industries                     | 1606146  | 14098      | 11986  | (11.5) | 668570   | 3709         | 2844  | (12.0) | 262301  | 1773        | 1178  | (11.8) |

*Notes:* – not available; Figures in brackets are percentages to total bank credit.

Source: RBI Banking Statistics: Basic Statistical Returns of Scheduled Commercial Banks in India, March 2005 (Vol. 34) and earlier issues.

TABLE A4.6
Resource Mobilization from the Primary Market

(Rupees crore)

| Year     | Total  |        |        | Categorywi | se     |        |        | Issue Type | 2      |        |        |         |        | Ins    | strumentw | vise   |        |        |        |       |
|----------|--------|--------|--------|------------|--------|--------|--------|------------|--------|--------|--------|---------|--------|--------|-----------|--------|--------|--------|--------|-------|
|          |        |        | Public |            | Right  |        | Listed |            | IPOs   |        |        | Equitie | es     |        | CCPS      |        | Bonds  |        | Others |       |
|          |        |        |        |            |        |        |        |            |        | At     | Par    |         | At Pr  | emium  |           |        |        |        |        |       |
|          | Number | Amount | Number | Amount     | Number | Amount | Number | Amount     | Number | Amount | Number | Amount  | Number | Amount | Number    | Amount | Number | Amount | Number | Amoun |
| (1)      | (2)    | (3)    | (4)    | (5)        | (6)    | (7)    | (8)    | (9)        | (10)   | (11)   | (12)   | (13)    | (14)   | (15)   | (16)      | (17)   | (18)   | (19)   | (20)   | (21)  |
| 2006–7   |        |        |        |            |        |        |        |            |        |        |        |         |        |        |           |        |        |        |        |       |
| Jun 2006 | 6      | 253    | 1      | 140        | 5      | 113    | 5      | 113        | 1      | 140    | 1      | 5       | 5      | 248    | 0         | 0      | 0      | 0      | 0      | 0     |
| May 2006 | 6      | 1300   | 6      | 1300       | 0      | 0      | 2      | 521        | 4      | 779    | 0      | 0       | 6      | 1300   | 0         | 0      | 0      | 0      | 0      | 0     |
| Apr 2006 | 9      | 8990   | 6      | 8923       | 3      | 67     | 4      | 199        | 5      | 8791   | 0      | 0       | 9      | 8990   | 0         | 0      | 0      | 0      | 0      | 0     |
| 2005-6   |        |        |        |            |        |        |        |            |        |        |        |         |        |        |           |        |        |        |        |       |
| Mar 2006 | 20     | 1351   | 14     | 947        | 6      | 403    | 9      | 522        | 11     | 829    | 2      | 164     | 18     | 1187   | 0         | 0      | 0      | 0      | 0      | 0     |
| Feb 2006 | 16     | 2780   | 15     | 2730       | 2      | 60     | 6      | 1035       | 11     | 1755   | 0      | 0       | 16     | 2780   | 0         | 0      | 0      | 0      | 0      | 0     |
| Jan 2006 | 13     | 3798   | 12     | 3796       | 1      | 3      | 4      | 2456       | 9      | 1342   | 0      | 0       | 13     | 3798   | 0         | 0      | 0      | 0      | 0      | 0     |
| Dec 2005 | 17     | 8984   | 10     | 6356       | 7      | 2629   | 10     | 7860       | 7      | 1124   | 0      | 0       | 17     | 8984   | 0         | 0      | 0      | 0      | 0      | 0     |
| Nov 2005 | 9      | 1007   | 9      | 1007       | 0      | 0      | 1      | 240        | 8      | 767    | 0      | 0       | 9      | 1007   | 0         | 0      | 0      | 0      | 0      | 0     |
| Oct 2005 | 7      | 706    | 7      | 706        | 0      | 0      | 1      | 275        | 6      | 431    | 0      | 0       | 7      | 706    | 0         | 0      | 0      | 0      | 0      | 0     |
| Sep 2005 | 12     | 1786   | 6      | 1650       | 6      | 135    | 8      | 198        | 4      | 1587   | 3      | 21      | 9      | 1765   | 0         | 0      | 0      | 0      | 0      | 0     |
| Aug 2005 | 9      | 950    | 4      | 560        | 5      | 390    | 5      | 390        | 4      | 560    | 3      | 53      | 6      | 897    | 0         | 0      | 0      | 0      | 0      | 0     |
| Jul 2005 | 9      | 2050   | 5      | 1826       | 4      | 224    | 5      | 474        | 4      | 1576   | 0      | 0       | 9      | 2050   | 0         | 0      | 0      | 0      | 0      | 0     |
| Jun 2005 | 9      | 932    | 9      | 932        | 0      | 0      | 3      | 372        | 6      | 560    | 1      | 16      | 8      | 916    | 0         | 0      | 0      | 0      | 0      | 0     |
| May 2005 | 8      | 325    | 4      | 54         | 4      | 271    | 4      | 271        | 4      | 54     | 1      | 118     | 7      | 207    | 0         | 0      | 0      | 0      | 0      | 0     |
| Apr 2005 | 8      | 2637   | 7      | 2625       | 1      | 12     | 3      | 2281       | 5      | 356    | 0      | 0       | 8      | 2637   | 0         | 0      | 0      | 0      | 0      | 0     |
| 2004-5   |        |        |        |            |        |        |        |            |        |        |        |         |        |        |           |        |        |        |        |       |
| Mar 2005 | 12     | 4782   | 10     | 4775       | 4      | 565    | 9      | 4423       | 5      | 917    | 1      | 174     | 11     | 4608   | 0         | 0      | 0      | 0      | 0      | 0     |
| Feb 2005 | 3      | 2142   | 3      | 2430       | 1      | 162    | 2      | 612        | 2      | 1980   | 0      | 0       | 3      | 2142   | 0         | 0      | 0      | 0      | 0      | 0     |
| Jan 2005 | 1      | 216    | 3      | 3074       | 0      | 0      | 3      | 3074       | 0      | 0      | 0      | 0       | 1      | 216    | 0         | 0      | 0      | 0      | 0      | 0     |
| Dec 2004 | 5      | 215    | 3      | 164        | 2      | 51     | 2      | 51         | 3      | 164    | 1      | 8       | 4      | 207    | 0         | 0      | 0      | 0      | 0      | 0     |
| Nov 2004 | 6      | 280    | 4      | 229        | 2      | 52     | 3      | 60         | 3      | 221    | 1      | 1       | 5      | 279    | 0         | 0      | 0      | 0      | 0      | 0     |
| Oct 2004 | 3      | 5451   | 1      | 5368       | 2      | 83     | 2      | 83         | 1      | 5368   | 0      | 0       | 3      | 5451   | 0         | 0      | 0      | 0      | 0      | 0     |
| Sep 2004 | 7      | 389    | 2      | 76         | 5      | 313    | 5      | 313        | 2      | 76     | 2      | 229     | 5      | 160    | 0         | 0      | 0      | 0      | 0      | 0     |
| Aug 2004 | 10     | 2408   | 2      | 46         | 8      | 2362   | 8      | 2362       | 2      | 46     | 1      | 9       | 9      | 2399   | 0         | 0      | 0      | 0      | 0      | 0     |
| Jul 2004 | 1      | 4713   | 1      | 4713       | 0      | 0      | 0      | 0          | 1      | 4713   | 0      | 0       | 1      | 4713   | 0         | 0      | 0      | 0      | 0      | 0     |
| Jun 2004 | 2      | 2858   | 0      | 0          | 0      | 0      | 0      | 0          | 0      | 0      | 0      | 0       | 0      | 0      | 0         | 0      | 2      | 2858   | 0      | 0     |

| Table A4.6 | (contd.) |
|------------|----------|
|------------|----------|

| May 2004 | 4 3  | 478   | 0    | 0     | 2   | 27    | 2   | 27    | 0    | 0     | 0    | 0    | 2   | 27    | 0 | 0   | 1  | 451  | 0   | 0    |
|----------|------|-------|------|-------|-----|-------|-----|-------|------|-------|------|------|-----|-------|---|-----|----|------|-----|------|
| Apr 2004 | 7    | 4324  | 5    | 3765  | 0   | 0     | 1   | 3500  | 4    | 265   | 0    | 0    | 5   | 3765  | 0 | 0   | 2  | 559  | 0   | 0    |
| 2005-6   | 138  | 27317 | 102  | 23190 | 36  | 4126  | 59  | 16375 | 79   | 10941 | 10   | 254  | 127 | 26934 | 0 | 0   | 0  | 0    | 0   | 0    |
| 2004-5   | 60   | 28255 | 34   | 24640 | 26  | 36616 | 37  | 14507 | 23   | 13749 | 6    | 420  | 49  | 23968 | 0 | 0   | 5  | 3867 | 0   | 0    |
| 2003-4   | 57   | 23273 | 35   | 22265 | 22  | 1007  | 36  | 19838 | 21   | 3434  | 14   | 360  | 37  | 18589 | 0 | 0   | 6  | 4324 | 0   | 0    |
| 2002-3   | 27   | 4070  | 14   | 3639  | 12  | 431   | 20  | 3032  | 6    | 1038  | 6    | 143  | 11  | 1314  | 0 | 0   | 8  | 2600 | 2   | 13   |
| 2001-2   | 35   | 7543  | 20   | 6502  | 15  | 1041  | 28  | 6341  | 7    | 1202  | 7    | 151  | 8   | 1121  | 0 | 0   | 16 | 5601 | 4   | 670  |
| 2000-1   | 151  | 6108  | 124  | 5379  | 27  | 729   | 37  | 3386  | 114  | 2722  | 84   | 818  | 54  | 2408  | 2 | 142 | 10 | 2704 | 1   | 36   |
| 1999–200 | 0 94 | 7817  | 65   | 6257  | 28  | 1560  | 42  | 5098  | 51   | 2719  | 30   | 786  | 52  | 3780  | 0 | 0   | 10 | 3200 | 2   | 51   |
| 1998–9   | 59   | 5587  | 32   | 5019  | 26  | 568   | 40  | 5182  | 18   | 405   | 20   | 197  | 20  | 660   | 3 | 78  | 10 | 4450 | 6   | 202  |
| 1997-8   | 114  | 4569  | 62   | 2862  | 49  | 1708  | 59  | 3522  | 52   | 1048  | 64   | 271  | 33  | 1610  | 3 | 10  | 4  | 1550 | 10  | 1128 |
| 1996–7   | 889  | 14277 | 751  | 11557 | 131 | 2719  | 167 | 8326  | 717  | 5950  | 697  | 3433 | 148 | 4412  | 5 | 75  | 10 | 5400 | 29  | 957  |
| 1995–6   | 1738 | 20804 | 1426 | 14240 | 299 | 6564  | 368 | 9880  | 1357 | 10924 | 1181 | 4958 | 480 | 9727  | 8 | 145 | 6  | 2086 | 63  | 3888 |
| 1994–5   | 1735 | 27632 | 1342 | 21045 | 350 | 6588  | 453 | 11061 | 1239 | 16572 | 942  | 5529 | 651 | 12441 | 7 | 124 | 0  | 0    | 135 | 9538 |
| 1993-4   | 1143 | 24372 | 773  | 15449 | 370 | 8923  | 451 | 16508 | 692  | 7864  | 608  | 3808 | 383 | 9220  | 1 | 2   | 9  | 1991 | 142 | 9351 |

*Note*: Instrument-wise break up may not tally with the total number of issues because for one issue there could be more than one instruments.

Source: SEBI (2006), Handbook of Statistics on the Indian Securities Market 2005 and SEBI Bulletins.

## A5 CAPITAL MARKET

TABLE A5.1 Trends in Resource Mobilization by Mutual Fund

(Rs crore)

|          |                   | Gross Mob        | ilization |        |                   | Redemj           | ption* |        |                   | Net I            | nflow |        | Assets at            |
|----------|-------------------|------------------|-----------|--------|-------------------|------------------|--------|--------|-------------------|------------------|-------|--------|----------------------|
| Year     | Private<br>Sector | Public<br>Sector | UTI       | Total  | Private<br>Sector | Public<br>Sector | UTI    | Total  | Private<br>Sector | Public<br>Sector | UTI   | Total  | the end of<br>Period |
| (1)      | (2)               | (3)              | (4)       | (5)    | (6)               | (7)              | (8)    | (9)    | (10)              | (11)             | (12)  | (13)   | (14)                 |
| 2006–7   |                   |                  |           |        |                   |                  |        |        |                   |                  |       |        |                      |
| Jun-2005 | 113861            | 13048            | 9278      | 119737 | 119737            | 12144            | 8909   | 140790 | -5876             | 904              | 369   | -4603  | 265534               |
| May-2005 | 130102            | 11718            | 10175     | 151995 | 99988             | 10034            | 6145   | 116168 | 30113             | 1684             | 4030  | 35827  | 276343               |
| Apr-2005 | 110281            | 10712            | 4941      | 125934 | 91479             | 8476             | 5151   | 105106 | 18802             | 2236             | -210  | 20828  | 257499               |
| 2005-6   |                   |                  |           |        |                   |                  |        |        |                   |                  |       |        |                      |
| Mar-2006 | 113969            | 13300            | 9132      | 136400 | 103748            | 16549            | 8297   | 128594 | 10221             | -3249            | 835   | 7807   | 231862               |
| Feb-2006 | 80173             | 14012            | 6041      | 100226 | 75780             | 11031            | 3997   | 90808  | 4393              | 2981             | 2044  | 9418   | 207979               |
| Jan-2006 | 78045             | 12913            | 3832      | 94790  | 70505             | 11949            | 4317   | 86771  | 7540              | 964              | -485  | 8019   | 217707               |
| Dec-2005 | 76794             | 10775            | 7179      | 94748  | 86603             | 10775            | 7839   | 105217 | -9809             | 0                | -660  | -10469 | 199248               |
| Nov-2005 | 62453             | 9388             | 5861      | 77702  | 64578             | 9546             | 6591   | 80715  | -2125             | -158             | -730  | -3013  | 204519               |
| Oct-2005 | 81429             | 8868             | 8068      | 98365  | 79696             | 7528             | 7024   | 94248  | 1733              | 1340             | 1044  | 4117   | 200209               |
| Sep-2005 | 78791             | 11736            | 7156      | 97683  | 78625             | 9414             | 7828   | 95867  | 166               | 2322             | -672  | 1816   | 201669               |
| Aug-2005 | 91833             | 8608             | 7515      | 107956 | 80277             | 6679             | 6239   | 93195  | 11556             | 1929             | 1276  | 14761  | 195784               |
| Jul-2005 | 70145             | 5855             | 5282      | 81282  | 64130             | 6087             | 5014   | 75231  | 6015              | -232             | 268   | 6051   | 175916               |
| Jun-2005 | 63887             | 6584             | 4106      | 74577  | 66128             | 6447             | 4532   | 77107  | -2241             | 137              | -426  | -2530  | 164546               |
| May-2005 | 54135             | 3264             | 5107      | 62506  | 48962             | 3836             | 4178   | 56976  | 5173              | -572             | 929   | 5530   | 167978               |
| Apr-2005 | 63049             | 5015             | 3849      | 71913  | 52693             | 4099             | 3847   | 60639  | 10356             | 916              | 2     | 11274  | 158422               |
| 2004-5   |                   |                  |           |        |                   |                  |        |        |                   |                  |       |        |                      |
| Mar-2005 | 84535             | 6345             | 6650      | 97530  | 86127             | 9237             | 6473   | 101837 | -1592             | -2892            | 177   | -4307  | 149600               |
| Feb-2005 | 53512             | 5712             | 3993      | 63217  | 54767             | 4968             | 3821   | 63556  | -1255             | 744              | 172   | -339   | 153253               |
| Jan-2005 | 51801             | 5308             | 3099      | 60208  | 50041             | 4398             | 3205   | 57644  | 1760              | 910              | -106  | 2564   | 150378               |
| Dec-2004 | 75048             | 4762             | 3450      | 83260  | 76320             | 5637             | 3759   | 85716  | -1272             | -875             | -309  | -2456  | 150537               |
| Nov-2004 | 47229             | 3786             | 2376      | 53391  | 48473             | 4118             | 2882   | 55473  | -1244             | -332             | -506  | -2082  | 149581               |
| Oct-2004 | 52074             | 3441             | 2769      | 58284  | 54949             | 4280             | 2772   | 62001  | -2875             | -839             | -3    | -3717  | 147995               |
| Sep-2004 | 68359             | -19949           | 2923      | 51333  | 72353             | -25448           | 3526   | 50431  | -3994             | 5499             | -603  | 902    | 153108               |
| Aug-2004 | 64060             | 30240            | 3090      | 97390  | 65527             | 36481            | 4629   | 106637 | -1467             | -6241            | -1539 | -9247  | 155686               |
| Jul-2004 | 57961             | 5005             | 6669      | 69635  | 58783             | 4657             | 6458   | 69898  | -822              | 348              | 211   | -263   | 157747               |
| Jun-2004 | 62776             | 3973             | 4090      | 70839  | 60327             | 3922             | 4792   | 69041  | 2449              | 51               | -702  | 1798   | 155875               |

| Table A5.1 ( | contd. |
|--------------|--------|
|              |        |

| May-2004  | 55356  | -3227  | 3341  | 55470   |        | 50793  | -3178  | 2476  | 50091   | 4563  | -49   | 865   | 5379  | 154018 |         |
|-----------|--------|--------|-------|---------|--------|--------|--------|-------|---------|-------|-------|-------|-------|--------|---------|
| Apr-2004  | 63753  | 11193  | 4206  | 79152   |        | 50403  | 10194  | 4586  | 65183   | 13350 | 999   | -380  | 13969 | 153214 | GDP     |
| 2005-6    | 914703 | 110319 | 73127 | 1098149 | [31.1] | 871727 | 103940 | 69704 | 1045370 | 42977 | 6379  | 3424  | 52779 | 231862 | 3531451 |
| 2004-5    | 736463 | 56589  | 46656 | 839708  | [26.9] | 728864 | 59266  | 49378 | 837508  | 7599  | -2677 | -2722 | 2200  | 149600 | 3121414 |
| 2003-4    | 534649 | 31548  | 23992 | 590189  | [21.4] | 492105 | 28951  | 22326 | 543382  | 42544 | 2597  | 1666  | 46807 | 139616 | 2760224 |
| 2002-3    | 284096 | 23515  | 7096  | 314707  | [12.8] | 272026 | 21954  | 16530 | 310510  | 12070 | 1561  | -9434 | 4197  | 109299 | 2449736 |
| 2001-2    | 147798 | 12082  | 4643  | 164523  | [7.2]  | 134748 | 10673  | 11927 | 157348  | 13050 | 1409  | -7284 | 7175  | 100594 | 2281305 |
| 2000-1    | 75009  | 5535   | 12413 | 92957   | [4.4]  | 65160  | 6580   | 12090 | 83830   | 9849  | -1045 | 323   | 9127  | 90586  | 2107661 |
| 1999-2000 | 43726  | 3817   | 13698 | 61241   | [3.1]  | 28559  | 4562   | 9150  | 42271   | 15167 | -745  | 4548  | 18970 | 107946 | 1958814 |
| 1998–9    | 7847   | 1671   | 13193 | 22711   | [1.3]  | 6394   | 1336   | 15930 | 23660   | 1453  | 335   | -2737 | -949  | 68193  | 1740985 |
| 1997-8    | 1974   | 332    | 9100  | 11406   | [0.7]  | na     | na     | na    | na      | na    | na    | na    | na    | na     | 1522547 |
| 1996–7    | 346    | 151    | 4280  | 4777    | [0.3]  | na     | na     | na    | na      | na    | na    | na    | na    | na     | 1368209 |
| 1995–6    | 312    | 296    | 5900  | 6508    | [0.5]  | na     | na     | na    | na      | na    | na    | na    | na    | na     | 1188012 |
| 1994–5    | 2084   | 2143   | 9500  | 13727   | [1.4]  | na     | na     | na    | na      | na    | na    | na    | na    | na     | 1012770 |
| 1993-4    | 1549   | 9527   | 51000 | 62076   | [7.2]  | na     | na     | na    | na      | na    | na    | na    | na    | na     | 859220  |
|           |        |        |       |         |        |        |        |       |         |       |       |       |       |        |         |

Notes: \* Includes repurchases as well as redemption; na—not available; Figures in square brackets are percentages to GDP at current market prices (GDP data are as per revised series from 1999–2000 and as per 1993–4 series before 1999–2000; IDBI principal has now become principal MF, a private ector mutual fund; Erstwhile UTI has been divided into UTI mutual fund (registered with SEBI) and the specified undertaking of UTI (not registered with SEBI), above data contain information only of UTI mutual fund; Net assets pertaining to funds of funds schemes are not included in the above data.

Source: Securities and Exchange Board of India.

Table A5.2 Trends in Resource Mobilization by Mutual Funds

(Rs crore)

| Year            | UTI         | Bank-Sponsored MFs |                                                     |        |                  | T 1                | Private Sector MFs |                                                     |                                        |            |        |
|-----------------|-------------|--------------------|-----------------------------------------------------|--------|------------------|--------------------|--------------------|-----------------------------------------------------|----------------------------------------|------------|--------|
| icai            |             |                    |                                                     |        | Institution-     |                    |                    |                                                     |                                        | Grand Tota | ,1     |
|                 |             | Total<br>(4+5)     | Joint<br>Ventures<br>(Predomi-<br>nantly<br>Indian) | Others | Sponsored<br>MFs | Total<br>(8 to 11) | Indian             | Joint<br>Ventures<br>(Predomi-<br>nantly<br>Indian) | Joint Ventures (Predominantly Foreign) | (2+3+6+7)  |        |
| (1)             | (2)         | (3)                | (4)                                                 | (5)    | (6)              | (7)                | (8)                | (10)                                                | (11)                                   | (12)       |        |
| Sales: All Scho | emes        |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| 2006-7          |             |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| Jun-2006        | na          | 15003              | 3888                                                | 11115  | 7322             | 113862             | 32607              | 45317                                               | 35938                                  | 136187     |        |
| May-2006        | na          | 16631              | 3934                                                | 12697  | 5262             | 130102             | 35079              | 50905                                               | 44118                                  | 151995     |        |
| Apr-2006        | na          | 10729              | 3090                                                | 7639   | 4924             | 110281             | 30582              | 46875                                               | 32824                                  | 125934     |        |
| 2005-6          | na          | 137226             | 48167                                               | 89059  | 46220            | 914703             | 256752             | 346518                                              | 311433                                 | 1098149    | [31.1] |
| 2004-5          | na          | 90446              | 30995                                               | 59451  | 12800            | 736462             | 242428             | 156925                                              | 337109                                 | 839708     | [26.9] |
| 2003-4          | na          | 46661              | na                                                  | na     | 21897            | 521632             | 143050             | 140545                                              | 238037                                 | 590190     | [21.4] |
| 2002-3          | 7062        | 11090              | na                                                  | na     | 17535            | 278986             | 83351              | 71513                                               | 124122                                 | 314673     | [12.8] |
| 2001-2          | 4643        | 4242               | na                                                  | na     | 9371             | 146267             | 33634              | 48396                                               | 64237                                  | 164523     | [7.2]  |
| 2000-1          | 12413       | 2181               | na                                                  | na     | 4011             | 74352              | 19901              | 20796                                               | 33655                                  | 92957      | [4.4]  |
| 1999–2000       | 13536       | 1828               | na                                                  | na     | 2211             | 42164              | 6688               | 15539                                               | 19937                                  | 59739      | [3.0]  |
| Redemptions:    | All Schemes |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| 2006-7          |             |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| Jun-2006        | na          | 14880              | 3373                                                | 11507  | 6173             | 119737             | 34046              | 50234                                               | 35457                                  | 140790     |        |
| May-2006        | na          | 11595              | 3238                                                | 8357   | 4583             | 99989              | 28030              | 39360                                               | 32599                                  | 116167     |        |
| Apr-2006        | na          | 9528               | 2735                                                | 6793   | 4099             | 91479              | 26712              | 38441                                               | 26326                                  | 105106     |        |
| 2005–6          | na          | 129535             | 43973                                               | 85562  | 44108            | 871727             | 238053             | 329429                                              | 304245                                 | 1045370    | [29.6] |
| 2004–5          | na          | 92460              | 29970                                               | 62490  | 16183            | 728865             | 237060             | 156198                                              | 335607                                 | 837508     | [26.8] |
| 2003-4          | na          | 43183              | na                                                  | na     | 19796            | 480402             | 133131             | 127280                                              | 219991                                 | 543381     | [19.7] |
| 2002-3          | 7246        | 10536              | na                                                  | na     | 16121            | 267322             | 79341              | 68333                                               | 119648                                 | 301225     | [12.3] |
| 2001-2          | 11927       | 3329               | na                                                  | na     | 8550             | 133542             | 31181              | 43239                                               | 59122                                  | 157348     | [6.9]  |
| 2000-1          | 12090       | 4125               | na                                                  | na     | 3147             | 64467              | 17576              | 18353                                               | 28538                                  | 83829      | [4.0]  |
| 1999–2000       | 9663        | 1744               | na                                                  | na     | 1864             | 27933              | 5718               | 10641                                               | 11574                                  | 41204      | [2.1]  |
| Net Sales       |             |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| 2006-7          |             |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| Jun-2006        | na          | 123                | 515                                                 | -392   | 1149             | -5875              | -1439              | -4917                                               | 481                                    | -4603      |        |
| May-2006        | na          | 5036               | 696                                                 | 4340   | 679              | 30113              | 7049               | 11545                                               | 11519                                  | 35828      |        |
| Apr-2006        | na          | 1201               | 355                                                 | 846    | 825              | 18802              | 3870               | 8434                                                | 6498                                   | 20828      |        |
| 2005–6          | na          | 7691               | 4194                                                | 3497   | 2112             | 42976              | 18699              | 17089                                               | 7188                                   | 52779      | [1.5]  |
| 2004-5          | na          | -2014              | 1025                                                | -3039  | -3383            | 7597               | 5368               | 727                                                 | 1502                                   | 2200       | [0.1]  |
| 2003-4          | na          | 3478               | na                                                  | na     | 2101             | 41230              | 9919               | 13265                                               | 18046                                  | 46809      | [1.7]  |
| 2002-3          | -184        | 554                | na                                                  | na     | 1414             | 11664              | 4010               | 3180                                                | 4474                                   | 13448      | [0.5]  |
| 2001-2          | -7284       | 913                | na                                                  | na     | 821              | 12725              | 2453               | 5157                                                | 5115                                   | 7175       | [0.3]  |
| 2000-1          | 323         | -1944              | na                                                  | na     | 864              | 9885               | 2325               | 2443                                                | 5117                                   | 9128       | [0.4]  |
| 1999–2000       | 3873        | 84                 | na                                                  | na     | 347              | 14231              | 970                | 4898                                                | 8363                                   | 18535      | [0.4]  |
| Assets Under    | Management  | t                  |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| 2006–7          | _           |                    |                                                     |        |                  |                    |                    |                                                     |                                        |            |        |
| Jun-2006        | na          | 46753              | 13634                                               | 33119  | 7557             | 211224             | 54943              | 85155                                               | 71126                                  | 265534     |        |
| May-2006        | na          | 48044              | 13670                                               | 34374  | 6722             | 221577             | 58071              | 91404                                               | 72102                                  | 276343     |        |
| Apr-2006        | na          | 48163              | 14506                                               | 33657  | 6134             | 203202             | 54482              | 84265                                               | 64455                                  | 257499     |        |
| 2005–6          | na          | 45119              | 13186                                               | 31933  | 5229             | 181514             | 50602              | 74144                                               | 56768                                  | 231862     |        |
| 2004-5          | na          | 29103              | 6595                                                | 22508  | 3010             | 117487             | 30750              | 30885                                               | 55852                                  | 149600     |        |
| 2003–4          | na          | 28085              | na                                                  | na     | 6539             | 108625             | 19885              | 33143                                               | 51964                                  | 143249     |        |
| 2002-3          | 13516       | 4491               | na                                                  | na     | 5935             | 55522              | 10180              | 15459                                               | 29883                                  | 79464      |        |
| 2001–2          | 51434       | 3970               | na                                                  | na     | 4234             | 40956              | 5177               | 15502                                               | 20277                                  | 100594     |        |
| 2000-1          | 58017       | 3333               | na                                                  | na     | 3507             | 25730              | 3370               | 8620                                                | 13740                                  | 90587      |        |
| 1999–2000       | 76547       | 7842               | na                                                  | na     | 3570             | 25046              | 2331               | 9724                                                | 12991                                  | 113005     |        |

*Note*: na—not available; figures in square brackets are percentages to GDP at current market prices (new series).

Source: Association of Mutual Funds in India (AMFI), (Website: www.amfiindia.com).

TABLE A5.3 Trends in FII Investments

|           |                     |            |       |                    |            | Trends in FI | 1 mvestme | 1115               |            |        |       |                                 |                                     |
|-----------|---------------------|------------|-------|--------------------|------------|--------------|-----------|--------------------|------------|--------|-------|---------------------------------|-------------------------------------|
| Year      |                     | oss Purcha |       |                    | Gross Sale |              |           |                    | et Investn |        |       | Net                             | Cumulative                          |
|           | Total<br>(Rs crore) | Eqity      | Debt  | Total<br>(Rs crore | )          | Eqity        | Debt      | Total<br>(Rs crore | e)         | Eqity  | Debt  | Invest-<br>ment<br>(US\$<br>mn) | Net<br>Invest-<br>ment<br>(US\$ mn) |
| (1)       | (2)                 | (3)        | (4)   | (5)                |            | (6)          | (7)       | (8)                |            | (9)    | (10)  | (11)                            | (12)                                |
| 2006–7    |                     |            |       |                    |            |              |           |                    |            |        |       |                                 |                                     |
| Jun-2006  | 40408               | 39783      | 625   | 39532              | 97.8       | 39304        | 229       | 875                | 2.2        | 480    | 396   | 193                             | 44153                               |
| May-2006  | 48738               | 47729      | 1009  | 55385              | 113.6      | 55083        | 302       | -6647              | -13.6      | -7354  | 707   | -1473                           | 43960                               |
| Apr-2006  | 45235               | 44645      | 590   | 44464              | 98.3       | 44123        | 341       | 771                | 1.7        | 522    | 249   | 174                             | 45433                               |
| 2005-6    |                     |            |       |                    |            |              |           |                    |            |        |       |                                 |                                     |
| Mar-2006  | 53162               | 52941      | 221   | 46732              | 87.9       | 46252        | 480       | 6430               | 12.1       | 6689   | -258  | 1451                            | 45260                               |
| Feb-2006  | 35671               | 35399      | 272   | 28235              | 79.2       | 27811        | 423       | 7436               | 20.8       | 7588   | -152  | 1660                            | 43809                               |
| Jan-2006  | 35415               | 35200      | 215   | 32658              | 92.2       | 31522        | 1136      | 2757               | 7.8        | 3678   | -922  | 606                             | 42149                               |
| Dec-2005  | 33548               | 33004      | 544   | 25187              | 75.1       | 23669        | 1518      | 8361               | 24.9       | 9335   | -974  | 1831                            | 41546                               |
| Nov-2005  | 23500               | 23086      | 414   | 21626              | 92.0       | 19047        | 2579      | 1874               | 8.0        | 4039   | -2165 | 420                             | 39715                               |
| Oct-2005  | 27166               | 26545      | 621   | 31794              | 117.0      | 30239        | 1555      | -4628              | -17.0      | -3694  | -933  | -1054                           | 39295                               |
| Sep-2005  | 26651               | 26348      | 304   | 22194              | 83.3       | 21701        | 492       | 4457               | 16.7       | 4646   | -188  | 1023                            | 40349                               |
| Aug-2005  | 28359               | 27837      | 522   | 23737              | 83.7       | 22786        | 951       | 4622               | 16.3       | 5051   | -430  | 1062                            | 39317                               |
| Jul-2005  | 25717               | 25532      | 185   | 17956              | 69.8       | 17597        | 359       | 7761               | 30.2       | 7934   | -174  | 1784                            | 38264                               |
| Jun-2005  | 25960               | 25915      | 45    | 20702              | 79.7       | 20586        | 115       | 5258               | 20.3       | 5329   | -70   | 1210                            | 36481                               |
| May-2005  | 15619               | 15364      | 256   | 17005              | 108.9      | 16504        | 502       | -1386              | -8.9       | -1140  | -246  | -318                            | 35271                               |
| Apr-2005  | 16210               | 16042      | 168   | 17686              | 109.1      | 16696        | 990       | -1476              | -9.1       | -654   | -821  | -338                            | 35588                               |
| 2004-5    |                     |            |       |                    |            |              |           |                    |            |        |       |                                 |                                     |
| Mar-2005  | 28444               | 27311      | 1133  | 20517              | 72.1       | 19808        | 709       | 7927               | 27.9       | 7502   | 425   | 1813                            | 35926                               |
| Feb-2005  | 24360               | 22388      | 1972  | 15151              | 62.2       | 14012        | 1139      | 9209               | 37.8       | 8376   | 833   | 2101                            | 34113                               |
| Jan-2005  | 17502               | 16651      | 851   | 17819              | 101.8      | 16194        | 1625      | -317               | -1.8       | 457    | -774  | -75                             | 32012                               |
| Dec-2004  | 25841               | 20626      | 5215  | 15702              | 60.8       | 13943        | 1760      | 10139              | 39.2       | 6684   | 3456  | 2229                            | 32087                               |
| Nov-2004  | 21302               | 18340      | 2962  | 13117              | 61.6       | 11600        | 1518      | 8185               | 38.4       | 6741   | 1445  | 1783                            | 29858                               |
| Oct-2004  | 16063               | 15752      | 310   | 14035              | 87.4       | 12489        | 1546      | 2028               | 12.6       | 3263   | -1236 | 439                             | 28075                               |
| Sep-2004  | 13097               | 12385      | 712   | 10522              | 80.3       | 10000        | 522       | 2575               | 19.7       | 2385   | 190   | 556                             | 27637                               |
| Aug-2004  | 12856               | 12595      | 261   | 10335              | 80.4       | 9702         | 633       | 2521               | 19.6       | 2893   | -371  | 550                             | 27080                               |
| Jul-2004  | 11247               | 11096      | 150   | 10534              | 93.7       | 10183        | 351       | 713                | 6.3        | 913    | -201  | 157                             | 26531                               |
| Jun-2004  | 10894               | 10634      | 261   | 11168              | 102.5      | 10117        | 1051      | -274               | -2.5       | 517    | -790  | -57                             | 26374                               |
| May-2004  | 15655               | 15532      | 123   | 19201              | 122.7      | 18778        | 423       | -3546              | -22.7      | -3247  | -300  | -806                            | 26431                               |
| Apr-2004  | 19692               | 19692      | 0     | 12972              | 65.9       | 12053        | 919       | 6720               | 34.1       | 7638   | -919  | 1483                            | 27237                               |
| 2005-6    | 532989              | 494654     | 38335 | 419867             | 78.8       | 389869       | 29998     | 113308             | 21.3       | 104799 | 8509  | 9332                            | 45260                               |
| 2004-5    | 216953              | 203001     | 13951 | 171072             | 78.9       | 158879       | 12193     | 45881              | 21.1       | 44122  | 1757  | 10172                           | 35926                               |
| 2003-4    | 144858              | 131762     | 13095 | 99094              | 68.4       | 91804        | 7144      | 45764              | 31.6       | 39958  | 5951  | 9949                            | 25754                               |
| 2002-3    | 47060               | 43999      | 3065  | 44371              | 94.3       | 41471        | 2902      | 2689               | 5.7        | 2528   | 162   | 562                             | 15804                               |
| 2001-2    | 49920               | 45465      | 4608  | 41165              | 82.5       | 37395        | 3922      | 8755               | 17.5       | 8067   | 685   | 1846                            | 15242                               |
| 2000-1    | 74051               | 70427      | 3616  | 64116              | 86.6       | 60320        | 3837      | 9935               | 13.4       | 10124  | -46   | 2160                            | 13396                               |
| 1999–2000 | 56856               | na         | na    | 46734              | 82.2       | na           | na        | 10122              | 17.8       | na     | na    | 2339                            | 11237                               |
| 1998–9    | 16115               | na         | na    | 17699              | 109.8      | na           | na        | -1584              | -9.8       | na     | na    | -386                            | 8898                                |
| 1997-8    | 18695               | na         | na    | 12737              | 68.1       | na           | na        | 5958               | 31.9       | na     | na    | 1649                            | 9284                                |
| 1996–7    | 15554               | na         | na    | 6979               | 44.9       | na           | na        | 8575               | 55.1       | na     | na    | 2432                            | 7634                                |
| 1995–6    | 9694                | na         | na    | 2752               | 28.4       | na           | na        | 6942               | 71.6       | na     | na    | 2036                            | 5202                                |
| 1994–5    | 7631                | na         | na    | 2835               | 37.2       | na           | na        | 4796               | 62.8       | na     | na    | 1528                            | 3167                                |
| 1993-4    | 5593                | na         | na    | 466                | 8.3        | na           | na        | 5127               | 91.7       | na     | na    | 1634                            | 1638                                |

Note: na—not available; Figures in italics indicate percentages to gross purchase; net investment in US\$ million (mn) at monthly exchange rate. Source: Securities and Exchange Board of India (SEBI), (Website: www.sebi.gov.in).

Table A5.4
Business Growth of Capital Market Segment of NSE

| Year                 | No.<br>of<br>com-<br>panies<br>(listed) | No. of<br>com-<br>panies<br>(permit-<br>ted) | No. of<br>com-<br>panies<br>(available<br>for<br>trading) | No. of<br>trading<br>days | No. of<br>com-<br>panies/<br>(scrips<br>traded) | No. of<br>trades<br>(lakhs) | Traded<br>quantity<br>(lakhs) | Trading<br>value<br>(Rs<br>crore) | Average<br>daily<br>trading<br>value<br>(Rs<br>crore) | Average<br>trade<br>size<br>(Rs) | Demat<br>securities<br>traded<br>(lakhs) | Demat<br>turn-<br>over<br>(Rs<br>crore) | Market<br>capital-<br>ization<br>(Rs<br>crore) |        |
|----------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------------------------|---------------------------|-------------------------------------------------|-----------------------------|-------------------------------|-----------------------------------|-------------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------------|--------|
| (1)                  | (2)                                     | (3)                                          | (4)                                                       | (5)                       | (6)                                             | (7)                         | (8)                           | (9)                               | (10)                                                  | (11)                             | (12)                                     | (13)                                    | (14)                                           |        |
| 2006-7               |                                         |                                              |                                                           |                           |                                                 |                             |                               |                                   |                                                       |                                  |                                          |                                         |                                                |        |
| Jun-2006             | 1099                                    | 0                                            | 962                                                       | 23                        | 1119                                            | 67                          | 6675                          | 151050                            | 6567                                                  | 22651                            | 6675                                     | 151050                                  | 2524659                                        |        |
| May-2006             | 1093                                    | 0                                            | 952                                                       | 22                        | 972                                             | 69                          | 9537                          | 201409                            | 9155                                                  | 29022                            | 9537                                     | 201409                                  | 2612639                                        |        |
| Apr-2006<br>2005-6   | 1089                                    | 0                                            | 944                                                       | 18                        | 967                                             | 57                          | 7289                          | 177372                            | 9854                                                  | 31256                            | 7289                                     | 177372                                  | 2990200                                        |        |
| Mar-2006             | 1069                                    | 0                                            | 929                                                       | 22                        | 956                                             | 66                          | 8579                          | 209395                            | 9518                                                  | 31832                            | 8579                                     | 209395                                  | 2813201                                        |        |
| Feb-2006             | 1051                                    | 0                                            | 911                                                       | 19                        | 946                                             | 52                          | 6163                          | 135374                            | 7125                                                  | 25976                            | 6163                                     | 135374                                  | 2512083                                        |        |
| Jan-2006             | 1043                                    | 0                                            | 903                                                       | 20                        | 910                                             | 55                          | 6672                          | 149442                            | 7472                                                  | 26997                            | 6672                                     | 149442                                  | 2434395                                        |        |
| Dec-2005             | 1036                                    | 0                                            | 896                                                       | 22                        | 907                                             | 55                          | 6370                          | 149908                            | 6814                                                  | 27120                            | 6370                                     | 149908                                  | 2322392                                        |        |
| Nov-2005             | 1025                                    | 0                                            | 886                                                       | 20                        | 922                                             | 43                          | 5387                          | 109579                            | 5479                                                  | 25258                            | 5387                                     | 109579                                  | 2166823                                        |        |
| Oct-2005             | 1019                                    | 1                                            | 881                                                       | 20                        | 885                                             | 46                          | 5767                          | 120810                            | 6041                                                  | 26077                            | 5767                                     | 120810                                  | 1927645                                        |        |
| Sep-2005             | 1016                                    | 1                                            | 883                                                       | 21                        | 899                                             | 58                          | 9200                          | 145393                            | 6924                                                  | 25229                            | 9200                                     | 145393                                  | 2098263                                        |        |
| Aug-2005             | 1006                                    | 1                                            | 875                                                       | 22                        | 887                                             | 57                          | 10072                         | 145731                            | 6624                                                  | 25548                            | 10072                                    | 145731                                  | 1957491                                        |        |
| Jul-2005             | 999                                     | 1                                            | 868                                                       | 20                        | 995                                             | 50                          | 8413                          | 123008                            | 6150                                                  | 24449                            | 8413                                     | 123008                                  | 1848740                                        |        |
| Jun-2005             | 987                                     | 1                                            | 854                                                       | 23                        | 861                                             | 48                          | 7048                          | 111397                            | 4843                                                  | 23374                            | 7048                                     | 111397                                  | 1727502                                        |        |
| May-2005             | 977                                     | 1                                            | 842                                                       | 22                        | 875                                             | 41                          | 5652                          | 86802                             | 3946                                                  | 21020                            | 5652                                     | 86802                                   | 1654995                                        |        |
| Apr-2005<br>2004-5   | 973                                     | 1                                            | 836                                                       | 20                        | 952                                             | 37                          | 5127                          | 82718                             | 4136                                                  | 22527                            | 5127                                     | 82718                                   | 1517908                                        |        |
| Mar-2005             | 970                                     | 1                                            | 839                                                       | 22                        | 870                                             | 46                          | 8370                          | 113055                            | 5139                                                  | 24626                            | 8370                                     | 113055                                  | 1585585                                        |        |
| Feb-2005             | 964                                     | 1                                            | 837                                                       | 20                        | 835                                             | 42                          | 8967                          | 99990                             | 5000                                                  | 23551                            | 8967                                     | 99990                                   | 1614597                                        |        |
| Jan-2005             | 958                                     | 5                                            | 833                                                       | 19                        | 823                                             | 41                          | 8158                          | 99732                             | 5249                                                  | 24343                            | 8158                                     | 99732                                   | 1557444                                        |        |
| Dec-2004             | 957                                     | 6                                            | 832                                                       | 23                        | 821                                             | 47                          | 9933                          | 115593                            | 5026                                                  | 24339                            | 9933                                     | 115593                                  | 1579161                                        |        |
| Nov-2004             | 954                                     | 6                                            | 831                                                       | 20                        | 816                                             | 33                          | 6255                          | 82035                             | 4102                                                  | 25013                            | 6255                                     | 82035                                   | 1446292                                        |        |
| Oct-2004             | 950                                     | 6                                            | 828                                                       | 20                        | 814                                             | 30                          | 4727                          | 75698                             | 3785                                                  | 25291                            | 4727                                     | 75698                                   | 1253825                                        |        |
| Sep-2004             | 945                                     | 7                                            | 824                                                       | 22                        | 809                                             | 37                          | 6267                          | 88508                             | 4023                                                  | 24124                            | 6267                                     | 88508                                   | 1227550                                        |        |
| Aug-2004             | 936                                     | 9                                            | 820                                                       | 22                        | 799                                             | 36                          | 5754                          | 86856                             | 3948                                                  | 24260                            | 5754                                     | 86856                                   | 1143075                                        |        |
| Jul-2004             | 929<br>940                              | 12<br>12                                     | 815                                                       | 22<br>22                  | 793<br>787                                      | 38                          | 6306<br>4199                  | 93836<br>84899                    | 4265<br>3859                                          | 24918                            | 6306                                     | 93836<br>84899                          | 1066087<br>979700                              |        |
| Jun-2004<br>May-2004 | 928                                     | 16                                           | 813<br>804                                                | 21                        | 787<br>776                                      | 34<br>36                    | 5465                          | 98920                             | 3639<br>4711                                          | 25298<br>27697                   | 4199<br>5465                             | 98920                                   | 950494                                         |        |
| Apr-2004             | 918                                     | 18                                           | 795                                                       | 20                        | 770                                             | 32                          | 5369                          | 100951                            | 5048                                                  | 31600                            | 5369                                     | 100951                                  | 1171828                                        |        |
| 2005–6               | 1069                                    | 0                                            | 929                                                       | 251                       |                                                 | 609                         | 84449                         | 1569558                           | 6253                                                  | 25777                            | 84449                                    | 1569558                                 | 2813201                                        | [79.7] |
| 2003–6               | 970                                     | 1                                            | 839                                                       | 253                       | na<br>na                                        | 451                         | 79769                         | 1140072                           | 4506                                                  | 25283                            | 79769                                    | 1140072                                 | 1585585                                        | [50.8] |
| 2003–4               | 909                                     | 18                                           | 787                                                       | 254                       | 804                                             | 379                         | 71330                         | 1099534                           | 4329                                                  | 29090                            | 71330                                    | 1099534                                 | 1120976                                        | [40.6] |
| 2002–3               | 818                                     | 107                                          | 788                                                       | 251                       | 899                                             | 240                         | 36404                         | 617989                            | 2462                                                  | 25776                            | 36405                                    | 617985                                  | 537133                                         | [21.9] |
| 2001-2               | 793                                     | 197                                          | 890                                                       | 247                       | 1019                                            | 175                         | 27841                         | 513167                            | 2078                                                  | 29270                            | 27772                                    | 512866                                  | 636861                                         | [27.9] |
| 2000-1               | 785                                     | 320                                          | 1029                                                      | 251                       | 1201                                            | 168                         | 32954                         | 1339510                           | 5337                                                  | 86980                            | 30722                                    | 1264337                                 | 657847                                         | [31.2] |
| 1999–2000            | 720                                     | 479                                          | 1152                                                      | 254                       | na                                              | 98                          | 24270                         | 839052                            | 3303                                                  | 85244                            | 15377                                    | 711706                                  | 1020426                                        | [52.1] |
| 1998–9               | 648                                     | 609                                          | 1254                                                      | 251                       | na                                              | 55                          | 16533                         | 414474                            | 1651                                                  | 75954                            | 854                                      | 23818                                   | 491175                                         | [28.2] |
| 1997–8               | 612                                     | 745                                          | 1357                                                      | 244                       | na                                              | 38                          | 13569                         | 370193                            | 1520                                                  | 97054                            |                                          |                                         | 481503                                         | [31.6] |
| 1996–7               | 550                                     | 934                                          | 1484                                                      | 250                       | na                                              | 26                          | 13556                         | 294503                            | 1176                                                  | 112086                           |                                          |                                         | 419367                                         | [30.7] |
| 1995–6               | 422                                     | 847                                          | 1269                                                      | 246                       | na                                              | 7                           | 3991                          | 67287                             | 276                                                   | 101505                           |                                          |                                         | 401459                                         | [33.8] |
| 1994–5               | 135                                     | 543                                          | 678                                                       | 102                       | na                                              | 0.3                         | 139                           | 1805                              | 17                                                    | 56310                            |                                          |                                         | 363350                                         | [35.9] |
| (Nov-Mar)            |                                         |                                              |                                                           |                           |                                                 |                             |                               |                                   |                                                       |                                  |                                          |                                         |                                                |        |

Notes: Figures in square brackets are percentages to GDP at current market prices (GDP data are as per revised series from 1999–2000 and as per 1993–4 series before 1999–2000); na—not available.

Table A5.5 Settlement Statistics of Capital Market Segment of NSE of India

| Year      | Number<br>of<br>Trades<br>(million) | Traded<br>Quantity<br>(number) | Number<br>of Shares<br>(deliver-<br>able) | Percentage of Shares Delivered to Total Trade | Trading<br>Value<br>(Rs<br>crore) | Value of<br>Shares<br>Deliver-<br>able<br>(Rs crore) | Percentage of Delivered to Total Trading Value | Securities Pay-in (Rs crore) | Short<br>Delivery<br>(Auc-<br>tioned<br>quant-<br>ity)<br>(mn) | Percentage of Short Delivery to Total Delivery | Unrecti-<br>fied<br>Bad<br>Delivery<br>(Auc-<br>tioned<br>quantity) | Percent-<br>age of Un-<br>rectified<br>Bad<br>Delivery<br>to Total<br>Delivery | Funds<br>Pay-in<br>(Rs<br>crore) |
|-----------|-------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------|----------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|
| (1)       | (2)                                 | (3)                            | (4)                                       | (5)                                           | (6)                               | (7)                                                  | (8)                                            | (9)                          | (10)                                                           | (11)                                           | (12)                                                                | (13)                                                                           | (14)                             |
| 2006–7    |                                     |                                |                                           |                                               |                                   |                                                      |                                                |                              |                                                                |                                                |                                                                     |                                                                                |                                  |
| Jun-2006  | 67                                  | 6633                           | 1778                                      | 26.81                                         | 149842                            | 36217                                                | 24.17                                          | 36126                        | 5                                                              | 0.30                                           | 0                                                                   | 0                                                                              | 13398                            |
| May-2006  | 72                                  | 9976                           | 3058                                      | 30.65                                         | 216397                            | 66750                                                | 30.85                                          | 66502                        | 12                                                             | 0.40                                           | 0                                                                   | 0                                                                              | 26471                            |
| Apr-2006  | 57                                  | 7287                           | 2102                                      | 28.85                                         | 174555                            | 48907                                                | 28.02                                          | 48761                        | 9                                                              | 0.44                                           | 0                                                                   | 0                                                                              | 13730                            |
| 2005–6    |                                     |                                |                                           |                                               |                                   |                                                      |                                                |                              |                                                                |                                                |                                                                     |                                                                                |                                  |
| Mar-2006  | 62                                  | 7477                           | 2229                                      | 29.81                                         | 174899                            | 48029                                                | 27.46                                          | 47899                        | 6                                                              | 0.29                                           | 0                                                                   | 0                                                                              | 13256                            |
| Feb-2006  | 52                                  | 6032                           | 1770                                      | 29.34                                         | 133753                            | 37352                                                | 27.93                                          | 37246                        | 6                                                              | 0.31                                           | 0                                                                   | 0                                                                              | 10581                            |
| Jan-2006  | 55                                  | 6601                           | 1861                                      | 28.19                                         | 148258                            | 40098                                                | 27.05                                          | 39964                        | 7                                                              | 0.36                                           | 0                                                                   | 0                                                                              | 13633                            |
| Dec-2005  | 55                                  | 6211                           | 1723                                      | 27.75                                         | 142814                            | 36295                                                | 25.41                                          | 36194                        | 5                                                              | 0.29                                           | 0                                                                   | 0                                                                              | 11482                            |
| Nov-2005  | 42                                  | 5201                           | 1416                                      | 27.24                                         | 104748                            | 27653                                                | 26.40                                          | 27575                        | 5                                                              | 0.32                                           | 0                                                                   | 0                                                                              | 9155                             |
| Oct-2005  | 50                                  | 6473                           | 1822                                      | 28.14                                         | 135376                            | 33857                                                | 25.01                                          | 33741                        | 7                                                              | 0.40                                           | 0                                                                   | 0                                                                              | 13171                            |
| Sep-2005  | 54                                  | 8535                           | 2300                                      | 26.94                                         | 132088                            | 35618                                                | 26.97                                          | 35463                        | 11                                                             | 0.49                                           | 0                                                                   | 0                                                                              | 10373                            |
| Aug-2005  | 58                                  | 10013                          | 2831                                      | 28.27                                         | 152561                            | 42894                                                | 28.12                                          | 42745                        | 12                                                             | 0.43                                           | 0                                                                   | 0                                                                              | 13404                            |
| Jul-2005  | 47                                  | 7798                           | 2101                                      | 26.95                                         | 114729                            | 31308                                                | 27.29                                          | 31198                        | 9                                                              | 0.43                                           | 0                                                                   | 0                                                                              | 10174                            |
| Jun-2005  | 46                                  | 6679                           | 1829                                      | 27.38                                         | 106133                            | 30065                                                | 28.33                                          | 29964                        | 8                                                              | 0.42                                           | 0                                                                   | 0                                                                              | 10586                            |
| May-2005  | 41                                  | 5628                           | 1527                                      | 27.14                                         | 88444                             | 24561                                                | 27.77                                          | 24449                        | 8                                                              | 0.49                                           | 0                                                                   | 0                                                                              | 7921                             |
| Apr-2005  | 36                                  | 5195                           | 1315                                      | 25.31                                         | 83038                             | 21624                                                | 26.04                                          | 21539                        | 6                                                              | 0.48                                           | 0                                                                   | 0                                                                              | 7691                             |
| 2004–5    |                                     |                                |                                           |                                               |                                   |                                                      |                                                |                              |                                                                |                                                |                                                                     |                                                                                |                                  |
| Mar-2005  | 47                                  | 8428                           | 2002                                      | 23.76                                         | 114085                            | 29903                                                | 26.21                                          | 29792                        | 8                                                              | 0.40                                           | 0.00                                                                | 0.00                                                                           | 10417                            |
| Feb-2005  | 42                                  | 8815                           | 2221                                      | 25.19                                         | 100267                            | 28158                                                | 28.08                                          | 28062                        | 9                                                              | 0.40                                           | 0.00                                                                | 0.00                                                                           | 9802                             |
| Jan-2005  | 41                                  | 8211                           | 1950                                      | 23.74                                         | 97755                             | 25031                                                | 25.61                                          | 24945                        | 9                                                              | 0.44                                           | 0.00                                                                | 0.00                                                                           | 8083                             |
| Dec-2004  | 47                                  | 9524                           | 2746                                      | 28.84                                         | 115867                            | 33121                                                | 28.59                                          | 32994                        | 14                                                             | 0.49                                           | 0.00                                                                | 0.00                                                                           | 11386                            |
| Nov-2004  | 32                                  | 5912                           | 1897                                      | 32.08                                         | 79921                             | 24359                                                | 30.48                                          | 24269                        | 9                                                              | 0.49                                           | 0.00                                                                | 0.00                                                                           | 8401                             |
| Oct-2004  | 32                                  | 5140                           | 1518                                      | 29.53                                         | 79879                             | 21660                                                | 27.12                                          | 21588                        | 7                                                              | 0.46                                           | 0.00                                                                | 0.00                                                                           | 7304                             |
| Sep-2004  | 35                                  | 5734                           | 1559                                      | 27.19                                         | 81913                             | 19656                                                | 24.00                                          | 19585                        | 7                                                              | 0.46                                           | 0.00                                                                | 0.00                                                                           | 6171                             |
| Aug-2004  | 36                                  | 5830                           | 1395                                      | 23.92                                         | 89597                             | 18605                                                | 20.77                                          | 18554                        | 6                                                              | 0.40                                           | 0.00                                                                | 0.00                                                                           | 6463                             |
| Jul-2004  | 39                                  | 6378                           | 1403                                      | 22.00                                         | 97309                             | 18164                                                | 18.67                                          | 18099                        | 5                                                              | 0.37                                           | 0.00                                                                | 0.00                                                                           | 6523                             |
| Jun-2004  | 32                                  | 3928                           | 858                                       | 21.84                                         | 81021                             | 13999                                                | 17.28                                          | 13948                        | 3                                                              | 0.33                                           | 0.00                                                                | 0.00                                                                           | 5862                             |
| May-2004  | 35                                  | 5478                           | 1386                                      | 25.30                                         | 100203                            | 22727                                                | 22.68                                          | 22668                        | 5                                                              | 0.35                                           | 0.00                                                                | 0.00                                                                           | 8960                             |
| Apr-2004  | 33                                  | 5421                           | 1293                                      | 23.86                                         | 103154                            | 21719                                                | 21.05                                          | 21617                        | 6                                                              | 0.50                                           | 0.00                                                                | 0.00                                                                           | 7870                             |
| 2005–6    | 600                                 | 81844                          | 22724                                     | 27.77                                         | 1516839                           | 409353                                               | 26.99                                          | 407976                       | 89                                                             | 0.39                                           | 0.00                                                                | 0.00                                                                           | 131426                           |
| 2004–5    | 449                                 | 78799                          | 20228                                     | 25.67                                         | 1140969                           | 277101                                               | 24.29                                          | 276120                       | 87                                                             | 0.43                                           | 0.00                                                                | 0.00                                                                           | 97241                            |
| 2003–4    | 376                                 | 70453                          | 17555                                     | 24.92                                         | 1090963                           | 221364                                               | 20.29                                          | 220341                       | 101                                                            | 0.58                                           | 0.00                                                                | 0.00                                                                           | 81588                            |
| 2002–3    | 240                                 | 36541                          | 8235                                      | 22.54                                         | 621569                            | 87956                                                | 14.15                                          | 87447                        | 47                                                             | 0.57                                           | 0.00                                                                | 0.00                                                                           | 34092                            |
| 2001–2    | 172                                 | 27470                          | 5930                                      | 21.59                                         | 508021                            | 71766                                                | 14.13                                          | 64353                        | 36                                                             | 0.61                                           | 0.01                                                                | 0.00                                                                           | 28048                            |
| 2000-1    | 161                                 | 30420                          | 5020                                      | 16.50                                         | 1263898                           | 106277                                               | 8.41                                           | 94962                        | 34                                                             | 0.68                                           | 1.16                                                                | 0.00                                                                           | 45937                            |
| 1999–2000 | 96                                  | 23861                          | 4871                                      | 20.42                                         | 803050                            | 82607                                                | 10.29                                          | 79783                        | 63                                                             | 1.30                                           | 11.00                                                               | 0.02                                                                           | 27992                            |
| 1998–9    | 55                                  | 16531                          | 2799                                      | 16.93                                         | 413573                            | 66204                                                | 16.01                                          | 30755                        | 31                                                             | 1.09                                           | 6.97                                                                | 0.25                                                                           | 12175                            |
| 1997–8    | 38                                  | 13522                          | 2205                                      | 16.31                                         | 370010                            | 59775                                                | 16.15                                          | 21713                        | 33                                                             | 1.51                                           | 7.29                                                                | 0.33                                                                           | 10827                            |
| 1996–7    | 26                                  | 13432                          | 1645                                      | 12.25                                         | 292314                            | 32640                                                | 11.17                                          | 13790                        | 38                                                             | 2.32                                           | 6.63                                                                | 0.40                                                                           | 7212                             |
| 1995–6    | 6                                   | 3901                           | 726                                       | 18.62                                         | 65742                             | 11775                                                | 17.91                                          | 5805                         | 18                                                             | 2.46                                           | 3.22                                                                | 0.44                                                                           | 3258                             |
| 1994–5    | 0.3                                 | 133                            | 69                                        | 51.74                                         | 1728                              | 898                                                  | 51.98                                          | 611                          | 0.6                                                            | 0.85                                           | 0.18                                                                | 0.26                                                                           | 300                              |
| (Nov–Mar) |                                     | 133                            | 09                                        | 31./4                                         | 1/40                              | 070                                                  | 31.70                                          | 011                          | 0.0                                                            | 0.03                                           | 0.10                                                                | 0.20                                                                           | 300                              |

Table A5.6 Business Growth Of The Futures and Options Market Segment, NSE

| Year                | Ind                                 | ex                                | Sto                                 | ck                                | Inte                                | rst                               |                                     | Index                             | Options                             |                                   |                                     | Stock                             | Options                             |                                   | Tot                                 | al                                | Average                           | Open                                | Interest |
|---------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|----------|
|                     | Futu                                | res                               | Futu                                | ıres                              | Rate Fu                             | itures                            | Ca                                  | ıll                               | Pι                                  | ıt                                | Са                                  | 11                                | Pu                                  | t                                 |                                     |                                   | Daily                             | at End                              | l Period |
|                     | Number<br>of<br>Contracts<br>Traded | Trading<br>Value<br>(Rs<br>crore) | Trading<br>Value<br>(Rs<br>crore) | Number<br>of<br>Contracts<br>Traded | 0        |
| (1)                 | (2)                                 | (3)                               | (4)                                 | (5)                               | (6)                                 | (7)                               | (8)                                 | (9)                               | (10)                                | (11)                              | (12)                                | (13)                              | (14)                                | (15)                              | (16)                                | (17)                              | (18)                              | (19)                                | (20)     |
| 2006–7              |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                   |                                     |          |
| Jun 2006            | 8437382                             | 243571                            | 6241247                             | 243954                            | 0                                   | 0                                 | 1118170                             | 34158                             | 793228                              | 23814                             | 206960                              | 8767                              | 57527                               | 2541                              | 16854514                            | 556804                            | 24209                             | 580909                              | 18807    |
| May 2006            | 7666525                             | 257328                            | 9082184                             | 409403                            | 0                                   | 0                                 | 929908                              | 33096                             | 725769                              | 25694                             | 317774                              | 14910                             | 41904                               | 1971                              | 18764064                            | 742401                            | 33746                             | 801589                              | 26409    |
| Apr 2006            | 5847035                             | 204238                            | 10021529                            | 460555                            | 0                                   | 0                                 | 773632                              | 27524                             | 715472                              | 24897                             | 393306                              | 176270                            | 67179                               | 2998                              | 17818153                            | 737839                            | 40991                             | 1073728                             | 43257    |
| 2005-6              |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                     |                                   |                                   |                                     |          |
| Mar 2006            | 5952206                             | 192035                            | 10844400                            | 473251                            | 0                                   | 0                                 | 683979                              | 22407                             | 772372                              | 24690                             | 444604                              | 18576                             | 92657                               | 3890                              | 18790218                            | 734849                            | 33402                             | 1028003                             | 38470    |
| Feb 2006            | 5186835                             | 156359                            | 7443178                             | 288715                            | 0                                   | 0                                 | 506714                              | 15526                             | 559682                              | 16805                             | 326233                              | 12350                             | 75740                               | 2918                              | 14098382                            | 492673                            | 25930                             | 1023343                             | 34400    |
| Jan 2006            | 5760999                             | 166127                            | 7134199                             | 265042                            | 0                                   | 0                                 | 663684                              | 19392                             | 666782                              | 19129                             | 365493                              | 14265                             | 90562                               | 3629                              | 14681719                            | 487584                            | 24379                             | 925680                              | 30078    |
| Dec 2005            | 6613032                             | 183293                            | 7571377                             | 280283                            | 0                                   | 0                                 | 775216                              | 21862                             | 764964                              | 21125                             | 361268                              | 13630                             | 95261                               | 3614                              | 16181118                            | 523807                            | 23809                             | 808768                              | 25323    |
| Nov 2005            | 5238175                             | 135478                            | 6252736                             | 216526                            | 0                                   | 0                                 | 595900                              | 15582                             | 604657                              | 15491                             | 287136                              | 10069                             | 77052                               | 2708                              | 13055656                            | 395854                            | 19793                             | 821223                              | 24166    |
| Oct 2005            | 6849732                             | 170100                            | 6526919                             | 214398                            | 0                                   | 0                                 | 695311                              | 17632                             | 715208                              | 17954                             | 309120                              | 10753                             | 80134                               | 2822                              | 15176424                            | 433659                            | 21683                             | 803773                              | 21083    |
| Sep 2005            | 4701774                             | 118905                            | 6995169                             | 236945                            | 0                                   | 0                                 | 523948                              | 13370                             | 583081                              | 14550                             | 363872                              | 12917                             | 85897                               | 3070                              | 13253741                            | 399757                            | 19036                             | 783718                              | 23063    |
| Aug 2005            | 4278829                             | 100813                            | 7124266                             | 234817                            | 0                                   | 0                                 | 444294                              | 10620                             | 485001                              | 11372                             | 350370                              | 11935                             | 81453                               | 2750                              | 12764213                            | 372307                            | 16923                             | 892678                              | 24788    |
| Jul 2005            | 3451684                             | 77399                             | 6537794                             | 199638                            | 0                                   | 0                                 | 358867                              | 8130                              | 389154                              | 8642                              | 376129                              | 11735                             | 84989                               | 2623                              | 11198617                            | 308167                            | 15408                             | 1024749                             | 27198    |
| Jun 2005            | 3626288                             | 77218                             | 5783428                             | 163096                            | 0                                   | 0                                 | 421480                              | 9092                              | 331753                              | 7041                              | 385640                              | 11677                             | 104478                              | 3122                              | 10653067                            | 271246                            | 11793                             | 997984                              | 24545    |
| May 2005            | 3545971                             | 70465                             | 4466404                             | 112882                            | 0                                   | 0                                 | 382530                              | 7726                              | 353975                              | 7056                              | 288137                              | 7642                              | 100602                              | 2609                              | 9137619                             | 208380                            | 9472                              | 670705                              | 15863    |
| Apr 2005            | 3332361                             | 65598                             | 4225623                             | 106129                            | 0                                   | 0                                 | 361544                              | 7295                              | 295020                              | 5981                              | 307994                              | 8203                              | 105955                              | 2764                              | 8628497                             | 195970                            | 9798                              | 576056                              | 12243    |
| 2004–5<br>Mar 2005  | 2076075                             | 86398                             | 4708687                             | 175364                            | 0                                   | 0                                 | 212622                              | 9074                              | 211385                              | 8918                              | 260005                              | 14496                             | 112500                              | 4608                              | 7694164                             | 298858                            | 13584                             | 592646                              | 21052    |
| Feb 2005            | 2076975<br>1729103                  | 71546                             | 4167787                             | 151743                            | 0                                   | 0                                 | 213632<br>168594                    | 7128                              | 144627                              | 5998                              | 369895<br>367707                    | 13890                             | 113590<br>83843                     | 3247                              | 6661661                             | 253552                            | 12678                             | 404809                              | 14901    |
| Jan 2005            | 1931290                             | 76151                             | 4551564                             | 151743                            | 0                                   | 0                                 | 176682                              | 7128                              | 143416                              | 5786                              | 362345                              | 13502                             | 81618                               | 3100                              | 7246915                             | 265291                            | 13963                             | 388354                              | 13604    |
| Dec 2004            | 1447464                             | 58333                             | 5238498                             | 179387                            | 0                                   | 0                                 | 130557                              | 5355                              | 108650                              | 4356                              | 481349                              | 16952                             | 108951                              | 3845                              | 7515469                             | 268228                            | 11662                             | 426606                              | 15221    |
| Nov 2004            | 1023111                             | 38277                             | 3600135                             | 113525                            | 0                                   | 0                                 | 131218                              | 4979                              | 102223                              | 3814                              | 363158                              | 11971                             | 94810                               | 3239                              | 5314655                             | 175805                            | 8790                              | 371842                              | 12239    |
| Oct 2004            | 1320173                             | 47191                             | 3660047                             | 111695                            | 0                                   | 0                                 | 138099                              | 5030                              | 97628                               | 3500                              | 357625                              | 11684                             | 93342                               | 3124                              | 5666914                             | 182224                            | 9111                              | 321545                              | 9845     |
| Sep 2004            | 1463682                             | 49500                             | 3768178                             | 107123                            | 0                                   | 0                                 | 124547                              | 4283                              | 93808                               | 3164                              | 365187                              | 10763                             | 116304                              | 3547                              | 5931706                             | 178380                            | 8108                              | 446299                              | 13354    |
| Aug 2004            | 1803263                             | 57926                             | 3577911                             | 99591                             | 0                                   | 0                                 | 127779                              | 4192                              | 98618                               | 3193                              | 284013                              | 8499                              | 86919                               | 2604                              | 5978503                             | 176005                            | 8000                              | 261185                              | 7332     |
| Jul 2004            | 1971231                             | 61125                             | 3492774                             | 94009                             | 0                                   | 0                                 | 189179                              | 6059                              | 124352                              | 3856                              | 262755                              | 7614                              | 94222                               | 2682                              | 6134513                             | 175345                            | 7970                              | 206709                              | 5964     |
| Jun 2004            | 2152644                             | 64017                             | 3125283                             | 78392                             | 0                                   | 0                                 | 158784                              | 4914                              | 117041                              | 3559                              | 193687                              | 5340                              | 75380                               | 2084                              | 5822819                             | 158306                            | 7196                              | 201871                              | 5367     |
| May 2004            | 2551985                             | 82149                             | 3322799                             | 92628                             | 0                                   | 0                                 | 196198                              | 6824                              | 100430                              | 3469                              | 246630                              | 7717                              | 63156                               | 1976                              | 6481198                             | 194763                            | 9274                              | 179487                              | 4696     |
| Apr 2004            | 2164528                             | 79560                             | 3829403                             | 121048                            | 0                                   | 0                                 | 115378                              | 4347                              | 80733                               | 2968                              | 292628                              | 9640                              | 85998                               | 2736                              | 6568668                             | 220299                            | 11015                             | 249845                              | 7668     |
| 2005–6              | 58537886                            | 1513791                           | 80905493                            | 2791721                           | 0                                   | 0                                 | 6413467                             | 168632                            | 6521649                             | 169837                            | 4165996                             | 143752                            | 1074780                             | 36518                             | 157619271                           | 4824251                           | 19220                             | 1028003                             | 38470    |
| 2004-5              | 21635449                            | 772174                            | 47043066                            | 1484067                           | 0                                   | 0                                 | 1870647                             | 69373                             | 1422911                             | 52581                             | 3946979                             | 132066                            | 1098133                             | 36792                             | 77017185                            | 2547053                           | 10067                             | 592646                              | 21052    |
| 2003-4              | 17191668                            | 554463                            | 32368842                            | 1305949                           | 10781                               | 202                               | 1043894                             | 31801                             | 688520                              | 21022                             | 4248149                             | 168174                            | 1334922                             | 49038                             | 56886776                            | 2130649                           | 8388                              | 235792                              | 7188     |
| 2002-3              | 2126763                             | 43952                             | 10676843                            | 286532                            | 0                                   | 0                                 | 269674                              | 5670                              | 172567                              | 3577                              | 2456501                             | 69644                             | 1066561                             | 30489                             | 16768909                            | 439855                            | 1752                              | 97025                               | 2194     |
| 2001-2              | 1025588                             | 21482                             | 1957856                             | 51516                             | 0                                   | 0                                 | 113974                              | 2466                              | 61926                               | 1300                              | 768159                              | 18780                             | 269370                              | 6383                              | 4196873                             | 101925                            | 413                               | 93917                               | 2150     |
| 2000–1<br>(Jun–Mar) | 90580                               | 2365                              | 0                                   | 0                                 | 0                                   | 0                                 | 0                                   | 0                                 | 0                                   | 0                                 | 0                                   | 0                                 | 0                                   | 0                                 | 90580                               | 2365                              | 12                                | 0                                   | 0        |

(Rs crore)

TABLE A5.7 Settlement Statistics In Futures and Options Segment, NSE

Table A5.8 Business Growth On The WDM Segment, NSE

(Rs crore)

| Year     | Index/Stock<br>MTM<br>Settlement | Futures<br>Final<br>Settlement | Index/Stock<br>Premium<br>Settlement | Options<br>Exercise<br>Settlement | Total |
|----------|----------------------------------|--------------------------------|--------------------------------------|-----------------------------------|-------|
| (1)      | (2)                              | (3)                            | (4)                                  | (5)                               | (6)   |
| 2006–7   |                                  |                                |                                      |                                   |       |
| Jun 2006 | 6854                             | 50                             | 265                                  | 97                                | 7267  |
| May 2006 | 13594                            | 135                            | 326                                  | 124                               | 14179 |
| Apr 2006 | 7414                             | 97                             | 237                                  | 104                               | 7852  |
| 2005-6   |                                  |                                |                                      |                                   |       |
| Mar 2006 | 3611                             | 70                             | 232                                  | 159                               | 4072  |
| Feb 2006 | 1887                             | 44                             | 147                                  | 57                                | 2135  |
| Jan 2006 | 2035                             | 107                            | 140                                  | 52                                | 2334  |
| Dec 2005 | 2488                             | 23                             | 140                                  | 67                                | 2718  |
| Nov 2005 | 1831                             | 32                             | 123                                  | 76                                | 2062  |
| Oct 2005 | 3479                             | 120                            | 144                                  | 79                                | 3822  |
| Sep 2005 | 2367                             | 17                             | 136                                  | 96                                | 2616  |
| Aug 2005 | 2545                             | 37                             | 119                                  | 27                                | 2728  |
| Jul 2005 | 1568                             | 38                             | 93                                   | 59                                | 1758  |
| Jun 2005 | 1096                             | 35                             | 93                                   | 71                                | 1295  |
| May 2005 | 944                              | 42                             | 73                                   | 45                                | 1104  |
| Apr 2005 | 1737                             | 31                             | 83                                   | 30                                | 1881  |
| 2004-5   |                                  |                                |                                      |                                   |       |
| Mar 2005 | 1539                             | 44                             | 117                                  | 77                                | 1777  |
| Feb 2005 | 992                              | 11                             | 96                                   | 39                                | 1138  |
| Jan 2005 | 2318                             | 32                             | 96                                   | 42                                | 2488  |
| Dec 2004 | 1239                             | 22                             | 104                                  | 57                                | 1422  |
| Nov 2004 | 691                              | 10                             | 77                                   | 42                                | 820   |
| Oct 2004 | 838                              | 23                             | 69                                   | 31                                | 961   |
| Sep 2004 | 480                              | 13                             | 56                                   | 40                                | 589   |
| Aug 2004 | 548                              | 9                              | 51                                   | 15                                | 623   |
| Jul 2004 | 451                              | 15                             | 72                                   | 43                                | 581   |
| Jun 2004 | 535                              | 20                             | 47                                   | 10                                | 612   |
| May 2004 | 2556                             | 13                             | 91                                   | 36                                | 2696  |
| Apr 2004 | 837                              | 16                             | 65                                   | 25                                | 943   |
| 2005-6   | 25586                            | 598                            | 1521                                 | 818                               | 28523 |
| 2004-5   | 13024                            | 228                            | 941                                  | 456                               | 14649 |
| 2003-4   | 10822                            | 139                            | 859                                  | 476                               | 12296 |
| 2002-3   | 1738                             | 46                             | 331                                  | 196                               | 2311  |
| 2001-2   | 505                              | 22                             | 165                                  | 94                                | 786   |
| 2000-1   | 84                               | 2                              | 0                                    | 0                                 | 86    |

Source: NSE News, various issues.

| Year      | Number<br>of Trades | Trading<br>Value<br>(Rs crore) | Average<br>Daily<br>Trading<br>Value<br>(Rs crore) | Average<br>Trade<br>Size<br>(Rs crore) |
|-----------|---------------------|--------------------------------|----------------------------------------------------|----------------------------------------|
| (1)       | (2)                 | (3)                            | (4)                                                | (5)                                    |
| 2006–7    |                     |                                |                                                    |                                        |
| Jun 2006  | 950                 | 11790                          | 536                                                | 12.4                                   |
| May 2006  | 1755                | 17986                          | 818                                                | 10.3                                   |
| Apr 2006  | 1962                | 23184                          | 1364                                               | 11.8                                   |
| 2005–6    |                     |                                |                                                    |                                        |
| Mar 2006  | 1732                | 17089                          | 814                                                | 9.9                                    |
| Feb 2006  | 2075                | 16485                          | 868                                                | 7.9                                    |
| Jan 2006  | 2572                | 21607                          | 1080                                               | 8.4                                    |
| Dec 2005  | 2505                | 20771                          | 944                                                | 8.3                                    |
| Nov 2005  | 2822                | 24360                          | 1218                                               | 8.6                                    |
| Oct 2005  | 2987                | 25387                          | 1209                                               | 8.5                                    |
| Sep 2005  | 4127                | 31960                          | 1278                                               | 7.7                                    |
| Aug 2005  | 5361                | 44717                          | 1789                                               | 8.3                                    |
| Jul 2005  | 8042                | 52309                          | 2092                                               | 6.5                                    |
| Jun 2005  | 14213               | 96108                          | 3697                                               | 6.8                                    |
| May 2005  | 9376                | 70114                          | 2805                                               | 7.5                                    |
| Apr 2005  | 6079                | 54617                          | 2483                                               | 9.0                                    |
| 2004-5    |                     |                                |                                                    |                                        |
| Mar 2005  | 6486                | 53812                          | 2242                                               | 8.3                                    |
| Feb 2005  | 10156               | 73588                          | 3066                                               | 7.2                                    |
| Jan 2005  | 8384                | 61205                          | 2550                                               | 7.3                                    |
| Dec 2004  | 10321               | 72593                          | 2792                                               | 7.0                                    |
| Nov 2004  | 5767                | 45541                          | 1980                                               | 7.9                                    |
| Oct 2004  | 8437                | 55770                          | 2425                                               | 6.6                                    |
| Sep 2004  | 12659               | 87695                          | 3508                                               | 6.9                                    |
| Aug 2004  | 9241                | 63806                          | 2552                                               | 6.9                                    |
| Jul 2004  | 9303                | 66013                          | 2445                                               | 7.1                                    |
| Jun 2004  | 11382               | 82453                          | 3171                                               | 7.2                                    |
| May 2004  | 13097               | 91340                          | 3806                                               | 7.0                                    |
| Apr 2004  | 19075               | 133478                         | 6067                                               | 7.0                                    |
| 2005-6    | 61891               | 475524                         | 1755                                               | 7.7                                    |
| 2004-5    | 124308              | 887294                         | 3039                                               | 7.1                                    |
| 2003-4    | 189523              | 1316096                        | 4477                                               | 6.9                                    |
| 2002-3    | 167778              | 1068701                        | 3598                                               | 6.4                                    |
| 2001-2    | 144851              | 947191                         | 3278                                               | 6.5                                    |
| 2000-1    | 64470               | 428582                         | 1483                                               | 6.6                                    |
| 1999-2000 | 46987               | 304216                         | 1035                                               | 6.5                                    |
| 1998–9    | 16092               | 105469                         | 365                                                | 6.6                                    |
| 1997-8    | 16821               | 111263                         | 385                                                | 6.6                                    |
| 1996–7    | 7804                | 42278                          | 145                                                | 5.4                                    |
| 1995–6    | 2991                | 11868                          | 41                                                 | 4.0                                    |
| 1994–5    | 1021                | 6781                           | 35                                                 | 6.6                                    |
| (Jun-Mar) |                     |                                |                                                    |                                        |

Table A5.9
Business Growth and Settlement of Capital Market Segment, BSE

| Year      | Number                         | Number                | Number                  | Number                 | Turnover   | Average                         | Market                            |        |                        | Total D                                    | eliveries |                                    |
|-----------|--------------------------------|-----------------------|-------------------------|------------------------|------------|---------------------------------|-----------------------------------|--------|------------------------|--------------------------------------------|-----------|------------------------------------|
|           | of<br>Com-<br>panies<br>Listed | of<br>Trading<br>Days | of<br>Trades<br>(lakhs) | of<br>Shares<br>Traded | (Rs crore) | Daily<br>Turnover<br>(Rs crore) | Capital-<br>ization<br>(Rs crore) |        | Number<br>of<br>Shares | (Per cent<br>to Total<br>Shares<br>Traded) | Value     | (Per cent<br>of Total<br>Turnover) |
| (1)       | (2)                            | (3)                   | (4)                     | (5)                    | (6)        | (7)                             | (8)                               |        | (9)                    |                                            | (10)      |                                    |
| 2006–7    |                                |                       |                         |                        |            |                                 |                                   |        |                        |                                            |           |                                    |
| May 2006  | 4796                           | 22                    | 311                     | 585                    | 95819      | 4355                            | 2842050                           |        | 258                    | (44.1)                                     | 33188     | (34.6)                             |
| Apr 2006  | 4796                           | 18                    | 257                     | 479                    | 87487      | 4860                            | 3255565                           |        | 205                    | (42.8)                                     | 28185     | (32.2)                             |
| 2005-6    |                                |                       |                         |                        |            |                                 |                                   |        |                        |                                            |           |                                    |
| Mar 2006  | 4781                           | 22                    | 294                     | 632                    | 118765     | 5398                            | 3022191                           |        | 282                    | (44.6)                                     | 44978     | (37.9)                             |
| Feb 2006  | 4782                           | 19                    | 222                     | 421                    | 70070      | 3688                            | 2695543                           |        | 178                    | (42.3)                                     | 22812     | (32.6)                             |
| Jan 2006  | 4772                           | 20                    | 250                     | 491                    | 79316      | 3966                            | 2616194                           |        | 240                    | (48.9)                                     | 31742     | (40.0)                             |
| Dec 2005  | 4763                           | 22                    | 234                     | 452                    | 77356      | 3516                            | 2489385                           |        | 228                    | (50.4)                                     | 29840     | (38.6)                             |
| Nov 2005  | 4756                           | 20                    | 171                     | 319                    | 52694      | 2635                            | 2323064                           |        | 151                    | (47.3)                                     | 19269     | (36.6)                             |
| Oct 2005  | 4748                           | 20                    | 183                     | 365                    | 59102      | 2955                            | 2065611                           |        | 176                    | (48.2)                                     | 22497     | (38.1)                             |
| Sep 2005  | 4746                           | 21                    | 284                     | 871                    | 81291      | 3871                            | 2254376                           |        | 467                    | (53.6)                                     | 34006     | (41.8)                             |
| Aug 2005  | 4752                           | 22                    | 272                     | 1015                   | 75933      | 3451                            | 2123900                           |        | 503                    | (49.6)                                     | 27059     | (35.6)                             |
| Jul 2005  | 4743                           | 20                    | 219                     | 677                    | 61899      | 3095                            | 1987170                           |        | 297                    | (43.9)                                     | 20762     | (33.5)                             |
| Jun 2005  | 4738                           | 23                    | 204                     | 633                    | 58479      | 2543                            | 1850377                           |        | 305                    | (48.2)                                     | 20446     | (35.0)                             |
| May 2005  | 4734                           | 22                    | 170                     | 434                    | 43359      | 1971                            | 1783221                           |        | 199                    | (45.9)                                     | 14940     | (34.5)                             |
| Apr 2005  | 4736                           | 20                    | 136                     | 334                    | 37809      | 1890                            | 1635766                           |        | 138                    | (41.3)                                     | 11398     | (30.1)                             |
| 2004-5    |                                |                       |                         |                        |            |                                 |                                   |        |                        |                                            |           |                                    |
| Mar 2005  | 4731                           | 22                    | 222                     | 610                    | 59528      | 2706                            | 1698428                           |        | 256                    | (42.0)                                     | 19126     | (32.1)                             |
| Feb 2005  | 4732                           | 20                    | 251                     | 616                    | 49686      | 2484                            | 1730940                           |        | 254                    | (41.2)                                     | 15786     | (31.8)                             |
| Jan 2005  | 4730                           | 19                    | 220                     | 535                    | 43888      | 2310                            | 1661532                           |        | 224                    | (41.9)                                     | 13568     | (30.9)                             |
| Dec 2004  | 4730                           | 23                    | 274                     | 626                    | 50226      | 2184                            | 1685988                           |        | 272                    | (43.5)                                     | 15994     | (31.8)                             |
| Nov 2004  | 4725                           | 20                    | 201                     | 423                    | 35742      | 1787                            | 1539595                           |        | 203                    | (48.0)                                     | 12390     | (34.7)                             |
| Oct 2004  | 4721                           | 22                    | 174                     | 293                    | 34608      | 1730                            | 1337191                           |        | 125                    | (42.7)                                     | 10318     | (29.8)                             |
| Sep 2004  | 4733                           | 22                    | 205                     | 370                    | 39603      | 1800                            | 1309317                           |        | 146                    | (39.5)                                     | 10716     | (27.1)                             |
| Aug 2004  | 4735                           | 22                    | 178                     | 304                    | 38195      | 1736                            | 1216566                           |        | 104                    | (34.2)                                     | 8260      | (21.6)                             |
| Jul 2004  | 4730                           | 22                    | 175                     | 286                    | 39449      | 1793                            | 1135588                           |        | 82                     | (28.7)                                     | 7478      | (19.0)                             |
| Jun 2004  | 5271                           | 22                    | 149                     | 191                    | 36990      | 1681                            | 1047258                           |        | 53                     | (27.7)                                     | 6500      | (17.6)                             |
| May 2004  | 5296                           | 21                    | 170                     | 259                    | 45938      | 2188                            | 1023128                           |        | 79                     | (30.5)                                     | 10236     | (22.3)                             |
| Apr 2004  | 5292                           | 20                    | 156                     | 257                    | 44864      | 2243                            | 1255347                           |        | 75                     | (29.2)                                     | 9685      | (21.6)                             |
| 2005-6    | 4781                           | 251                   | 2639                    | 6644                   | 816073     | 3251                            | 3022191                           | [85.6] | 3164                   | (47.6)                                     | 299749    | (36.7)                             |
| 2004-5    | 4731                           | 253                   | 2374                    | 4772                   | 518715     | 2050                            | 1698428                           | [54.4] | 1875                   | (39.3)                                     | 140056    | (27.0)                             |
| 2003-4    | 5528                           | 254                   | 2028                    | 3904                   | 503053     | 1981                            | 1201206                           | [43.5] | 1332                   | (34.1)                                     | 107153    | (21.3)                             |
| 2002-3    | 5650                           | 251                   | 1413                    | 2214                   | 314073     | 125                             | 572197                            | [23.4] | 699                    | (31.6)                                     | 48741     | (15.5)                             |
| 2001-2    | 5782                           | 247                   | 1277                    | 1822                   | 307292     | 1244                            | 612224                            | [26.8] | 577                    | (31.7)                                     | 59980     | (19.5)                             |
| 2000-1    | 5869                           | 251                   | 1428                    | 2585                   | 1000032    | 3984                            | 571553                            | [27.1] | 867                    | (33.5)                                     | 166941    | (16.7)                             |
| 1999-2000 | 5815                           | 251                   | 740                     | 2086                   | 686428     | 2735                            | 912842                            | [46.6] | 943                    | (45.2)                                     | 174740    | (25.5)                             |
| 1998–9    | 5849                           | 243                   | 354                     | 1293                   | 310750     | 1279                            | 619532                            | [35.6] | 506                    | (39.1)                                     | 85617     | (27.6)                             |
| 1997-8    | 5853                           | 244                   | 196                     | 859                    | 207113     | 849                             | 630221                            | [41.4] | 244                    | (28.4)                                     | 22512     | (10.9)                             |
| 1996-7    | 5832                           | 240                   | 155                     | 809                    | 124190     | 517                             | 505137                            | [36.9] | 212                    | (26.2)                                     | 10993     | (8.9)                              |
| 1995–6    | 5603                           | 232                   | 171                     | 772                    | 50064      | 216                             | 563748                            | [47.5] | 268                    | (34.7)                                     | 11527     | (23.0)                             |
| 1994–5    | 4702                           | 231                   | 196                     | 1072                   | 67749      | 293                             | 468837                            | [46.3] | 447                    | (41.7)                                     | 26641     | (39.3)                             |
| 1993-4    | 3585                           | 218                   | 123                     | 758                    | 84536      | 388                             | 368071                            | [42.8] | na                     |                                            | 15861     | (18.8)                             |

*Note*: Figures in square brackets are percentages to GDP at current market prices (GDP data are as per revised series from 1999–2000 and as per 1993–4 series before 1999–2000).

 $Source: \ BSE, BSE\ Key\ Results\ (www.bseindia.com).$ 

TABLE A5.10 Secondary Market Turnover in Financial and Commodities Markets

(Rs crore)

| Market Segments/Year                | 200     | )5–6                                                     | 200     | 4–5                                                      | 200     | 3-4                                                      | 200     | )2-3                                                     |
|-------------------------------------|---------|----------------------------------------------------------|---------|----------------------------------------------------------|---------|----------------------------------------------------------|---------|----------------------------------------------------------|
|                                     | Amount  | Percentage<br>to GDP<br>at current<br>(market<br>Prices) |
| (1)                                 | (2)     |                                                          | (3)     |                                                          | (4)     |                                                          | (5)     |                                                          |
| (1) Government Securities           | 2559260 | 72.5                                                     | 2692129 | 86.2                                                     | 2639244 | 95.6                                                     | 1941673 | 79.3                                                     |
| (2) Forex Market                    | 5239674 | 148.4                                                    | 4042435 | 129.5                                                    | 2318531 | 84.0                                                     | 658035  | 26.9                                                     |
| (3) Total Stock Market Turnover     | 7209892 | 204.2                                                    | 4221952 | 135.3                                                    | 3744841 | 135.7                                                    | 1374403 | 56.1                                                     |
| I Capital Market Derivatives (NSE)  | 4824251 | 136.6                                                    | 2547053 | 81.6                                                     | 2130612 | 77.2                                                     | 439863  | 18.0                                                     |
| Cash                                | 1569558 | 44.4                                                     | 1140072 | 36.5                                                     | 1099535 | 39.8                                                     | 617989  | 25.2                                                     |
| Total                               | 6393809 | 181.1                                                    | 3687125 | 118.1                                                    | 3230147 | 117.0                                                    | 1057852 | 43.2                                                     |
| II Capital Market Derivatives (BSE) | 9       | 0.0                                                      | 16112   | 0.5                                                      | 12074   | 0.4                                                      | 2478    | 0.1                                                      |
| Cash                                | 816074  | 23.1                                                     | 518715  | 16.6                                                     | 502620  | 18.2                                                     | 314073  | 12.8                                                     |
| Total                               | 816083  | 23.1                                                     | 534827  | 17.1                                                     | 514694  | 18.6                                                     | 316551  | 12.9                                                     |
| (4) Commodities Market              | 2134000 | 60.4                                                     | 571759  | 18.3                                                     | 129400  | 4.7                                                      | 66500   | 2.7                                                      |
| GDP at current market prices        | 3531451 | 100.0                                                    | 3121414 | 100.0                                                    | 2760224 | 100.0                                                    | 2449736 | 100.0                                                    |

Source: Rakshitra, Publications of CCIL, Sebi Bulletin, NSE News and FMC.

#### A6 INVESTMENT

 $\label{thm:thm:continuous} {\it Table A6.1}$  Trends in Total Investment and Investment Under Implementation by Industry

(Rs crore)

| Industry                            |        |        |        | Total I | nvestmer<br>Apı | '      | dustry  |        |         |        |         |        | Investm | ent Und | der Imple<br>Ap |        | ion by Ir | ndustry |         |        |
|-------------------------------------|--------|--------|--------|---------|-----------------|--------|---------|--------|---------|--------|---------|--------|---------|---------|-----------------|--------|-----------|---------|---------|--------|
|                                     | April  | 2006   | April  | 2005    | April           | 2004   | April 2 | .003   | April 1 | 999    | April 2 | 2006   | April   | 2005    | April           | 2004   | April     | 2003    | April 1 | 999    |
| Manufacturing                       | 862777 | (30.3) | 493452 | (24.7)  | 290871          | (18.8) | 242774  | (17.2) | 334512  | (26.7) | 188652  | (21.0) | 154308  | (19.0)  | 118521          | (16.6) | 108802    | (16.4)  | 143440  | (29.2) |
| Food and Beverages                  | 21565  | (0.8)  | 13224  | (0.7)   | 10351           | (0.7)  | 9200    | (0.7)  | 5163    | (0.4)  | 5310    | (0.6)  | 4193    | (0.5)   | 3421            | (0.5)  | 3131      | (0.5)   | 2454    | (0.5)  |
| Food Products                       | 19707  | (0.7)  | 10591  | (0.5)   | 8186            | (0.5)  | 7458    | (0.5)  | 4035    | (0.3)  | 4513    | (0.5)  | 3346    | (0.4)   | 2668            | (0.4)  | 2575      | (0.4)   | 11830   | (2.4)  |
| Beverages and Tobacco               | 1858   | (0.1)  | 2633   | (0.1)   | 2166            | (0.1)  | 1743    | (0.1)  | 1128    | (0.1)  | 797     | (0.1)  | 848     | (0.1)   | 753             | (0.1)  | 556       | (0.1)   | 624     | (0.1)  |
| Textiles                            | 23528  | (0.8)  | 12445  | (0.6)   | 8418            | (0.5)  | 6394    | (0.5)  | 5369    | (0.4)  | 9882    | (1.1)  | 5786    | (0.7)   | 3172            | (0.4)  | 2776      | (0.4)   | 3337    | (0.7)  |
| Cotton Textiles                     | 8849   | (0.3)  | 4710   | (0.2)   | 3136            | (0.2)  | 3515    | (0.2)  | 2636    | (0.2)  | 4510    | (0.5)  | 2000    | (0.2)   | 1330            | (0.2)  | 1612      | (0.2)   | 1917    | (0.4)  |
| Synthetic Textiles                  | 3641   | (0.1)  | 3247   | (0.2)   | 2698            | (0.2)  | 1069    | (0.1)  | 2120    | (0.2)  | 1976    | (0.2)  | 2103    | (0.3)   | 1201            | (0.2)  | 820       | (0.1)   | 973     | (0.2)  |
| Chemicals                           | 287416 | (10.1) | 197101 | (9.9)   | 157185          | (10.2) | 132755  | (9.4)  | 235632  | (18.8) | 95070   | (10.6) | 86621   | (10.7)  | 62421           | (8.7)  | 61785     | (9.3)   | 86039   | (17.5) |
| Fertilizers                         | 6271   | (0.2)  | 5432   | (0.3)   | 3862            | (0.2)  | 2591    | (0.2)  | 22784   | (1.8)  | 830     | (0.1)  | 770     | (0.1)   | 669             | (0.1)  | 687       | (0.1)   | 5784    | (1.2)  |
| Drugs and Pharmaceuticals           | 6890   | (0.2)  | 5877   | (0.3)   | 4897            | (0.3)  | 3250    | (0.2)  | 706     | (0.1)  | 3272    | (0.4)  | 3438    | (0.4)   | 2262            | (0.3)  | 1560      | (0.2)   | 310     | (0.1)  |
| Organic Chemicals                   | 85744  | (3.0)  | 54998  | (2.8)   | 46151           | (3.0)  | 37544   | (2.7)  | 92195   | (7.4)  | 11748   | (1.3)  | 11192   | (1.4)   | 12432           | (1.7)  | 12734     | (1.9)   | 24129   | (4.9)  |
| Petroleum Products                  | 171965 | (6.0)  | 116049 | (5.8)   | 91233           | (5.9)  | 77570   | (5.5)  | 108641  | (8.7)  | 75624   | (8.4)  | 66878   | (8.2)   | 43749           | (6.1)  | 43111     | (6.5)   | 49710   | (10.1) |
| Tyres and Tubes                     | 766    | (0.0)  | 1189   | (0.1)   | 1195            | (0.1)  | 1815    | (0.1)  | 3112    | (0.2)  | 510     | (0.1)  | 945     | (0.1)   | 496             | (0.1)  | 543       | (0.1)   | 981     | (0.2)  |
| Non-metallic Mineral Products       | 23782  | (0.8)  | 16627  | (0.8)   | 12753           | (0.8)  | 12062   | (0.9)  | 11028   | (0.9)  | 5610    | (0.6)  | 5497    | (0.7)   | 4337            | (0.6)  | 3354      | (0.5)   | 4086    | (0.8)  |
| Cement                              | 16550  | (0.6)  | 11223  | (0.6)   | 9088            | (0.6)  | 9773    | (0.7)  | 9536    | (0.8)  | 2628    | (0.3)  | 3128    | (0.4)   | 3603            | (0.5)  | 2722      | (0.4)   | 3015    | (0.6)  |
| Other non-metallic Mineral Products | 7232   | (0.3)  | 5404   | (0.3)   | 3665            | (0.2)  | 2289    | (0.2)  | 1492    | (0.1)  | 2982    | (0.3)  | 2369    | (0.3)   | 734             | (0.1)  | 632       | (0.1)   | 1072    | (0.2)  |
| Metals and Metal Products           | 438998 | (15.4) | 209746 | (10.5)  | 67379           | (4.4)  | 49904   | (3.5)  | 51634   | (4.1)  | 53688   | (6.0)  | 39506   | (4.9)   | 31687           | (4.4)  | 23529     | (3.6)   | 30820   | (6.3)  |
| Ferrous Metals                      | 389548 | (13.7) | 177497 | (8.9)   | 51085           | (3.3)  | 34346   | (2.4)  | 35616   | (2.8)  | 45628   | (5.1)  | 32076   | (3.9)   | 23830           | (3.3)  | 18179     | (2.7)   | 29394   | (6.0)  |
| Non-ferrous Metals                  | 49451  | (1.7)  | 32249  | (1.6)   | 16294           | (1.1)  | 15559   | (1.1)  | 16018   | (1.3)  | 8060    | (0.9)  | 7430    | (0.9)   | 7856            | (1.1)  | 5349      | (0.8)   | 1426    | (0.3)  |
| Aluminium & Aluminium Products      | 46537  | (1.6)  | 30252  | (1.5)   | 13206           | (0.9)  | 12604   | (0.9)  | 13919   | (1.1)  | 6961    | (0.8)  | 6260    | (0.8)   | 6705            | (0.9)  | 4498      | (0.7)   | 479     | (0.1)  |
| Machinery                           | 22683  | (0.8)  | 21033  | (1.1)   | 14662           | (0.9)  | 15066   | (1.1)  | 9506    | (0.8)  | 8106    | (0.9)  | 6768    | (0.8)   | 6809            | (1.0)  | 6104      | (0.9)   | 5727    | (1.2)  |
| Non-electrical Machinery            | 6432   | (0.2)  | 6783   | (0.3)   | 4637            | (0.3)  | 4203    | (0.3)  | 3205    | (0.3)  | 2422    | (0.3)  | 2246    | (0.3)   | 1561            | (0.2)  | 1330      | (0.2)   | 2092    | (0.4)  |
| Electrical Machinery                | 4661   | (0.2)  | 4253   | (0.2)   | 3479            | (0.2)  | 4656    | (0.3)  | 2409    | (0.2)  | 1932    | (0.2)  | 2392    | (0.3)   | 2217            | (0.3)  | 2290      | (0.3)   | 1550    | (0.3)  |
| Electronics                         | 11590  | (0.4)  | 9997   | (0.5)   | 6545            | (0.4)  | 6207    | (0.4)  | 3892    | (0.3)  | 3753    | (0.4)  | 2131    | (0.3)   | 3031            | (0.4)  | 2484      | (0.4)   | 2085    | (0.4)  |
| Transport Equipment                 | 24756  | (0.9)  | 15355  | (0.8)   | 15568           | (1.0)  | 14325   | (1.0)  | 13095   | (1.0)  | 7171    | (0.8)  | 2802    | (0.3)   | 4480            | (0.6)  | 6800      | (1.0)   | 9250    | (1.9)  |
| Automobile                          | 18267  | (0.6)  | 10629  | (0.5)   | 11296           | (0.7)  | 10646   | (0.8)  | 11051   | (0.9)  | 5856    | (0.7)  | 1855    | (0.2)   | 3493            | (0.5)  | 6212      | (0.9)   | 8096    | (1.7)  |
| Automobile Ancillaries              | 6489   | (0.2)  | 4726   | (0.2)   | 4272            | (0.3)  | 3679    | (0.3)  | 2044    | (0.2)  | 1315    | (0.1)  | 947     | (0.1)   | 987             | (0.1)  | 588       | (0.1)   | 1154    | (0.2)  |
| Miscellaneous Manufacturing         | 20049  | (0.7)  | 7921   | (0.4)   | 4555            | (0.3)  | 3068    | (0.2)  | 3085    | (0.2)  | 3815    | (0.4)  | 3135    | (0.4)   | 2194            | (0.3)  | 1323      | (0.2)   | 1727    | (0.4)  |
| Paper and Paper Products            | 18324  | (0.6)  | 6992   | (0.4)   | 3683            | (0.2)  | 2058    | (0.1)  | 2810    | (0.2)  | 3425    | (0.4)  | 2887    | (0.4)   | 1865            | (0.3)  | 993       | (0.2)   | 1546    | (0.3)  |

TABLE A6.1 (contd.)

| Industry                 |         |         |         | Total I | nvestmer<br>Apr |         | dustry  |         |         |         |         |         | Investme | ent Und | ler Imple<br>Apı |         | ion by Ir | dustry  |         |         |
|--------------------------|---------|---------|---------|---------|-----------------|---------|---------|---------|---------|---------|---------|---------|----------|---------|------------------|---------|-----------|---------|---------|---------|
|                          | April   | 2006    | April 2 | 2005    | April 2         | 2004    | April 2 | 003     | April 1 | 999     | April 2 | 2006    | April    | 2005    | April 2          | 2004    | April 2   | 2003    | April 1 | 999     |
| Mining                   | 109882  | (3.9)   | 79881   | (4.0)   | 71666           | (4.6)   | 64266   | (4.6)   | 56342   | (4.5)   | 44484   | (5.0)   | 42151    | (5.2)   | 35410            | (5.0)   | 24784     | (3.7)   | 20910   | (4.3)   |
| Electricity              | 817725  | (28.7)  | 570315  | (28.6)  | 461611          | (29.9)  | 430226  | (30.5)  | 467435  | (37.3)  | 238410  | (26.6)  | 219862   | (27.0)  | 183084           | (25.7)  | 158609    | (24.0)  | 120010  | (24.5)  |
| Generation               | 788781  | (27.7)  | 546214  | (27.4)  | 446107          | (28.9)  | 416622  | (29.6)  | 455710  | (36.4)  | 224776  | (25.1)  | 206837   | (25.4)  | 175399           | (24.6)  | 155379    | (23.5)  | 115188  | (23.5)  |
| Distribution             | 28944   | (1.0)   | 24101   | (1.2)   | 15504           | (1.0)   | 13604   | (1.0)   | 11725   | (0.9)   | 13634   | (1.5)   | 13025    | (1.6)   | 7684             | (1.1)   | 3230      | (0.5)   | 4822    | (1.0)   |
| Services                 | 761332  | (26.8)  | 623241  | (31.2)  | 506143          | (32.7)  | 464154  | (33.0)  | 268420  | (21.4)  | 283146  | (31.6)  | 265619   | (32.7)  | 245812           | (34.4)  | 241192    | (36.4)  | 103355  | (21.1)  |
| Hotels and Tourism       | 20862   | (0.7)   | 15390   | (0.8)   | 11436           | (0.7)   | 11351   | (0.8)   | 9744    | (0.8)   | 5803    | (0.6)   | 4597     | (0.6)   | 4148             | (0.6)   | 4061      | (0.6)   | 4513    | (0.9)   |
| Recreational Services    | 10065   | (0.4)   | 8189    | (0.4)   | 5899            | (0.4)   | 4093    | (0.3)   | 640     | (0.1)   | 2431    | (0.3)   | 2490     | (0.3)   | 2341             | (0.3)   | 684       | (0.1)   | 424     | (0.1)   |
| Health Services          | 12912   | (0.5)   | 10945   | (0.5)   | 7498            | (0.5)   | 6208    | (0.4)   | 1883    | (0.2)   | 3569    | (0.4)   | 3973     | (0.5)   | 3306             | (0.5)   | 2853      | (0.4)   | 459     | (0.1)   |
| Transport Services       | 403888  | (14.2)  | 331248  | (16.6)  | 275227          | (17.8)  | 255188  | (18.1)  | 175340  | (14.0)  | 154230  | (17.2)  | 141819   | (17.4)  | 125711           | (17.6)  | 120731    | (18.2)  | 65541   | (13.4)  |
| Road Transport           | 139549  | (4.9)   | 125552  | (6.3)   | 112510          | (7.3)   | 105524  | (7.5)   | 48015   | (3.8)   | 54050   | (6.0)   | 53698    | (6.6)   | 51202            | (7.2)   | 45900     | (6.9)   | 9971    | (2.0)   |
| Railway Transport        | 162647  | (5.7)   | 121063  | (6.1)   | 85654           | (5.5)   | 75612   | (5.4)   | 48178   | (3.8)   | 74767   | (8.3)   | 69284    | (8.5)   | 59036            | (8.3)   | 56404     | (8.5)   | 37186   | (7.6)   |
| Air Transport            | 34830   | (1.2)   | 33773   | (1.7)   | 32998           | (2.1)   | 22297   | (1.6)   | 9906    | (0.8)   | 4367    | (0.5)   | 4399     | (0.5)   | 3052             | (0.4)   | 2852      | (0.4)   | 981     | (0.2)   |
| Shipping                 | 61516   | (2.2)   | 45492   | (2.3)   | 38701           | (2.5)   | 48506   | (3.4)   | 45925   | (3.7)   | 20924   | (2.3)   | 13882    | (1.7)   | 11866            | (1.7)   | 15546     | (2.3)   | 9279    | (1.9)   |
| Communication Services   | 105668  | (3.7)   | 86421   | (4.3)   | 84037           | (5.4)   | 86589   | (6.1)   | 42547   | (3.4)   | 69227   | (7.7)   | 67527    | (8.3)   | 68096            | (9.5)   | 72269     | (10.9)  | 30311   | (6.2)   |
| Miscellaneous Services   | 177455  | (6.2)   | 144766  | (7.3)   | 103533          | (6.7)   | 87745   | (6.2)   | 38266   | (3.1)   | 38976   | (4.3)   | 36510    | (4.5)   | 35518            | (5.0)   | 34180     | (5.2)   | 2108    | (0.4)   |
| Storage and Distribution | 171106  | (6.0)   | 139131  | (7.0)   | 98833           | (6.4)   | 83370   | (5.9)   | 38267   | (3.1)   | 37579   | (4.2)   | 34958    | (4.3)   | 34246            | (4.8)   | 32515     | (4.9)   | 2108    | (0.4)   |
| Information Technology   | 18774   | (0.7)   | 16791   | (0.8)   | 15304           | (1.0)   |         | (0.0)   |         | (0.0)   | 4897    | (0.5)   | 5624     | (0.7)   | 6280             | (0.9)   | 0         | (0.0)   | 0       | (0.0)   |
| Irrigation               | 131125  | (4.6)   | 127028  | (6.4)   | 118692          | (7.7)   | 115584  | (8.2)   | 110926  | (8.8)   | 110448  | (12.3)  | 100199   | (12.3)  | 99780            | (14.0)  | 99052     | (15.0)  | 96372   | (19.7)  |
| Construction             | 163225  | (5.7)   | 101649  | (5.1)   | 97173           | (6.3)   | 91327   | (6.5)   | 15819   | (1.3)   | 32021   | (3.6)   | 30981    | (3.8)   | 31023            | (4.3)   | 29443     | (4.4)   | 6320    | (1.3)   |
| Commercial Complexes     | 151277  | (5.3)   | 94450   | (4.7)   | 97173           | (6.3)   | 91327   | (6.5)   | 15819   | (1.3)   | 29899   | (3.3)   | 29604    | (3.6)   | 31023            | (4.3)   | 29443     | (4.4)   | 6320    | (1.3)   |
| All Industries           | 2846066 | (100.0) | 2E+06   | (100.0) | 1546156         | (100.0) | 1408331 | (100.0) | 1253454 | (100.0) | 897161  | (100.0) | 813120   | (100.0) | 713630           | (100.0) | 661882    | (100.0) | 490407  | (100.0) |

Notes: Total investment covers projects announced and proposed and those under implementation; Figures in brackets are percentages to total investment.

Source: Centre for Monitoring Indian Economy Pvt. Ltd., Monthly Review of Investment Projects, CapEx, various issues.

 ${\it TABLE}~A6.2$  Trends in Total Investment and Investments Under Implementation by States and Union Territories

(Rs crore)

| State/UTs            |        |         |        |         | Total Inves<br>s and Uni |         | ′      |         |         |         |        |         | Tot    |         | nent Und |         |         | n       |        |         |
|----------------------|--------|---------|--------|---------|--------------------------|---------|--------|---------|---------|---------|--------|---------|--------|---------|----------|---------|---------|---------|--------|---------|
|                      | April  | 2006    | April  | 2005    | April                    | 2004    | April  | 2003    | April   | 1999    | April  | 2006    | April  | 2005    | April 2  | 2004    | April 2 | 003     | April  | 1999    |
| Andhra Pradesh       | 239347 | (8.41)  | 175157 | (8.78)  | 126811                   | (8.20)  | 125947 | (8.94)  | 102710  | (8.19)  | 87342  | (9.74)  | 61540  | (7.57)  | 58062    | (8.14)  | 56710   | (8.57)  | 37721  | (7.69)  |
| Arunachal Pradesh    | 11192  | (0.39)  | 11192  | (0.56)  | 11339                    | (0.73)  | 2852   | (0.20)  | 3738    | (0.30)  | 2592   | (0.29)  | 2592   | (0.32)  | 95       | (0.01)  | 95      | (0.01)  | 1140   | (0.23)  |
| Assam                | 294133 | (10.33) | 17117  | (0.86)  | 12838                    | (0.83)  | 14104  | (1.00)  | 14028   | (1.12)  | 11081  | (1.24)  | 10234  | (1.26)  | 10528    | (1.48)  | 10413   | (1.57)  | 11412  | (2.33)  |
| Bihar                | 39780  | (1.40)  | 31039  | (1.56)  | 29607                    | (1.91)  | 27401  | (1.95)  | 23204   | (1.85)  | 15008  | (1.67)  | 14695  | (1.81)  | 12978    | (1.82)  | 10882   | (1.64)  | 11559  | (2.36)  |
| Chhattisgarh         | 94817  | (3.33)  | 52342  | (2.62)  | 42116                    | (2.72)  | 35453  | (2.52)  |         |         | 24050  | (2.68)  | 24042  | (2.96)  | 9305     | (1.30)  | 3541    | (0.53)  |        |         |
| Delhi                | 36096  | (1.27)  | 36976  | (1.85)  | 24537                    | (1.59)  | 18220  | (1.29)  | 15510   | (1.24)  | 13826  | (1.54)  | 14721  | (1.81)  | 8895     | (1.25)  | 10180   | (1.54)  | 6062   | (1.24)  |
| Goa                  | 2389   | (0.08)  | 3043   | (0.15)  | 3168                     | (0.20)  | 2905   | (0.21)  | 9050    | (0.72)  | 960    | (0.11)  | 1256   | (0.15)  | 1512     | (0.21)  | 1303    | (0.20)  | 1255   | (0.26)  |
| Gujarat              | 239659 | (8.42)  | 158465 | (7.94)  | 141062                   | (9.12)  | 129897 | (9.22)  | 144129  | (11.50) | 80041  | (8.92)  | 73381  | (9.02)  | 65981    | (9.25)  | 64616   | (9.76)  | 76214  | (15.54) |
| Haryana              | 89332  | (3.14)  | 39225  | (1.97)  | 30531                    | (1.97)  | 24014  | (1.71)  | 15592   | (1.24)  | 19844  | (2.21)  | 16674  | (2.05)  | 14601    | (2.05)  | 12395   | (1.87)  | 2587   | (0.53)  |
| Himachal Pradesh     | 40271  | (1.41)  | 36614  | (1.83)  | 37531                    | (2.43)  | 35943  | (2.55)  | 23745   | (1.89)  | 25918  | (2.89)  | 17314  | (2.13)  | 19580    | (2.74)  | 22958   | (3.47)  | 10641  | (2.17)  |
| Jharkhand            | 236973 | (8.33)  | 60719  | (3.04)  | 34372                    | (2.22)  | 27005  | (1.92)  |         |         | 18733  | (2.09)  | 11012  | (1.35)  | 10676    | (1.50)  | 7425    | (1.12)  |        |         |
| Jammu & Kashmir      | 28596  | (1.00)  | 24593  | (1.23)  | 21047                    | (1.36)  | 17481  | (1.24)  | 11841   | (0.94)  | 18286  | (2.04)  | 14577  | (1.79)  | 13315    | (1.87)  | 10958   | (1.66)  | 7515   | (1.53)  |
| Karnataka            | 225245 | (7.91)  | 151656 | (7.60)  | 115974                   | (7.50)  | 112900 | (8.02)  | 100918  | (8.05)  | 58663  | (6.54)  | 56494  | (6.95)  | 44690    | (6.26)  | 42599   | (6.44)  | 50119  | (10.22) |
| Kerala               | 80120  | (2.82)  | 70704  | (3.54)  | 56051                    | (3.63)  | 67187  | (4.77)  | 48959   | (3.91)  | 21550  | (2.40)  | 20623  | (2.54)  | 18637    | (2.61)  | 19821   | (2.99)  | 7551   | (1.54)  |
| Madhya Pradesh       | 93006  | (3.27)  | 47698  | (2.39)  | 48273                    | (3.12)  | 47925  | (3.40)  | 71025   | (5.67)  | 40818  | (4.55)  | 37158  | (4.57)  | 41466    | (5.81)  | 38605   | (5.83)  | 36060  | (7.35)  |
| Maharashtra          | 249621 | (8.77)  | 200114 | (10.03) | 170321                   | (11.02) | 154540 | (10.97) | 149768  | (11.95) | 98647  | (11.00) | 99668  | (12.26) | 90449    | (12.67) | 85140   | (12.86) | 72155  | (14.71) |
| Manipur              | 6149   | (0.22)  | 6144   | (0.31)  | 5610                     | (0.36)  | 5610   | (0.40)  | 955     | (0.08)  | 6136   | (0.68)  | 6136   | (0.75)  | 5602     | (0.79)  | 438     | (0.07)  | 388    | (0.08)  |
| Meghalaya            | 882    | (0.03)  | 907    | (0.05)  | 926                      | (0.06)  | 737    | (0.05)  | 362     | (0.03)  | 813    | (0.09)  | 213    | (0.03)  | 592      | (0.08)  | 29      | (0.00)  | 176    | (0.04)  |
| Mizoram              | 2537   | (0.09)  | 2537   | (0.13)  | 2650                     | (0.17)  | 1939   | (0.14)  | 1594    | (0.13)  | 609    | (0.07)  | 609    | (0.07)  | 722      | (0.10)  | 705     | (0.11)  | 0      | (0.00)  |
| Nagaland             | 888    | (0.03)  | 385    | (0.02)  | 338                      | (0.02)  | 387    | (0.03)  | 94      | (0.01)  | 187    | (0.02)  | 187    | (0.02)  | 228      | (0.03)  | 228     | (0.03)  | 41     | (0.01)  |
| Orissa               | 266652 | (9.37)  | 196538 | (9.85)  | 65769                    | (4.25)  | 44364  | (3.15)  | 111503  | (8.90)  | 60914  | (6.79)  | 50357  | (6.19)  | 27990    | (3.92)  | 21923   | (3.31)  | 21874  | (4.46)  |
| Punjab               | 39842  | (1.40)  | 29207  | (1.46)  | 23873                    | (1.54)  | 25143  | (1.79)  | 25576   | (2.04)  | 16956  | (1.89)  | 13953  | (1.72)  | 13002    | (1.82)  | 12874   | (1.95)  | 6636   | (1.35)  |
| Rajasthan            | 50705  | (1.78)  | 38780  | (1.94)  | 28417                    | (1.84)  | 34934  | (2.48)  | 34032   | (2.72)  | 12934  | (1.44)  | 17044  | (2.10)  | 15903    | (2.23)  | 16295   | (2.46)  | 15727  | (3.21)  |
| Sikkim               | 8119   | (0.29)  | 7315   | (0.37)  | 6531                     | (0.42)  | 6228   | (0.44)  | 362     | (0.03)  | 3904   | (0.44)  | 3870   | (0.48)  | 3089     | (0.43)  | 3086    | (0.47)  | 362    | (0.07)  |
| Tamil Nadu           | 163245 | (5.74)  | 151902 | (7.61)  | 132723                   | (8.58)  | 129350 | (9.18)  | 138562  | (11.05) | 52087  | (5.81)  | 42830  | (5.27)  | 41120    | (5.76)  | 49461   | (7.47)  | 25716  | (5.24)  |
| Tripura              | 13122  | (0.46)  | 11867  | (0.59)  | 4876                     | (0.32)  | 5326   | (0.38)  | 248     | (0.02)  | 224    | (0.02)  | 224    | (0.03)  | 149      | (0.02)  | 149     | (0.02)  | 116    | (0.02)  |
| Uttar Pradesh        | 92191  | (3.24)  | 82504  | (4.13)  | 72746                    | (4.70)  | 69404  | (4.93)  | 64959   | (5.18)  | 26462  | (2.95)  | 28559  | (3.51)  | 26584    | (3.73)  | 24275   | (3.67)  | 24271  | (4.95)  |
| Uttranchal           | 39351  | (1.38)  | 30887  | (1.55)  | 24442                    | (1.58)  | 21768  | (1.55)  |         |         | 20268  | (2.26)  | 20280  | (2.49)  | 18598    | (2.61)  | 14973   | (2.26)  |        | (0.00)  |
| West Bengal          | 118757 | (4.17)  | 98790  | (4.95)  | 73836                    | (4.78)  | 63386  | (4.50)  | 63501   | (5.07)  | 30063  | (3.35)  | 26797  | (3.30)  | 25684    | (3.60)  | 20260   | (3.06)  | 22667  | (4.62)  |
| Union Territories    | 5051   | (0.18)  | 3795   | (0.19)  | 3628                     | (0.23)  | 3771   | (0.27)  | 932     | (0.07)  | 2916   | (0.33)  | 1817   | (0.22)  | 1764     | (0.25)  | 1508    | (0.23)  | 584    | (0.12)  |
| Andaman and Nocobar  | 5      | (0.00)  | 37     | (0.00)  | 37                       | (0.00)  | 106    | (0.01)  | 8       | (0.00)  | 5      | (0.00)  | 5      | (0.00)  | 5        | (0.00)  | 74      | (0.01)  | 8      | (0.00)  |
| Chandigarh           | 1194   | (0.04)  | 1189   | (0.06)  | 1144                     | (0.07)  | 1629   | (0.12)  | 179     | (0.01)  | 600    | (0.07)  | 695    | (0.09)  | 550      | (0.08)  | 565     | (0.09)  | 79     | (0.02)  |
| Dadra & Nagar Haveli | 1790   | (0.06)  | 862    | (0.04)  | 759                      | (0.05)  | 652    | (0.05)  | 378     | (0.03)  | 1749   | (0.19)  | 696    | (0.09)  | 656      | (0.09)  | 480     | (0.07)  | 306    | (0.06)  |
| Daman and Diu        | 266    | (0.01)  | 195    | (0.01)  | 71                       | (0.00)  | 88     | (0.01)  | 168     | (0.01)  | 58     | (0.01)  | 15     | (0.00)  | 30       | (0.00)  | 10      | (0.00)  | 68     | (0.01)  |
| Lakshadweep          | 6      | (0.00)  | 27     | (0.00)  | 24                       | (0.00)  | 21     | (0.00)  | 4       | (0.00)  | 0      | (0.00)  | 21     | (0.00)  | 21       | (0.00)  | 18      | (0.00)  | 0      | (0.00)  |
| Pondicherry          | 1790   | (0.06)  | 1485   | (0.07)  | 1593                     | (0.10)  | 1275   | (0.09)  | 195     | (0.02)  | 504    | (0.06)  | 385    | (0.05)  | 502      | (0.07)  | 361     | (0.05)  | 123    | (0.03)  |
| Multi States         | 284864 | (10.01) | 213902 | (10.72) | 179967                   | (11.64) | 148340 | (10.53) | 0       | (0.00)  | 125278 | (13.96) | 124264 | (15.28) | 111835   | (15.67) | 98041   | (14.81) |        | (0.00)  |
| Unallocated          | 17856  | (0.63)  | 3452   | (0.17)  | 14235                    | (0.92)  | 3871   | (0.27)  | 0       | (0.00)  | 0      | (0.00)  | 1      | (0.00)  | 0        | (0.00)  | 0       | (0.00)  |        | (0.00)  |
| All India            |        | ( )     |        | ( )     | 1546156                  | ( /     |        | ( /     | 1253452 | ()      |        | ( )     | 813121 | ( )     | 713629   | ( /     | 661883  | ( )     | 490406 | ` /     |

*Notes:* Total investment covers projects announced and proposed and those under implementation; Figures in brackets are percentage to total investment. *Source:* Centre for Monitoring Indian Economy Pvt. Ltd, Monthly Review of Investment Projects, CapEx, various issues (see Table A5.10).

A7 PRICES Table A7.1 Wholesale Price Index: Point-to-Point and Average Annual Variation

| Year      |                 | Point-to                       | -Point        |                          |                 | Avera                          | age           |                                |
|-----------|-----------------|--------------------------------|---------------|--------------------------|-----------------|--------------------------------|---------------|--------------------------------|
|           | All commodities | Annual<br>change<br>(per cent) | Food<br>index | Annual change (per cent) | All commodities | Annual<br>change<br>(per cent) | Food<br>index | Annual<br>change<br>(per cent) |
| (1)       | (2)             | (3)                            | (4)           | (5)                      | (6)             | (7)                            | (8)           | (9)                            |
| -         |                 |                                | Ba            | se Year 1993–4=10        | 00              |                                |               |                                |
| 2005-6    | 197.2           | 5.2                            | 187.2         | 4.2                      | 195.5           | 4.4                            | 187.4         | 3.3                            |
| 2004–5    | 187.5           | 4.2                            | 179.6         | 1.7                      | 187.2           | 6.4                            | 181.4         | 3.5                            |
| 2003-4    | 180.0           | 4.9                            | 176.6         | 4.6                      | 175.9           | 5.5                            | 175.2         | 4.3                            |
| 2002-3    | 171.6           | 6.1                            | 168.8         | 3.4                      | 166.8           | 3.4                            | 167.9         | 2.9                            |
| 2001-2    | 161.8           | 1.6                            | 163.3         | 3.3                      | 161.3           | 3.6                            | 163.2         | 4.1                            |
| 2000-1    | 159.2           | 5.5                            | 158.1         | -1.3                     | 155.7           | 7.2                            | 156.7         | 0.6                            |
| 1999-2000 | 150.9           | 6.5                            | 160.3         | 4.1                      | 145.3           | 3.2                            | 155.7         | 1.0                            |
| 1998–9    | 141.7           | 5.3                            | 154.0         | 9.2                      | 140.8           | 6.0                            | 154.2         | 11.9                           |
| 1997–8    | 134.6           | 4.5                            | 141.0         | 4.8                      | 132.8           | 4.3                            | 137.8         | 4.1                            |
| 1996–7    | 128.8           | 5.4                            | 134.6         | 10.8                     | 127.3           | 4.7                            | 132.4         | 7.8                            |
| 1995–6    | 122.2           | 4.4                            | 121.4         | 6.3                      | 121.6           | 7.8                            | 122.8         | 6.5                            |
| 1994–5    | 117.1           | 17.1                           | 114.2         | 14.2                     | 112.8           | 12.8                           | 115.3         | 15.3                           |
|           |                 |                                | Ba            | se Year 1981–2=10        | 00              |                                |               |                                |
| 1994–5    | 285.2           | 10.4                           | 303.3         | 12.5                     | 274.7           | 10.9                           | 297.2         | 9.9                            |
| 1993–4    | 258.3           | 10.8                           | 269.7         | 3.8                      | 247.8           | 8.4                            | 270.5         | 6.6                            |
| 1992-3    | 233.1           | 7.0                            | 259.8         | 9.0                      | 228.6           | 10.0                           | 253.7         | 10.9                           |
| 1991-2    | 217.8           | 13.6                           | 238.4         | 17.1                     | 207.8           | 13.7                           | 228.8         | 18.2                           |
| 1990-1    | 191.8           | 12.1                           | 203.6         | 17.0                     | 182.7           | 10.3                           | 193.6         | 11.2                           |
| 1989–90   | 171.1           | 9.1                            | 174.1         | 5.6                      | 165.7           | 7.4                            | 174.1         | 4.7                            |
| 1988–9    | 156.9           | 5.7                            | 164.8         | 4.0                      | 154.3           | 7.5                            | 166.3         | 8.3                            |
| 1987-8    | 148.5           | 10.7                           | 158.4         | 14.1                     | 143.6           | 8.2                            | 153.5         | 8.9                            |
| 1986–7    | 134.2           | 5.3                            | 138.8         | 6.8                      | 132.7           | 5.8                            | 140.9         | 10.2                           |
| 1985–6    | 127.4           | 5.1                            | 130.0         | 5.4                      | 125.4           | 4.4                            | 127.9         | 2.2                            |
| 1984–5    | 121.2           | 5.6                            | 123.4         | 3.8                      | 120.1           | 6.5                            | 125.2         | 4.5                            |
| 1983-4    | 114.8           | 7.1                            | 118.8         | 8.4                      | 112.8           | 7.5                            | 119.8         | 12.2                           |
| 1982-3    | 107.2           | 7.2                            | 109.6         | 9.6                      | 104.9           | 4.9                            | 106.8         | 6.8                            |
|           |                 |                                | Ba            | se Year 1970–1=10        | 00              |                                |               |                                |
| 1982-3    | 295.3           | 6.6                            | 258.1         | 8.0                      | 288.7           | 2.6                            | 252.3         | -1.0                           |
| 1981-2    | 277.1           | 2.4                            | 239.0         | -3.4                     | 281.3           | 9.3                            | 254.8         | 6.5                            |
| 1980-1    | 270.7           | 16.7                           | 247.3         | 19.5                     | 257.3           | 18.2                           | 239.2         | 22.3                           |
| 1979-80   | 232.0           | 21.4                           | 206.9         | 22.6                     | 217.6           | 17.1                           | 195.6         | 16.9                           |
| 1978–9    | 191.1           | 4.5                            | 168.8         | 0.3                      | 185.8           | 0.0                            | 167.4         | -5.5                           |
| 1977-8    | 182.8           | 0.4                            | 168.3         | -1.7                     | 185.8           | 5.2                            | 177.1         | 7.0                            |
| 1976–7    | 182.1           | 12.0                           | 171.2         | 17.5                     | 176.6           | 2.1                            | 165.5         | -2.2                           |
| 1975–6    | 162.6           | -6.5                           | 145.7         | -15.4                    | 173.0           | -1.1                           | 169.3         | -4.2                           |
| 1974–5    | 173.9           | 10.1                           | 172.2         | 11.2                     | 174.9           | 25.2                           | 176.6         | 19.7                           |
|           |                 |                                |               |                          |                 |                                |               |                                |

# 242 APPENDIX TABLES

Table A7.1 (contd.)

| Year    |                 | Point-to                       | -Point        |                                |                 | Avera                          | age           |                                |
|---------|-----------------|--------------------------------|---------------|--------------------------------|-----------------|--------------------------------|---------------|--------------------------------|
|         | All commodities | Annual<br>change<br>(per cent) | Food<br>index | Annual<br>change<br>(per cent) | All commodities | Annual<br>change<br>(per cent) | Food<br>index | Annual<br>change<br>(per cent) |
| (1)     | (2)             | (3)                            | (4)           | (5)                            | (6)             | (7)                            | (8)           | (9)                            |
| 1973–4  | 158.0           | 30.0                           | 154.9         | 22.2                           | 139.7           | 20.2                           | 147.5         | 19.9                           |
| 1972-3  | 121.5           | 12.3                           | 126.8         | 15.5                           | 116.2           | 10.0                           | 123.0         | 15.8                           |
| 1971-2  | 108.2           | 8.2                            | 109.8         | 9.8                            | 105.6           | 5.6                            | 106.3         | 6.3                            |
|         |                 |                                | Bas           | se Year 1961–2=10              | 00              |                                |               |                                |
| 1971-2  | 192.3           | 6.4                            | 216.0         | 8.0                            | 188.4           | 4.0                            | 210.0         | 2.9                            |
| 1970-1  | 180.6           | 2.8                            | 200.0         | 0.0                            | 181.1           | 5.5                            | 204.0         | 3.6                            |
| 1969–70 | 175.7           | 6.4                            | 200.0         | 7.5                            | 171.6           | 3.7                            | 197.0         | 0.0                            |
| 1968–9  | 165.1           | 3.0                            | 186.0         | -4.1                           | 165.4           | -1.1                           | 197.0         | -5.3                           |
| 1967-8  | 160.3           | 0.9                            | 194.0         | 3.2                            | 167.3           | 11.6                           | 208.0         | 21.6                           |
| 1966–7  | 158.9           | 15.6                           | 188.0         | 25.3                           | 149.9           | 13.9                           | 171.0         | 17.9                           |
| 1965–6  | 137.5           | 12.4                           | 150.0         | 13.6                           | 131.6           | 7.6                            | 145.0         | 8.9                            |
| 1964–5  | 122.3           | 7.9                            | 132.0         | 10.0                           | 122.3           | 11.0                           | 133.1         | 16.9                           |
| 1963–4  | 113.3           | 8.0                            | 120.0         | 14.3                           | 110.2           | 6.2                            | 113.9         | 8.5                            |
| 1962-3  | 104.9           | 4.9                            | 105.0         | 5.0                            | 103.8           | 3.8                            | 105.0         | 5.0                            |
|         |                 |                                | Bas           | se Year 1952–3=10              | 00              |                                |               |                                |
| 1962-3  | 127.3           | 3.6                            | 123.5         | 4.3                            | 127.9           | 2.2                            | 126.1         | 5.0                            |
| 1961–2  | 122.9           | -2.6                           | 118.4         | 1.3                            | 125.1           | 0.2                            | 120.1         | 0.1                            |
| 1960-1  | 126.2           | 6.4                            | 116.9         | 0.3                            | 124.9           | 6.7                            | 120.0         | 0.6                            |
| 1959–60 | 118.6           | 5.8                            | 116.5         | 3.4                            | 117.1           | 3.7                            | 119.3         | 3.6                            |
| 1958–9  | 112.1           | 5.7                            | 112.7         | 9.0                            | 112.9           | 4.2                            | 115.2         | 8.3                            |
| 1957-8  | 106.1           | -2.9                           | 103.4         | -6.0                           | 108.4           | 2.9                            | 106.4         | 4.0                            |
| 1956–7  | 109.3           | 7.8                            | 110.0         | 11.1                           | 105.3           | 13.8                           | 102.3         | 18.5                           |
| 1955–6  | 101.4           | 11.7                           | 99.0          | 22.5                           | 92.5            | 3.2                            | 86.3          | 5.1                            |
| 1954–5  | 90.8            | -11.9                          | 80.8          | -22.5                          | 89.6            | -11.5                          | 82.1          | -18.0                          |
| 1953-4  | 103.1           | 3.1                            | 104.2         | 4.2                            | 101.2           | 1.2                            | 100.1         | 0.1                            |
|         |                 |                                | Base '        | Year August 1939=              | =100            |                                |               |                                |
| 1952-3  | 385.0           | 1.8                            | 362.6         | 6.9                            | 380.6           | -12.4                          | 351.3         | -11.8                          |
| 1951-2  | 378.2           | -15.9                          | 339.3         | -18.1                          | 434.6           | 6.1                            | 398.3         | -4.3                           |
| 1950-1  | 449.6           | _                              | 414.1         | _                              | 409.7           | _                              | 416.4         | _                              |

 ${\it Source:}\ {\it Office of the Economic Adviser}, {\it Ministry of Commerce and Industry, Government of India.}$ 

Table A7.2 Cost of Living Indices
(A) Consumer Price Index for Industrial Workers

| Year      |                | Annual A                 | verage        |                          |                | Point-to                 | -Point        |                          |
|-----------|----------------|--------------------------|---------------|--------------------------|----------------|--------------------------|---------------|--------------------------|
|           | Total<br>Index | Annual change (per cent) | Food<br>Index | Annual change (per cent) | Total<br>Index | Annual change (per cent) | Food<br>Index | Annual change (per cent) |
| (1)       | (2)            | (3)                      | (4)           | (5)                      | (6)            | (7)                      | (8)           | (9)                      |
|           |                |                          | В             | Base Year 2001 = 100     |                |                          |               |                          |
| 2005-6    | 117.1          | 4.3                      | na            | na                       | 119.0          | 5.3                      | na            | na                       |
| 2004-5    | 112.3          | 3.9                      | na            | na                       | 113.0          | 3.7                      | na            | na                       |
|           |                |                          | В             | Base Year 1982 = 100     |                |                          |               |                          |
| 2004-5    | 520.0          | 3.9                      | 506.0         | 2.2                      | 525.0          | 4.2                      | 502.0         | 1.6                      |
| 2003-4    | 500.3          | 3.8                      | 495.0         | 3.8                      | 504.0          | 3.5                      | 494.0         | 3.1                      |
| 2002-3    | 482.0          | 4.1                      | 477.0         | 7.0                      | 487.0          | 4.1                      | 479.0         | 3.7                      |
| 2001-2    | 463.0          | 4.3                      | 446.0         | -1.5                     | 468.0          | 5.2                      | 462.0         | 3.6                      |
| 2000-1    | 444.0          | 3.7                      | 453.0         | 1.6                      | 445.0          | 2.5                      | 446.0         | 0.0                      |
| 1999–2000 | 428.0          | 3.4                      | 446.0         | 0.2                      | 434.0          | 4.8                      | 446.0         | 0.2                      |
| 1998–99   | 414.0          | 13.1                     | 445.0         | 14.7                     | 414.0          | 8.9                      | 445.0         | 11.0                     |
| 1997-8    | 366.0          | 7.0                      | 388.0         | 5.1                      | 380.0          | 8.3                      | 401.0         | 7.5                      |
| 1996–7    | 342.0          | 9.3                      | 369.0         | 9.5                      | 351.0          | 10.0                     | 373.0         | 10.0                     |
| 1995–6    | 313.0          | 12.2                     | 337.0         | 13.5                     | 319.0          | 8.9                      | 339.0         | 9.0                      |
| 1994–5    | 279.0          | 8.1                      | 297.0         | 9.2                      | 293.0          | 9.7                      | 311.0         | 10.7                     |
| 1993–4    | 258.0          | 7.5                      | 272.0         | 7.1                      | 267.0          | 9.9                      | 281.0         | 11.1                     |
| 1992-3    | 240.0          | 9.6                      | 254.0         | 10.4                     | 243.0          | 6.1                      | 253.0         | 5.0                      |
| 1991–2    | 219.0          | 13.5                     | 230.0         | 15.6                     | 229.0          | 13.9                     | 241.0         | 16.4                     |
| 1990-1    | 193.0          | 11.6                     | 199.0         | 12.4                     | 201.0          | 13.6                     | 207.0         | 16.3                     |
| 1989-00   | 173.0          | 6.1                      | 177.0         | 4.7                      | 177.0          | 8.6                      | 178.0         | 5.3                      |
| 1988–9    | 163.0          | 9.4                      | 169.0         | 11.2                     | 163.0          | 6.5                      | 169.0         | 8.3                      |
| 1987–8    | 149.0          | 8.8                      | 152.0         | 7.8                      | 153.0          | 10.9                     | 156.0         | 9.9                      |
| 1986–7    | 137.0          | 8.7                      | 141.0         | 10.2                     | 138.0          | 6.2                      | 142.0         | 7.6                      |
| 1985–6    | 126.0          | 6.8                      | 128.0         | 4.9                      | 130.0          | 8.3                      | 132.0         | 10.0                     |
| 1984–5    | 118.0          | 6.3                      | 122.0         | 4.3                      | 120.0          | 5.3                      | 120.0         | 2.6                      |
| 1983–4    | 111.0          | 11.0                     | 117.0         | 17.0                     | 114.0          | 14.0                     | 117.0         | 17.0                     |
|           |                |                          | F             | Base Year 1960 =100      |                |                          |               |                          |
| 1983–4    | 547.0          | 12.6                     | 581.0         | 14.4                     | 558.0          | 11.2                     | 583.0         | 11.7                     |
| 1982-3    | 486.0          | 7.8                      | 508.0         | 6.7                      | 502.0          | 9.8                      | 522.0         | 9.9                      |
| 1981-2    | 451.0          | 12.5                     | 476.0         | 13.6                     | 457.0          | 8.8                      | 475.0         | 8.7                      |
| 1980-1    | 401.0          | 11.4                     | 419.0         | 12.3                     | 420.0          | 12.6                     | 437.0         | 13.5                     |
| 1979–80   | 360.0          | 8.8                      | 373.0         | 7.8                      | 373.0          | 12.3                     | 385.0         | 12.9                     |
| 1978–9    | 331.0          | 2.2                      | 346.0         | 0.3                      | 332.0          | 3.4                      | 341.0         | 1.5                      |
| 1977–8    | 324.0          | 7.6                      | 345.0         | 8.8                      | 321.0          | 2.9                      | 336.0         | 1.2                      |
| 1976–7    | 301.0          | -3.8                     | 317.0         | -7.3                     | 312.0          | 9.1                      | 332.0         | 12.2                     |
| 1975–6    | 313.0          | -1.3                     | 342.0         | -4.5                     | 286.0          | -10.9                    | 296.0         | -17.5                    |
| 1974–5    | 317.0          | 26.8                     | 358.0         | 28.3                     | 321.0          | 16.7                     | 359.0         | 17.7                     |
| 1973-4    | 250.0          | 20.8                     | 279.0         | 25.1                     | 275.0          | 27.3                     | 305.0         | 29.2                     |

# 244 APPENDIX TABLES

Table A7.2 (contd.)

| Year    |                | Annual A                       | werage        |                          |                | Point-to                       | -Point        |                                |
|---------|----------------|--------------------------------|---------------|--------------------------|----------------|--------------------------------|---------------|--------------------------------|
|         | Total<br>Index | Annual<br>change<br>(per cent) | Food<br>Index | Annual change (per cent) | Total<br>Index | Annual<br>change<br>(per cent) | Food<br>Index | Annual<br>change<br>(per cent) |
| (1)     | (2)            | (3)                            | (4)           | (5)                      | (6)            | (7)                            | (8)           | (9)                            |
| 1972-3  | 207.0          | 7.8                            | 223.0         | 8.8                      | 216.0          | 11.3                           | 236.0         | 15.1                           |
| 1971-2  | 192.0          | 3.2                            | 205.0         | 1.5                      | 194.0          | 5.4                            | 205.0         | 5.1                            |
| 1970-1  | 186.0          | 5.1                            | 202.0         | 4.7                      | 184.0          | 2.8                            | 195.0         | 0.5                            |
| 1969–70 | 177.0          | 1.7                            | 193.0         | 0.5                      | 179.0          | 5.3                            | 194.0         | 6.0                            |
| 1968–9  | 174.0          | -18.3                          | 192.0         | -15.8                    | 170.0          | na                             | 183.0         | na                             |
|         |                |                                | Ва            | se Year = $1949 = 10$    | 0              |                                |               |                                |
| 1968-9  | 212.0          | -0.5                           | 223.0         | -2.2                     | 207.0          | -2.8                           | 212.0         | -6.2                           |
| 1967-8  | 213.0          | 11.5                           | 228.0         | 15.2                     | 213.0          | 6.5                            | 226.0         | 7.6                            |
| 1966–7  | 191.0          | 13.0                           | 198.0         | 13.8                     | 200.0          | 14.9                           | 210.0         | 18.6                           |
| 1965-6  | 169.0          | 7.6                            | 174.0         | 7.4                      | 174.0          | 9.4                            | 177.0         | 9.3                            |
| 1964–5  | 157.0          | 14.6                           | 162.0         | 17.4                     | 159.0          | 11.2                           | 162.0         | 13.3                           |
| 1963-4  | 137.0          | 4.6                            | 138.0         | 5.3                      | 143.0          | 6.7                            | 143.0         | 5.9                            |
| 1962-3  | 131.0          | 3.1                            | 131.0         | 4.0                      | 134.0          | 2.3                            | 135.0         | 3.8                            |
| 1961-2  | 127.0          | 2.4                            | 126.0         | 0.0                      | 131.0          | 4.0                            | 130.0         | 3.2                            |
| 1960-1  | 124.0          | 0.8                            | 126.0         | 0.8                      | 126.0          | 1.6                            | 126.0         | 0.0                            |
| 1959-60 | 123.0          | 4.2                            | 125.0         | 5.9                      | 124.0          | 2.5                            | 126.0         | 0.8                            |
| 1958–9  | 118.0          | 5.4                            | 118.0         | 5.4                      | 121.0          | 4.3                            | 125.0         | 5.9                            |
| 1957-8  | 112.0          | 4.7                            | 112.0         | 6.7                      | 116.0          | 4.5                            | 118.0         | 5.4                            |
| 1956–7  | 107.0          | 11.5                           | 105.0         | 14.1                     | 111.0          | 5.7                            | 112.0         | 6.7                            |
| 1955–6  | 96.0           | -3.0                           | 92.0          | -8.9                     | 105.0          | 9.4                            | 105.0         | 14.1                           |
| 1954–5  | 99.0           | -6.6                           | 101.0         | -7.3                     | 96.0           | -5.0                           | 92.0          | -8.9                           |
| 1953-4  | 106.0          | 1.9                            | 109.0         | na                       | 101.0          | -2.9                           | 101.0         | -3.8                           |
| 1952-3  | 104.0          | -1.0                           | na            | na                       | 104.0          | 6.1                            | 105.0         | na                             |
| 1951–2  | 105.0          | 4.0                            | na            | na                       | 98.0           | -4.9                           | na            | na                             |
| 1950-1  | 101.0          | na                             | na            | na                       | 103.0          | na                             | na            | na                             |

Table A7.2 (contd.)

|           | •              | ) Consumer P<br>ban Non-man    |               |                                |                |                                | ((            | C) Consumer I<br>Agricultural |                |                          |               |                                |
|-----------|----------------|--------------------------------|---------------|--------------------------------|----------------|--------------------------------|---------------|-------------------------------|----------------|--------------------------|---------------|--------------------------------|
|           | Annua          | ıl Average                     | Point         | -to-Point                      |                | Annual A                       | verage*       |                               |                | Point-to-                | -Point**      |                                |
|           | Total<br>index | Annual<br>change<br>(per cent) | Food<br>index | Annual<br>change<br>(per cent) | Total<br>index | Annual<br>change<br>(per cent) | Food<br>index | Annual change (per cent)      | Total<br>index | Annual change (per cent) | Food<br>index | Annual<br>change<br>(per cent) |
|           | (10)           | (11)                           | (12)          | (13)                           | (15)           | (16)                           | (17)          | (18)                          | (19)           | (20)                     | (21)          | (22)                           |
|           |                |                                |               |                                | Base           | Year 1984–85                   | =100          |                               |                |                          |               |                                |
| 2005–6    | 456.3          | 4.8                            | 463.0         | 4.8                            | 358.1          | 4.7                            | 351.1         | 4.9                           | 370.0          | 7.2                      | 364.0         | 8.3                            |
| 2004-5    | 435.6          | 3.7                            | 441.0         | 3.7                            | 341.9          | 2.9                            | 334.7         | 2.8                           | 345.0          | 2.7                      | 336.0         | 2.1                            |
| 2003–4    | 420.3          | 3.7                            | 424.0         | 3.7                            | 332.3          | 3.0                            | 325.6         | 3.0                           | 336.0          | 1.8                      | 329.0         | 1.5                            |
| 2002–3    | 405.0          | 3.8                            | 410.0         | 3.8                            | 322.6          | 3.8                            | 316.2         | 4.0                           | 330.0          | 5.1                      | 324.0         | 5.9                            |
| 2001–2    | 390.0          | 5.1                            | 395.0         | 4.8                            | 310.8          | 2.2                            | 304.0         | 1.6                           | 314.0          | 2.6                      | 306.0         | 2.3                            |
| 2000-1    | 371.0          | 5.4                            | 377.0         | 5.6                            | 304.0          | -1.7                           | 299.1         | -4.7                          | 306.0          | -1.3                     | 299.0         | -3.5                           |
| 1999–2000 | 352.0          | 3.5                            | 357.0         | 5.9                            | 309.2          | 3.5                            | 313.8         | 2.8                           | 310.0          | 3.0                      | 310.0         | 1.3                            |
| 1998–99   | 340.0          | 12.6                           | 337.0         | 8.0                            | 298.7          | 11.1                           | 305.2         | 13.3                          | 301.0          | 6.7                      | 306.0         | 7.0                            |
|           | 302.0          | 6.7                            |               | 7.2                            | 268.8          | 3.5                            | 269.3         | 2.1                           |                |                          |               | 10.9                           |
| 1997–8    |                |                                | 312.0         |                                |                |                                |               |                               | 282.0          | 8.9                      | 286.0         |                                |
| 1996–7    | 283.0          | 9.3                            | 291.0         | 10.2                           | 259.8          | 8.6                            | 263.7         | 9.3                           | 259.0          | 4.9                      | 258.0         | 3.2                            |
| 1995–6    | 259.0          | 11.6                           | 264.0         | 8.2                            | 239.3          | na                             | 241.3         | na                            | 247.0          | na                       | 250.0         | na                             |
| 1994–5    | 232.0          | 7.4                            | 244.0         | 9.9                            |                |                                |               |                               | Year 1960 =    |                          |               |                                |
| 1993–4    | 216.0          | 6.9                            | 222.0         | 8.3                            | 1381.0         | 7.6                            | na            | na                            | 1337.0         | 0.0                      | na            | na                             |
| 1992–3    | 202.0          | 10.4                           | 205.0         | 6.8                            | 1283.0         | 11.9                           | na            | na                            | 1337.0         | 12.4                     | na            | na                             |
| 1991–2    | 183.0          | 13.7                           | 192.0         | 13.6                           | 1147.0         | 6.9                            | na            | na                            | 1189.0         | 12.5                     | na            | na                             |
| 1990-1    | 161.0          | 11.0                           | 169.0         | 13.4                           | 1073.0         | 6.6                            | na            | na                            | 1057.0         | -1.0                     | na            | na                             |
| 1989-00   | 145.0          | 6.6                            | 149.0         | 8.0                            | 1007.0         | 21.3                           | na            | na                            | 1068.0         | 21.9                     | na            | na                             |
| 1988-9    | 136.0          | 7.9                            | 138.0         | 7.0                            | 830.0          | 10.4                           | na            | na                            | 876.0          | 15.4                     | na            | na                             |
| 1987-8    | 126.0          | 9.6                            | 129.0         | 10.3                           | 752.0          | 3.9                            | na            | na                            | 759.0          | 3.1                      | na            | na                             |
| 1986-7    | 115.0          | 7.5                            | 117.0         | 6.4                            | 724.0          | 11.4                           | na            | na                            | 736.0          | 9.7                      | na            | na                             |
| 1985-6    | 107.0          | 7.0                            | 110.0         | 10.0                           | 650.0          | 12.5                           | na            | na                            | 671.0          | 14.1                     | na            | na                             |
|           | Base           | Year 1960 =1                   | 00            |                                | 578.0          | 4.1                            | na            | na                            | 588.0          | 4.8                      | na            | na                             |
| 1985-6    | 568.0          | 6.8                            | 584.0         | 8.1                            | 555.0          | 5.7                            | na            | na                            | 561.0          | 5.8                      | na            | na                             |
| 1984–5    | 532.0          | 8.1                            | 540.0         | 6.9                            | 525.0          | 0.4                            | na            | na                            | 530.0          | 3.7                      | na            | na                             |
| 1983-4    | 492.0          | 10.3                           | 505.0         | 9.3                            | 523.0          | 8.7                            | na            | na                            | 511.0          | 0.4                      | na            | na                             |
| 1982-3    | 446.0          | 8.0                            | 462.0         | 9.2                            | 481.0          | 7.4                            | na            | na                            | 509.0          | 14.9                     | na            | na                             |
| 1981–2    | 413.0          | 11.9                           | 423.0         | 9.9                            | 448.0          | 9.5                            | na            | na                            | 443.0          | 3.3                      | na            | na                             |
| 1980–1    | 369.0          | 11.8                           | 385.0         | 12.2                           | 409.0          | 13.6                           | na            | na                            | 429.0          | 14.1                     | na            | na                             |
| 1979–80   | 330.0          | 7.8                            | 343.0         | 11.4                           | 360.0          | 13.6                           | na            | na                            | 376.0          | 18.2                     | na            | na                             |
| 1978–9    | 306.0          | 3.4                            | 308.0         | 3.7                            | 317.0          | -1.9                           | na            | na                            | 318.0          | 1.9                      | na            | na                             |
| 1977–8    | 296.0          | 6.9                            | 297.0         | 4.2                            | 323.0          | 7.0                            |               |                               | 312.0          | -2.2                     |               |                                |
| 1977–8    |                |                                |               | 7.5                            |                |                                | na            | na                            |                | 13.9                     | na            | na                             |
|           | 277.0          | 0.0                            | 285.0         |                                | 302.0          | -4.7                           | na            | na                            | 319.0          |                          | na            | na                             |
| 1975–6    | 277.0          | 2.6                            | 265.0         | -4.3                           | 317.0          | -13.9                          | na            | na                            | 280.0          | -25.3                    | na            | na                             |
| 1974–5    | 270.0          | 22.2                           | 277.0         | 16.4                           | 368.0          | 30.0                           | na            | na                            | 375.0          | 16.8                     | na            | na                             |
| 1973–4    | 221.0          | 15.1                           | 238.0         | 19.6                           | 283.0          | 25.8                           | na            | na                            | 321.0          | 32.6                     | na            | na                             |
| 1972–3    | 192.0          | 6.7                            | 199.0         | 8.2                            | 225.0          | 12.5                           | na            | na                            | 242.0          | 18.6                     | na            | na                             |
| 1971–2    | 180.0          | 3.4                            | 184.0         | 5.7                            | 200.0          | 4.2                            | na            | na                            | 204.0          | 7.9                      | na            | na                             |
| 1970–1    | 174.0          | 4.2                            | 174.0         | 2.4                            | 192.0          | -0.5                           | na            | na                            | 189.0          | -3.6                     | na            | na                             |
| 1969–70   | 167.0          | 3.7                            | 170.0         | 5.6                            | 193.0          | 4.3                            | na            | na                            | 196.0          | 5.4                      | na            | na                             |
| 1968–9    | 161.0          | 1.3                            | 161.0         | 1.3                            | 185.0          | -10.2                          | na            | na                            | 186.0          | -2.6                     | na            | na                             |
| 1967-8    | 159.0          | 8.9                            | 159.0         | 5.3                            | 206.0          | 8.4                            | na            | na                            | 191.0          | -7.7                     | na            | na                             |
| 1966–7    | 146.0          | 10.6                           | 151.0         | 11.9                           | 190.0          | 24.2                           | na            | na                            | 207.0          | 32.7                     | na            | na                             |
| 1965–6    | 132.0          | 6.5                            | 135.0         | na                             | 153.0          | 7.0                            | na            | na                            | 156.0          | na                       | na            | na                             |
| 1964-5    | 124.0          | na                             | na            | na                             | 143.0          | na                             | na            | na                            | na             | na                       | na            | na                             |

Note: Current series with base 1984-5 = 100 was introduced w.r.f November 1987; na— not available; The conversion factor from the new to the old series is 5.32; \* Averages based on agricultural year, that is, July-June of every year; \*\* June over June; The base is revised to 1986-87 w.e.f. November 1995; Though the base of the series is 1960-1, the indices are available from September 1964 only. Sources: Various issues of Economic Survey, RBI Bulletin, and Indian Labour Journal.

# EXTERNAL SECTOR A8 BALANCE OF PAYMENTS

Table A8.1 Foreign Exchange Reserves (End Period)

| End of                |                    | SDRs            |                         | G      | old                     |        | Currency                |        | e Tranche<br>n in IMF   | Т      | otal                    |
|-----------------------|--------------------|-----------------|-------------------------|--------|-------------------------|--------|-------------------------|--------|-------------------------|--------|-------------------------|
|                       | In million<br>SDRs | Rupees<br>crore | In million<br>US Dollar | Rupees | In million<br>US Dollar |
| (1)                   | (2)                | (3)             | (4)                     | (5)    | (6)                     | (7)    | (8)                     | (9)    | (10)                    | (11)   | (12)                    |
| April 2006<br>2005–06 | 4                  | 25              | 6                       | 28335  | 6301                    | 690730 | 153598                  | 3473   | 772                     | 722563 | 160677                  |
| Mar 2006              | 2                  | 12              | 3                       | 25674  | 5755                    | 647327 | 145108                  | 3374   | 756                     | 676387 | 151622                  |
| Feb 2006              | 2                  | 12              | 3                       | 25541  | 5747                    | 603925 | 135897                  | 3348   | 753                     | 632826 | 142400                  |
| jan 2006              | 3                  | 20              | 5                       | 25030  | 5680                    | 589526 | 133770                  | 4051   | 919                     | 618627 | 140374                  |
| Dec 2005              | 3                  | 20              | 5                       | 23770  | 5274                    | 590497 | 131018                  | 4096   | 909                     | 618383 | 137206                  |
| Nov 2005              | 3                  | 21              | 4                       | 22626  | 4925                    | 627455 | 136582                  | 6017   | 1310                    | 656119 | 142821                  |
| Oct 2005              | 3                  | 20              | 4                       | 21943  | 4864                    | 619299 | 137286                  | 6403   | 1419                    | 647665 | 143573                  |
| Sep 2005              | 3                  | 19              | 4                       | 20727  | 4712                    | 602309 | 136920                  | 6260   | 1423                    | 629315 | 143059                  |
| Aug 2005              | 3                  | 19              | 4                       | 19971  | 4535                    | 608225 | 138107                  | 6312   | 1433                    | 634527 | 144079                  |
| Jul 2005              | 3                  | 18              | 4                       | 19116  | 4395                    | 585319 | 134587                  | 6766   | 1556                    | 611219 | 140542                  |
| Jun 2005              | 3                  | 18              | 4                       | 19375  | 4453                    | 575864 | 132352                  | 6791   | 1561                    | 602048 | 138370                  |
| May 2005              | 3                  | 19              | 4                       | 19119  | 4376                    | 580749 | 132925                  | 6780   | 1552                    | 606667 | 138857                  |
| Apr 2005              | 3                  | 20              | 5                       | 19393  | 4443                    | 593423 | 135950                  | 6300   | 1443                    | 619136 | 141841                  |
| 2004-05               |                    |                 |                         |        |                         |        |                         |        |                         |        |                         |
| Mar 2005              | 3                  | 20              | 5                       | 19686  | 4500                    | 593121 | 135571                  | 6289   | 1438                    | 619116 | 141514                  |
| Feb 2005              | 3                  | 20              | 5                       | 19096  | 4376                    | 567725 | 130093                  | 6223   | 1426                    | 593064 | 135900                  |
| Jan 2005              | 3                  | 22              | 5                       | 19181  | 4390                    | 540246 | 123654                  | 6177   | 1414                    | 565626 | 129463                  |
| Dec 2004              | 3                  | 22              | 5                       | 19969  | 4582                    | 545466 | 125164                  | 6221   | 1427                    | 571678 | 131178                  |
| Nov 2004              | 3                  | 22              | 5                       | 20316  | 4540                    | 547377 | 122319                  | 6097   | 1362                    | 573812 | 128226                  |
| Oct 2004              | 4                  | 24              | 5                       | 19776  | 4351                    | 525632 | 115651                  | 6043   | 1330                    | 551475 | 121337                  |
| Sep 2004              | 1                  | 7               | 1                       | 19349  | 4192                    | 526605 | 114083                  | 6015   | 1303                    | 551976 | 119579                  |
| Aug 2004              | 1                  | 7               | 1                       | 19186  | 4140                    | 522333 | 112717                  | 6005   | 1296                    | 547531 | 118154                  |
| Jul 2004              | 1                  | 8               | 2                       | 19150  | 4123                    | 524732 | 112967                  | 6007   | 1293                    | 549897 | 118385                  |
| Jun 2004              | 2                  | 8               | 2                       | 18655  | 4057                    | 524865 | 114151                  | 5980   | 1301                    | 549508 | 119511                  |
| May 2004              | 2                  | 8               | 2                       | 18104  | 3974                    | 519847 | 114102                  | 5927   | 1301                    | 543886 | 119379                  |
| Apr 2004              | 2                  | 10              | 2                       | 18598  | 4191                    | 501429 | 113011                  | 5704   | 1286                    | 525741 | 118490                  |
| 2005–6                | 2                  | 12              | 3                       | 25674  | 5755                    | 647327 | 145108                  | 3374   | 756                     | 676387 | 151622                  |
| 2004-5                | 3                  | 20              | 5                       | 19686  | 4500                    | 593121 | 135571                  | 6289   | 1438                    | 619116 | 141514                  |
| 2003-4                | 2                  | 10              | 2                       | 18216  | 4198                    | 466215 | 107448                  | 5688   | 1311                    | 490129 | 112959                  |
| 2002-3                | 3                  | 19              | 4                       | 16785  | 3534                    | 341476 | 71890                   | 3190   | 672                     | 361470 | 76100                   |
| 2001-2                | 8                  | 50              | 10                      | 14868  | 3047                    | 249118 | 51049                   |        |                         | 264036 | 54106                   |
| 2000-1                | 2                  | 11              | 2                       | 12711  | 2725                    | 184482 | 39554                   |        |                         | 197204 | 42281                   |
| 1999-2000             | 3                  | 16              | 4                       | 12973  | 2974                    | 152924 | 35058                   |        |                         | 165913 | 38036                   |
| 1998–9                | 6                  | 34              | 8                       | 12559  | 2960                    | 125412 | 29522                   |        |                         | 138005 | 32490                   |
| 1997–8                | 1                  | 4               | 1                       | 13394  | 3391                    | 102507 | 25975                   |        |                         | 115905 | 29367                   |
| 1996–7                | 1                  | 7               | 2                       | 14557  | 4054                    | 80368  | 22367                   |        |                         | 94932  | 26423                   |
| 1995–6                | 56                 | 280             | 82                      | 15658  | 4561                    | 58446  | 17044                   |        |                         | 74384  | 21687                   |
| 1994–5                | 5                  | 23              | 7                       | 13752  | 4370                    | 66006  | 20809                   |        |                         | 79781  | 25186                   |
| 1993-4                | 76                 | 339             | 108                     | 12794  | 4078                    | 47287  | 15068                   |        |                         | 60420  | 19254                   |
| 1992-3                | 13                 | 55              | 18                      | 10549  | 3380                    | 20140  | 6434                    |        |                         | 30744  | 9832                    |
| 1991–2                | 66                 | 233             | 90                      | 9039   | 3499                    | 14578  | 5631                    |        |                         | 23850  | 9220                    |
| 1990-1                | 76                 | 200             | 102                     | 6828   | 3496                    | 4388   | 2236                    |        |                         | 11416  | 5834                    |

Notes: 1.Gold was valued at Rs 84.39 per 10 grams till 16 October 1990. It has been valued close to international market price with effect from 17 October 1990; Conversion of SDRs into US dollar is done at exchange rates released by the IMF; With effect from 1 April 1991, the conversion of foreign currency assets into US dollar is done at week end rates for week end-data and or month-end rate for month end-data based on New York closing exchange rates; Prior to that it was done by using representative exchange rate released by the IMF; Since March 1993, foreign exchange holdings are converted into rupees at rupee–US dollar market exchange rates; Reserve tranche position has been reported as part of reserves since 2002–3.

Source: RBI, Monthly Bulletin, Various Issues.

TABLE A8.2 Balance of Payments, 1990–1 to 2005–6

(US \$ million)

| Item                               |        | 2005-6(P) |                  |        | 2004–5 PR |             |        | 2003–4 R |             |        | 2002-3 |        |
|------------------------------------|--------|-----------|------------------|--------|-----------|-------------|--------|----------|-------------|--------|--------|--------|
|                                    | Credit | Debt      | Net              | Credit | Debt      | Net         | Credit | Debt     | Net         | Credit | Debt   | Net    |
| (1)                                | (2)    | (3)       | (4)              | (2)    | (3)       | (4)         | (2)    | (3)      | (4)         | (5)    | (6)    | (7)    |
| A. Current Account                 | 196261 | 206873    | -10612           | 154004 | 159404    | -5400       | 119793 | 105710   | 14083       | 95699  | 89354  | 6345   |
| 1. Merchandise Gold                | 104780 | 156334    | -51554           | 82150  | 118779    | -36629      | 66285  | 80003    | -13718      | 53774  | 64464  | -10690 |
| 2. Invisibles                      | 91481  | 50539     | 40942            | 71854  | 40625     | 31229       | 53508  | 25707    | 27801       | 41925  | 24890  | 17035  |
| 3. Capital Account                 | 139300 | 114607    | 24693            | 98827  | 67800     | 31027       | 75885  | 59149    | 16736       | 46368  | 35528  | 10840  |
| 1. Foreign Investment (a+b)        | 76635  | 58413     | 18222            | 46508  | 34361     | 12147       | 32682  | 18938    | 13744       | 14001  | 9840   | 4161   |
| a. In India                        | 75867  | 55687     | 20180            | 46190  | 31694     | 14496       | 32540  | 16862    | 15678       | 13928  | 7913   | 6015   |
| b. Abroad                          | 768    | 2726      | -1958            | 318    | 2667      | -2349       | 142    | 2076     | -1934       | 73     | 1927   | -1854  |
| al. Direct                         | 8520   | 2787      | 5733             | 5972   | 2732      | 3240        | 4464   | 2076     | 2388        | 5168   | 1951   | 3217   |
| i. In India                        | 7752   | 61        | 7691             | 5654   | 65        | 5589        | 4322   | 0        | 4322        | 5095   | 59     | 5036   |
| Equity                             | 5820   | 61        | 5759             | 3779   | 65        | 3714        | 2229   | 0        | 2229        | 2825   | 59     | 2766   |
| Reinvested Earnings                | 1676   | 0         | 1676             | 1508   | 0         | 1508        | 1460   | 0        | 1460        | 1832   | 0      | 1832   |
| Other Capital                      | 256    | 0         | 256              | 367    | 0         | 367         | 633    | 0        | 633         | 438    | 0      | 438    |
| ii. Abroad                         | 768    | 2726      | -1958            | 318    | 2667      | -2349       | 142    | 2076     | -1934       | 73     | 1892   | -1819  |
| Equity                             | 768    | 1746      | -978             | 318    | 1579      | -1261       | 142    | 1264     | -1122       | 73     | 684    | -611   |
| Reinvested Earnings                | 0      | 364       | -364             | 0      | 700       | -700        | 0      | 552      | -552        | 0      | 1104   | -1104  |
| Other Capital                      | 0      | 616       | -616             | 0      | 388       | -388        | 0      | 260      | -260        | 0      | 104    | -104   |
| a2. Portfolio                      | 68115  | 55626     | 12489            | 40536  | 31629     | 8907        | 28218  | 16862    | 11356       | 8833   | 7889   | 944    |
| i. In India                        | 68115  | 55626     | 12489            | 40536  | 31629     | 8907        | 28218  | 16862    | 11356       | 8833   | 7854   | 979    |
| ii. Abroad                         | 0      | 0         | 0                | 0      | 0         | 0           | 0      | 0        | 0           | 0      | 35     | -35    |
| 2. Loans (a+b+c)                   | 36221  | 31484     | 4737             | 29749  | 18994     | 10755       | 19667  | 24031    | -4364       | 11568  | 15418  | -3850  |
| a. External Assistance             | 3415   | 1977      | 1438             | 3809   | 1886      | 1923        | 3350   | 6208     | -2858       | 2878   | 6006   | -3128  |
| a1. By India                       | 20     | 104       | -84              | 24     | 128       | -104        | 24     | 128      | -104        | 0      | 32     | -32    |
| a2. To India                       | 3395   | 1873      | 1522             | 3785   | 1758      | 2027        | 3326   | 6080     | -2754       | 2878   | 5974   | -3096  |
| b. Commercial Borrowings (MT & LT) | 13451  | 11860     | 1591             | 8546   | 3506      | 5040        | 5228   | 8153     | -2925       | 3514   | 5206   | -1692  |
| b1. By India                       | 0      | 342       | -342             | 0      | 23        | -23         | 3      | 0        | 3           | 9      | 0      | 9      |
| b2. To India                       | 13451  | 11518     | 1933             | 8546   | 3483      | 5063        | 5225   | 8153     | -2928       | 3505   | 5206   | -1701  |
| c. Short term (to India)           | 19355  | 17647     | 1708             | 17394  | 13602     | 3792        | 11089  | 9670     | 1419        | 5176   | 4206   | 970    |
| 3. Banking Capital (a+b)           | 21658  | 20285     | 1373             | 14507  | 10633     | 3874        | 19222  | 13189    | 6033        | 18958  | 8533   | 10425  |
| a. Commercial Banks                | 20586  | 20144     | 442              | 14230  | 10251     | 3979        | 18887  | 12386    | 6501        | 18422  | 8287   | 10135  |
| al. Assets                         | 772    | 3947      | -3175            | 505    | 552       | -47         | 950    | 161      | 789         | 6089   | 976    | 5113   |
| a2. Liabilities                    | 19814  | 16197     | 3617             | 13725  | 9699      | 4026        | 17937  | 12225    | 5712        | 12333  | 7311   | 5022   |
| of which: Non–resident deposits    | 17835  | 15046     | 2789             | 8071   | 9035      | -964        | 14281  | 10639    | 3642        | 10214  | 7236   | 2978   |
| b. Others                          | 1072   | 141       | 931              | 277    | 382       | -105        | 335    | 803      | -468        | 536    | 246    | 290    |
| 4. Rupee Debt Service              | 0      | 572       | -572             | 0      | 417       | -417        | 0      | 376      | -376        | 0      | 474    | -474   |
| 5. Other Capital                   | 4786   | 3853      | 933              | 8063   | 3395      | 4668        | 4314   | 2615     | 1699        | 1841   | 1263   | 578    |
| Errors and Omissions               | 971    | 0         | 971              | 532    | 0         | 532         | 602    | 0        | 602         | 0      | 200    | -200   |
| . Overall Balance (A+B+C)          | 336532 | 321480    | 15052            | 253363 | 227204    | 26159       | 196280 | 164859   | 31421       | 1E+05  | 1E+05  | 16985  |
| Monetary Movements (1+2)           | 0      | 15052     | -15052<br>-15052 | 233303 | 26159     | -26159      | 0      | 31421    | -31421      | 0      | 16985  | -16985 |
| 1. I.M.F                           | 0      | 13032     | -13032<br>0      | 0      | 0         | -20139<br>0 | 0      | 0        | -31421<br>0 | 0      | 0      | -10963 |
| 2. Foreign Exchange Reserves       | 0      | 15052     | -15052           | 0      | 26159     | -26159      | 0      | 31421    | U           | 0      | 16985  | -16985 |
| Increase (-ve)/Decrease (+ve)      | U      | 13032     | -13032           | U      | 20139     | -20139      | U      | 31421    |             | U      | 10903  | -10903 |

TABLE A8.2 (contd.)

| Item                                               |        | 2001-2 |             |        | 2000-1 |               |        | 1999-2000 |               |        | 1998–9 |        |
|----------------------------------------------------|--------|--------|-------------|--------|--------|---------------|--------|-----------|---------------|--------|--------|--------|
|                                                    | Credit | Debt   | Net         | Credit | Debt   | Net           | Credit | Debt      | Net           | Credit | Debt   | Net    |
| (1)                                                | (8)    | (9)    | (10)        | (11)   | (12)   | (13)          | (14)   | (15)      | (16)          | (17)   | (18)   | (19)   |
| A. Current Account                                 | 81440  | 78040  | 3400        | 77719  | 80385  | -2666         | 67854  | 72552     | -4698         | 60068  | 64106  | -4038  |
| 1. Merchandise Gold                                | 44703  | 56277  | -11574      | 45452  | 57912  | -12460        | 37542  | 55383     | -17841        | 34298  | 47544  | -13246 |
| 2. Invisibles                                      | 36737  | 21763  | 14974       | 32267  | 22473  | 9794          | 30312  | 17169     | 13143         | 25770  | 16562  | 920    |
| 3. Capital Account                                 | 43257  | 34706  | 8551        | 54126  | 45286  | 8840          | 40531  | 30087     | 10444         | 34172  | 25735  | 843    |
| 1. Foreign Investment (a+b)                        | 15488  | 8802   | 6686        | 17720  | 11858  | 5862          | 12240  | 7123      | 5117          | 5892   | 3580   | 231    |
| a. In India                                        | 15389  | 7243   | 8146        | 17650  | 10859  | 6791          | 12121  | 6930      | 5191          | 5743   | 3331   | 241    |
| b. Abroad                                          | 99     | 1559   | -1460       | 70     | 999    | -929          | 119    | 193       | -74           | 149    | 249    | -10    |
| a1. Direct                                         | 6229   | 1495   | 4734        | 4101   | 829    | 3272          | 2170   | 3         | 2167          | 2518   | 38     | 248    |
| i. In India                                        | 6130   | 5      | 6125        | 4031   | 0      | 4031          | 2170   | 3         | 2167          | 2518   | 38     | 248    |
| Equity                                             | 4096   | 5      | 4091        | 2399   | 0      | 2399          | 0      | 0         | 0             | 0      | 0      |        |
| Reinvested Earnings                                | 1644   | 0      | 1644        | 1352   | 0      | 1352          | 0      | 0         | 0             | 0      | 0      |        |
| Other Capital                                      | 390    | 0      | 390         | 280    | 0      | 280           | 0      | 0         | 0             | 0      | 0      |        |
| ii. Abroad                                         | 99     | 1490   | -1391       | 70     | 829    | -759          | 0      | 0         | 0             | 0      | 0      |        |
| Equity                                             | 99     | 669    | -570        | 70     | 414    | -344          | 0      | 0         | 0             | 0      | 0      |        |
| Reinvested Earnings                                | 0      | 700    | -700        | 0      | 340    | -340          | 0      | 0         | 0             | 0      | 0      |        |
| Other Capital                                      | 0      | 121    | -121        | 0      | 75     | -75           | 0      | 0         | 0             | 0      | 0      |        |
| a2. Portfolio                                      | 9259   | 7307   | 1952        | 13619  | 11029  | 2590          | 9951   | 6927      | 3024          | 3225   | 3293   | -6     |
| i. In India                                        | 9259   | 7238   | 2021        | 13619  | 10859  | 2760          | 9951   | 6927      | 3024          | 3225   | 3293   | -6     |
| ii. Abroad                                         | 0      | 69     | -69         | 0      | 170    | -170          | 0      | 0         | 0             | 0      | 0      |        |
| 2. Loans (a+b+c)                                   | 11601  | 12862  | -1261       | 23806  | 18542  | 5264          | 13060  | 11459     | 1601          | 14771  | 10353  | 441    |
| a. External Assistance                             | 3352   | 2235   | 1117        | 2941   | 2531   | 410           | 3074   | 2183      | 891           | 2726   | 1927   | 79     |
| a1. By India                                       | 0      | 87     | -87         | 0      | 17     | -17           | 0      | 10        | -10           | 0      | 21     | -2     |
| a2. To India                                       | 3352   | 2148   | 1204        | 2941   | 2514   | 427           | 3074   | 2173      | 901           | 2726   | 1906   | 82     |
| b. Commercial Borrowings (MT & LT)                 | 2687   | 4272   | -1585       | 9621   | 5318   | 4303          | 3207   | 2874      | 333           | 7231   | 2864   | 436    |
| b1. By India                                       | 3      | 0      | 3           | 0      | 5      | <del>-5</del> | 20     | 0         | 20            | 5      | 0      | 430    |
| b2. To India                                       | 2684   | 4272   | -1588       | 9621   | 5313   | 4308          | 3187   | 2874      | 313           | 7226   | 2864   | 436    |
| c. Short term (to India)                           | 5562   | 6355   | -793        | 11244  | 10693  | 551           | 6779   | 6402      | 377           | 4814   | 5562   | -74    |
| 3. Banking Capital (a+b)                           | 13870  | 11006  | 2864        | 9744   | 11705  | -1961         | 10659  | 8532      | 2127          | 8898   | 8199   | 69     |
| a. Commercial Banks                                | 13385  | 10725  | 2660        | 9423   | 11305  | -1882         | 10259  | 7955      | 2304          | 7469   | 7916   | -44    |
| al. Assets                                         | 1267   | 1711   | -444        | 206    | 4380   | -4174         | 2653   | 1863      | 790           | 1344   | 2741   | -139   |
| a2. Liabilities                                    | 12118  | 9014   | 3104        | 9217   | 6925   | 2292          | 7606   | 6092      | 1514          | 6125   | 5175   | 95     |
| of which: Non–resident deposits                    | 11435  | 8681   | 2754        | 8988   | 6672   | 2316          | 7405   | 5865      | 1540          | 6000   | 5040   | 96     |
| b. Others                                          | 485    | 281    | 204         | 321    | 400    | _79           | 400    | 577       | -177          | 1429   | 283    | 114    |
| 4. Rupee Debt Service                              | 0      | 519    | -519        | 0      | 617    | -617          | 0      | 711       | -711          | 0      | 802    | -80    |
| 5. Other Capital                                   | 2298   | 1517   | -319<br>781 | 2856   | 2564   | 292           | 4572   | 2262      | 2310          | 4611   | 2801   | 181    |
| C. Errors and Omissions                            | 0      | 194    | -194        | 2030   | 305    | -305          | 656    | 0         | 656           | 0      | 177    | -17    |
| 2. Errors and Omissions 2. Overall Balance (A+B+C) | 1E+05  | 1E+05  | 11757       | 1E+05  | 1E+05  | -303<br>5869  | 1E+05  | 1E+05     | 6402          | 94240  | 90018  | 422    |
| L. Monetary Movements (1+2)                        | 0      | 11757  | -11757      | 1448   | 7316   | -5868         | 0      | 6402      | -6402         | 94240  | 4222   | -422   |
| 1. I.M.F                                           | 0      | 0      | -11/5/      | 0      | 26     | -3606<br>-26  | 0      | 260       | -0402<br>-260 | 0      | 393    | -422   |
| I.W.F     Foreign Exchange Reserves                | 0      | 11757  | -11757      | 1448   | 7290   | -26<br>-5842  | 0      | 6142      | -260<br>-6142 | 0      | 3829   | -382   |
| Increase (-ve)/Decrease (+ve)                      | U      | 11/3/  | -11/3/      | 1440   | 7290   | -3042         | U      | 0142      | -0142         | U      | 3029   | -362   |

TABLE A8.2 (contd.)

| Item                                                       |        | 1997-8 |        |        | 1996–7 |        |        | 1995–6 |        |        | 1994–5 |       |
|------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
|                                                            | Credit | Debt   | Net    | Credit | Debt   | Net    | Credit | Debt   | Net    | Credit | Debt   | Net   |
| (1)                                                        | (20)   | (21)   | (22)   | (23)   | (24)   | (25)   | (26)   | (27)   | (28)   | (29)   | (30)   | (31)  |
| A. Current Account                                         | 58924  | 64423  | -5499  | 55538  | 60157  | -4619  | 49974  | 55886  | -5912  | 42409  | 45778  | -3369 |
| 1. Merchandise Gold                                        | 35680  | 51187  | -15507 | 34133  | 48948  | -14815 | 32310  | 43670  | -11360 | 26855  | 35904  | -9049 |
| 2. Invisibles                                              | 23244  | 13236  | 10008  | 21405  | 11209  | 10196  | 17664  | 12216  | 5448   | 15554  | 9874   | 5680  |
| 3. Capital Account                                         | 39292  | 29448  | 9844   | 36192  | 24185  | 12007  | 24176  | 20087  | 4089   | 25915  | 17413  | 8502  |
| 1. Foreign Investment (a+b)                                | 9266   | 3913   | 5353   | 7825   | 1861   | 5964   | 5644   | 1029   | 4615   | 5763   | 956    | 4807  |
| a. In India                                                | 9169   | 3779   | 5390   | 7817   | 1663   | 6154   | 5629   | 826    | 4803   | 5753   | 831    | 4922  |
| b. Abroad                                                  | 97     | 134    | -37    | 8      | 198    | -190   | 15     | 203    | -188   | 10     | 125    | -115  |
| a1. Direct                                                 | 3596   | 34     | 3562   | 2864   | 22     | 2842   | 2174   | 30     | 2144   | 1351   | 8      | 1343  |
| i. In India                                                | 3596   | 34     | 3562   | 2864   | 22     | 2842   | 2174   | 30     | 2144   | 1351   | 8      | 1343  |
| Equity                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| Reinvested Earnings                                        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| Other Capital                                              | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| ii. Abroad                                                 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| Equity                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| Reinvested Earnings                                        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| Other Capital                                              | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| a2. Portfolio                                              | 5573   | 3745   | 1828   | 4953   | 1641   | 3312   | 3456   | 795    | 2661   | 4402   | 823    | 3579  |
| i. In India                                                | 5573   | 3745   | 1828   | 4953   | 1641   | 3312   | 3456   | 795    | 2661   | 4402   | 823    | 3579  |
| ii. Abroad                                                 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 2. Loans (a+b+c)                                           | 17301  | 12502  | 4799   | 17720  | 12925  | 4795   | 11331  | 9132   | 2199   | 10930  | 7895   | 3035  |
| a. External Assistance                                     | 2885   | 2000   | 885    | 3056   | 1955   | 1101   | 2933   | 2066   | 867    | 3193   | 1675   | 1518  |
|                                                            | 0      |        |        | 0      | 1933   |        | 2933   | 17     |        | 2      | 1073   | -8    |
| a1. By India                                               |        | 22     | -22    |        |        | -8     |        |        | -17    |        |        |       |
| a2. To India                                               | 2885   | 1978   | 907    | 3056   | 1947   | 1109   | 2933   | 2049   | 884    | 3191   | 1665   | 1526  |
| b. Commercial Borrowings (MT & LT)                         | 7382   | 3372   | 4010   | 7579   | 4723   | 2856   | 4261   | 2977   | 1284   | 4249   | 3125   | 1124  |
| b1. By India                                               | 11     | 0      | 11     | 8      | 0      | 8      | 9      | 0      | 9      | 97     | 3      | 94    |
| b2. To India                                               | 7371   | 3372   | 3999   | 7571   | 4723   | 2848   | 4252   | 2977   | 1275   | 4152   | 3122   | 1030  |
| c. Short term (to India)                                   | 7034   | 7130   | -96    | 7085   | 6247   | 838    | 4137   | 4089   | 48     | 3488   | 3095   | 393   |
| 3. Banking Capital (a+b)                                   | 8910   | 9803   | -893   | 8018   | 5789   | 2229   | 6453   | 5690   | 763    | 7020   | 7354   | -334  |
| a. Commercial Banks                                        | 8164   | 9424   | -1260  | 7632   | 5407   | 2225   | 6172   | 5235   | 937    | 6449   | 7075   | -626  |
| al. Assets                                                 | 580    | 2775   | -2195  | 755    | 1625   | -870   | 867    | 1251   | -384   | 241    | 1203   | -962  |
| a2. Liabilities                                            | 7584   | 6649   | 935    | 6877   | 3782   | 3095   | 5305   | 3984   | 1321   | 6208   | 5872   | 336   |
| of which: Non-resident deposits                            | 7532   | 6407   | 1125   | 6775   | 3425   | 3350   | 4929   | 3826   | 1103   | 5805   | 5633   | 172   |
| b. Others                                                  | 746    | 379    | 367    | 386    | 382    | 4      | 281    | 456    | -175   | 571    | 279    | 292   |
| 4. Rupee Debt Service                                      | 0      | 767    | -767   | 0      | 727    | -727   | 0      | 952    | -952   | 0      | 983    | -983  |
| 5. Other Capital                                           | 3815   | 2463   | 1352   | 2629   | 2883   | -254   | 748    | 3285   | -2537  | 2202   | 225    | 1977  |
| C. Errors and Omissions                                    | 166    | 0      | 166    | 0      | 595    | -595   | 601    | 0      | 601    | 654    | 0      | 654   |
| O. Overall Balance (A+B+C)                                 | 98382  | 93871  | 4511   | 91730  | 84937  | 6793   | 74752  | 75974  | -1222  | 68978  | 63191  | 5787  |
| . Monetary Movements (1+2)                                 | 0      | 4511   | -4511  | 0      | 6793   | -6793  | 2936   | 1715   | 1222   | 0      | 5787   | -5787 |
| 1. I.M.F                                                   | 0      | 618    | -618   | 0      | 975    | -975   | 0      | 1715   | -1715  | 0      | 1143   | -1143 |
| 2. Foreign Exchange Reserves Increase (-ve)/Decrease (+ve) | 0      | 3893   | -3893  | 0      | 5818   | -5818  | 2936   | 0      | 2937   | 0      | 4644   | -4644 |

TABLE A8.2 (contd.)

| Item                                                        |        | 1993-4 |       |        | 1992-3 |       |        | 1991-2 |       |        | 1990-1 |       |
|-------------------------------------------------------------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|
|                                                             | Credit | Debt   | Net   |
| (1)                                                         | (32)   | (33)   | (34)  | (35)   | (36)   | (37)  | (38)   | (39)   | (40)  | (38)   | (39)   | (40)  |
| A. Current Account                                          | 34002  | 35160  | -1158 | 28203  | 31729  | -3526 | 27768  | 28946  | -1178 | 25941  | 35621  | -9680 |
| 1. Merchandise Gold                                         | 22683  | 26739  | -4056 | 18869  | 24316  | -5447 | 18266  | 21064  | -2798 | 18477  | 27915  | -9438 |
| 2. Invisibles                                               | 11319  | 8421   | 2898  | 9334   | 7413   | 1921  | 9502   | 7882   | 1620  | 7464   | 7706   | -242  |
| B. Capital Account                                          | 28953  | 20060  | 8893  | 22617  | 18741  | 3876  | 23339  | 19424  | 3915  | 22764  | 15711  | 7053  |
| 1. Foreign Investment (a+b)                                 | 4609   | 376    | 4233  | 589    | 32     | 557   | 151    | 18     | 133   | 111    | 10     | 101   |
| a. In India                                                 | 4609   | 376    | 4233  | 589    | 32     | 557   | 151    | 18     | 133   | 111    | 10     | 101   |
| b. Abroad                                                   | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| a1. Direct                                                  | 651    | 65     | 586   | 345    | 30     | 315   | 147    | 18     | 129   | 106    | 10     | 96    |
| i. In India                                                 | 651    | 65     | 586   | 345    | 30     | 315   | 147    | 18     | 129   | 106    | 10     | 96    |
| Equity                                                      | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| Reinvested Earnings                                         | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| Other Capital                                               | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| ii. Abroad                                                  | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| Equity                                                      | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| Reinvested Earnings                                         | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| Other Capital                                               | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| a2. Portfolio                                               | 3958   | 311    | 3647  | 244    | 2      | 242   | 4      | 0      | 4     | 5      | 0      | 5     |
| i. In India                                                 | 3958   | 311    | 3647  | 244    | 2      | 242   | 4      | 0      | 4     | 5      | 0      | 5     |
| ii. Abroad                                                  | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      | 0      | 0     |
| 2. Loans (a+b+c)                                            | 9971   | 8159   | 1812  | 8671   | 8260   | 411   | 9419   | 5437   | 3982  | 9431   | 3899   | 5532  |
| a. External Assistance                                      | 3476   | 1580   | 1896  | 3302   | 1446   | 1856  | 4367   | 1333   | 3034  | 3397   | 1193   | 2204  |
| a1. By India                                                | 0      | 5      | -5    | 0      | 3      | -3    | 0      | 5      | -5    | 0      | 6      | -6    |
| a2. To India                                                | 3476   | 1575   | 1901  | 3302   | 1443   | 1859  | 4367   | 1328   | 3039  | 3397   | 1187   | 2210  |
| b. Commercial Borrowings (MT & LT)                          | 3015   | 2330   | 685   | 1179   | 1545   | -366  | 3152   | 1690   | 1462  | 4282   | 2028   | 2254  |
| b1. By India                                                | 102    | 24     | 78    | 12     | 20     | -8    | 19     | 13     | 6     | 30     | 25     | 5     |
| b2. To India                                                | 2913   | 2306   | 607   | 1167   | 1525   | -358  | 3133   | 1677   | 1456  | 4252   | 2003   | 2249  |
| c. Short term (to India)                                    | 3480   | 4249   | -769  | 4190   | 5269   | -1079 | 1900   | 2414   | -514  | 1752   | 678    | 1074  |
| 3. Banking Capital (a+b)                                    | 11500  | 9237   | 2263  | 11998  | 8172   | 3826  | 10961  | 10394  | 567   | 10105  | 9423   | 682   |
| a. Commercial Banks                                         | 10614  | 8956   | 1658  | 10653  | 7723   | 2930  | 9068   | 8930   | 138   | 7959   | 7055   | 904   |
| a1. Assets                                                  | 276    | 1120   | -844  | 1234   | 161    | 1073  | 1336   | 1107   | 229   | 426    | 789    | -363  |
| a2. Liabilities                                             | 10338  | 7836   | 2502  | 9419   | 7562   | 1857  | 7732   | 7823   | -91   | 7533   | 6266   | 1267  |
| of which: Non-resident deposits                             | 8850   | 7645   | 1205  | 9188   | 7187   | 2001  | 7696   | 7406   | 290   | 7347   | 5811   | 1536  |
| b. Others                                                   | 886    | 281    | 605   | 1345   | 449    | 896   | 1893   | 1464   | 429   | 2146   | 2368   | -222  |
| 4. Rupee Debt Service                                       | 0      | 1053   | -1053 | 0      | 878    | -878  | 0      | 1240   | -1240 | 0      | 1193   | -1193 |
| 5. Other Capital                                            | 2873   | 1235   | 1638  | 1359   | 1399   | -40   | 2808   | 2335   | 473   | 3117   | 1186   | 1931  |
| C. Errors and Omissions                                     | 800    | 0      | 800   | 0      | 940    | -940  | 0      | 138    | -138  | 134    | 0      | 134   |
| D. Overall Balance (A+B+C)                                  | 63755  | 55220  | 8535  | 50820  | 51410  | -590  | 51107  | 48508  | 2599  | 48839  | 51332  | -2493 |
| E. Monetary Movements (1+2)                                 | 321    | 8858   | -8537 | 1623   | 1033   | 590   | 1245   | 3844   | -2599 | 3137   | 644    | 2493  |
| 1. I.M.F                                                    | 321    | 133    | 188   | 1623   | 335    | 1288  | 1245   | 460    | 785   | 1858   | 644    | 1214  |
| Foreign Exchange Reserves     Increase (-ve)/Decrease (+ve) | 0      | 8723   | -8723 | 0      | 698    | -698  | 0      | 3384   | -3384 | 1279   | 0      | 1279  |

Notes: PR: Partially Revised; P: Preliminary; R: Revised; \* Relates to acquisition of shares of Indian companies by non-residents under Section 5 of FEMA 1999. Data on such acquisition have been included as part of FDI since January 1996; \*\* Represents fresh inflow of funds by FIIs; PR: Provisional; # Represents the amount raised by Indian corporates through Global Depository Receipts (GDRs) and American Depository Receipts (ADRs).

Source: RBI; Monthly Bulletin, Various Issues.

TABLE A8.3 Invisibles Account on Balance of Payments

 $(US\$\ million)$ 

| Item                         |        | 2005–6(P) |       | 2      | 004–5(PR  | )     |        | 2003–4(R  | )     |        | 2002–3(R  | )     |
|------------------------------|--------|-----------|-------|--------|-----------|-------|--------|-----------|-------|--------|-----------|-------|
|                              | Credit | Debt      | Net   |
| (1)                          | (2)    | (3)       | (4)   | 5      | 6         | 7     | 8      | 9         | 10    | (11)   | (12)      | (13)  |
| Invisibles                   | 91481  | 50539     | 40942 | 71854  | 40625     | 31229 | 53508  | 25707     | 27801 | 41925  | 24890     | 17035 |
| a. Services                  | 60610  | 38345     | 22265 | 46031  | 31832     | 14199 | 26868  | 16724     | 10144 | 20763  | 17120     | 3643  |
| al. Travel                   | 7789   | 6421      | 1368  | 6495   | 5510      | 985   | 5037   | 3602      | 1435  | 3312   | 3341      | -29   |
| a2. Transportation           | 6277   | 7394      | -1117 | 4798   | 4539      | 259   | 3207   | 2328      | 879   | 2536   | 3272      | -736  |
| a3. Insurance                | 1042   | 985       | 57    | 909    | 722       | 187   | 419    | 363       | 56    | 369    | 350       | 19    |
| a4. G.n.i.e.                 | 305    | 480       | -175  | 328    | 261       | 67    | 240    | 212       | 28    | 293    | 228       | 65    |
| a5. Miscellaneous            | 45197  | 23065     | 22132 | 33501  | 20800     | 12701 | 17965  | 10219     | 7746  | 14253  | 9929      | 4324  |
| of which: Software Services  | 23600  | 1338      | 22262 | 17200  | 674       | 16526 | 12800  | 476       | 12324 | 9600   | 737       | 8863  |
| b. Transfers                 | 25220  | 944       | 24276 | 21276  | 432       | 20844 | 22736  | 574       | 22162 | 17640  | 802       | 16838 |
| b1. Official                 | 667    | 486       | 181   | 623    | 32        | 591   | 554    | 0         | 554   | 451    | 0         | 451   |
| b2. Private                  | 24553  | 458       | 24095 | 20653  | 400       | 20253 | 22182  | 574       | 21608 | 17189  | 802       | 16387 |
| c. Income                    | 5651   | 11250     | -5599 | 4547   | 8361      | -3814 | 3904   | 8409      | -4505 | 3522   | 6968      | -3446 |
| c1. Investment income        | 5477   | 10504     | -5027 | 4431   | 7100      | -2669 | 3774   | 7531      | -3757 | 3405   | 6949      | -3544 |
| c2. Compensation to employee | es 174 | 746       | -572  | 116    | 1261      | -1145 | 130    | 878       | -748  | 117    | 19        | 98    |
| Item                         |        | 2001–2(R) |       | 2      | 2000–1(R) |       | 19     | 999–2000( | R)    | ]      | 1998–9(PF | R)    |
|                              | Credit | Debt      | Net   |
| (1)                          | (14)   | (15)      | (16)  | (17)   | (18)      | (19)  | (20)   | (21)      | (22)  | (23)   | (24)      | (25)  |
| Invisibles                   | 36737  | 21763     | 14974 | 32267  | 22473     | 9794  | 30312  | 17169     | 13143 | 25770  | 16562     | 9208  |
| a. Services                  | 17140  | 13816     | 3324  | 16268  | 14576     | 1692  | 15709  | 11645     | 4064  | 13186  | 11021     | 2165  |
| a1. Travel                   | 3137   | 3014      | 123   | 3497   | 2804      | 693   | 3036   | 2139      | 897   | 2993   | 1743      | 1250  |
| a2. Transportation           | 2161   | 3467      | -1306 | 2046   | 3558      | -1512 | 1707   | 2410      | -703  | 1925   | 2680      | -755  |
| a3. Insurance                | 288    | 280       | 8     | 270    | 223       | 47    | 231    | 122       | 109   | 224    | 112       | 112   |
| a4. G.n.i.e.                 | 518    | 283       | 235   | 651    | 319       | 332   | 582    | 270       | 312   | 597    | 325       | 272   |
| a5. Miscellaneous            | 11036  | 6772      | 4264  | 9804   | 7672      | 2132  | 10153  | 6704      | 3449  | 7447   | 6161      | 1286  |
| of which: Software Services  | 7556   | 672       | 6884  | 6341   | 591       | 5750  |        |           |       |        |           |       |
| b. Transfers                 | 16218  | 362       | 15856 | 13317  | 211       | 13106 | 12672  | 34        | 12638 | 10649  | 62        | 10587 |
| b1. Official                 | 458    | 0         | 458   | 252    | 0         | 252   | 382    | 0         | 382   | 308    | 1         | 307   |
| b2. Private                  | 15760  | 362       | 15398 | 13065  | 211       | 12854 | 12290  | 34        | 12256 | 10341  | 61        | 10280 |
| c. Income                    | 3379   | 7585      | -4206 | 2682   | 7686      | -5004 | 1931   | 5490      | -3559 | 1935   | 5479      | -3544 |
| c1. Investment income        | 3254   | 7098      | -3844 | 2554   | 7218      | -4664 | 1783   | 5478      | -3695 | 1893   | 5462      | -3569 |
| c2. Compensation to employee | es 125 | 487       | -362  | 128    | 468       | -340  | 148    | 12        | 136   | 42     | 17        | 25    |

# 252 APPENDIX TABLES

Table A8.3 (contd.)

| Item                         | ]      | .997–8(PR | )     | 1      | 996–7(PR | )     | ]      | 995–6(PF | R)    | 1      | 994–5(PF | ₹)    |
|------------------------------|--------|-----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|
|                              | Credit | Debt      | Net   | Credit | Debt     | Net   | Credit | Debt     | Net   | Credit | Debt     | Net   |
| (1)                          | (26)   | (27)      | (28)  | (29)   | (30)     | (31)  | (32)   | (33)     | (34)  | (35)   | (36)     | (37)  |
| Invisibles                   | 23244  | 13237     | 10007 | 21405  | 11209    | 10196 | 17676  | 12216    | 5460  | 15554  | 9874     | 5680  |
| a. Services                  | 9429   | 8110      | 1319  | 7474   | 6748     | 726   | 7342   | 7542     | -186  | 6135   | 5533     | 602   |
| a1. Travel                   | 2914   | 1437      | 1477  | 2878   | 858      | 2020  | 2711   | 1167     | 1544  | 2365   | 818      | 1547  |
| a2. Transportation           | 1836   | 2522      | -686  | 1953   | 2394     | -441  | 2010   | 2169     | -159  | 1696   | 1863     | -167  |
| a3. Insurance                | 240    | 183       | 57    | 217    | 153      | 64    | 178    | 142      | 36    | 152    | 181      | -29   |
| a4. G.n.i.e.                 | 276    | 160       | 116   | 72     | 178      | -106  | 13     | 218      | -205  | 10     | 165      | -155  |
| a5. Miscellaneous            | 4163   | 3808      | 355   | 2354   | 3165     | -811  | 2430   | 3846     | -1416 | 1912   | 2506     | -594  |
| of which : Software Services |        |           |       |        |          |       |        |          |       |        |          | 0     |
| b. Transfers                 | 12254  | 45        | 12209 | 12858  | 81       | 12777 | 8890   | 39       | 8851  | 8533   | 24       | 8509  |
| b1. Official                 | 379    | 0         | 379   | 423    | 13       | 410   | 351    | 6        | 345   | 421    | 5        | 416   |
| b2. Private                  | 11875  | 45        | 11830 | 12435  | 68       | 12367 | 8540   | 33       | 8507  | 8112   | 19       | 8093  |
| c. Income                    | 1561   | 5082      | -3521 | 1073   | 4380     | -3307 | 1429   | 4634     | -3205 | 886    | 4317     | -3431 |
| c1. Investment income        | 1561   | 5020      | -3459 | 1073   | 4380     | -3307 | 1429   | 4633     | -3204 | 886    | 4317     | -3431 |
| c2. Compensation to employ   | rees 0 | 62        | -62   |        |          |       |        |          |       |        |          |       |
| Item                         | 1      | 992–3(PR  | )     | 1      | 991–2(PR | )     | 1      | 990–1(PF | ()    |        |          |       |
|                              | Credit | Debt      | Net   | Credit | Debt     | Net   | Credit | Debt     | Net   |        |          |       |
| (1)                          | (41)   | (42)      | (43)  | (44)   | (45)     | (46)  | (47)   | (48)     | (49)  |        |          |       |
| Invisibles                   | 9334   | 7413      | 1921  | 9502   | 7882     | 1620  | 7464   | 7706     | -242  |        |          |       |
| a. Services                  | 4730   | 3601      | 1129  | 5022   | 3815     | 1207  | 4551   | 3571     | 980   |        |          |       |
| a1. Travel                   | 2098   | 385       | 1713  | 1977   | 465      | 1512  | 1456   | 392      | 1064  |        |          |       |
| a2. Transportation           | 982    | 1485      | -503  | 939    | 1289     | -350  | 983    | 1093     | -110  |        |          |       |
| a3. Insurance                | 158    | 146       | 12    | 108    | 126      | -18   | 111    | 88       | 23    |        |          |       |
| a4. G.n.i.e.                 | 75     | 100       | -25   | 17     | 119      | -102  | 15     | 173      | -158  |        |          |       |
| a5. Miscellaneous            | 1417   | 1485      | -68   | 1981   | 1816     | 165   | 1986   | 1825     | 161   |        |          |       |
| of which : Software Services |        |           |       |        |          |       |        |          |       |        |          |       |
| b. Transfers                 | 4228   | 13        | 4215  | 4259   | 16       | 4243  | 2545   | 15       | 2530  |        |          |       |
| b1. Official                 | 364    | 1         | 363   | 461    | 1        | 460   | 462    | 1        | 461   |        |          |       |
| b2. Private                  | 3864   | 12        | 3852  | 3798   | 15       | 3783  | 2083   | 14       | 2069  |        |          |       |
| c. Income                    | 376    | 3799      | -3423 | 221    | 4051     | -3830 | 368    | 4120     | -3752 |        |          |       |
| c1. Investment income        | 376    | 3799      | -3423 | 221    | 4051     | -3830 | 368    | 4120     | -3752 |        |          |       |
| c2. Compensation to employ   | rees   |           |       |        |          |       |        |          |       |        |          |       |

 $Source: RBI, Handbook\ of\ Statistics\ on\ Indian\ Economy\ and\ RBI\ Bulletin.$ 

#### A9 EXCHANGE RATE

 $\label{eq:Table A9.1} \textbf{Exchange Rate for the Indian Rupee vis-$a-vis Some Select Currencies}$ 

(Indian Rupee per Currency, Per cent appreciation (+), ddepreciation (-))

|               |                   |         |         |         |         |         |         |               |         |         | (Inai   | ап кирее р | er Currency, | Per cent app | recialion (- | +), <i>ааертес</i> т | ation (-))             |
|---------------|-------------------|---------|---------|---------|---------|---------|---------|---------------|---------|---------|---------|------------|--------------|--------------|--------------|----------------------|------------------------|
| Countries     | Currency          | 2005–6  | 2004–5  | 2003–4  | 2002–3  | 2001–2  | 2000–1  | 1999–<br>2000 | 1998–9  | 1997–8  | 1996–7  | 1995–6     | 1994–5       | 1993–4       | 1992–3       | 2001–2<br>2005–6     | 1992–3<br>to<br>2000–1 |
| (1)           | (2)               | (3)     | (4)     | (5)     | (6)     | (7)     | (8)     | (9)           | (10)    | (11)    | (12)    | (13)       | (14)         | (15)         | (16)         | (17)                 | (18)                   |
| Developing Co | untries           |         |         |         |         |         |         |               |         |         |         |            |              |              |              |                      |                        |
| Argentina     | Pesos             | 15.0767 | 15.3410 | 16.1597 | 14.3886 | 38.8523 | 45.7084 | 43.3557       | 42.0833 | 37.1769 | 35.5186 | 33.4673    | 31.4292      | 31.4681      | 26.6057      | 203.2                | -41.8                  |
| Bangladesh    | Taka              | 0.6776  | 0.7430  | 0.7868  | 0.8360  | 0.8401  | 0.8638  | 0.8717        | 0.8850  | 0.8308  | 0.8408  | 0.8269     | 0.7803       | 0.7872       | 0.6772       | 27.5                 | -21.6                  |
| Brazil        | Reais             | 19.0588 | 15.6705 | 15.6941 | 15.1325 | 19.7735 | 24.0767 | 23.8689       | 31.8292 | 33.8634 | 34.7196 | 35.3031    | 39.1494      | na           | na           | 26.3                 | 62.6                   |
| China         | Yuan              | 5.4380  | 5.4287  | 5.5518  | 5.8483  | 5.7623  | 5.5188  | 5.2347        | 5.0807  | 4.4845  | 4.2731  | 4.0212     | 3.6714       | 4.8262       | 4.7265       | 1.5                  | -14.4                  |
| Colombia      | Pesos             | 0.0193  | 0.0177  | 0.0163  | 0.0181  | 0.0207  | 0.0211  | 0.0234        | 0.0284  | 0.0306  | 0.0340  | 0.0350     | 0.0376       | 0.0357       | 0.0336       | 9.6                  | 59.2                   |
| Hongkong      | Hongkong Dollar   | 5.6992  | 5.7654  | 5.9055  | 6.2067  | 6.1156  | 5.8603  | 5.5801        | 5.4298  | 4.7997  | 4.5883  | 4.3261     | na           | na           | na           | 2.8                  | -26.2                  |
| Indonesia     | Rupiah for Rs 100 | 0.4600  | 0.4900  | 0.5400  | 0.5380  | 0.4603  | 0.5065  | 0.5771        | 0.4271  | 0.7962  | 1.5020  | 1.4706     | 1.4396       | 1.4917       | 1.2915       | 10.1                 | 155.0                  |
| Israel        | New Sheqalim      | 9.7004  | 10.0834 | 10.2961 | 10.1067 | 11.0219 | 11.1494 | 10.4712       | 10.7340 | 10.5738 | 10.9408 | 11.0092    | 10.4087      | 10.9033      | 10.2729      | 14.9                 | -7.9                   |
| Iran          | Rials             | 0.0049  | 0.0051  | 0.0055  | 0.0061  | 0.0210  | 0.0259  | 0.0247        | 0.0240  | 0.0212  | 0.0203  | 0.0191     | 0.0180       | 0.0189       | 0.2740       | 428.4                | 957.9                  |
| Kenya         | Shillings         | 0.5948  | 0.5676  | 0.6059  | 0.6171  | 0.6069  | 0.5892  | 0.5950        | 0.6660  | 0.6176  | 0.6297  | 0.6108     | 0.6235       | 0.4816       | 0.7637       | -0.9                 | 29.6                   |
| Korea         | Won               | 0.0437  | 0.0405  | 0.0388  | 0.0366  | 0.0366  | 0.0391  | 0.0370        | 0.0324  | 0.0327  | 0.0340  | 0.0434     | 0.0393       | 0.0389       | 0.0335       | -10.5                | -14.3                  |
| Kuwait        | Dinar             | 151.591 | 152.818 | 154.811 | 160.355 | 155.448 | 148.829 | 142.074       | 138.258 | 122.215 | 118.223 | 112.003    | 105.496      | 104.756      | 88.890       | -1.8                 | -40.3                  |
| Malaysia      | Ringgit           | 11.7354 | 11.8240 | 12.0927 | 12.7384 | 12.5510 | 12.0225 | 11.4037       | 10.8537 | 11.6454 | 14.1980 | 13.3682    | 12.1725      | 12.0456      | 10.3802      | 2.4                  | -13.7                  |
| Mexico        | Pesos             | 4.1236  | 3.9637  | 4.2427  | 4.8020  | 5.1857  | 4.7948  | 4.5998        | 4.4165  | 4.6122  | 4.6207  | 4.9147     | 7.7052       | 10.0183      | 8.5058       | 16.3                 | 77.4                   |
| Mynammar      | Kyats             | 7.5783  | 7.8673  | 7.7193  | 7.5343  | 7.0246  | 6.9312  | 6.8564        | 6.6762  | 5.9017  | 5.9233  | 5.8780     | 5.3482       | 5.1081       | 4.3172       | -8.5                 | -37.7                  |
| Nigeria       | Naira             | 0.3396  | 0.3394  | 0.3512  | 0.3915  | 0.4247  | 0.4379  | 0.4526        | 1.1099  | 1.6976  | 1.6222  | 1.5292     | 1.4286       | 1.4260       | 1.3372       | 28.9                 | 205.4                  |
| Pakistan      | Rupees            | 0.7414  | 0.7656  | 0.7980  | 0.8183  | 0.7683  | 0.8211  | na            | 0.9248  | 0.8869  | 0.9462  | 1.0293     | 1.0230       | 1.0762       | 1.0377       | 10.7                 | 26.4                   |
| Philippines   | Pesos             | 0.8139  | 0.8052  | 0.8405  | 0.9254  | 0.9263  | 0.9858  | 1.0950        | 1.0413  | 1.1239  | 1.3523  | 1.2887     | 1.2171       | 1.1321       | 1.0440       | 21.1                 | 5.9                    |
| Qatar         | Riyals            | 12.1604 | 12.3438 | 12.6242 | 13.2984 | 13.1027 | 12.5510 | 11.9049       | 11.5556 | 10.2083 | 9.7530  | 9.1929     | 8.6258       | 8.6166       | 7.2559       | 3.2                  | -42.2                  |
| Russia        | Rubles            | 1.5586  | 1.5705  | 1.5347  | 1.5333  | 1.6044  | 1.6229  | 1.6659        | 3.0225  | 6.3164  | 6.6361  | na         | na           | na           | na           | 4.1                  | 308.9                  |
| Saudi Arabia  | Riyals            | 11.8169 | 11.9817 | 12.2662 | 12.9255 | 12.7353 | 12.1991 | 11.5712       | 11.2316 | 9.9221  | 9.4795  | 8.9365     | 8.3839       | 8.3750       | 7.0525       | 3.2                  | -42.2                  |
| Singapore     | Singapore Dollar  | 26.6126 | 26.8174 | 26.5658 | 27.3712 | 26.3138 | 26.2953 | 25.5899       | 25.0326 | 23.9932 | 25.1511 | 23.7289    | 21.0641      | 19.5843      | 16.2014      | -1.2                 | -38.4                  |
| South Africa  | Rand              | 6.9259  | 7.1835  | 6.4017  | 4.9676  | 5.0024  | 6.2406  | 7.0305        | 7.2370  | 7.8762  | 7.9170  | 9.0987     | 8.7600       | 9.3804       | 9.0462       | -9.9                 | 45.0                   |
| Sri Lanka     | Rupees            | 0.4375  | 0.4423  | 0.4747  | 0.5021  | 0.5214  | 0.5705  | 0.6064        | 0.6349  | 0.6181  | 0.6331  | 0.6403     | 0.6332       | 0.6430       | 0.5868       | 30.4                 | 2.9                    |
| Thailand      | Baht              | 1.0944  | 1.1212  | 1.1322  | 1.1330  | 1.0702  | 1.1007  | 1.1406        | 1.0826  | 1.0132  | 1.3925  | 1.3392     | 1.2540       | 1.2397       | 1.0396       | 0.6                  | -5.6                   |
| UAE           | Dirhams           | 12.0528 | 12.2345 | 12.5125 | 13.1807 | 12.9867 | 12.4399 | 11.7996       | 11.4533 | 10.1221 | 9.6706  | 9.1153     | 8.5529       | 8.5438       | 7.1946       | 3.2                  | -42.2                  |

TABLE A9.1 (contd.)

| (1)                | (2)               | (3)     | (4)     | (5)     | (6)     | (7)     | (8)     | (9)     | (10)    | (11)    | (12)    | (13)    | (14)    | (15)    | (16)    | (17)  | (18)  |
|--------------------|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|
| Industrialized (   | Countries         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |       |       |
| Australia          | Australian Dollar | 33.4597 | 33.2255 | 31.9391 | 27.2332 | 24.5242 | 25.4605 | 27.9504 | 26.1329 | 26.6049 | 27.9927 | 25.1736 | 23.2975 | 21.4904 | 18.9865 | -23.9 | -25.4 |
| Canada             | Canadian Dollar   | 37.1031 | 35.1410 | 33.9613 | 31.2670 | 30.4655 | 30.3841 | 29.4549 | 27.9707 | 26.4924 | 26.0882 | 24.5541 | 22.7636 | 23.9404 | 21.4763 | -18.1 | -29.3 |
| Denmark            | Kroner            | 7.2204  | 7.5888  | 7.2409  | 6.4496  | 5.6630  | 5.5580  | 6.0144  | 6.3500  | 5.4598  | 5.9560  | 6.0235  | 5.1095  | 4.7572  | 4.3740  | -23.0 | -21.3 |
| Egypt <sup>@</sup> | Pounds            | 7.6980  | 7.5595  | 7.0436  | 8.3395  | 10.7979 | 12.1250 | 12.7805 | 12.4978 | 10.1804 | 10.5960 | 10.1179 | 9.2948  | 9.2811  | 9.3450  | 57.5  | -22.9 |
| Japan              | Yen               | 0.3910  | 0.4177  | 0.4065  | 0.3968  | 0.3812  | 0.4134  | 0.3885  | 0.3285  | 0.3028  | 0.3152  | 0.3470  | 0.3160  | 0.2908  | 0.2116  | 5.7   | -48.8 |
| Sweden             | Kroner            | 5.7616  | 6.2032  | 5.9038  | 5.2250  | 4.5397  | 4.8370  | 5.1488  | 5.2952  | 4.7664  | 5.1786  | 4.7913  | 4.1536  | 3.9656  | 4.2416  | -16.0 | -12.3 |
| Switzerland        | Swiss Francs      | 34.7475 | 36.7018 | 34.8506 | 32.7045 | 28.1828 | 26.9186 | 27.9034 | 29.2689 | 25.4335 | 27.3567 | 28.6217 | 23.8712 | 21.4164 | 18.6180 | -22.5 | -30.8 |
| USA                | Dollar            | 44.2640 | 44.9313 | 45.9523 | 48.4060 | 47.6938 | 45.6855 | 43.3340 | 42.0620 | 37.1580 | 35.5010 | 33.4670 | 31.3980 | 31.3640 | 26.4110 | 3.2   | -42.2 |
| UK                 | Pound             | 79.0826 | 82.9049 | 77.8144 | 74.8163 | 68.2784 | 67.5734 | 69.8414 | 69.5458 | 60.9916 | 56.3256 | 52.3998 | 48.8361 | 47.1939 | 44.6586 | -14.6 | -33.9 |
| Euro*              |                   | 53.8508 | 56.4764 | 53.8682 | 47.9158 | 42.1360 | 41.4221 | 44.7065 |         |         |         |         |         |         |         | -23.1 |       |
| Belgium            | Franc             |         |         |         |         |         |         |         | 1.1719  | 1.0151  | 1.1106  | 1.1382  | 0.9760  | 0.8235  | 0.8193  |       | -30.1 |
| France             | Franc             |         |         |         |         |         |         |         | 7.2101  | 6.2329  | 6.7543  | 6.7500  | 5.8373  | 5.4622  | 4.9806  |       | -30.9 |
| Germany            | Deutsche Mark     |         |         |         |         |         |         |         | 24.1751 | 20.9437 | 22.8698 | 23.4004 | 20.1036 | 18.7171 | 16.8710 |       | -30.2 |
| Italy              | Lire              |         |         |         |         |         |         |         | 0.0245  | 0.0213  | 0.0228  | 0.0208  | 0.0196  | 0.0195  | 0.0201  |       | -18.0 |
| Netherlands        | Guidars           |         |         |         |         |         |         |         | 21.4429 | 18.5996 | 20.3922 | 20.8949 | 17.9242 | 16.6752 | 14.9844 |       | -30.1 |

Notes: \* Consisting of currencies of Belgium, France, Germany, Netherlands, and Italy. The Euro came into existence with effect from 1 January 1998; in these cases percentage appreciation or depreciation worked out is for the period 1992–3 to 1998–9, and 2000–1 to 2005–6 for the purpose of comparability; <sup>®</sup> Data for Egypt are as at the end of the period; The liberalized exchange rate management system (LERMS) was instituted in March 1992 in conjunction with other measures of liberalization in the areas of trade, industry, foreign investment, and the import of Gold. The ultimate convergence of the dual rates was made effective as of 1 March 1993.

Source: International Financial Statistics, IMF, various issues.

Table A9.2 Indices of Real Effective Exchange Rate (REER) and Nominal Effective Exchange Rate (NEER) of the Indian Rupee

|                  |        |            | 36-Curren  | cy Export an    | ıd Trade Base | ed Weights      |            |                 |        |           | 6-0     | Currency Tra | de Based We | ights         |              |         |
|------------------|--------|------------|------------|-----------------|---------------|-----------------|------------|-----------------|--------|-----------|---------|--------------|-------------|---------------|--------------|---------|
|                  |        |            |            | Base: 199       | 3-4=100       |                 |            |                 |        | Base: 199 | 3-4=100 |              |             | Base: 200     | 3-4=100      |         |
|                  |        | Trade Base | ed Weights |                 |               | Export Bas      | ed Weights |                 |        |           |         |              | (Movir      | ıg one, Get u | ıpdated ever | y year) |
|                  | REER   |            | NEER       |                 | REER          |                 | NEER       |                 | NEER   |           | REER    |              | NEER        |               | REER         |         |
| (1)              | (2)    | (3)        | (4)        | (5)             | (6)           | (7)             | (8)        | (9)             | (10)   | (11)      | (12)    | (13)         | (14)        | (15)          | (16)         | (17)    |
| 2005-6           |        |            |            |                 |               |                 |            |                 |        |           |         |              |             |               |              |         |
| Mar 2006         | 101.66 | (1.1)      | 89.47      | (2.0)           | 100.04        | (1.1)           | 90.85      | (1.8)           | 71.61  | (2.8)     | 108.09  | (4.5)        | 103.40      | (2.8)         | 106.64       | (4.5)   |
| Feb 2006         | 102.02 | (0.9)      | 89.92      | (2.0)           | 100.36        | (0.9)           | 91.26      | (1.8)           | 72.03  | (2.8)     | 108.61  | (4.5)        | 104.01      | (2.8)         | 107.17       | (4.5)   |
| Jan 2006         | 101.8  | (1.1)      | 89.51      | (2.2)           | 100.18        | (1.0)           | 90.90      | (2.1)           | 71.46  | (2.6)     | 107.57  | (4.0)        | 103.18      | (2.6)         | 106.13       | (4.0)   |
| Dec 2005         | 100.85 | (0.8)      | 87.97      | (1.2)           | 99.01         | (0.3)           | 89.09      | (0.6)           | 70.22  | (2.2)     | 105.98  | (4.4)        | 101.39      | (2.2)         | 104.56       | (4.4)   |
| Nov 2005         | 101.73 | (2.3)      | 88.36      | (3.0)           | 99.80         | (1.8)           | 89.40      | (2.6)           | 70.27  | (3.3)     | 106.18  | (5.3)        | 101.46      | (3.3)         | 104.76       | (5.3)   |
| Oct 2005         | 102.87 | (3.5)      | 89.40      | (3.8)           | 100.97        | (3.6)           | 90.56      | (3.9)           | 70.90  | (3.8)     | 106.43  | (5.9)        | 102.36      | (3.8)         | 105.01       | (5.9)   |
| Sep 2005         | 104.27 | (3.8)      | 90.45      | (4.5)           | 102.43        | (4.1)           | 91.80      | (5.2)           | 71.57  | (4.5)     | 107.27  | (5.9)        | 103.34      | (4.5)         | 105.84       | (5.9)   |
| Aug 2005         | 104.05 | (4.5)      | 90.86      | (5.6)           | 102.33        | (4.9)           | 92.27      | (6.3)           | 72.08  | (5.8)     | 107.39  | (7.2)        | 104.08      | (5.8)         | 105.95       | (7.2)   |
| Jul 2005         | 105.09 | (6.3)      | 92.02      | (6.7)           | 103.12        | (6.2)           | 93.20      | (7.0)           | 73.04  | (7.0)     | 108.38  | (9.1)        | 105.46      | (7.0)         | 106.94       | (9.1)   |
| Jun 2005         | 103.74 | (3.9)      | 91.17      | (4.1)           | 101.96        | (4.2)           | 92.52      | (4.7)           | 72.36  | (4.3)     | 106.82  | (6.7)        | 104.48      | (4.3)         | 105.39       | (6.7)   |
| May 2005         | 102.24 | (2.6)      | 90.10      | (1.6)           | 100.73        | (3.3)           | 91.68      | (2.7)           | 71.18  | (1.3)     | 104.62  | (4.7)        | 102.77      | (1.2)         | 103.23       | (4.7)   |
| Apr 2005         | 100.59 | (-0.8)     | 88.92      | (-1.7)          | 99.22         | (-0.2)          | 90.60      | (-0.7)          | 70.22  | (-2.6)    | 102.63  | (0.8)        | 101.38      | (-2.6)        | 101.27       | (0.8)   |
| 2004–5           |        | ` ′        |            | ` /             |               | ` ′             |            | , ,             |        | , ,       |         | , ,          |             | ` /           |              | , ,     |
| Mar 2005         | 100.56 | (0.3)      | 87.72      | (0.8)           | 99.00         | (-1.1)          | 89.27      | (1.2)           | 69.68  | (0.5)     | 103.46  | (3.1)        | 100.61      | (0.5)         | 102.08       | (3.1)   |
| Feb 2005         | 101.16 | (2.2)      | 88.20      | (3.2)           | 99.51         | (0.5)           | 89.66      | (3.3)           | 70.09  | (3.2)     | 103.92  | (5.4)        | 101.20      | (3.2)         | 102.54       | (5.4)   |
| Jan 2005         | 100.68 | (2.4)      | 87.55      | (2.7)           | 99.19         | (0.8)           | 89.05      | (2.9)           | 69.66  | (2.6)     | 103.41  | (5.6)        | 100.59      | (2.6)         | 102.04       | (5.6)   |
| Dec 2004         | 100.05 | (1.8)      | 86.92      | (1.2)           | 98.74         | (0.5)           | 88.55      | (1.7)           | 68.68  | (0.0)     | 101.48  | (3.6)        | 99.17       | (0.0)         | 100.13       | (3.6)   |
| Nov 2004         | 99.47  | (-1.0)     | 85.75      | (-2.1)          | 97.99         | (-2.1)          | 87.14      | (-1.5)          | 68.03  | (-3.2)    | 100.87  | (0.8)        | 98.23       | (-3.2)        | 99.52        | (0.8)   |
| Oct 2004         | 99.37  | (-1.5)     | 86.15      | (-2.2)          | 97.47         | (-2.9)          | 87.13      | (-2.0)          | 68.33  | (-3.1)    | 100.46  | (0.5)        | 98.66       | (-3.1)        | 99.12        | (0.5)   |
| Sep 2004         | 100.46 | (-1.0)     | 86.52      | (-2.6)          | 98.38         | (-2.3)          | 87.29      | (-2.2)          | 68.49  | (-4.3)    | 101.28  | (0.2)        | 98.89       | (-4.3)        | 99.92        | (0.2)   |
| Aug 2004         | 99.54  | (-1.8)     | 86.03      | (-3.8)          | 97.54         | (-2.8)          | 86.80      | (-3.3)          | 68.13  | (-5.1)    | 100.22  | (-0.3)       | 98.37       | (-5.1)        | 98.88        | (-0.4)  |
| Jul 2004         | 98.89  | (-1.0)     | 86.21      | (-2.1)          | 97.06         | (-2.0)          | 87.12      | (-1.5)          | 68.24  | (-3.5)    | 99.30   | (0.4)        | 98.53       | (-3.4)        | 97.98        | (0.4)   |
| Jun 2004         | 99.86  | (1.9)      | 87.62      | (1.5)           | 97.89         | (0.6)           | 88.40      | (1.8)           | 69.35  | (0.3)     | 100.10  | (3.5)        | 100.13      | (0.3)         | 98.76        | (3.5)   |
| May 2004         | 99.64  | (2.2)      | 88.66      | (3.1)           | 97.47         | (0.6)           | 89.27      | (3.2)           | 70.30  | (2.0)     | 99.95   | (3.8)        | 101.51      | (2.0)         | 98.62        | (3.8)   |
| Apr 2004         | 101.42 | (2.2)      | 90.43      | (3.1)           | 99.37         | (1.2)           | 91.21      | (3.8)           | 72.12  | (2.5)     | 101.79  | (4.2)        | 104.13      | (2.0)         | 100.43       | (3.0)   |
| 2005–6           | 102.58 | (2.5)      | 89.84      | (2.9)           | 100.85        | (2.6)           | 91.18      | (3.1)           | 71.41  | (3.1)     | 106.66  | (5.2)        | 103.11      | (3.1)         | 105.24       | (2.6)   |
| 2004–5           | 100.09 | (0.5)      | 87.31      | (0.2)           | 98.30         | (-0.8)          | 88.41      | (0.6)           | 69.26  | (-0.7)    | 101.35  | (2.5)        | 100.00      | (-0.7)        | 102.53       | (2.5)   |
| 2003–4           | 99.56  | (1.4)      | 87.14      | (-2.2)          | 99.07         | (3.2)           | 87.89      | (1.0)           | 69.75  | (-1.9)    | 98.85   | (1.5)        | 100.71      | (-1.9)        | 100.00       | (1.5)   |
| 2002–3           | 98.18  | (-2.7)     | 89.12      | (-2.2) $(-2.7)$ | 95.99         | (-2.6)          | 87.01      | (-2.3)          | 71.09  | (-6.3)    | 97.43   | (-4.9)       | 100.71      | (-6.3)        | 98.56        | (-4.9)  |
| 2001–2           | 100.86 | (0.8)      | 91.58      | (-0.6)          | 98.59         | (-2.0) $(-0.1)$ | 89.08      | (-2.3) $(-1.2)$ | 75.89  | (-1.8)    | 102.49  | (-0.1)       | 102.03      | (-0.3)        | 103.68       | (-0.2)  |
| 2000-1           | 100.09 | (4.3)      | 92.12      | (1.2)           | 98.67         | (3.6)           | 90.12      | (-0.3)          | 77.30  | (0.3)     | 102.49  | (5.3)        | 111.61      | (0.3)         | 103.84       | (5.3)   |
| 1999–2000        | 95.99  | (3.2)      | 91.02      | (2.2)           | 95.28         | (1.0)           | 90.12      | (0.1)           | 77.04  | (-0.4)    | 97.52   | (1.6)        | 111.01      | (-0.4)        | 98.66        | (1.6)   |
| 1999–2000        | 93.99  | , ,        | 89.05      |                 | 93.26         | ` /             | 90.42      | ` ′             | 77.04  | . ,       | 95.99   | ` /          | 111.23      |               | 97.10        | . ,     |
| 1998–9<br>1997–8 |        | (-7.7)     |            | (-3.2)<br>(3.1) |               | (-8.5)          |            | (-1.8)          |        | (-11.9)   |         | (-7.9)       |             | (-11.9)       |              | (-7.9)  |
|                  | 100.77 | (4.1)      | 92.04      | ` /             | 103.07        | (4.2)           | 91.97      | (3.3)           | 87.80  | (1.2)     | 104.24  | (3.2)        | 126.77      | (1.2)         | 105.45       | (3.2)   |
| 1996–7           | 96.83  | (-1.4)     | 89.27      | (-2.5)          | 98.95         | (-1.1)          | 89.03      | (-2.1)          | 86.73  | (-1.9)    | 100.97  | (-0.2)       | 125.22      | (-1.9)        | 102.15       | (-0.2)  |
| 1995–6           | 98.19  | (-5.9)     | 91.54      | (-7.5)          | 100.10        | (-4.6)          | 90.94      | (-7.4)          | 88.45  | (-8.7)    | 101.14  | (-4.3)       | 127.71      | (-8.7)        | 102.31       | (-4.3)  |
| 1994–5           | 104.32 | (4.3)      | 98.91      | (-1.1)          | 104.88        | (4.9)           | 98.18      | (-1.8)          | 96.86  | (-3.1)    | 105.71  | (5.7)        | 139.86      | (-3.1)        | 106.94       | (5.7)   |
| 1993–4           | 100.00 |            | 100.00     |                 | 100.00        |                 | 100.00     |                 | 100.00 |           | 100.00  |              | 144.36      |               | 101.14       |         |

Notes: Figures in brackets represent annual appreciation (+) or depreciation (–) of the rupee as per the respective NEER and REER Indices; For weights, see A9.1. Source: RBI Bulletin, various issues.

TABLE A9.3 Weighing Diagrams for RBI's NEERs and REERs

A: Normalized Weights for 6-Currency REER/NEER Indices

B: 36-Currency Normalized Weights for REER and NEER for 2005-6

(per cent)

|           |       |       |       |       |          | (per cent) |
|-----------|-------|-------|-------|-------|----------|------------|
| Year      | Euro  | Japan | UK    | USA   | Hongkong | China      |
| 1993–4    | 42.06 | 14.01 | 12.04 | 26.33 | 4.55     | 1.01       |
| 1994–5    | 40.25 | 13.50 | 11.73 | 26.95 | 5.40     | 2.17       |
| 1995–6    | 39.22 | 13.44 | 11.33 | 26.95 | 6.07     | 2.98       |
| 1996–7    | 38.95 | 12.87 | 11.25 | 27.29 | 6.15     | 3.49       |
| 1997-8    | 39.28 | 11.76 | 11.55 | 27.46 | 6.03     | 4.20       |
| 1998–9    | 38.71 | 11.03 | 11.82 | 28.21 | 6.03     | 4.20       |
| 1999-2000 | 37.79 | 10.64 | 11.86 | 28.59 | 6.68     | 4.44       |
| 2000-1    | 36.67 | 9.92  | 12.15 | 29.12 | 7.48     | 4.65       |
| 2001-2    | 35.88 | 9.30  | 12.06 | 29.08 | 8.02     | 5.67       |
| 2002-3    | 35.55 | 8.31  | 11.67 | 29.51 | 7.67     | 7.29       |
| 2003-4    | 35.52 | 7.85  | 10.84 | 28.90 | 7.55     | 9.34       |
| 2004–5    | 35.12 | 7.15  | 10.13 | 28.19 | 7.45     | 11.96      |

Note: The new six currency indices will have two base years: 1993-4 as fixed base and 2003-4 as moving base which would change every year. These indices use a 3-year moving average trade weights to reflect the changing pattern of India's foreign trade with its major trading partners. To calculate weights, the geometric average of India's bilateral trade (exports + imports) with countries/regions represented by the six currencies during the preceding three years has been taken. This has then been normalized to arrive at the requisite weights (wi), which are provided in the table.

Source: RBI Bulletin, December 2006.

|            |              |               |              |              | -             |
|------------|--------------|---------------|--------------|--------------|---------------|
| Country    | Trade Weight | Export Weight | Country      | Trade Weight | Export Weight |
| Argentina  | 0.53         | 0.17          | Myanmar      | 0.43         | 0.16          |
| Australia  | 2.66         | 1.03          | Nigeria      | 0.55         | 0.95          |
| Bangladesh | 1.40         | 2.61          | Pakistan     | 0.34         | 0.55          |
| Brazil     | 0.79         | 0.78          | Philippines  | 0.48         | 0.69          |
| Canada     | 1.30         | 1.33          | Quatar       | 0.35         | 0.24          |
| China      | 6.69         | 5.52          | Russia       | 1.45         | 1.18          |
| Hong Kong  | 4.08         | 5.52          | Saudi Arabia | 1.74         | 1.99          |
| Denmark    | 0.40         | 0.41          | Singapore    | 3.85         | 3.97          |
| Egypt      | 0.47         | 0.63          | South Africa | 2.44         | 1.11          |
| Euro       | 19.37        | 18.38         | Sri Lanka    | 1.25         | 2.07          |
| Indonesia  | 2.73         | 1.87          | Sweden       | 0.81         | 0.36          |
| Iran       | 1.09         | 1.58          | Switzerland  | 3.63         | 0.79          |
| Israel     | 1.36         | 1.35          | Thailand     | 1.26         | 1.41          |
| Japan      | 3.95         | 3.26          | Turkey       | 0.55         | 0.92          |
| Kenya      | 0.28         | 0.47          | UAE          | 6.43         | 8.7           |
| Korea      | 2.94         | 1.38          | UK           | 5.56         | 5.23          |
| Kuwait     | 0.47         | 0.56          | USA          | 15.56        | 20.78         |
| Malaysia   | 2.51         | 1.56          | Total        | 100.00       | 100.00        |
| Mexico     | 0.33         | 0.51          |              |              |               |

Note: The choice of the base year 1993-4 is attributable to the significant changes in the macroeconomic environment due to structural reforms introduced in the wake of balance of payments crisis in 1990-1. Moreover, it is also the base year for WPI. The 36-currency indices use 3-year moving average normalized weights (both exports and trade weights) in the construction of new series, keeping in view the rapid change in the destinations of India's foreign trade in contrast to the fixed weights used hitherto for constructing REER and NEER series. The table gives the normalized weights for the 36-currencies for the year 2005–6 which is based on trade shares of the previous three years (2002–3 to 2004–5).

Source: RBI Bulletin, December 2005.

#### A10 FOREIGN TRADE

TABLE A10.1 Changing Scenerio in Foreign Trade

(US\$ Million)

| Export                    | 2005–6  | 2004–5  | 2003–4  | 2002-3  | 2001–2  | 2000-1  | 1999–00 | 1998–9  | 1997–8  | 1996–7  | 1995–6  | 1994–5  | 1993–4  | 1992–3  | 1991–2  | 1990–1  | 1989–90 | 1988–9  | 1987–8  |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| (1)                       | (2)     | (3)     | (4)     | (5)     | (6)     | (7)     | (8)     | (9)     | (10)    | (11)    | (12)    | (13)    | (14)    | (15)    | (16)    | (17)    | (18)    | (19)    | (20)    |
| Gems and Jewellery        | 15547   | 13762   | 10573   | 9030    | 7306    | 7384    | 7502    | 5929    | 5346    | 4753    | 5275    | 4500    | 3996    | 3072    | 2738    | 2924    | 3181    | 3033    | 2015    |
|                           | (15.1)  | (16.5)  | (16.6)  | (17.1)  | (16.7)  | (16.6)  | (20.4)  | (17.8)  | (15.3)  | (14.2)  | (16.6)  | (17.1)  | (18.0)  | (16.6)  | (15.3)  | (16.1)  | (19.1)  | (21.7)  | (16.8)  |
| Chemicals and Products    | 15514   | 13164   | 9446    | 7455    | 6052    | 5886    | 4707    | 4009    | 4396    | 3913    | 3597    | 3067    | 2377    | 1786    | 1869    | 1728    | 1554    | 1091    | 792     |
|                           | (15.1)  | (15.8)  | (14.8)  | (14.1)  | (13.8)  | (13.2)  | (12.8)  | (12.1)  | (12.6)  | (11.7)  | (11.3)  | (11.6)  | (10.7)  | (9.6)   | (10.5)  | (9.5)   | (9.4)   | (7.8)   | (6.6)   |
| Textiles                  | 15206   | 12918   | 12792   | 11617   | 10207   | 11285   | 9822    | 8866    | 9050    | 8636    | 8032    | 7118    | 5472    | 5007    | 4693    | 4343    | 3747    | 3038    | 3014    |
|                           | (14.8)  | (15.5)  | (20.0)  | (22.0)  | (23.3)  | (25.3)  | (26.7)  | (26.7)  | (25.9)  | (25.8)  | (25.3)  | (27.0)  | (24.6)  | (27.0)  | (26.3)  | (23.9)  | (22.6)  | (21.7)  | (25.1)  |
| Petroleum Products        | 11515   | 6989    | 3568    | 2577    | 2119    | 1870    | 39      | 89      | 353     | 482     | 454     | 417     | 398     | 476     | 415     | 523     | 418     | 349     | 500     |
|                           | (11.2)  | (8.4)   | (5.6)   | (4.9)   | (4.8)   | (4.2)   | (0.1)   | (0.3)   | (1.0)   | (1.4)   | (1.4)   | (1.6)   | (1.8)   | (2.6)   | (2.3)   | (2.9)   | (2.5)   | (2.5)   | (4.2)   |
| Machinery & Instruments   | 4796    | 3719    | 2776    | 2008    | 1734    | 1580    | 1183    | 1155    | 1196    | 1057    | 830     | 727     | 639     | 542     | 581     | 696     | 604     | 510     | 397     |
|                           | (4.7)   | (4.5)   | (4.3)   | (3.8)   | (4.0)   | (3.5)   | (3.2)   | (3.5)   | (3.4)   | (3.2)   | (2.6)   | (2.8)   | (2.9)   | (2.9)   | (3.3)   | (3.8)   | (3.6)   | (3.6)   | (3.3)   |
| Transport Equipment       | 4567    | 2830    | 1956    | 1334    | 1021    | 992     | 810     | 762     | 929     | 969     | 925     | 771     | 592     | 534     | 496     | 401     | 316     | 251     | 195     |
|                           | (4.4)   | (3.4)   | (3.1)   | (2.5)   | (2.3)   | (2.2)   | (2.2)   | (2.3)   | (2.7)   | (2.9)   | (2.9)   | (2.9)   | (2.7)   | (2.9)   | (2.8)   | (2.2)   | (1.9)   | (1.8)   | (1.6)   |
| Manufacture of Metals     | 4173    | 3401    | 2427    | 1848    | 1604    | 1578    | 1226    | 1040    | 1023    | 914     | 826     | 706     | 663     | 560     | 484     | 456     | 446     | 305     | 222     |
|                           | (4.1)   | (4.1)   | (3.8)   | (3.5)   | (3.7)   | (3.5)   | (3.3)   | (3.1)   | (2.9)   | (2.7)   | (2.6)   | (2.7)   | (3.0)   | (3.0)   | (2.7)   | (2.5)   | (2.7)   | (2.2)   | (1.9)   |
| Iron ore                  | 3861    | 3277    | 1126    | 868     | 426     | 358     | 271     | 384     | 476     | 481     | 515     | 413     | 438     | 381     | 582     | 585     | 557     | 465     | 428     |
|                           | (3.8)   | (3.9)   | (1.8)   | (1.6)   | (1.0)   | (0.8)   | (0.7)   | (1.2)   | (1.4)   | (1.4)   | (1.6)   | (1.6)   | (2.0)   | (2.1)   | (3.3)   | (3.2)   | (3.4)   | (3.3)   | (3.6)   |
| Iron & Steel              | 3511    | 3921    | 2478    | 1856    | 898     | 1028    | 833     | 579     | 875     | 770     | 697     | 528     | 568     | 306     | 154     | 161     | 99      | 52      | 22      |
|                           | (3.4)   | (4.7)   | (3.9)   | (3.5)   | (2.0)   | (2.3)   | (2.3)   | (1.7)   | (2.5)   | (2.3)   | (2.2)   | (2.0)   | (2.6)   | (1.7)   | (0.9)   | (0.9)   | (0.6)   | (0.4)   | (0.2)   |
| Electronic goods          | 2244    | 1890    | 1728    | 1253    | 1171    | 1052    | 681     | 503     | 760     | 784     | 670     | 412     | 304     | 212     | 265     | 232     | 303     | 201     | 154     |
|                           | (2.2)   | (2.3)   | (2.7)   | (2.4)   | (2.7)   | (2.4)   | (1.8)   | (1.5)   | (2.2)   | (2.3)   | (2.1)   | (1.6)   | (1.4)   | (1.1)   | (1.5)   | (1.3)   | (1.8)   | (1.4)   | (1.3)   |
| Total Export              | 102725  | 83536   | 63843   | 52719   | 43827   | 44560   | 36822   | 33219   | 35006   | 33470   | 31795   | 26331   | 22238   | 18537   | 17865   | 18145   | 16613   | 13970   | 12009   |
|                           | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) |
| of which:                 |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Top 10 commodities/groups | (78.8)  | (78.9)  | (76.5)  | (75.6)  | (74.2)  | (74.1)  | (73.5)  | (70.2)  | (69.7)  | (68.0)  | (68.6)  | (70.9)  | (69.5)  | (69.5)  | (68.7)  | (66.4)  | (67.6)  | (66.5)  | (64.4)  |
| Import                    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Petroleum crude & Prodts  | 43963   | 29844   | 20570   | 17640   | 14000   | 15650   | 12611   | 6399    | 8164    | 10036   | 7526    | 5928    | 5754    | 6100    | 5325    | 6028    | 3768    | 3009    | 3118    |
|                           | (30.9)  | (26.8)  | (26.3)  | (28.7)  | (27.2)  | (31.0)  | (25.4)  | (15.1)  | (19.7)  | (25.6)  | (20.5)  | (20.7)  | (24.7)  | (27.9)  | (27.4)  | (25.0)  | (17.8)  | (15.4)  | (18.2)  |
| Electronic Goods          | 13192   | 9993    | 7506    | 5599    | 3782    | 3509    | 2797    | 2223    | 2088    | 1424    | 1752    | 1228    | 912     | 0       | 0       | 0       | 0       | 0       | 0       |
|                           | (9.3)   | (9.0)   | (9.6)   | (9.1)   | (7.4)   | (6.9)   | (5.6)   | (5.2)   | (5.0)   | (3.6)   | (4.8)   | (4.3)   | (3.9)   |         |         |         |         |         |         |

TABLE A10.1 (contd.)

| Export                    | 2005–6  | 2004–5  | 2003–4  | 2002-3  | 2001-2  | 2000-1  | 1999–00 | 1998–9  | 1997–8  | 1996–7  | 1995–6  | 1994–5  | 1993–4  | 1992-3  | 1991–2  | 1990–1  | 1989–90 | 1988–9  | 1987–8  |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| (1)                       | (2)     | (3)     | (4)     | (5)     | (6)     | (7)     | (8)     | (9)     | (10)    | (11)    | (12)    | (13)    | (14)    | (15)    | (16)    | (17)    | (18)    | (19)    | (20)    |
| Gold and Silver           | 11189   | 11150   | 6856    | 4288    | 4582    | 4638    | 4706    | 5072    | 3169    | 992     | 867     | 713     | _       | _       | _       | _       | _       | _       | _       |
|                           | (7.9)   | (10.0)  | (8.8)   | (7.0)   | (8.9)   | (9.2)   | (9.5)   | (12.0)  | (7.6)   | (2.5)   | (2.4)   | (2.5)   | (0.0)   | (0.0)   | (0.0)   | (0.0)   | (0.0)   | (0.0)   | (0.0)   |
| Machinery                 | 9894    | 6818    | 4744    | 3566    | 2971    | 2709    | 2745    | 3045    | 3622    | 3644    | 3924    | 2728    | 1882    | 1653    | 1458    | 2100    | 1930    | 1810    | 2017    |
|                           | (6.9)   | (6.1)   | (6.1)   | (5.8)   | (5.8)   | (5.4)   | (5.5)   | (7.2)   | (8.7)   | (9.3)   | (10.7)  | (9.5)   | (8.1)   | (7.6)   | (7.5)   | (8.7)   | (9.1)   | (9.3)   | (11.8)  |
| Pearls & Precious Stones  | 9141    | 9423    | 7129    | 6063    | 4623    | 4808    | 5436    | 3760    | 3342    | 2925    | 2106    | 1630    | 2635    | 2442    | 1957    | 2083    | 2555    | 2193    | 1557    |
|                           | (6.4)   | (8.4)   | (9.1)   | (9.9)   | (9.0)   | (9.5)   | (10.9)  | (8.9)   | (8.1)   | (7.5)   | (5.7)   | (5.7)   | (11.3)  | (11.2)  | (10.1)  | (8.7)   | (12.0)  | (11.2)  | (9.1)   |
| Organic & Inorganic       | 6889    | 5700    | 4032    | 3025    | 2800    | 2444    | 2866    | 2684    | 2956    | 2661    | 2566    | 2137    | 1371    | 1428    | 1379    | 1276    | 1154    | 1308    | 834     |
| Chemicls                  | (4.8)   | (5.1)   | (5.2)   | (4.9)   | (5.4)   | (4.8)   | (5.8)   | (6.3)   | (7.1)   | (6.8)   | (7.0)   | (7.5)   | (5.9)   | (6.5)   | (7.1)   | (5.3)   | (5.4)   | (6.7)   | (4.9)   |
| Iron and Steel            | 4432    | 2670    | 1506    | 944     | 834     | 778     | 952     | 1064    | 1421    | 1371    | 1446    | 1164    | 795     | 779     | 799     | 1178    | 1352    | 1335    | 1018    |
|                           | (3.1)   | (2.4)   | (1.9)   | (1.5)   | (1.6)   | (1.5)   | (1.9)   | (2.5)   | (3.4)   | (3.5)   | (3.9)   | (4.1)   | (3.4)   | (3.6)   | (4.1)   | (4.9)   | (6.4)   | (6.8)   | (5.9)   |
| Transport Equipment       | 3149    | 4327    | 3228    | 1897    | 1149    | 700     | 1137    | 798     | 1051    | 1484    | 1105    | 1114    | 1270    | 462     | 371     | 931     | 889     | 520     | 586     |
|                           | (2.2)   | (3.9)   | (4.1)   | (3.1)   | (2.2)   | (1.4)   | (2.3)   | (1.9)   | (2.5)   | (3.8)   | (3.0)   | (3.9)   | (5.5)   | (2.1)   | (1.9)   | (3.9)   | (4.2)   | (2.7)   | (3.4)   |
| Fertilizers               | 2069    | 1377    | 721     | 626     | 679     | 752     | 1399    | 1076    | 1117    | 911     | 1683    | 1052    | 826     | 978     | 954     | 984     | 1083    | 645     | 392     |
|                           | (1.5)   | (1.2)   | (0.9)   | (1.0)   | (1.3)   | (1.5)   | (2.8)   | (2.5)   | (2.7)   | (2.3)   | (4.6)   | (3.7)   | (3.5)   | (4.5)   | (4.9)   | (4.1)   | (5.1)   | (3.3)   | (2.3)   |
| Edible Oil                | 1969    | 2465    | 2543    | 1814    | 1356    | 1308    | 1857    | 1804    | 744     | 825     | 676     | 199     | 53      | 58      | 101     | 182     | 125     | 504     | 747     |
|                           | (1.4)   | (2.2)   | (3.3)   | (3.0)   | (2.6)   | (2.6)   | (3.7)   | (4.3)   | (1.8)   | (2.1)   | (1.8)   | (0.7)   | (0.2)   | (0.3)   | (0.5)   | (0.8)   | (0.6)   | (2.6)   | (4.4)   |
| Total Imports             | 142416  | 111517  | 78149   | 61412   | 51413   | 50537   | 49671   | 42389   | 41485   | 39132   | 36675   | 28654   | 23306   | 21882   | 19411   | 24073   | 21219   | 19497   | 17156   |
|                           | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) | (100.0) |
| of which:                 |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Top 10 Commodities/groups | 71.3    | 70.2    | 71.7    | 72.0    | 68.1    | 69.5    | 69.8    | 60.2    | 66.2    | 71.4    | 69.1    | 67.4    | 72.4    | 70.0    | 70.7    | 66.6    | 66.0    | 64.8    | 64.7    |

Note: – Official imports of gold and silver started in 1994–5; 0 : Separate data not reported; Figures in brackets are percentage shares to total.

Source: Directorate General of Commercial Intelligence and Statistics ( DGCI & S).

TABLE A10.2 Foreign Trade with Major Trading Partners

(US \$ million)

|           | Ch           | ina           | Gern          | nany          | Aust         | tralia        | US             | SA             | Switze       | rland         | U             | K             | Singa        | apore         | U             | AE            | Jap           | oan           | Ita           | ly           | Hong          | Kong         | To               | tal              |
|-----------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|----------------|--------------|---------------|---------------|---------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|--------------|------------------|------------------|
|           | Export       | Import        | Export        | Import        | Export       | Import        | Export         | Import         | Export       | Import        | Export        | Import        | Export       | Import        | Export        | Import        | Export        | Import        | Export        | Import       | Export        | Import       | Export           | Import           |
| 1         | 2            |               | 3             |               | 4            |               | 5              |                | 6            |               | 7             |               | 8            |               | 9             |               | 10            |               | 11            |              | 12            |              | 13               |                  |
| 2005–6    | 6721         | 10740         | 3517          | 5818          | 812          | 4851          | 17204          | 7778           | 474          | 6526          | 5146          | 3898          | 5570         | 2085          | 8593          | 4312          | 2459          | 3552          | 2490          | 1829         | 4457          | 2168         | 102725           | 142416           |
|           | (6.5)        | (7.5)         | (3.4)         | (4.1)         | (0.8)        | (3.4)         | (16.7)         | (5.5)          | (0.5)        | (4.6)         | (5.0)         | (2.7)         | (5.4)        | (1.5)         | (8.4)         | (3.0)         | (2.4)         | (2.5)         | (2.4)         | (1.3)        | (4.3)         | (1.5)        | (100.0)          | (100.0)          |
| 2004-5    | 5616         | 7098          | 2826          | 4015          | 720          | 3825          | 13766          | 7001           | 541          | 5940          | 3681          | 3566          | 4001         | 2651          | 7348          | 4641          | 2128          | 3235          | 2286          | 1373         | 3692          | 1730         | 83536            | 111517           |
|           | (6.7)        | (6.4)         | (3.4)         | (3.6)         | (0.9)        | (3.4)         | (16.5)         | (6.3)          | (0.6)        | (5.3)         | (4.4)         | (3.2)         | (4.8)        | (2.4)         | (8.8)         | (4.2)         | (2.5)         | (2.9)         | (2.7)         | (1.2)        | (4.4)         | (1.6)        | (100.0)          | (100.0)          |
| 2003-4    | 2955         | 4053          | 2545          | 2919          | 584          | 2649          | 11490          | 5035           | 450          | 3313          | 3023          | 3234          | 2125         | 2085          | 5126          | 2060          | 1709          | 2668          | 1729          | 1071         | 3262          | 1493         | 63843            | 78149            |
|           | (4.6)        | (5.2)         | (4.0)         | (3.7)         | (0.9)        | (3.4)         | (18.0)         | (6.4)          | (0.7)        | (4.2)         | (4.7)         | (4.1)         | (3.3)        | (2.7)         | (8.0)         | (2.6)         | (2.7)         | (3.4)         | (2.7)         | (1.4)        | (5.1)         | (1.9)        | (100.0)          | (100.0)          |
| 2002–3    | 1976         | 2792          | 2107          | 2405          | 504          | 1337          | 10896          | 4444           | 383          | 2330          | 2496          | 2777          | 1422         | 1435          | 3328          | 957           | 1864          | 1836          | 1357          | 812          | 2613          | 973          | 52719            | 61412            |
| 2001 2    | (3.7)        | (4.5)         | (4.0)         | (3.9)         | (1.0)        | (2.2)         | (20.7)         | (7.2)          | (0.7)        | (3.8)         | (4.7)         | (4.5)         | (2.7)        | (2.3)         | (6.3)         | (1.6)         | (3.5)         | (3.0)         | (2.6)         | (1.3)        | (5.0)         | (1.6)        | (100.0)          | (100.0)          |
| 2001–2    | 952          | 2036          | 1788          | 2028          | 418          | 1306          | 8513           | 3150           | 409          | 2871          | 2161          | 2563          | 972          | 1304          | 2492          | 915           | 1510          | 2146          | 1207          | 705          | 2366          | 729          | 43827            | 51413            |
| 2000-1    | (2.2)<br>831 | (4.0)<br>1502 | (4.1)<br>1908 | (3.9)<br>1760 | (1.0)<br>406 | (2.5)<br>1063 | (19.4)<br>9305 | (6.1)<br>3015  | (0.9)<br>438 | (5.6)<br>3160 | (4.9)<br>2299 | (5.0)<br>3168 | (2.2)<br>877 | (2.5)<br>1464 | (5.7)<br>2598 | (1.8)<br>659  | (3.4)<br>1795 | (4.2)<br>1842 | (2.8)<br>1309 | (1.4)<br>724 | (5.4)<br>2641 | (1.4)<br>852 | (100.0)<br>44560 | (100.0)<br>50537 |
| 2000-1    | (1.9)        | (3.0)         | (4.3)         | (3.5)         | (0.9)        | (2.1)         | (20.9)         | (6.0)          | (1.0)        | (6.3)         | (5.2)         | (6.3)         | (2.0)        | (2.9)         | (5.8)         | (1.3)         | (4.0)         | (3.6)         | (2.9)         | (1.4)        | (5.9)         | (1.7)        | (100.0)          | (100.0)          |
| 1999–2000 | . ,          | 1287          | 1738          | 1842          | 403          | 1082          | 8396           | 3564           | 354          | 2598          | 2035          | 2707          | 673          | 1534          | 2083          | 2334          | 1685          | 2536          | 1120          | 735          | 2511          | 818          | 36822            | 49671            |
| 1777 2000 | (1.5)        | (2.6)         | (4.7)         | (3.7)         | (1.1)        | (2.2)         | (22.8)         | (7.2)          | (1.0)        | (5.2)         | (5.5)         | (5.4)         | (1.8)        | (3.1)         | (5.7)         | (4.7)         | (4.6)         | (5.1)         | (3.0)         | (1.5)        | (6.8)         | (1.6)        | (100.0)          | (100.0)          |
| 1998–9    | 427          | 1097          | 1852          | 2141          | 387          | 1445          | 7200           | 3640           | 319          | 2942          | 1855          | 2621          | 518          | 1384          | 1868          | 1721          | 1652          | 2466          | 1055          | 1088         | 1881          | 449          | 33219            | 42389            |
|           | (1.3)        | (2.6)         | (5.6)         | (5.1)         | (1.2)        | (3.4)         | (21.7)         | (8.6)          | (1.0)        | (6.9)         | (5.6)         | (6.2)         | (1.6)        | (3.3)         | (5.6)         | (4.1)         | (5.0)         | (5.8)         | (3.2)         | (2.6)        | (5.7)         | (1.1)        | (100.0)          | (100.0)          |
| 1997-8    | 718          | 1119          | 1924          | 2529          | 438          | 1486          | 6803           | 3717           | 368          | 2641          | 2141          | 2444          | 780          | 1198          | 1692          | 1780          | 1899          | 2145          | 1115          | 922          | 1932          | 316          | 35006            | 41485            |
|           | (2.1)        | (2.7)         | (5.5)         | (6.1)         | (1.3)        | (3.6)         | (19.4)         | (9.0)          | (1.0)        | (6.4)         | (6.1)         | (5.9)         | (2.2)        | (2.9)         | (4.8)         | (4.3)         | (5.4)         | (5.2)         | (3.2)         | (2.2)        | (5.5)         | (0.8)        | (100.0)          | (100.0)          |
| 1996-7    | 615          | 757           | 1893          | 2831          | 385          | 1317          | 6555           | 3686           | 300          | 1127          | 2047          | 2135          | 978          | 1063          | 1476          | 1736          | 2006          | 2187          | 934           | 987          | 1863          | 319          | 33470            | 39132            |
|           | (1.8)        | (1.9)         | (5.7)         | (7.2)         | (1.2)        | (3.4)         | (19.6)         | (9.4)          | (0.9)        | (2.9)         | (6.1)         | (5.5)         | (2.9)        | (2.7)         | (4.4)         | (4.4)         | (6.0)         | (5.6)         | (2.8)         | (2.5)        | (5.6)         | (0.8)        | (100.0)          | (100.0)          |
| 1995-6    | 333          | 812           | 1977          | 3145          | 376          | 1022          | 5520           | 3861           | 282          | 1021          | 2011          | 1918          | 902          | 1092          | 1428          | 1607          | 2216          | 2468          | 1014          | 1064         | 1821          | 388          | 31795            | 36675            |
|           | (1.0)        | (2.2)         | (6.2)         | (8.6)         | (1.2)        | (2.8)         | (17.4)         | (10.5)         | (0.9)        | (2.8)         | (6.3)         | (5.2)         | (2.8)        | (3.0)         | (4.5)         | (4.4)         | (7.0)         | (6.7)         | (3.2)         | (2.9)        | (5.7)         | (1.1)        | (100.0)          | (100.0)          |
| 1994–5    | 254          | 761           | 1748          | 2187          | 346          | 915           | 5021           | 2906           | 247          | 824           | 1690          | 1559          | 770          | 900           | 1266          | 1533          | 2027          | 2040          | 858           | 741          | 1517          | 287          | 26331            | 28654            |
|           | (1.0)        | (2.7)         | (6.6)         | (7.6)         | (1.3)        | (3.2)         | (19.1)         | (10.1)         | (0.9)        | (2.9)         | (6.4)         | (5.4)         | (2.9)        | (3.1)         | (4.8)         | (5.4)         | (7.7)         | (7.1)         | (3.3)         | (2.6)        | (5.8)         | (1.0)        | (100.0)          | (100.0)          |
| 1993–4    | 279          | 302           | 1539          | 1790          | 245          | 659           | 3999           | 2737           | 221          | 506           | 1379          | 1536          | 752          | 627           | 1158          | 1003          | 1741          | 1522          | 604           | 538          | 1250          | 189          | 22238            | 23306            |
|           | (1.3)        | (1.3)         | (6.9)         | (7.7)         | (1.1)        | (2.8)         | (18.0)         | (11.7)         | (1.0)        | (2.2)         | (6.2)         | (6.6)         | (3.4)        | (2.7)         | (5.2)         | (4.3)         | (7.8)         | (6.5)         | (2.7)         | (2.3)        | (5.6)         | (0.8)        | (100.0)          | (100.0)          |
| 1992–1    | 141          | 126           | 1427          | 1657          | 223          | 838           | 3516           | 2147           | 199          | 378           | 1213          | 1417          | 589          | 632           | 814           | 1112          | 1437          | 1428          | 622           | 524          | 765           | 170          | 18537            | 21882            |
| 1001 2    | (0.8)        | (0.6)         | (7.7)         | (7.6)         | (1.2)        | (3.8)         | (19.0)         | (9.8)          | (1.1)        | (1.7)         | (6.5)         | (6.5)         | (3.2)        | (2.9)         | (4.4)         | (5.1)         | (7.7)         | (6.5)         | (3.4)         | (2.4)        | (4.1)         | (0.8)        | (100.0)          | (100.0)          |
| 1991–2    | 48           | 21            | 1270          | 1559          | 203          | 586           | 2921           | 1995           | 219          | 151           | 1138          | 1202          | 389          | 695           | 739           | 1248          | 1652          | 1369          | 580           | 448          | 614           | 106          | 17865            | 19411            |
| 1990–1    | (0.3)<br>18  | (0.1)         | (7.1)<br>1421 | (8.0)<br>1936 | (1.1)<br>179 | (3.0)<br>816  | (16.4)<br>2673 | (10.3)<br>2923 | (1.2)<br>224 | (0.8)<br>268  | (6.4)<br>1186 | (6.2)<br>1613 | (2.2)<br>379 | (3.6)<br>796  | (4.1)<br>439  | (6.4)<br>1059 | (9.2)<br>1694 | (7.1)<br>1808 | (3.2)<br>558  | (2.3)<br>608 | (3.4)<br>597  | (0.5)<br>166 | (100.0)<br>18145 | (100.0)<br>24073 |
| 1990-1    | (0.1)        | (0.1)         | (7.8)         | (8.0)         | (1.0)        | (3.4)         | (14.7)         | (12.1)         | (1.2)        | (1.1)         | (6.5)         | (6.7)         | (2.1)        | (3.3)         | (2.4)         | (4.4)         | (9.3)         | (7.5)         | (3.1)         | (2.5)        | (3.3)         | (0.7)        | (100.0)          | (100.0)          |
| 1989–90   | 24           | 40            | 1064          | (8.0)<br>1674 | 201          | 539           | 2686           | 2561           | 219          | 219           | 961           | 1783          | 280          | 540           | 427           | 857           | 1639          | 1692          | (5.1)<br>457  | 464          | 537           | 149          | 16613            | 21219            |
| 1707-70   | (0.1)        | (0.2)         | (6.4)         | (7.9)         | (1.2)        | (2.5)         | (16.2)         | (12.1)         | (1.3)        | (1.0)         | (5.8)         | (8.4)         | (1.7)        | (2.5)         | (2.6)         | (4.0)         | (9.9)         | (8.0)         | (2.7)         | (2.2)        | (3.2)         | (0.7)        | (100.0)          | (100.0)          |
| 1988–9    | 91           | 98            | 854           | 1697          | 183          | 488           | 2574           | 2237           | 188          | 194           | 796           | 1656          | 223          | 429           | 293           | 602           | 1488          | 1817          | 373           | 347          | 565           | 121          | 13970            | 19497            |
| 1,00      | (0.7)        | (0.5)         | (6.1)         | (8.7)         | (1.3)        | (2.5)         | (18.4)         | (11.5)         | (1.3)        | (1.0)         | (5.7)         | (8.5)         | (1.6)        | (2.2)         | (2.1)         | (3.1)         | (10.6)        | (9.3)         | (2.7)         | (1.8)        | (4.0)         | (0.6)        | (100.0)          | (100.0)          |
| 1987-8    | 15           | 119           | 817           | 1665          | 139          | 388           | 2252           | 1544           | 157          | 182           | 783           | 1410          | 211          | 323           | 239           | 588           | 1245          | 1640          | 384           | 395          | 344           | 93           | 12089            | 17156            |
|           | (0.1)        | (0.7)         | (6.8)         | (9.7)         | (1.1)        | (2.3)         | (18.6)         | (9.0)          | (1.3)        | (1.1)         | (6.5)         | (8.2)         | (1.7)        | (1.9)         | (2.0)         | (3.4)         | (10.3)        | (9.6)         | (3.2)         | (2.3)        | (2.8)         | (0.5)        | (100.0)          | (100.0)          |

Notes: Figures in brackets are percentages to total export /import; The countries are selected as per the the following criteria; USA and China are top in both import and export in 2005–6. UK, Singapore, UAE are top destinations of exports in 2005–6. Germany, Australia, and Switzerland are 5 top import destinations to India in 2005–6. Japan, Italy, and Hong Kong are three other partners in trade where both export and imports are more than \$1000 million.

Source: DGCI & S.

## A11 FOREIGN INVESTMENT AND NRI DEPOSITS

TABLE A11.1 Foreign Investment Inflows

(US\$ Million)

| Year/<br>Month   | Direct<br>Invest-<br>ment<br>(4 to10) | Equity (4 to 8) | Govern-<br>ment<br>(SIA+<br>FIPB) | RBI        | NRI<br>Invest-<br>ments | Acquisition of shares* | Equity Capital of Unincor- porated Bodies# | Reinvested<br>Earnings <sup>\$</sup> | Other<br>Capital <sup>\$\$</sup> | Port-<br>folio<br>Invest-<br>ment<br>(12 to 14 | GDRs/<br>ADRs <sup>##</sup> | FIIs**       | Offshore<br>Funds<br>and<br>Others | Total        |
|------------------|---------------------------------------|-----------------|-----------------------------------|------------|-------------------------|------------------------|--------------------------------------------|--------------------------------------|----------------------------------|------------------------------------------------|-----------------------------|--------------|------------------------------------|--------------|
| (1)              | (2)                                   | (3)             | (4)                               | (5)        | (6)                     | (7)                    | (8)                                        | (9)                                  | (10)                             | (11)                                           | (12)                        | (13)         | (14)                               | (15)         |
| 2005–6           |                                       |                 |                                   |            |                         |                        |                                            |                                      |                                  |                                                |                             |              |                                    |              |
| Mar 2006         | 1240                                  | 1240            | 96                                | 674        | 0                       | 470                    | 0                                          | 0                                    | 0                                | 966                                            | 282                         | 684          | 0                                  | 2206         |
| Feb 2006         | 127                                   | 127             | 16                                | 92         | 0                       | 19                     | 0                                          | 0                                    | 0                                | 1821                                           | 129                         | 1692         | 0                                  | 1948         |
| Jan 2006         | 482                                   | 482             | 78                                | 144        | 0                       | 260                    | 0                                          | 0                                    | 0                                | 1545                                           | 159                         | 1386         | 0                                  | 2027         |
| Dec 2005         | 342                                   | 342             | 46                                | 117        | 0                       | 179                    | 0                                          | 0                                    | 0                                | 2389                                           | 267                         | 2122         | 0                                  | 2731         |
| Nov 2005         | 746                                   | 746             | 39                                | 102        | 0                       | 605                    | 0                                          | 0                                    | 0                                | 271                                            | 288                         | -17          | 0                                  | 1017         |
| Oct 2005         | 412                                   | 412             | 25                                | 231        | 0                       | 156                    | 0                                          | 0                                    | 0                                | 88                                             | 557                         | -469         | 0                                  | 500          |
| Sep 2005         | 282                                   | 282             | 7                                 | 128        | 0                       | 147                    | 0                                          | 0                                    | 0                                | 1342                                           | 302                         | 1035         | 5                                  | 1624         |
| Aug 2005         | 399                                   | 399             | 68                                | 300        | 0                       | 31                     | 0                                          | 0                                    | 0                                | 1289                                           | 85                          | 1204         | 0                                  | 1688         |
| Jul 2005         | 324                                   | 324             | 114                               | 139        | 0                       | 71                     | 0                                          | 0                                    | 0                                | 1809                                           | 63                          | 1746         | 0                                  | 2133         |
| Jun 2005         | 264                                   | 264             | 70                                | 142        | 0                       | 52                     | 0                                          | 0                                    | 0                                | 1382                                           | 60                          | 1313         | 9                                  | 1646         |
| May 2005         | 654                                   | 654             | 486                               | 60         | 0                       | 108                    | 0                                          | 0                                    | 0                                | -123                                           | 347                         | -470         | 0                                  | 531          |
| Apr 2005         | 268                                   | 268             | 80                                | 104        | 0                       | 83                     | 0                                          | 0                                    | 0                                | -286                                           | 13                          | -299         | 0                                  | -18          |
| 2004–5           |                                       |                 |                                   |            |                         |                        |                                            |                                      |                                  |                                                |                             |              |                                    |              |
| Mar 2005         | 274                                   | 274             | 71                                | 68         | 0                       | 135                    | 0                                          | 0                                    | 0                                | 1654                                           | 171                         | 1475         | 8                                  | 1929         |
| Feb 2005         | 238                                   | 238             | 101                               | 99         | 0                       | 38                     | 0                                          | 0                                    | 0                                | 2467                                           | 0                           | 2467         | _                                  | 2705         |
| Jan 2005         | 152                                   | 152             | 30                                | 67         | 0                       | 55                     | 0                                          | 0                                    | 0                                | -130                                           | 48                          | -178         | _                                  | 22           |
| Dec 2004         | 316                                   | 316             | 86                                | 177        | 0                       | 53                     | 0                                          | 0                                    | 0                                | 804                                            | 0                           | 799          | 5                                  | 1120         |
| Nov 2004         | 186                                   | 186             | 46                                | 98         | 0                       | 42                     | 0                                          | 0                                    | 0                                | 3051                                           | 224                         | 2827         | _                                  | 3237         |
| Oct 2004         | 214                                   | 214             | 24                                | 90         | 0                       | 100                    | 0                                          | 0                                    | 0                                | 848                                            | 0                           | 848          | _                                  | 1062         |
| Sep 2004         | 282                                   | 282             | 57                                | 96         | 0                       | 129                    | 0                                          | 0                                    | 0                                | 424                                            | 0                           | 421          | 3                                  | 706          |
| Aug 2004         | 601                                   | 601             | 329                               | 137        | 0                       | 135                    | 0                                          | 0                                    | 0                                | 450                                            | 0                           | 450          | _                                  | 1051         |
| Jul 2004         | 173                                   | 173             | 30                                | 112        | 0                       | 31                     | 0                                          | 0                                    | 0                                | -410                                           | 0                           | -410         | _                                  | -237         |
| Jun 2004         | 380                                   | 380             | 103                               | 162        | 0                       | 115                    | 0                                          | 0                                    | 0                                | -467                                           | 0                           | -467         | _                                  | _87          |
| May 2004         | 217                                   | 217             | 56                                | 83         | 0                       | 78                     | 0                                          | 0                                    | 0                                | -314                                           | 135                         | -449         | _                                  | -97          |
| Apr 2004         | 217                                   | 217             | 129                               | 69         | 0                       | 19                     | 0                                          | 0                                    | 0                                | 938                                            | 35                          | 903          | _                                  | 1155         |
| 2005–6           | 7210                                  | 5750            | 1126                              | 2233       | 0                       | 2181                   | 210                                        | 1257                                 | 203                              | 12492                                          | 2552                        | 9926         | 14                                 | 19702        |
| 2003–6           | 5652                                  | 3777            | 1062                              | 1258       | 0                       | 930                    | 527                                        | 1508                                 | 367                              | 9315                                           | 613                         | 8686         | 16                                 | 14967        |
| 2003–4           | 4322                                  | 2229            | 928                               | 534        | 0                       | 735                    | 32                                         | 1460                                 | 633                              | 11377                                          | 459                         | 10918        | 0                                  | 15699        |
| 2002–3           | 5035                                  | 2764            | 919                               | 739        | 0                       | 916                    | 190                                        | 1833                                 | 438                              | 979                                            | 600                         | 377          | 2                                  | 6014         |
| 2002–3           | 6130                                  | 4095            | 2221                              | 767        | 35                      | 881                    | 190                                        | 1645                                 | 390                              | 2021                                           | 477                         | 1505         | 39                                 | 8151         |
| 2001–2           | 4029                                  | 2400            | 1456                              | 454        | 67                      | 362                    | 61                                         | 1350                                 | 279                              | 2760                                           | 831                         | 1847         | 82                                 | 6789         |
| 1999–2000        | 2155                                  | 2155            | 1410                              | 171        | 84                      | 490                    | 0                                          |                                      |                                  | 3026                                           | 768                         | 2135         | 123                                | 5181         |
| 1999–2000        |                                       |                 |                                   |            |                         |                        | 0                                          | 0                                    | 0                                |                                                |                             |              |                                    |              |
| 1998–9<br>1997–8 | 2462<br>3557                          | 2462<br>3557    | 1821<br>2754                      | 179<br>202 | 62<br>241               | 400                    | 0                                          | 0                                    | 0                                | -61<br>1828                                    | 270<br>645                  | -390<br>979  | 59<br>204                          | 2401<br>5385 |
| 1997–8<br>1996–7 |                                       |                 |                                   |            |                         | 360                    |                                            | 0                                    |                                  |                                                |                             |              |                                    |              |
| 1996–7<br>1995–6 | 2462<br>2144                          | 2462<br>2144    | 1821<br>1249                      | 179        | 62<br>715               | 400                    | 0                                          | 0                                    | 0                                | 3312<br>2748                                   | 1366<br>683                 | 1926<br>2009 | 20<br>56                           | 5774<br>4892 |
|                  |                                       |                 |                                   | 169        |                         | 11                     |                                            |                                      |                                  |                                                |                             |              | 56<br>230                          |              |
| 1994–5           | 1314                                  | 1314            | 701                               | 171        | 442                     | 0                      | 0                                          | 0                                    | 0                                | 3824                                           | 2082                        | 1503         | 239                                | 5138         |
| 1993–4           | 586                                   | 586             | 280                               | 89         | 217                     | 0                      | 0                                          | 0                                    | 0                                | 3567                                           | 1520                        | 1665         | 382                                | 4153         |
| 1992–3           | 315                                   | 315             | 222                               | 42         | 51                      | 0                      | 0                                          | 0                                    | 0                                | 244                                            | 240                         | 1            | 3                                  | 559          |
| 1991–2           | 129                                   | 129             | 66                                | 0          | 63                      | 0                      | 0                                          | 0                                    | 0                                | 4                                              | 0                           | 0            | 4                                  | 133          |
| 1990–1           | 97                                    | 0               | 0                                 | 0          | 0                       | 0                      | 0                                          | 0                                    | 0                                | 6                                              | 0                           | 0            | 6                                  | 103          |

Notes: \* Relates to acquisition of shares of Indian companies by non-residents under Section 5 of FEMA 1999. Data on such acquisition have been included as part of FDI since January 1996; # Figures for equity capital of unincorporated bodies for 2005–6 are estimates; ## Represents the amount raised by Indian corporates through Global Depository Receipts (GDRs) and American Depository Receipts (ADRs); \$ Data for 2004–5 and 2005–6 are estimated as average of previous two years; P: Provisional; \$ Data pertains to inter company debt transactions of FDI entities; \*\* Represents fresh net inflow of funds by FIIs.

Source: RBI Bulletin, various issues.

TABLE A11.2 NRI Deposits, Outstandings as at the End Period

 $(US\$\ million)$ 

| Year/Month | FCNR(A) | FCNR(B) | NR(E)RA | NR(NR)RD | Total |
|------------|---------|---------|---------|----------|-------|
| 1          | 2       | 3       | 4       | 5        | 6     |
| 2005–6     |         |         |         |          |       |
| Mar 2006   | 0       | 13198   | 21954   | 0        | 35152 |
| Feb 2006   | 0       | 12670   | 21823   | 0        | 34493 |
| Jan 2006   | 0       | 12551   | 21661   | 0        | 34212 |
| Dec 2005   | 0       | 11819   | 21420   | 0        | 33239 |
| Nov 2005   | 0       | 11420   | 20850   | 0        | 32270 |
| Oct 2005   | 0       | 11556   | 20848   | 0        | 32404 |
| Sep 2005   | 0       | 11477   | 21384   | 0        | 32861 |
| Aug 2005   | 0       | 11511   | 21170   | 0        | 32681 |
| Jul 2005   | 0       | 11346   | 21404   | 0        | 32750 |
| Jun 2005   | 0       | 11397   | 21333   | 0        | 32730 |
| May 2005   | 0       | 11384   | 21358   | 0        | 32742 |
| Apr 2005   | 0       | 11539   | 21378   | 0        | 32917 |
| 2004-5     |         |         |         |          |       |
| Mar 2005   | 0       | 11452   | 21291   | 232      | 32975 |
| Feb 2005   | 0       | 11388   | 20456   | 503      | 32347 |
| Jan 2005   | 0       | 11292   | 20094   | 701      | 32087 |
| Dec 2004   | 0       | 11437   | 20475   | 801      | 32713 |
| Nov 2004   | 0       | 11196   | 19940   | 895      | 32031 |
| Oct 2004   | 0       | 11100   | 19616   | 965      | 31681 |
| Sep 2004   | 0       | 11087   | 19472   | 1047     | 31606 |
| Aug 2004   | 0       | 11067   | 19375   | 1155     | 31597 |
| Jul 2004   | 0       | 11162   | 19459   | 1275     | 31896 |
| Jun 2004   | 0       | 11054   | 19731   | 1379     | 32164 |
| May 2004   | 0       | 11020   | 20272   | 1500     | 32792 |
| Apr 2004   | 0       | 10889   | 21251   | 1630     | 33770 |
| 2005–6     | 0       | 13198   | 21954   | 0        | 35152 |
| 2004-5     | 0       | 11452   | 21291   | 232      | 32975 |
| 2003-4     | 0       | 10961   | 20559   | 1746     | 33266 |
| 2002-3     | 0       | 10199   | 14923   | 3407     | 28529 |
| 2001-2     | 0       | 9673    | 8449    | 7052     | 25174 |
| 2000-1     | 0       | 9076    | 7147    | 6849     | 23072 |
| 1999-00    | 0       | 8172    | 6758    | 6754     | 21684 |
| 1998–9     | 0       | 7835    | 6045    | 6618     | 20498 |
| 1997-8     | 1       | 8467    | 5637    | 6262     | 20367 |
| 1996–7     | 2306    | 7496    | 4983    | 5604     | 20389 |
| 1995–6     | 4255    | 5720    | 3916    | 3542     | 17433 |
| 1994–5     | 7051    | 3063    | 4556    | 2486     | 17156 |
| 1993–4     | 9300    | 1108    | 3523    | 1754     | 15685 |
| 1992-3     | 10617   | 0       | 2740    | 621      | 13978 |
| 1991–2     | 9792    | 0       | 3025    | 0        | 12817 |
| 1990-1     | 10103   | 0       | 3618    | 0        | 13721 |

Notes: All figures are inclusive of interest; FCNR(A)—foreign currency non-resident (accounts); NR(NR)RD—non $resident \ (non-repatriable) \ rupee \ deposits \ (introduced in June 2002); FCNR(A) \\ -- for eign \ currency \ non-resident \ (accounts) \\$ (introduced May 2003); NR(E)RA—non-resident (external) rupee accounts.

Source: RBI Bulletin, various issues.

Table A11.3 FDI Inflows : Year-wise, Route-wise, Sector-wise Break-up and Countrywise Break-up

|                       |                                            | Yea                            | ar-wise and Route-Wis                      | e: Actual Inflows of               | FDI/NRI         |                                     |                |
|-----------------------|--------------------------------------------|--------------------------------|--------------------------------------------|------------------------------------|-----------------|-------------------------------------|----------------|
|                       | (Equity capital co                         | omponents only)                |                                            |                                    | (From August 19 | 91 to March 2006)                   |                |
|                       |                                            |                                | (Amount Ru                                 | pees in million)                   |                 |                                     |                |
| Year<br>(Jan-<br>Dec) | Govt's<br>approval<br>(FIPB, SIA<br>route) | RBI's<br>Automatic<br>Approval | Amount of inflows on acquisition of shares | RBI's<br>Various<br>NRI<br>Schemes | Total           | Closing<br>Balance<br>of<br>Advance | Grand<br>Total |
| (1)                   | (2)                                        | (3)                            | (4)                                        | (5)                                | (6)             | (8)                                 | (9)            |
| Total #               | 755194                                     | 315575                         | 357531                                     | 84270                              | 1512571         | 98690                               | 1614109        |
| 2006\$                | 8466                                       | 40452                          | 33274                                      | 0                                  | 82191           | 0                                   | 82191          |
| 2005                  | 49728                                      | 68685                          | 74292                                      | 0                                  | 192706          | 0                                   | 192706         |
| 2004                  | 48517                                      | 54221                          | 45076                                      | 0                                  | 147814          | 24852                               | 172665         |
| 2003                  | 42957                                      | 23400                          | 29284                                      | 0                                  | 95640           | 18808                               | 114448         |
| 2002                  | 69577                                      | 39030                          | 52626                                      | 111                                | 161344          | 19771                               | 181116         |
| 2001                  | 96386                                      | 32411                          | 29622                                      | 2293                               | 160711          | 7066                                | 167777         |
| 2000                  | 63425                                      | 16918                          | 20581                                      | 3488                               | 104411          | 19126                               | 123537         |
| 1999                  | 61894                                      | 7608                           | 19608                                      | 3488                               | 92599           | 9068                                | 101667         |
| 1998                  | 82397                                      | 6107                           | 40594                                      | 3595                               | 132692          | 0                                   | 132692         |
| 1997                  | 101284                                     | 8672                           | 9540                                       | 10396                              | 129898          | 0                                   | 129898         |
| 1996                  | 57589                                      | 6196                           | 3038                                       | 20621                              | 87522           | 0                                   | 87522          |
| 1995                  | 38694                                      | 5302                           | 0                                          | 19878                              | 64854           | 0                                   | 64854          |
| 1994                  | 15008                                      | 3626                           | 0                                          | 11453                              | 31122           | 0                                   | 31122          |
| 1993                  | 9852                                       | 2411                           | 0                                          | 5794                               | 18620           | 0                                   | 18620          |
| 1992                  | 4780                                       | 475                            | 0                                          | 1530                               | 6912            | 0                                   | 6912           |
| 1991*                 | 1912                                       | 0                              | 0                                          | 1623                               | 3535            | 0                                   | 3535           |
|                       |                                            |                                | (Amount in                                 | n US \$ million)                   |                 |                                     |                |
| Total #               | 18822                                      | 7224                           | 8109                                       | 2510                               | 36664           | 2179                                | 38904          |
| 2006 <sup>\$</sup>    | 191                                        | 912                            | 750                                        | 0                                  | 1853            | 0                                   | 1853           |
| 2005                  | 1137                                       | 1557                           | 1660                                       | 0                                  | 4354            | 0                                   | 4354           |
| 2004                  | 1055                                       | 1179                           | 980                                        | 0                                  | 3213            | 540                                 | 3753           |
| 2003                  | 934                                        | 509                            | 637                                        | 0                                  | 2079            | 409                                 | 2488           |
| 2002                  | 1450                                       | 813                            | 1096                                       | 2                                  | 3361            | 412                                 | 3773           |
| 2001                  | 2142                                       | 720                            | 658                                        | 51                                 | 3571            | 157                                 | 3728           |
| 2000                  | 1475                                       | 393                            | 479                                        | 81                                 | 2428            | 445                                 | 2873           |
| 1999                  | 1474                                       | 181                            | 467                                        | 83                                 | 2205            | 216                                 | 2421           |
| 1998                  | 2086                                       | 155                            | 1028                                       | 91                                 | 3359            | 0                                   | 3359           |
| 1997                  | 2824                                       | 242                            | 266                                        | 290                                | 3621            | 0                                   | 3621           |
| 1996                  | 1675                                       | 180                            | 88                                         | 600                                | 2545            | 0                                   | 2545           |
| 1995                  | 1232                                       | 169                            | 0                                          | 633                                | 2065            | 0                                   | 2065           |
| 1994                  | 478                                        | 116                            | 0                                          | 365                                | 992             | 0                                   | 992            |
| 1993                  | 321                                        | 79                             | 0                                          | 189                                | 608             | 0                                   | 608            |
| 1992                  | 183                                        | 18                             | 0                                          | 59                                 | 264             | 0                                   | 264            |
| 1991*                 | 78                                         | 0                              | 0                                          | 66                                 | 144             | 0                                   | 144            |

Notes: \* Data as on 31 March 2006; \* Data pertain to January–March 2006; \* Data pertains to August–December 1991; Inflows through ADRs/GDRs/FCCBs against the FDI approvals have been excluded; Advance amounts of FDI get adjusted under different routes of inflow; Figures in brackets are percentages to respective sub-total and grand total.

Source: www.Dipp.nic.in (SIA Newsletter).

TABLE A11.3 (contd.) FDI Inflows: Year-wise, Route-wise, Sector-wise Break-up and Countrywise Break-up

| Sector-wise Break-up<br>From August 1991 |         |         |           | Country-wise B<br>From Augus | reak-up For l<br>t 1991 to Mar |         | s         |
|------------------------------------------|---------|---------|-----------|------------------------------|--------------------------------|---------|-----------|
|                                          | (Rs Mn) | (US\$ M | (illion ) |                              | (Rs Mn)                        | (US\$ N | Million ) |
| Total (Industry & Services)              | 1355523 | 32306   | (83.0)    | Total Source Countries       | 1309412                        | 31203   | (80.2)    |
| Electrical Equipment (incl.S/W & Elec)   | 237094  | 5496    | (17.0)    | of which:                    |                                |         |           |
| Telecommunications                       | 143368  | 3372    | (10.4)    | Mauritius                    | 504032                         | 11785   | (37.8)    |
| Transportation Industry                  | 133151  | 3178    | (9.8)     | USA                          | 206751                         | 5038    | (16.1)    |
| Service Sector                           | 128042  | 3091    | (9.6)     | Japan                        | 89309                          | 2124    | (6.8)     |
| Fuels (Power & Oil Refinery)             | 109763  | 2581    | (8.0)     | Netherlands                  | 84966                          | 1994    | (6.4)     |
| Chemicals (Other than Fertilizers)       | 85798   | 2143    | (6.6)     | UK                           | 82710                          | 1979    | (6.3)     |
| Food Processing Industries               | 47023   | 1179    | (3.6)     | Germany                      | 65204                          | 1582    | (5.1)     |
| Drugs and Pharmaceuticals                | 43114   | 1007    | (3.1)     | Singapore                    | 43880                          | 1050    | (3.4)     |
| Cement and Gypsum Products               | 32313   | 747     | (2.3)     | France                       | 32756                          | 778     | (2.5)     |
| Metallurgical Industries                 | 28163   | 655     | (2.0)     | South Korea                  | 29123                          | 752     | (2.4)     |
| Consultancy Services                     | 20985   | 460     | (1.4)     | Switzerland                  | 26219                          | 636     | (2.0)     |
| Misc. Mechanical Engineering             | 19321   | 492     | (1.5)     | Italy                        | 20546                          | 496     | (1.6)     |
| Textiles (incl. Dyed and Printed)        | 17749   | 450     | (1.4)     | Sweden                       | 19806                          | 472     | (1.5)     |
| Trading                                  | 14968   | 379     | (1.2)     | Hongkong                     | 13495                          | 370     | (1.2)     |
| Paper and Pulp (incl. Paper Product)     | 14047   | 363     | (1.1)     | UAE                          | 6991                           | 156     | (0.5)     |
| Hotel and Tourism                        | 13841   | 323     | (1.0)     | Australia                    | 6689                           | 159     | (0.5)     |
| Glass                                    | 10305   | 256     | (0.8)     | Denmark                      | 6590                           | 160     | (0.5)     |
| Rubber Goods                             | 9849    | 234     | (0.7)     | Belgium                      | 6265                           | 152     | (0.5)     |
| Industrial Machinery                     | 8684    | 215     | (0.7)     | Malaysia                     | 5956                           | 139     | (0.4)     |
| Comm., Office & Household Equipment      | 8465    | 233     | (0.7)     | Cyprus                       | 5149                           | 118     | (0.4)     |
| Agricultural Machinery                   | 6898    | 167     | (0.5)     | Russia                       | 4969                           | 117     | (0.4)     |
| Machine Tools                            | 6643    | 156     | (0.5)     | Cayman Islands               | 4753                           | 103     | (0.3)     |
| Timber Products                          | 4669    | 107     | (0.3)     | Canada                       | 4440                           | 105     | (0.3)     |
| Medical and Surgical Appliances          | 4482    | 102     | (0.3)     | British Virginia             | 3524                           | 81      | (0.3)     |
| Soaps, Cosmetics, & Toilet Preperations  | 3950    | 90      | (0.3)     | Bermuda                      | 2922                           | 71      | (0.2)     |
| Ceramics                                 | 3495    | 90      | (0.3)     | Thailand                     | 2832                           | 75      | (0.2)     |
| Earth-moving Machinery                   | 3352    | 74      | (0.2)     | Phillipines                  | 1886                           | 52      | (0.2)     |
| Fertilizers                              | 3293    | 78      | (0.2)     | Finland                      | 1743                           | 44      | (0.1)     |
| Fermentation Industries                  | 3158    | 77      | (0.2)     | Luxembourg                   | 1722                           | 41      | (0.1)     |
| Leather, Leather Goods, & Pickers        | 1968    | 52      | (0.2)     | Austria                      | 1650                           | 41      | (0.1)     |
| Vegetable Oils and Vanaspati             | 1498    | 37      | (0.1)     | Israel                       | 1623                           | 44      | (0.1)     |
| Glue and Gelatin                         | 1476    | 36      | (0.1)     | Spain                        | 1424                           | 32      | (0.1)     |
| Prime Movers other than Electrical       | 1056    | 31      | (0.1)     | Baharain                     | 1408                           | 33      | (0.1)     |
| Industrial Instruments                   | 842     | 22      | (0.1)     | South Africa                 | 1403                           | 31      | (0.1)     |
| Sugar                                    | 719     | 17      | (0.1)     | Indonesia                    | 1391                           | 30      | (0.1)     |
| Scientific Instruments                   | 616     | 15      | (0.0)     | West Indies                  | 1385                           | 32      | (0.1)     |
| Photographic Raw Film and Paper          | 608     | 15      | (0.0)     | Oman                         | 1076                           | 24      | (0.1)     |
| Dye-Stuffs                               | 592     | 16      | (0.0)     | Nevia                        | 841                            | 19      | (0.1)     |
| Boilers and Steam Generating Plants      | 183     | 5       | (0.0)     | Bahamas                      | 813                            | 21      | (0.1)     |
| Defence Industries                       | 2       | 0       | (0.0)     | Iceland                      | 812                            | 19      | (0.1)     |
| Mathematical, Surveying and Drawing      | 0       | 0       | (0.0)     | Memo Items:                  | 304698                         | 7701    | (19.8)    |
| Miscellaneous Industries                 | 179983  | 4267    | (13.2)    | NRI                          | 33727                          | 796     | (2.0)     |
| Memo Items:                              | 258588  | 6599    | (17.0)    | Unindicated                  | 12383                          | 307     | (0.8)     |
| Acquisition of Shares                    | 72780   | 1849    | (4.8)     | Acquisition of Shares        | 72780                          | 1849    | (4.8)     |
| Advance Inflows                          | 98690   | 2179    | (5.6)     | Advance Inflows              | 98690                          | 2179    | (5.6)     |
| Stock Swapped                            | 2849    | 61      | (0.2)     | Stock Swapped                | 2849                           | 61      | (0.2)     |
| NRI–RBI Schemes                          | 84269   | 2510    | (6.5)     | NRI-RBI Schemes              | 84269                          | 2510    | (6.5)     |
| Grand Total                              | 1614111 | 38905   | (100.0)   | Grand Total                  | 1614110                        | 38904   | (100.0)   |

### DEMOGRAPHY AND SOCIAL SECTOR A12 POPULATION

TABLE 12.1 Statewise Population, 1951–2001

(million)

|                      |         |                                      |        |                                    |        |                                    |        |                                    |        |                                    |        | (million)                          |
|----------------------|---------|--------------------------------------|--------|------------------------------------|--------|------------------------------------|--------|------------------------------------|--------|------------------------------------|--------|------------------------------------|
| State/UTs            | 2001    | Decadal<br>growth (%)<br>(1991–2001) | 1991   | Decadal<br>growth (%)<br>(1981–91) | 1981   | Decadal<br>growth (%)<br>(1971–81) | 1971   | Decadal<br>growth (%)<br>(1961–71) | 1961   | Decadal<br>growth (%)<br>(1951–61) | 1951   | Decadal<br>growth (%)<br>(1941–51) |
| (1)                  | (2)     | (3)                                  | (4)    | (5)                                | (6)    | (7)                                | (8)    | (9)                                | (10)   | (11)                               | (12)   | (13)                               |
| India                | 1028.61 | 21.5                                 | 846.39 | 23.9                               | 683.33 | 24.7                               | 548.16 | 24.8                               | 439.23 | 21.6                               | 361.09 | 13.3                               |
| Andhra Pradesh       | 76.21   | 14.6                                 | 66.51  | 24.2                               | 53.55  | 23.1                               | 43.50  | 20.9                               | 35.98  | 15.6                               | 31.12  | 14.0                               |
| Arunachal Pradesh    | 1.10    | 27.2                                 | 0.87   | 36.9                               | 0.63   | 35.0                               | 0.47   | 38.9                               | 0.34   | _                                  | _      | _                                  |
| Assam                | 26.66   | 18.9                                 | 22.41  | 24.2                               | 18.04  | 23.4                               | 14.63  | 35.0                               | 10.84  | 35.0                               | 8.03   | 19.9                               |
| Bihar                | 83.00   | 28.6                                 | 64.53  | -7.7                               | 69.92  | 24.1                               | 56.35  | 21.3                               | 46.45  | 19.8                               | 38.78  | 10.3                               |
| Goa                  | 1.35    | 15.4                                 | 1.17   | 16.2                               | 1.01   | 26.7                               | 0.80   | 34.7                               | 0.59   | 7.9                                | 0.55   | 1.1                                |
| Gujarat              | 50.67   | 22.7                                 | 41.31  | 21.2                               | 34.09  | 27.7                               | 26.70  | 29.4                               | 20.63  | 26.9                               | 16.26  | 18.7                               |
| Haryana              | 21.14   | 28.4                                 | 16.46  | 27.4                               | 12.92  | 28.8                               | 10.04  | 32.2                               | 7.59   | 33.8                               | 5.67   | 7.6                                |
| Himachal Pradesh     | 6.08    | 17.6                                 | 5.17   | 20.8                               | 4.28   | 23.7                               | 3.46   | 23.0                               | 2.81   | 17.9                               | 2.39   | 5.4                                |
| Jammu and Kashmir    | 10.14   | 29.9                                 | 7.80   | 30.3                               | 5.99   | 29.7                               | 4.62   | 29.7                               | 3.56   | 9.4                                | 3.25   | 10.4                               |
| Karnataka            | 52.85   | 17.5                                 | 44.98  | 21.1                               | 37.14  | 26.7                               | 29.30  | 24.2                               | 23.59  | 21.6                               | 19.40  | 19.4                               |
| Kerala               | 31.84   | 9.4                                  | 29.10  | 14.3                               | 25.45  | 19.2                               | 21.35  | 26.3                               | 16.90  | 24.8                               | 13.55  | 22.8                               |
| Madhya Pradesh       | 60.35   | 24.3                                 | 48.57  | -8.0                               | 52.79  | 26.7                               | 41.65  | 28.7                               | 32.37  | 24.2                               | 26.07  | 8.7                                |
| Maharashtra          | 96.88   | 22.7                                 | 78.94  | 25.7                               | 62.78  | 24.5                               | 50.41  | 27.5                               | 39.55  | 23.6                               | 32.00  | 19.3                               |
| Manipur              | 2.17    | 18.1                                 | 1.84   | 29.3                               | 1.42   | 32.4                               | 1.07   | 37.6                               | 0.78   | 34.9                               | 0.58   | 12.9                               |
| Meghalaya            | 2.32    | 30.7                                 | 1.78   | 32.9                               | 1.34   | 32.0                               | 1.01   | 31.6                               | 0.77   | 26.9                               | 0.61   | 9.0                                |
| Mizoram              | 0.89    | 29.0                                 | 0.69   | 39.7                               | 0.49   | 48.8                               | 0.33   | 24.8                               | 0.27   | 35.7                               | 0.20   | 28.1                               |
| Nagaland             | 1.99    | 64.5                                 | 1.21   | 56.1                               | 0.78   | 50.2                               | 0.52   | 39.8                               | 0.37   | 73.2                               | 0.21   | 12.1                               |
| Orissa               | 36.80   | 16.2                                 | 31.66  | 20.1                               | 26.37  | 20.2                               | 21.95  | 25.0                               | 17.55  | 19.8                               | 14.65  | 6.4                                |
| Punjab               | 24.36   | 20.1                                 | 20.28  | 20.8                               | 16.79  | 23.9                               | 13.55  | 21.7                               | 11.14  | 21.5                               | 9.16   | -4.6                               |
| Rajasthan            | 56.51   | 28.4                                 | 44.01  | 28.4                               | 34.26  | 33.0                               | 25.77  | 27.8                               | 20.16  | 26.2                               | 15.97  | 15.2                               |
| Sikkim               | 0.54    | 33.0                                 | 0.41   | 28.5                               | 0.32   | 50.5                               | 0.21   | 29.6                               | 0.16   | 17.4                               | 0.14   | 13.1                               |
| Tamil Nadu           | 62.41   | 11.7                                 | 55.86  | 15.4                               | 48.41  | 17.5                               | 41.20  | 22.3                               | 33.69  | 11.8                               | 30.12  | 14.7                               |
| Tripura              | 3.20    | 16.1                                 | 2.76   | 34.2                               | 2.06   | 31.7                               | 1.56   | 36.6                               | 1.14   | 78.7                               | 0.64   | 24.6                               |
| Uttar Pradesh        | 166.20  | 25.9                                 | 132.00 | 19.1                               | 110.86 | 25.5                               | 88.34  | 19.8                               | 73.76  | 16.7                               | 63.22  | 11.8                               |
| West Bengal          | 80.18   | 16.5                                 | 68.80  | 26.1                               | 54.58  | 23.2                               | 44.31  | 26.9                               | 34.93  | 32.8                               | 26.30  | 13.2                               |
| Uttaranchal          | 8.49    | 19.4                                 | 7.11   | -                                  | -      | _                                  | -      | _                                  | -      | _                                  | -      | -                                  |
| Jharkhand            | 26.95   | 23.4                                 | 21.84  | _                                  | _      | -                                  | _      | _                                  | _      | _                                  | _      | -                                  |
| Chhatisgarh          | 20.83   | 18.3                                 | 17.62  | _                                  | _      | -                                  | _      | _                                  | _      | _                                  | _      | -                                  |
| Union Territories    |         |                                      |        |                                    |        |                                    |        |                                    |        |                                    |        |                                    |
| Andaman & Nicobar    | 0.36    | 28.1                                 | 0.28   | 48.7                               | 0.19   | 64.3                               | 0.12   | -82.0                              | 0.64   | 106.5                              | 0.31   | -8.8                               |
| Chandigarh           | 0.90    | 40.2                                 | 0.64   | 42.0                               | 0.45   | 75.9                               | 0.26   | 114.2                              | 0.12   | -50.0                              | 0.24   | 4.3                                |
| Dadra & Nagar Haveli | 0.22    | 59.4                                 | 0.14   | 32.7                               | 0.10   | 40.5                               | 0.07   | 27.6                               | 0.06   | 38.1                               | 0.04   | 5.0                                |
| Daman and Diu        | 0.16    | 54.9                                 | 0.10   | 29.1                               | 0.08   | 25.4                               | 0.06   | 70.3                               | 0.04   | -24.5                              | 0.05   | 14.0                               |
| Delhi                | 13.85   | 47.0                                 | 9.42   | 51.5                               | 6.22   | 55.2                               | 4.01   | 50.7                               | 2.66   | 52.5                               | 1.74   | 90.0                               |
| Lakshadweep          | 0.06    | 15.4                                 | 0.05   | 30.0                               | 0.04   | 25.0                               | 0.03   | 33.3                               | 0.02   | 14.3                               | 0.02   | 16.7                               |
| Pondicherry          | 0.97    | 20.5                                 | 0.81   | 33.8                               | 0.60   | 28.0                               | 0.47   | 27.9                               | 0.37   | 16.4                               | 0.32   | 11.2                               |

Source: Census of India 2001, Primary Census Abstract and Census of India 1991, Final Population totals, Paper 1 of 1992, Vol. II.

Table A12.2 Statewise Rural and Urban Population of India, 1951–2001

(million)

| State/Union Territory  India | 2001         |        |        | 1991   |        |        | 1981   |        |        | 1971   |        |        | 1961   |       |        | 1951   |       |        |
|------------------------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|-------|--------|
|                              | Rural 741.66 | Urban  |        | Rural  | Urban |        | Rural  | Urban |        |
|                              |              | 285.36 | (27.7) | 628.69 | 217.61 | (25.7) | 523.87 | 159.46 | (23.3) | 439.05 | 109.11 | (19.9) | 360.30 | 78.94 | (18.0) | 298.64 | 62.44 | (17.3) |
| Andhra Pradesh               | 55.22        | 20.50  | (26.9) | 48.62  | 17.89  | (26.9) | 41.06  | 12.49  | (23.3) | 35.10  | 8.40   | (19.3) | 29.71  | 6.28  | (17.4) | 25.69  | 5.42  | (17.4) |
| Arunachal Pradesh            | 0.48         | 0.06   | (5.5)  | 0.75   | 0.11   | (12.8) | 0.59   | 0.04   | (6.5)  | 0.45   | 0.02   | (3.6)  | 0.34   | _     |        | _      | _     |        |
| Assam                        | 23.25        | 3.39   | (12.7) | 19.93  | 2.49   | (11.1) | 16.26  | 1.78   | (9.9)  | 13.34  | 1.29   | (8.8)  | 10.06  | 0.78  | (7.2)  | 7.68   | 0.35  | (4.3)  |
| Bihar                        | 74.20        | 8.68   | (10.5) | 75.02  | 11.35  | (17.6) | 61.20  | 8.72   | (12.5) | 50.72  | 5.63   | (10.0) | 42.53  | 3.91  | (8.4)  | 36.16  | 2.63  | (6.8)  |
| Goa                          | 0.68         | 0.67   | (49.6) | 0.69   | 0.48   | (41.0) | 0.69   | 0.32   | (32.1) | 0.59   | 0.20   | (25.5) | 0.50   | 0.09  | (14.7) | 0.48   | 0.07  | (13.0) |
| Gujarat                      | 31.70        | 18.90  | (37.3) | 27.06  | 14.25  | (34.5) | 23.48  | 10.60  | (31.1) | 19.20  | 7.50   | (28.1) | 15.32  | 5.32  | (25.8) | 11.84  | 4.43  | (27.2) |
| Haryana                      | 14.97        | 6.11   | (28.9) | 12.41  | 4.06   | (24.6) | 10.10  | 2.83   | (21.9) | 8.26   | 1.77   | (17.7) | 6.28   | 1.31  | (17.2) | 4.71   | 0.97  | (17.1) |
| Himachal Pradesh             | 5.48         | 0.60   | (9.8)  | 4.72   | 0.45   | (8.7)  | 3.96   | 0.33   | (7.6)  | 3.22   | 0.24   | (7.0)  | 2.63   | 0.18  | (6.3)  | 2.23   | 0.15  | (6.5)  |
| Jammu and Kashmir            | 7.57         | 2.51   | (24.7) | 5.88   | 1.84   | (23.6) | 4.73   | 1.26   | (21.0) | 3.76   | 0.86   | (18.6) | 2.97   | 0.59  | (16.7) | 2.80   | 0.46  | (14.0) |
| Karnataka                    | 34.81        | 17.92  | (33.9) | 31.07  | 13.91  | (30.9) | 26.41  | 10.73  | (28.9) | 22.18  | 7.12   | (24.3) | 18.32  | 5.27  | (22.3) | 14.95  | 4.45  | (23.0) |
| Kerala                       | 23.57        | 8.27   | (26.0) | 21.42  | 7.68   | (26.4) | 20.68  | 4.77   | (18.7) | 17.81  | 3.47   | (16.2) | 14.35  | 2.55  | (15.1) | 11.72  | 1.83  | (13.5) |
| Madhya Pradesh               | 44.28        | 16.10  | (26.7) | 50.84  | 15.34  | (31.6) | 41.59  | 10.59  | (20.1) | 34.87  | 6.79   | (16.3) | 27.75  | 4.63  | (14.3) | 22.94  | 3.13  | (12.0) |
| Maharashtra                  | 55.73        | 41.02  | (42.3) | 48.40  | 30.54  | (38.7) | 40.79  | 21.99  | (35.0) | 34.70  | 15.71  | (31.2) | 28.39  | 11.16 | (28.2) | 22.80  | 9.20  | (28.8) |
| Manipur                      | 1.82         | 0.57   | (26.3) | 1.33   | 0.51   | (27.5) | 1.05   | 0.38   | (26.4) | 0.93   | 0.14   | (13.1) | 0.71   | 0.07  | (8.7)  | 0.58   | 0.03  | (4.8)  |
| Meghalaya                    | 1.85         | 0.45   | (19.5) | 1.45   | 0.33   | (18.6) | 1.09   | 0.24   | (18.0) | 0.87   | 0.15   | (14.5) | 0.65   | 0.12  | (15.2) | 0.55   | 0.06  | (9.9)  |
| Mizoram                      | 0.45         | 0.44   | (49.6) | 0.37   | 0.32   | (46.1) | 0.37   | 0.12   | (24.7) | 0.30   | 0.04   | (11.4) | 0.25   | 0.01  | (5.3)  | 0.19   | 0.01  | (3.6)  |
| Nagaland                     | 1.64         | 0.35   | (17.7) | 1.00   | 0.21   | (17.2) | 0.66   | 0.12   | (15.5) | 0.47   | 0.05   | (9.9)  | 0.35   | 0.02  | (5.1)  | 0.21   | 0.00  | (0.9)  |
| Orissa                       | 31.21        | 5.50   | (14.9) | 27.43  | 4.24   | (13.4) | 23.26  | 3.11   | (11.8) | 20.10  | 1.85   | (8.4)  | 16.44  | 1.11  | (6.3)  | 14.05  | 0.59  | (4.1)  |
| Punjab                       | 16.04        | 8.25   | (33.9) | 14.29  | 5.99   | (29.5) | 12.14  | 4.65   | (27.7) | 10.34  | 3.22   | (23.7) | 8.57   | 2.57  | (23.1) | 7.17   | 1.99  | (21.7) |
| Rajasthan                    | 43.27        | 13.21  | (23.4) | 33.94  | 10.07  | (22.9) | 27.05  | 7.21   | (21.0) | 21.22  | 4.54   | (17.6) | 16.87  | 3.28  | (16.3) | 13.02  | 2.96  | (18.5) |
| Sikkim                       | 0.48         | 0.06   | (11.1) | 0.37   | 0.04   | (9.1)  | 0.27   | 0.05   | (16.1) | 0.19   | 0.02   | (9.5)  | 0.16   | 0.07  | (43.2) | 0.14   | 0.03  | (21.7) |
| Tamil Nadu                   | 34.87        | 27.24  | (43.7) | 36.78  | 19.08  | (34.2) | 32.46  | 15.95  | (33.0) | 28.73  | 12.47  | (30.3) | 24.70  | 8.99  | (26.7) | 22.79  | 7.33  | (24.4) |
| Tripura                      | 2.65         | 0.54   | (17.0) | 2.34   | 0.42   | (15.3) | 1.83   | 0.23   | (11.0) | 1.39   | 0.16   | (10.4) | 1.04   | 0.10  | (9.0)  | 0.60   | 0.04  | (6.8)  |
| Uttar Pradesh                | 131.54       | 34.51  | (20.8) | 111.51 | 27.61  | (20.9) | 90.96  | 19.90  | (17.9) | 75.95  | 12.39  | (14.0) | 64.28  | 9.48  | (12.9) | 54.59  | 8.63  | (13.6) |
| West Bengal                  | 57.74        | 22.49  | (28.0) | 49.37  | 18.71  | (27.2) | 40.13  | 14.45  | (26.5) | 33.35  | 10.97  | (24.7) | 26.39  | 8.54  | (24.5) | 20.02  | 6.28  | (23.9) |
| Uttaranchal                  | 6.31         | 2.17   | (25.6) | -      | _      |        | -      | -      |        | -      | _      |        | _      | _     |        | -      | _     |        |
| Jharkhand                    | 20.92        | 5.99   | (22.2) | _      | _      |        | _      | -      |        | _      | _      |        | _      | _     |        | -      | -     |        |
| Chhatisgarh                  | 16.62        | 4.18   | (20.0) | -      | _      |        | -      | -      |        | -      | _      |        | _      | _     |        | -      | _     |        |
| Union Territories            |              |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |       |        |
| Andaman & Nicobar            | 0.24         | 0.12   | (32.2) | 0.21   | 0.08   | (26.7) | 0.14   | 0.05   | (23.8) | 0.09   | 0.03   | (22.6) | 0.05   | 0.01  | (2.2)  | 0.02   | 0.01  | (2.6)  |
| Chandigarh                   | 0.09         | 0.81   | (89.9) | 0.07   | 0.58   | (89.7) | 0.03   | 0.42   | (93.6) | 0.02   | 0.23   | (90.7) | 0.02   | 0.10  | (82.5) | 0.02   | 0.00  | (0.0)  |
| Dadra & Nagar Haveli         | 0.17         | 0.05   | (22.7) | 0.13   | 0.01   | (8.7)  | 0.10   | 0.01   | (6.7)  | 0.07   | 0.00   | (0.0)  | 0.06   | 0.00  | (0.0)  | 0.04   | 0.00  | (0.0)  |
| Daman and Diu                | 0.10         | 0.06   | (36.1) | 0.05   | 0.05   | (47.1) | 0.05   | 0.03   | (36.7) | 0.04   | 0.02   | (38.1) | 0.02   | 0.01  | (35.1) | 0.03   | 0.02  | (36.7) |
| Delhi                        | 0.96         | 12.82  | (92.6) | 0.92   | 8.47   | (89.9) | 0.45   | 5.77   | (92.7) | 0.42   | 3.66   | (91.5) | 0.30   | 2.36  | (88.7) | 0.31   | 1.44  | (82.4) |
| Lakshadweep                  | 0.03         | 0.03   | (45.0) | 0.02   | 0.03   | (55.8) | 0.02   | 0.02   | (47.5) | 0.03   | 0.00   | (0.0)  | 0.02   | 0.00  | (0.0)  | 0.02   | 0.00  | (0.0)  |
| Pondicherry                  | 0.33         | 0.65   | (66.5) | 0.30   | 0.52   | (64.0) | 0.29   | 0.32   | (52.3) | 0.27   | 0.20   | (42.3) | 0.28   | 0.09  | (24.4) | 0.32   | 0.00  | (0.0)  |

*Note:* Figures within brackets represent urban share in total population (in percentage).

Source: Census of India 2001, Provisional Population Totals, Part 1 of 2001 and Census of India 1991, Final Population Totals, Paper-1 of 1992, Vol. II.

TABLE A12.3 Statewise Sex Ratio

Note: \* Excludes Mao-Maram, Paomata, and Purul sub-divisions of Senapati district of Manipur.

na

na

na

Source: Census of India 2001, Provisional Population Totals, Part 1 of 2001.

Pondicherry

TABLE A12.4 Statewise Literacy Rate, 1951 to 2001

(as percentage of population)

| Column   C | State/Union Territory |         | 2001 |        |         | 1991 |        |         | 1981 |        |         | 1971 |        |         | 1961  |        |         | 1951 |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|------|--------|---------|------|--------|---------|------|--------|---------|------|--------|---------|-------|--------|---------|------|--------|
| Toda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | Persons | Male | Female | Persons | Male  | Female | Persons | Male | Female |
| Male-randeghan   Cale   Cale | (1)                   | (2)     | (3)  | (4)    | (5)     | (6)  | (7)    | (8)     | (9)  | (10)   | (11)    | (12) | (13)   | (14)    | (15)  | (16)   | (17)    | (18) | (19)   |
| Andhre Pracecks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | India                 | 64.8    | 75.3 | 53.7   | 52.2    | 64.1 | 39.3   | 43.6    | 56.4 | 29.8   | 34.5    | 39.5 | 18.7   | 28.3    | 34.40 | 12.9   | 18.3    | 24.9 | 7.9    |
| Arsmartal Pradesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Male-female gap       | (21.6)  |      |        | (24.8)  |      |        | (26.6)  |      |        | (24.0)  |      |        | (25.1)  |       |        | (18.3)  |      |        |
| Assam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Andhra Pradesh        | 60.5    | 70.3 | 50.4   | 44.1    | 55.1 | 32.7   | 35.7    | 46.8 | 24.2   | 24.6    | 33.1 | 15.8   | 21.2    | 30.20 | 12.0   | 13.2    | 19.7 | 6.5    |
| Bibhar         47,0         59,7         33,1         38,5         52,5         22,9         32,0         46,6         16,5         19,9         30,6         8,7         21,8         29,8         6,9         12,2         20,5         38,8           Goa         82,0         88,4         75,4         75,3         83,6         67,1         76,0         55,2         13,8         46,1         35,1         36,2         10,a         an         na         23,0         na         na         73,0         13,3         31,3         38,3         18,1         35,2         14,9         24,1         10,0         23,0         11,0         21,0         22,0         13,2         11,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0         21,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arunachal Pradesh     | 54.3    | 63.8 | 43.5   | 41.6    | 51.5 | 29.7   | 25.5    | 35.1 | 14.0   | 11.3    | 17.8 | 3.7    | 47.9    | na    | na     | na      | na   | na     |
| Goa         82.0         88.4         75.8         75.5         83.6         67.1         64.7         76.0         55.2         na         54.3         35.1         96.2         na         20.3         35.3         13.2         32.0         13.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         33.3         43.1         20.2         24.9         20.0         62.2         77.7         12.6         24.8         13.6         86.0         87.6         53.3         44.2         19.0         41.2         18.0         43.2         48.1         43.2         48.2         48.2         48.2         48.2         48.6         87.2         48.3         49.2         48.2         48.2         48.2         48.2         48.2         48.6         47.2         48.3         49.2         49.2         48.2         48.4         49.0         48.2         48.4         49.0         48.2         48.4         49.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assam                 | 63.3    | 71.3 | 54.6   | 52.9    | 61.9 | 43.0   | na      | na   | na     | 28.7    | na   | na     | 33.0    | 37.30 | 16.0   | 18.3    | 27.4 | 7.9    |
| Gujara         69,1         79,7         57,8         61,3         73,1         48,6         52,2         65,1         38,5         48,5         26,9         42,9         24,1         24,8         30,5         41,0         11,0         23,1         32,3         13,5           Huryana         67,5         85,3         65,7         55,7         55,9         75,4         52,1         51,2         43,9         18,6         18,6         17,2         24,9         22,0         6,2         7,7         12,6         2,4           Jammu and Kashmir         55,5         66,6         43,0         na         na         32,7         44,2         19,6         18,6         na         na         13,0         17,0         43,2         na         24,2         19,0         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,6         18,7         18,2         18,2         18,6         18,2         18,2         18,2         18,2         18,2         18,2         18,2         18,2         18,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bihar                 | 47.0    | 59.7 | 33.1   | 38.5    | 52.5 | 22.9   | 32.0    | 46.6 | 16.5   | 19.9    | 30.6 | 8.7    | 21.8    | 29.80 | 6.9    | 12.2    | 20.5 | 3.8    |
| Haryana         67.9         78.5         55.7         55.9         69.1         40.5         43.9         58.5         26.9         26.9         37.2         14.9         24.1         ma         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Goa                   | 82.0    | 88.4 | 75.4   | 75.5    | 83.6 | 67.1   | 64.7    | 76.0 | 55.2   | na      | 54.3 | 35.1   | 36.2    | na    | na     | 23.0    | na   | na     |
| Himachal Pradesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gujarat               | 69.1    | 79.7 | 57.8   | 61.3    | 73.1 | 48.6   | 52.2    | 65.1 | 38.5   | 35.8    | 46.1 | 24.8   | 30.5    | 41.10 | 19.1   | 23.1    | 32.3 | 13.5   |
| Namu and Kashmir   55.5   66.6   43.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70 | Haryana               | 67.9    | 78.5 | 55.7   | 55.9    | 69.1 | 40.5   | 43.9    | 58.5 | 26.9   | 26.9    | 37.2 | 14.9   | 24.1    | na    | na     | na      | na   | na     |
| Ramataka   66.6   76.1   56.9   56.0   67.3   44.3   46.2   58.7   33.2   31.5   48.6   27.8   29.8   36.0   14.2   19.3   29.1   9.2   Rerala   90.9   94.2   87.7   89.8   93.6   86.2   81.6   87.7   75.7   60.4   74.0   64.5   55.1   55.0   55.0   8.9   40.7   50.2   31.5   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34. | Himachal Pradesh      | 76.5    | 85.3 | 67.4   | 63.9    | 75.4 | 52.1   | 51.2    | 64.3 | 37.7   | 32.0    | 43.1 | 20.2   | 24.9    | 27.20 | 6.2    | 7.7     | 12.6 | 2.4    |
| Ramataka   66.6   76.1   56.9   56.0   67.3   44.3   46.2   58.7   33.2   31.5   48.6   27.8   29.8   36.0   14.2   19.3   29.1   9.2   Rerala   90.9   94.2   87.7   89.8   93.6   86.2   81.6   87.7   75.7   60.4   74.0   64.5   55.1   55.0   55.0   8.9   40.7   50.2   31.5   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34.8   34. | Jammu and Kashmir     | 55.5    | 66.6 | 43.0   | na      | na   | na     | 32.7    | 44.2 | 19.6   | 18.6    | na   | na     | 13.0    | 17.00 | 4.3    | na      | na   | na     |
| Madhya Pradesh         63.7         76.1         50.3         44.2         58.4         28.9         34.2         48.4         19.0         22.1         32.7         10.9         20.5         27.00         6.7         9.8         16.2         3.2           Maharashtra         76.9         86.0         67.0         64.9         76.6         52.3         55.8         69.7         41.0         32.2         51.0         26.4         35.1         42.0         16.8         20.9         31.4         9.7           Manipur         70.5         88.8         69.7         49.1         64.1         34.6         32.9         36.0         16.0         16.2         11.4         9.0         40.8         40.3         22.5         31.1         49.8         40.8         49.7         48.6         40.3         79.4         68.6         na         60.6         70.4         11.0         50.5         48.6         na         60.6         70.4         41.0         50.5         25.1         26.2         38.3         13.9         25.2         34.0         10.0         11.0         20.0         41.5         97.7         40.4         20.0         40.1         15.0         40.7         40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Karnataka             | 66.6    | 76.1 | 56.9   |         |      | 44.3   |         | 58.7 | 33.2   | 31.5    | 48.6 |        | 29.8    | 36.10 | 14.2   |         |      |        |
| Maharashtra         76,9         86,0         67,0         64,9         76,6         52,3         55,8         69,7         41,0         39,2         51,0         26,4         35,1         42,00         16,8         20,9         31,4         9.7           Manipur         70.5         80,3         60,5         59,9         71,6         47,6         49,6         64,1         34,0         22,9         46,0         19,5         36,0         45,10         15,9         11,4         20,8         2,4           Migoram         88.8         90.7         86,7         82.3         85,6         78,6         74,3         79,4         68,6         na         60,5         46,0         na         10,4         15,5         5,5         50,5         25,1         26,2         23,3         13,3         25,0         8,0         15,5         50,5         25,1         26,5         25,1 </td <td>Kerala</td> <td>90.9</td> <td>94.2</td> <td>87.7</td> <td>89.8</td> <td>93.6</td> <td>86.2</td> <td></td> <td>87.7</td> <td>75.7</td> <td>60.4</td> <td>74.0</td> <td>64.5</td> <td>55.1</td> <td></td> <td>38.9</td> <td>40.7</td> <td>50.2</td> <td>31.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kerala                | 90.9    | 94.2 | 87.7   | 89.8    | 93.6 | 86.2   |         | 87.7 | 75.7   | 60.4    | 74.0 | 64.5   | 55.1    |       | 38.9   | 40.7    | 50.2 | 31.5   |
| Maharashtra         76,9         86,0         67,0         64,9         76,6         52,3         55,8         69,7         41,0         39,2         51,0         26,4         35,1         42,00         16,8         20,9         31,4         9.7           Manipur         70.5         80,3         60,5         59,9         71,6         47,6         49,6         64,1         34,0         22,9         46,0         19,5         36,0         45,10         15,9         11,4         20,8         2,4           Migoram         88.8         90.7         86,7         82.3         85,6         78,6         74,3         79,4         68,6         na         60,5         46,0         na         10,4         15,5         5,5         50,5         25,1         26,2         23,3         13,3         25,0         8,0         15,5         50,5         25,1         26,5         25,1 </td <td>Madhya Pradesh</td> <td>63.7</td> <td>76.1</td> <td>50.3</td> <td>44.2</td> <td>58.4</td> <td>28.9</td> <td>34.2</td> <td>48.4</td> <td>19.0</td> <td>22.1</td> <td>32.7</td> <td>10.9</td> <td>20.5</td> <td>27.00</td> <td>6.7</td> <td>9.8</td> <td>16.2</td> <td>3.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Madhya Pradesh        | 63.7    | 76.1 | 50.3   | 44.2    | 58.4 | 28.9   | 34.2    | 48.4 | 19.0   | 22.1    | 32.7 | 10.9   | 20.5    | 27.00 | 6.7    | 9.8     | 16.2 | 3.2    |
| Manipur         70.5         80.3         60.5         59.9         71.6         47.6         49.6         64.1         34.6         32.9         46.0         19.5         36.0         45.10         15.9         11.4         20.8         2.4           Meghalaya         62.6         65.4         59.6         49.1         53.1         44.9         42.0         46.6         37.2         29.5         34.1         24.6         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                     | 76.9    | 86.0 | 67.0   | 64.9    | 76.6 | 52.3   | 55.8    | 69.7 | 41.0   | 39.2    | 51.0 | 26.4   | 35.1    | 42.00 | 16.8   | 20.9    | 31.4 |        |
| Meghalaya         62.6         65.4         59.6         49.1         53.1         44.9         42.0         46.6         37.2         29.5         34.1         24.6         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 70.5    |      |        |         | 71.6 |        |         |      | 34.6   | 32.9    | 46.0 |        | 36.0    |       |        |         | 20.8 |        |
| Misoram         88.8         90.7         86.7         82.3         85.6         78.6         74.3         79.4         68.6         na         60.5         46.7         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                     | 62.6    | 65.4 | 59.6   | 49.1    | 53.1 | 44.9   | 42.0    | 46.6 | 37.2   | 29.5    | 34.1 | 24.6   | na      | na    | na     | na      | na   | na     |
| Orissa         63.1         75.3         50.5         49.1         63.1         34.7         41.0         56.5         25.1         26.2         38.3         13.9         25.2         34.70         8.6         15.8         27.3         4.5           Purjab         69.7         75.2         63.4         58.5         65.7         50.4         48.1         55.5         39.6         33.7         40.4         25.9         31.5         33.00         14.1         15.2         21.0         8.5           Rajasthan         68.8         76.0         60.4         56.9         65.7         46.7         41.6         53.0         27.4         17.7         na         na         n4.2         19.0         4.3         7.3         12.8         1.3           Tamil Nadu         73.5         82.4         64.4         66.7         73.8         51.3         54.4         68.1         40.4         39.5         51.8         26.9         36.4         48.0         19.0           Tripura         73.2         81.0         64.9         60.4         70.6         48.7         50.1         61.5         38.0         31.0         40.2         21.2         24.3         29.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 88.8    | 90.7 | 86.7   | 82.3    | 85.6 | 78.6   | 74.3    | 79.4 | 68.6   | na      | 60.5 | 46.7   | na      | na    | na     | na      | na   | na     |
| Orissa         63.1         75.3         50.5         49.1         63.1         34.7         41.0         56.5         25.1         26.2         38.3         13.9         25.2         34.70         8.6         15.8         27.3         4.5           Purjab         69.7         75.2         63.4         58.5         65.7         50.4         48.1         55.5         39.6         33.7         40.4         25.9         31.5         33.00         14.1         15.2         21.0         8.5           Rajasthan         68.8         76.0         60.4         56.9         65.7         46.7         41.6         53.0         27.4         17.7         na         na         n4.2         19.0         4.3         7.3         12.8         1.3           Tamil Nadu         73.5         82.4         64.4         66.7         73.8         51.3         54.4         68.1         40.4         39.5         51.8         26.9         36.4         48.0         19.0           Tripura         73.2         81.0         64.9         60.4         70.6         48.7         50.1         61.5         38.0         31.0         40.2         21.2         24.3         29.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nagaland              | 66.6    | 71.2 | 61.5   | 61.6    | 67.6 | 54.8   | 50.2    | 58.5 | 40.3   | 27.4    | 35.0 | 18.7   | 20.4    | 24.00 | 11.3   | 10.4    | 15.0 | 5.7    |
| Rajasthan         60.4         75.7         43.9         38.6         55.0         20.4         30.1         44.8         14.0         19.1         28.7         8.5         18.1         23.70         5.8         8.9         14.4         3.0           Sikkim         68.8         76.0         60.4         56.9         65.7         46.7         41.6         53.0         27.4         17.7         na         na         14.2         19.60         4.3         7.3         12.8         1.3           Tamil Nadu         73.5         82.4         64.4         62.7         73.8         51.3         54.4         68.1         40.4         39.5         51.8         26.9         36.4         44.50         18.2         20.8         31.7         10.0           Tripura         73.2         81.0         60.4         70.6         55.7         25.3         33.3         47.4         17.2         21.7         31.5         10.6         20.7         27.30         70.0         10.8         11.4         3.0           Uttar Pradesh         68.6         77.0         59.6         57.7         67.8         46.6         48.6         59.9         36.1         33.2         22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                     | 63.1    |      |        |         | 63.1 |        | 41.0    |      | 25.1   | 26.2    | 38.3 |        | 25.2    | 34.70 | 8.6    | 15.8    | 27.3 | 4.5    |
| Sikim         68.8         76.0         60.4         56.9         65.7         46.7         41.6         53.0         27.4         17.7         na         na         14.2         19.60         4.3         7.3         12.8         1.3           Tamil Nadu         73.5         82.4         64.4         62.7         73.8         51.3         54.4         68.1         40.4         39.5         51.8         26.9         36.4         44.50         18.2         20.8         31.7         10.0           Tripura         73.2         81.0         64.9         60.4         70.6         49.7         50.1         61.5         38.0         31.0         40.2         21.2         24.3         29.60         10.2         15.5         22.3         8.0           Uttar Pradesh         68.6         77.0         59.6         55.7         67.8         46.6         48.6         59.9         36.1         33.2         42.8         22.4         34.5         40.10         17.0         24.0         34.2         12.2           Uttaranchal         71.6         83.3         59.6         na         na         na         na         na         na         na         na         na <td>Punjab</td> <td>69.7</td> <td>75.2</td> <td>63.4</td> <td>58.5</td> <td>65.7</td> <td>50.4</td> <td>48.1</td> <td>55.5</td> <td>39.6</td> <td>33.7</td> <td>40.4</td> <td>25.9</td> <td>31.5</td> <td>33.00</td> <td>14.1</td> <td>15.2</td> <td>21.0</td> <td>8.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Punjab                | 69.7    | 75.2 | 63.4   | 58.5    | 65.7 | 50.4   | 48.1    | 55.5 | 39.6   | 33.7    | 40.4 | 25.9   | 31.5    | 33.00 | 14.1   | 15.2    | 21.0 | 8.5    |
| Tamil Nadu         73.5         82.4         64.4         62.7         73.8         51.3         54.4         68.1         40.4         39.5         51.8         26.9         36.4         44.50         18.2         20.8         31.7         10.0           Tripura         73.2         81.0         64.9         60.4         70.6         49.7         50.1         61.5         38.0         31.0         40.2         21.2         24.3         29.60         10.2         15.5         22.3         8.0           Uttar Pradesh         56.3         68.8         42.2         41.6         55.7         25.3         33.3         47.4         17.2         21.7         31.5         10.6         20.7         27.30         7.0         10.8         17.4         3.6           West Bengal         68.6         77.0         59.6         57.7         67.8         46.6         48.6         59.9         36.1         33.2         42.8         22.4         34.5         40.10         17.0         24.0         34.2         12.2           Uttaranchal         71.6         83.3         59.6         na         na         na         na         na         na         na         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rajasthan             | 60.4    | 75.7 | 43.9   | 38.6    | 55.0 | 20.4   | 30.1    | 44.8 | 14.0   | 19.1    | 28.7 | 8.5    | 18.1    | 23.70 | 5.8    | 8.9     | 14.4 | 3.0    |
| Tamil Nadu         73.5         82.4         64.4         62.7         73.8         51.3         54.4         68.1         40.4         39.5         51.8         26.9         36.4         44.50         18.2         20.8         31.7         10.0           Tripura         73.2         81.0         64.9         60.4         70.6         49.7         50.1         61.5         38.0         31.0         40.2         21.2         24.3         29.60         10.2         15.5         22.3         8.0           Uttar Pradesh         56.3         68.8         42.2         41.6         55.7         25.3         33.3         47.4         17.2         21.7         31.5         10.6         20.7         27.30         7.0         10.8         17.4         3.6           West Bengal         68.6         77.0         59.6         57.7         67.8         46.6         48.6         59.9         36.1         33.2         42.8         22.4         34.5         40.10         17.0         24.0         34.2         12.2           Uttaranchal         71.6         83.3         59.6         na         na         na         na         na         na         na         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sikkim                | 68.8    | 76.0 | 60.4   | 56.9    | 65.7 | 46.7   | 41.6    | 53.0 | 27.4   | 17.7    | na   | na     | 14.2    | 19.60 | 4.3    | 7.3     | 12.8 | 1.3    |
| Utar Pradesh         56.3         68.8         42.2         41.6         55.7         25.3         33.3         47.4         17.2         21.7         31.5         10.6         20.7         27.30         7.0         10.8         17.4         3.6           West Bengal         68.6         77.0         59.6         57.7         67.8         46.6         48.6         59.9         36.1         33.2         42.8         22.4         34.5         40.10         17.0         24.0         34.2         12.2           Uttaranchal         71.6         83.3         59.6         na         na <td< td=""><td>Tamil Nadu</td><td>73.5</td><td>82.4</td><td></td><td>62.7</td><td>73.8</td><td>51.3</td><td>54.4</td><td>68.1</td><td>40.4</td><td>39.5</td><td>51.8</td><td></td><td></td><td>44.50</td><td>18.2</td><td></td><td>31.7</td><td>10.0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tamil Nadu            | 73.5    | 82.4 |        | 62.7    | 73.8 | 51.3   | 54.4    | 68.1 | 40.4   | 39.5    | 51.8 |        |         | 44.50 | 18.2   |         | 31.7 | 10.0   |
| Utar Pradesh         56.3         68.8         42.2         41.6         55.7         25.3         33.3         47.4         17.2         21.7         31.5         10.6         20.7         27.30         7.0         10.8         17.4         3.6           West Bengal         68.6         77.0         59.6         57.7         67.8         46.6         48.6         59.9         36.1         33.2         42.8         22.4         34.5         40.10         17.0         24.0         34.2         12.2           Uttaranchal         71.6         83.3         59.6         na         na <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>49.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |         |      |        |         |      | 49.7   |         |      |        |         |      |        |         |       |        |         |      |        |
| West Bengal         68.6         77.0         59.6         57.7         67.8         46.6         48.6         59.9         36.1         33.2         42.8         22.4         34.5         40.10         17.0         24.0         34.2         12.2           Uttaranchal         71.6         83.3         59.6         na         na<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 56.3    | 68.8 |        | 41.6    | 55.7 | 25.3   |         |      | 17.2   | 21.7    | 31.5 |        | 20.7    | 27.30 |        | 10.8    | 17.4 |        |
| Uttaranchal         71.6         83.3         59.6         na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Description of the control of the  | U                     |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Chhatisgarh 64.7 77.4 51.9 na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Union Territories  Andaman & Nicobar 81.3 86.3 75.2 73.0 79.0 65.5 63.2 70.3 53.2 43.6 na na 40.1 42.40 19.4 25.8 34.2 12.3 Chandigarh 81.9 86.1 76.5 77.8 82.0 72.3 74.8 78.9 69.3 61.6 na na 55.1 na na na na 11.6 14.70 4.1 4.0 na na Dadra & Nagar Haveli 57.6 71.2 40.2 40.7 53.6 27.0 32.7 44.7 20.4 15.0 na na 11.6 14.70 4.1 4.0 na na Daman and Diu 78.2 86.8 65.6 71.2 82.7 59.4 59.9 74.5 46.5 44.8 na na 34.9 na na 22.9 na na Delhi 81.7 87.3 74.7 75.3 82.0 67.0 71.9 79.3 62.6 56.6 na na na 62.0 60.80 42.5 38.4 43.0 32.3 Lakshadweep 86.7 92.5 80.5 81.8 90.2 72.9 68.4 81.2 55.3 43.7 na na 27.2 35.80 11.0 15.2 25.6 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                     |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Andaman & Nicobar 81.3 86.3 75.2 73.0 79.0 65.5 63.2 70.3 53.2 43.6 na na 40.1 42.40 19.4 25.8 34.2 12.3 Chandigarh 81.9 86.1 76.5 77.8 82.0 72.3 74.8 78.9 69.3 61.6 na na 55.1 na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · ·                   |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Chandigarh       81.9       86.1       76.5       77.8       82.0       72.3       74.8       78.9       69.3       61.6       na       na       55.1       na       na <td></td> <td>81.3</td> <td>86.3</td> <td>75.2</td> <td>73.0</td> <td>79.0</td> <td>65.5</td> <td>63.2</td> <td>70.3</td> <td>53.2</td> <td>43.6</td> <td>na</td> <td>na</td> <td>40.1</td> <td>42.40</td> <td>19.4</td> <td>25.8</td> <td>34.2</td> <td>12.3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 81.3    | 86.3 | 75.2   | 73.0    | 79.0 | 65.5   | 63.2    | 70.3 | 53.2   | 43.6    | na   | na     | 40.1    | 42.40 | 19.4   | 25.8    | 34.2 | 12.3   |
| Dadra & Nagar Haveli       57.6       71.2       40.2       40.7       53.6       27.0       32.7       44.7       20.4       15.0       na       na       11.6       14.70       4.1       4.0       na       na         Daman and Diu       78.2       86.8       65.6       71.2       82.7       59.4       59.9       74.5       46.5       44.8       na       na       34.9       na       na       na       22.9       na       na         Delhi       81.7       87.3       74.7       75.3       82.0       67.0       71.9       79.3       62.6       56.6       na       na       62.0       60.80       42.5       38.4       43.0       32.3         Lakshadweep       86.7       92.5       80.5       81.8       90.2       72.9       68.4       81.2       55.3       43.7       na       na       27.2       35.80       11.0       15.2       25.6       5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Daman and Diu       78.2       86.8       65.6       71.2       82.7       59.4       59.9       74.5       46.5       44.8       na       na       34.9       na       na       22.9       na       na         Delhi       81.7       87.3       74.7       75.3       82.0       67.0       71.9       79.3       62.6       56.6       na       na       62.0       60.80       42.5       38.4       43.0       32.3         Lakshadweep       86.7       92.5       80.5       81.8       90.2       72.9       68.4       81.2       55.3       43.7       na       na       27.2       35.80       11.0       15.2       25.6       5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                     |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Delhi 81.7 87.3 74.7 75.3 82.0 67.0 71.9 79.3 62.6 56.6 na na 62.0 60.80 42.5 38.4 43.0 32.3 Lakshadweep 86.7 92.5 80.5 81.8 90.2 72.9 68.4 81.2 55.3 43.7 na na 27.2 35.80 11.0 15.2 25.6 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                   |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| Lakshadweep 86.7 92.5 80.5 81.8 90.2 72.9 68.4 81.2 55.3 43.7 na na 27.2 35.80 11.0 15.2 25.6 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |         |      |        |         |      |        |         |      |        |         |      |        |         |       |        |         |      |        |
| PODUCTIPETY ALZ AND /3.9 /4/ X3/ D3D D3L //L 33H 4BH D9 D9 43/ 3H/H //B D9 D9 D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pondicherry           | 81.2    | 88.6 | 73.9   | 74.7    | 83.7 | 65.6   | 65.1    | 77.1 | 53.0   | 46.0    | na   | na     | 43.7    | 50.40 | 24.6   | na      | na   | na     |

Note: Excludes Mao-Maram, Paomata, and Purul sub-divisions of Senapati district of Manipur.

Source: Economic Survey 2002–3 and for the year 1981 Economic Survey 1991–2.

Table A12.5
Statewise Infant Mortality Rate; 1961, 1981, 1991, 2001, 2002, and 2003

(Number per thousand)

| State/Union Territory |         | 2003 |        |         | 2002 |        |         | 2001 |        |         | 1991 |        |         | 1981 |        |         | 1961 |        |
|-----------------------|---------|------|--------|---------|------|--------|---------|------|--------|---------|------|--------|---------|------|--------|---------|------|--------|
|                       | Persons | Male | Female |
| (1)                   | (2)     | (3)  | (4)    | (5)     | (6)  | (7)    | (8)     | (9)  | (10)   | (11)    | (12) | (13)   | (14)    | (15) | (16)   | (17)    | (18) | (19)   |
| India                 | 60      | 57   | 64     | 63      | 62   | 65     | 71      | na   | na     | 77      | 79   | 74     | 115     | 122  | 108    | 115     | 122  | 108    |
| Andhra Pradesh        | 59      | 59   | 59     | 62      | 64   | 60     | 66      | na   | na     | 55      | 67   | 51     | 91      | 100  | 82     | 91      | 100  | 82     |
| Arunachal Pradesh     | 59      | 59   | 59     | 62      | 64   | 60     | 44      | na   | na     | 91      | 111  | 103    | 126     | 141  | 111    | 126     | 141  | 111    |
| Assam                 | 67      | 69   | 65     | 70      | 70   | 71     | 78      | na   | na     | 92      | 96   | 87     | -       | -    | -      |         |      |        |
| Bihar                 | 60      | 59   | 62     | 61      | 56   | 66     | 67      | na   | na     | 75      | 62   | 89     | 94      | 95   | 94     | 94      | 95   | 94     |
| Goa                   | 16      | 15   | 18     | 16      | 17   | 16     | 36      | na   | na     | 51      | 56   | 48     | 90      | 87   | 93     | 57      | 60   | 56     |
| Gujarat               | 57      | 54   | 61     | 60      | 55   | 66     | 64      | na   | na     | 78      | 74   | 82     | 115     | 120  | 110    | 84      | 81   | 84     |
| Haryana               | 59      | 54   | 65     | 62      | 54   | 73     | 69      | na   | na     | 52      | 57   | 54     | 126     | 132  | 119    | 94      | 87   | 119    |
| Himachal Pradesh      | 49      | 54   | 44     | 61      | 66   | 55     | 64      | na   | na     | 82      | 84   | 81     | 143     | 160  | 126    | 92      | 101  | 89     |
| Jammu and Kashmir     | 44      | 46   | 41     | 43      | 45   | 40     | 45      | na   | na     | na      | na   | na     | 108     | 115  | 99     | 78      | 78   | 78     |
| Karnataka             | 52      | 51   | 52     | 55      | 56   | 53     | 58      | na   | na     | 74      | 81   | 53     | 81      | 87   | 74     | 77      | 74   | 79     |
| Kerala                | 11      | 11   | 12     | 10      | 9    | 12     | 16      | na   | na     | 42      | 45   | 41     | 54      | 61   | 48     | 52      | 55   | 48     |
| Madhya Pradesh        | 82      | 77   | 86     | 85      | 81   | 88     | 97      | na   | na     | 133     | 131  | 136    | 150     | 158  | 140    | 150     | 158  | 140    |
| Maharashtra           | 42      | 32   | 54     | 45      | 48   | 42     | 49      | na   | na     | 74      | 72   | 76     | 119     | 131  | 106    | 92      | 96   | 89     |
| Manipur               | 16      | 18   | 13     | 10      | 13   | 7      | 25      | na   | na     | 28      | 29   | 27     | 32      | 31   | 33     | 32      | 31   | 33     |
| Meghalaya             | 57      | 56   | 59     | 66      | 64   | 69     | 52      | na   | na     | 80      | 79   | 82     | 79      | 81   | 76     | 79      | 81   | 76     |
| Mizoram               | 16      | 16   | 17     | 5       | 9    | 2      | 23      | na   | na     | 53      | 51   | 56     | 83      | 94   | 70     | 69      | 73   | 65     |
| Nagaland              | na      | na   | na     | 20      | na   | 43     | na      | na   | na     | 51      | 51   | 52     | 68      | 76   | 58     | 68      | 76   | 58     |
| Orissa                | 83      | 82   | 83     | 87      | 95   | 79     | 98      | na   | na     | 125     | 129  | 111    | 163     | 172  | 153    | 115     | 119  | 111    |
| Punjab                | 49      | 46   | 52     | 51      | 38   | 66     | 54      | na   | na     | 74      | 81   | 53     | 127     | 138  | 114    | 77      | 74   | 79     |
| Rajasthan             | 75      | 70   | 81     | 78      | 75   | 80     | 83      | na   | na     | 87      | 94   | 79     | 141     | 146  | 135    | 114     | 114  | 114    |
| Sikkim                | 33      | 34   | 31     | 25      | 23   | 27     | 52      | na   | na     | 60      | 58   | 62     | 127     | 135  | 118    | 96      | 105  | 87     |
| Tamil Nadu            | 41      | 44   | 43     | 44      | 46   | 43     | 53      | na   | na     | 54      | 55   | 51     | 104     | 114  | 93     | 86      | 89   | 82     |
| Tripura               | 35      | 36   | 27     | 33      | 35   | 31     | 49      | na   | na     | 82      | 81   | 84     | 130     | 143  | 116    | 111     | 106  | 116    |
| Uttar Pradesh         | 76      | 69   | 84     | 80      | 76   | 84     | 85      | na   | na     | 99      | 98   | 104    | 130     | 131  | 128    | 130     | 131  | 128    |
| West Bengal           | 46      | 45   | 46     | 49      | 53   | 45     | 53      | na   | na     | 62      | 75   | 51     | 95      | 103  | 57     | 95      | 103  | 57     |
| Chhatisgarh           | 19      | 21   | 16     | 22      | 15   | 30     | na      | na   | na     |
| Jharkhand             | 51      | 50   | 52     | 41      | 44   | 37     | na      | na   | na     |
| Uttarakhand           | 41      | 31   | 53     | 34      | 16   | 55     | na      | na   | na     |
| Union Territories     |         |      |        |         |      |        |         |      |        |         |      |        |         |      |        |         |      |        |
| Andaman & Nicobar     | 18      | 12   | 24     | 23      | 17   | 29     | 30      | na   | na     | 69      | 71   | 61     | 95      | 114  | 76     | 77      | 78   | 66     |
| Chandigarh            | 19      | 21   | 16     | 22      | 15   | 30     | 32      | na   | na     | 48      | 50   | 47     | 118     | 141  | 96     | 53      | 53   | 53     |
| Dadra & Nagar Haveli  | 54      | 69   | 39     | 51      | 51   | 52     | 61      | na   | na     | 81      | 84   | 73     | 117     | 149  | 82     | 98      | 102  | 93     |
| Daman and Diu         | 39      | 43   | 34     | 30      | 46   | 12     | na      | na   | na     | 56      | 61   | 50     | 90      | 87   | 93     | 57      | 60   | 56     |
| Delhi                 | 28      | 28   | 29     | 33      | 29   | 38     | 51      | na   | na     | 54      | 55   | 51     | 100     | 108  | 92     | 67      | 66   | 70     |
| Lakshadweep           | 26      | 21   | 32     | 15      | 6    | 26     | 30      | na   | na     | 91      | 100  | 78     | 132     | 170  | 88     | 118     | 124  | 88     |
| Pondicherry           | 24      | 29   | 18     | 25      | 24   | 25     | 21      | na   | na     | 34      | 32   | 35     | 84      | 100  | 68     | 73      | 77   | 68     |

Note: na—not applicable or not relevant.

Source: Economic Survey 2005–6 and 2002–3 and National Human Development Report 2001, Planning Commission.

#### A13 HUMAN DEVELOPMENT INDICES

Table A13.1 Human Development Index for India by State; 1981, 1991, and 2001

| States/Union Territory |       |      |       | HDI  | 1981  |       |                     |       |       |      |       | HDI  | 1991  |       |                     |      | HD    | I 2001 |
|------------------------|-------|------|-------|------|-------|-------|---------------------|-------|-------|------|-------|------|-------|-------|---------------------|------|-------|--------|
|                        | Ru    | ral  | Urb   | oan  | Comb  | oined | Gen<br>dispa<br>inc | arity | Ru    |      | Url   | oan  | Comb  | oined | Gen<br>dispa<br>inc |      | Coml  | bined  |
|                        | Value | Rank | Value | Rank | Value | Rank  | Value               | Rank  | Value | Rank | Value | Rank | Value | Rank  | Value               | Rank | Value | Rank   |
| (1)                    | (2)   | (3)  | (4)   | (5)  | (6)   | (7)   | (8)                 | (9)   | (10)  | (11) | (12)  | (13) | (14)  | (15)  | (16)                | (17) | (18)  | (19)   |
| India                  | 0.263 |      | 0.442 |      | 0.302 |       | 0.620               |       | 0.340 |      | 0.511 |      | 0.381 |       | 0.676               |      | 0.472 |        |
| Andhra Pradesh         | 0.262 | 25   | 0.425 | 23   | 0.298 | 23    | 0.744               | 10    | 0.344 | 23   | 0.473 | 29   | 0.377 | 23    | 0.801               | 23   | 0.416 | 10     |
| Arunachal Pradesh      | 0.228 | 28   | 0.419 | 24   | 0.242 | 31    | 0.537               | 28    | 0.300 | 28   | 0.572 | 15   | 0.328 | 29    | 0.776               | 28   | *     |        |
| Assam                  | 0.261 | 26   | 0.380 | 28   | 0.272 | 26    | 0.462               | 32    | 0.326 | 26   | 0.555 | 19   | 0.348 | 26    | 0.575               | 30   | 0.386 | 14     |
| Bihar                  | 0.220 | 30   | 0.378 | 29   | 0.237 | 32    | 0.471               | 30    | 0.286 | 30   | 0.460 | 31   | 0.308 | 32    | 0.469               | 32   | 0.367 | 15     |
| Goa                    | 0.422 | 5    | 0.517 | 10   | 0.445 | 5     | 0.785               | 2     | 0.534 | 3    | 0.658 | 3    | 0.575 | 4     | 0.775               | 13   | *     |        |
| Gujarat                | 0.315 | 14   | 0.458 | 18   | 0.360 | 14    | 0.723               | 6     | 0.380 | 18   | 0.532 | 23   | 0.431 | 17    | 0.714               | 22   | 0.479 | 6      |
| Haryana                | 0.332 | 13   | 0.465 | 17   | 0.360 | 15    | 0.536               | 24    | 0.409 | 15   | 0.562 | 17   | 0.443 | 16    | 0.714               | 17   | 0.509 | 5      |
| Himachal Pradesh       | 0.374 | 10   | 0.600 | 1    | 0.398 | 10    | 0.783               | 4     | 0.442 | 12   | 0.700 | 1    | 0.469 | 13    | 0.858               | 4    | *     |        |
| Jammu and Kashmir      | 0.301 | 17   | 0.468 | 16   | 0.337 | 19    | 0.584               | 19    | 0.364 | 22   | 0.575 | 14   | 0.402 | 21    | 0.740               | 25   | *     |        |
| Karnataka              | 0.295 | 18   | 0.489 | 14   | 0.346 | 16    | 0.707               | 20    | 0.367 | 21   | 0.523 | 24   | 0.412 | 19    | 0.753               | 11   | 0.478 | 7      |
| Kerala                 | 0.491 | 1    | 0.544 | 6    | 0.500 | 2     | 0.872               | 1     | 0.576 | 1    | 0.628 | 9    | 0.591 | 3     | 0.825               | 2    | 0.638 | 1      |
| Madhya Pradesh         | 0.209 | 32   | 0.395 | 26   | 0.245 | 30    | 0.664               | 25    | 0.282 | 32   | 0.491 | 28   | 0.328 | 30    | 0.662               | 28   | 0.394 | 12     |
| Maharashtra            | 0.306 | 15   | 0.489 | 15   | 0.363 | 13    | 0.740               | 15    | 0.403 | 16   | 0.548 | 21   | 0.452 | 15    | 0.793               | 15   | 0.523 | 4      |
| Manipur                | 0.440 | 2    | 0.553 | 5    | 0.461 | 4     | 0.802               | 3     | 0.503 | 7    | 0.618 | 12   | 0.536 | 9     | 0.815               | 3    | *     |        |
| Meghalaya              | 0.293 | 20   | 0.442 | 21   | 0.317 | 21    | 0.799               | 12    | 0.332 | 24   | 0.624 | 10   | 0.365 | 24    | 0.807               | 12   | *     |        |
| Mizoram                | 0.381 | 9    | 0.558 | 4    | 0.411 | 8     | 0.502               | 18    | 0.464 | 10   | 0.648 | 5    | 0.548 | 7     | 0.770               | 6    | *     |        |
| Nagaland               | 0.295 | 19   | 0.519 | 8    | 0.328 | 20    | 0.783               | 16    | 0.442 | 13   | 0.633 | 7    | 0.486 | 11    | 0.729               | 21   | *     |        |
| Orissa                 | 0.252 | 27   | 0.368 | 31   | 0.267 | 27    | 0.547               | 27    | 0.328 | 25   | 0.469 | 30   | 0.345 | 28    | 0.639               | 27   | 0.404 | 11     |
| Punjab                 | 0.386 | 8    | 0.494 | 13   | 0.411 | 9     | 0.688               | 14    | 0.447 | 11   | 0.566 | 16   | 0.475 | 12    | 0.710               | 19   | 0.537 | 2      |
| Rajasthan              | 0.216 | 31   | 0.386 | 27   | 0.256 | 28    | 0.650               | 17    | 0.298 | 29   | 0.492 | 27   | 0.347 | 27    | 0.692               | 16   | 0.424 | 9      |
| Sikkim                 | 0.302 | 16   | 0.515 | 11   | 0.342 | 18    | 0.643               | 23    | 0.398 | 17   | 0.618 | 11   | 0.425 | 18    | 0.647               | 20   | *     |        |
| Tamil Nadu             | 0.289 | 21   | 0.445 | 19   | 0.343 | 17    | 0.710               | 9     | 0.421 | 14   | 0.560 | 18   | 0.466 | 14    | 0.813               | 9    | 0.531 | 3      |
| Tripura                | 0.264 | 23   | 0.498 | 12   | 0.287 | 24    | 0.422               | 31    | 0.368 | 20   | 0.551 | 20   | 0.389 | 22    | 0.531               | 29   | *     |        |
| Uttar Pradesh          | 0.227 | 29   | 0.398 | 25   | 0.255 | 29    | 0.447               | 29    | 0.284 | 31   | 0.444 | 32   | 0.314 | 31    | 0.520               | 31   | 0.388 | 13     |
| West Bengal            | 0.264 | 24   | 0.427 | 22   | 0.305 | 22    | 0.556               | 26    | 0.370 | 19   | 0.511 | 26   | 0.404 | 20    | 0.631               | 26   | 0.472 | 8      |
| Andaman & Nicobar      | 0.335 | 12   | 0.575 | 2    | 0.394 | 11    | 0.645               | 21    | 0.528 | 5    | 0.653 | 4    | 0.574 | 5     | 0.857               | 1    | *     |        |
| Chandigarh             | 0.437 | 4    | 0.565 | 3    | 0.550 | 1     | 0.719               | 7     | 0.501 | 8    | 0.694 | 2    | 0.674 | 1     | 0.764               | 7    | *     |        |
| Dadra & Nagar Haveli   | 0.269 | 22   | 0.268 | 32   | 0.276 | 25    | 0.888               | 11    | 0.310 | 27   | 0.519 | 25   | 0.361 | 25    | 0.832               | 14   | *     |        |
| Daman and Diu          | 0.409 | 6    | 0.518 | 9    | 0.438 | 6     | 0.760               | 5     | 0.492 | 9    | 0.629 | 8    | 0.544 | 8     | 0.714               | 8    | *     |        |
| Delhi                  | 0.439 | 3    | 0.531 | 7    | 0.495 | 3     | 0.595               | 22    | 0.530 | 4    | 0.635 | 6    | 0.624 | 2     | 0.690               | 10   | *     |        |
| Lakshadweep            | 0.395 | 7    | 0.371 | 30   | 0.434 | 7     | 0.688               | 8     | 0.520 | 6    | 0.545 | 22   | 0.532 | 10    | 0.680               | 24   | *     |        |
| Pondicherry            | 0.338 | 11   | 0.443 | 20   | 0.386 | 12    | 0.753               | 13    | 0.556 | 2    | 0.591 | 13   | 0.571 | 6     | 0.783               | 5    | *     |        |

Notes: \* Not available for the year 2001; The HDI is a composite of variables capturing attainments in three dimensions of human development viz. economic, educational, and health. It has been worked out by a combination of measures: per capita monthly expenditures adjusted for inequality; a combination of literacy rate and intensity of formal education; and a combination of life expectancy at age 1 and infant mortality rate. For details see the technical note in the source for the estimation methodology and other details.

Source: Planning Commission (2002): National Human Development Report, 2001, March.

Table A13.2 Statewise Poverty Estimation HCR

| State/<br>Union Territory |       | 1973–4 |          |        |       |        |        |       | 1999–00 |          | povert<br>(1999 | usted<br>y Ratios<br>–2000)<br>Round |
|---------------------------|-------|--------|----------|--------|-------|--------|--------|-------|---------|----------|-----------------|--------------------------------------|
|                           | Rural | Urban  | Combined | 1977–8 | 1983  | 1987–8 | 1993–4 | Rural | Urban   | Combined | Rural           | Urban                                |
| (1)                       | (2)   | (3)    | (4)      | (5)    | (6)   | (7)    | (8)    | (9)   | (10)    | (11)     | (12)            | (13)                                 |
| All India                 | 56.44 | 49.01  | 54.88    | 51.32  | 44.48 | 38.86  | 35.97  | 27.09 | 23.62   | 26.10    | 30.2            | 24.7                                 |
| Andhra Pradesh            | 48.41 | 50.61  | 48.86    | 39.31  | 28.91 | 25.86  | 22.19  | 11.05 | 26.63   | 15.77    | 14.9            | 27.7                                 |
| Arunachal Pradesh         | 52.67 | 36.92  | 51.93    | 58.32  | 40.88 | 36.22  | 39.35  | 40.04 | 7.47    | 33.47    |                 |                                      |
| Assam                     | 52.67 | 36.92  | 51.21    | 57.15  | 40.47 | 36.21  | 40.86  | 40.04 | 7.47    | 36.09    | 44.1            | 8.3                                  |
| Bihar                     | 62.99 | 52.96  | 61.91    | 61.55  | 62.22 | 52.13  | 54.96  | 44.30 | 32.91   | 42.60    | 49.2            | 33.8                                 |
| Goa                       | 46.85 | 37.69  | 44.26    | 37.23  | 18.90 | 24.52  | 14.92  | 1.35  | 7.52    | 4.40     |                 |                                      |
| Gujarat                   | 46.35 | 52.57  | 48.15    | 41.23  | 32.79 | 31.54  | 24.21  | 13.17 | 15.59   | 14.07    | 15.4            | 16.0                                 |
| Haryana                   | 34.23 | 40.18  | 35.36    | 29.55  | 21.37 | 16.64  | 25.05  | 8.27  | 9.99    | 8.74     | 12.7            | 9.5                                  |
| Himachal Pradesh          | 27.42 | 13.17  | 26.39    | 32.45  | 16.40 | 15.45  | 28.44  | 7.94  | 4.63    | 7.63     | 18.9            | 4.5                                  |
| Jammu and Kashmir         | 45.51 | 21.32  | 40.83    | 38.97  | 24.24 | 23.82  | 25.17  | 3.97  | 1.98    | 3.48     |                 |                                      |
| Karnataka                 | 55.14 | 52.53  | 54.47    | 48.78  | 38.24 | 37.53  | 33.16  | 17.38 | 25.25   | 20.04    | 25.7            | 25.5                                 |
| Kerala                    | 59.19 | 62.74  | 59.79    | 52.22  | 40.42 | 31.79  | 25.43  | 9.38  | 20.27   | 12.72    | 12.6            | 18.7                                 |
| Madhya Pradesh            | 62.66 | 57.65  | 61.78    | 61.78  | 49.78 | 43.07  | 42.52  | 37.06 | 38.44   | 37.43    | 36.4            | 37.9                                 |
| Maharashtra               | 57.71 | 43.87  | 53.24    | 55.88  | 43.44 | 40.41  | 36.86  | 23.72 | 26.81   | 25.02    | 29.2            | 28.1                                 |
| Manipur                   | 52.67 | 36.92  | 49.96    | 53.72  | 37.02 | 31.35  | 33.78  | 40.04 | 7.47    | 28.54    |                 |                                      |
| Meghalaya                 | 52.67 | 36.92  | 50.20    | 55.19  | 38.81 | 33.92  | 37.92  | 40.04 | 7.47    | 33.87    |                 |                                      |
| Mizoram                   | 52.67 | 36.92  | 50.32    | 54.38  | 36.00 | 27.52  | 25.66  | 40.04 | 7.47    | 19.47    |                 |                                      |
| Nagaland                  | 52.67 | 36.92  | 50.81    | 56.04  | 39.25 | 34.43  | 37.92  | 40.04 | 7.47    | 32.67    |                 |                                      |
| Orissa                    | 67.28 | 55.62  | 66.18    | 70.07  | 65.29 | 55.58  | 48.56  | 48.01 | 42.83   | 47.15    | 47.3            | 41.4                                 |
| Punjab                    | 28.21 | 27.96  | 28.15    | 19.27  | 16.18 | 13.20  | 11.77  | 6.35  | 5.75    | 6.12     | 5.9             | 6.3                                  |
| Rajasthan                 | 44.76 | 52.13  | 46.14    | 37.42  | 34.46 | 35.15  | 27.41  | 13.74 | 19.85   | 15.28    | 19.6            | 22.8                                 |
| Sikkim                    | 52.67 | 36.92  | 50.86    | 55.89  | 39.71 | 36.06  | 41.43  | 40.04 | 7.47    | 36.55    |                 |                                      |
| Tamil Nadu                | 57.43 | 49.40  | 54.94    | 54.79  | 51.66 | 43.39  | 35.03  | 20.55 | 22.11   | 21.12    | 19.9            | 24.4                                 |
| Tripura                   | 52.67 | 36.92  | 51.00    | 56.88  | 40.03 | 35.23  | 39.01  | 40.04 | 7.47    | 34.44    |                 |                                      |
| Uttar Pradesh             | 56.53 | 60.09  | 57.07    | 49.05  | 47.07 | 41.46  | 40.85  | 31.22 | 30.89   | 31.15    | 33.7            | 30.4                                 |
| West Bengal               | 73.16 | 34.67  | 63.43    | 60.52  | 54.85 | 44.72  | 35.66  | 31.85 | 14.86   | 27.02    | 37.1            | 19.5                                 |
| Andaman & Nicobar         | 57.43 | 49.40  | 55.56    | 55.42  | 52.13 | 43.89  | 34.47  | 20.55 | 22.11   | 20.99    |                 |                                      |
| Chandigarh                | 27.96 | 27.96  | 27.96    | 27.32  | 23.79 | 14.67  | 11.35  | 5.75  | 5.75    | 5.75     |                 |                                      |
| Dadra & Nagar Haveli      | 46.85 | 37.69  | 46.55    | 37.20  | 15.67 | 67.11  | 50.84  | 17.57 | 13.52   | 17.14    |                 |                                      |
| Delhi                     | 24.44 | 52.23  | 49.61    | 33.23  | 26.22 | 12.41  | 14.69  | 0.40  | 9.42    | 8.23     |                 | 0.7                                  |
| Lakshadweep               | 59.19 | 62.74  | 59.68    | 52.79  | 42.36 | 34.95  | 25.04  | 9.38  | 20.27   | 15.60    |                 |                                      |
| Pondicherry               | 57.43 | 49.40  | 53.82    | 53.25  | 50.06 | 41.46  | 37.40  | 20.55 | 22.11   | 21.67    |                 |                                      |

Source: Planning Commission (2002), National Human Development Report, 2001, March.

TABLE A14.1 Total Population, Workers, and Non-workers as Per Population Censuses

A14 EMPLOYMENT

(number in million)

| Year |         | Total Population | 1       |         | Workers |         |         | Non-Workers |         |
|------|---------|------------------|---------|---------|---------|---------|---------|-------------|---------|
|      | Persons | Males            | Females | Persons | Males   | Females | Persons | Males       | Females |
| (1)  | (2)     | (3)              | (4)     | (5)     | (6)     | (7)     | (8)     | (9)         | (10)    |
| 2001 | 1028.6  | 532.2            | 496.4   | 402.2   | 275.0   | 127.2   | 626.4   | 257.1       | 369.2   |
|      | (100.0) | (100.0)          | (100.0) | (39.1)  | (51.7)  | (25.6)  | (60.9)  | (48.3)      | (74.4)  |
| 1991 | 846.3   | 439.2            | 407.1   | 306.0   | 218.6   | 87.4    | 510.1   | 205.0       | 305.2   |
|      | (100.0) | (100.0)          | (100.0) | (36.2)  | (49.8)  | (21.5)  | (60.3)  | (46.7)      | (75.0)  |
| 1981 | 683.3   | 353.3            | 330.0   | 244.6   | 181.0   | 63.6    | 420.7   | 162.9       | 257.8   |
|      | (100.0) | (100.0)          | (100.0) | (35.8)  | (51.2)  | (19.3)  | (61.6)  | (46.1)      | (78.1)  |
| 1971 | 548.2   | 284.0            | 264.1   | 180.7   | 144.4   | 36.3    | 367.5   | 134.8       | 232.7   |
|      | (100.0) | (100.0)          | (100.0) | (33.0)  | (50.8)  | (13.7)  | (67.0)  | (47.5)      | (88.1)  |
| 1961 | 439.2   | 226.3            | 212.9   | 188.4   | 129.0   | 59.4    | 249.9   | 96.8        | 153.1   |
|      | (100.0) | (100.0)          | (100.0) | (42.9)  | (57.0)  | (27.9)  | (56.9)  | (42.8)      | (71.9)  |
| 1951 | 361.1   | 185.6            | 175.5   | 139.5   | 99.1    | 40.4    | 217.4   | 84.2        | 133.1   |
|      | (100.0) | (100.0)          | (100.0) | (38.6)  | (53.4)  | (23.0)  | (60.2)  | (45.4)      | (75.8)  |
| 1941 | 318.7   | 163.8            | 154.8   | na      | na      | na      | na      | na          | na      |
|      | (100.0) | (100.0)          | (100.0) |         |         |         |         |             |         |
| 1931 | 279.0   | 143.1            | 135.9   | 120.6   | 83.0    | 37.6    | 157.9   | 59.5        | 98.5    |
|      | (100.0) | (100.0)          | (100.0) | (43.2)  | (58.0)  | (27.7)  | (56.6)  | (41.6)      | (72.5)  |
| 1921 | 251.3   | 128.6            | 122.8   | 117.9   | 77.8    | 40.1    | 133.4   | 50.7        | 82.7    |
|      | (100.0) | (100.0)          | (100.0) | (46.9)  | (60.5)  | (32.7)  | (53.1)  | (39.4)      | (67.3)  |
| 1911 | 252.1   | 128.4            | 123.7   | 121.4   | 79.6    | 41.8    | 131.1   | 49.0        | 82.1    |
|      | (100.0) | (100.0)          | (100.0) | (48.1)  | (62.0)  | (33.8)  | (52.0)  | (38.2)      | (66.4)  |
| 1901 | 238.4   | 120.9            | 117.5   | 111.4   | 74.1    | 37.3    | 127.6   | 47.1        | 80.5    |
|      | (100.0) | (100.0)          | (100.0) | (46.7)  | (61.3)  | (31.7)  | (53.5)  | (39.0)      | (68.5)  |
|      |         |                  |         |         |         |         |         |             |         |

Notes: Figures in brackets are percentages to respective totals; The 1981 data include interpolated data for Assam and 1991 figures include projected data for Jammu & Kashmir; The 2001 data include estimated total for Kachch district, Morvi, Maliya-Miyana, and Wankaner talukas of Rajkot district, Jodiya taluka of Jamnagar district of Gujarat state, and entire Kinnaur district of HP where Census was not conducted due to natural calamities.

Source: Census documents 2001 and 1961 (in the 1961 census document, a note on the working force estimates for 1901-61 by BR Kalra is available).

TABLE A14.2

Number of Persons Employed per 1000 Persons according to Usual Status and Current Weekly Status Approaches

(Workers Population Ratios, WPRs also called Workforce Participation Rates, WFPRs)

| Round | Survey Po | eriod     |       |       |        | WPRs : Ma | le     |          |        |          |       |       | 1      | WPRs : Fem | ale   |           |        |         |
|-------|-----------|-----------|-------|-------|--------|-----------|--------|----------|--------|----------|-------|-------|--------|------------|-------|-----------|--------|---------|
|       | Month     | Year      |       | Usual | Status |           | Curren | t weekly | Currer | nt Daily |       | Usual | Status |            | Curre | nt weekly | Curren | t Daily |
|       |           |           |       | s     | All (1 | ps+ss)    | Sta    | atus     | St     | atus     |       | ps    | All    | (ps+ss)    | 9     | Status    | Sta    | tus     |
|       |           |           | Rural | Urban | Rural  | Urabn     | Rural  | Urban    | Rural  | Urban    | Rural | Urban | Rural  | Urabn      | Rural | Urban     | Rural  | Urban   |
| (1)   | (2)       | (3)       | (4)   | (5)   | (6)    | (7)       | (8)    | (9)      | (10)   | (11)     | (12)  | (13)  | (14)   | (15)       | (16)  | (17)      | (18)   | (19)    |
| 60    | Jan–Jun   | 2004      | 527   | 531   | 542    | 540       | 511    | 525      | 471    | 504      | 228   | 121   | 315    | 150        | 245   | 136       | 190    | 118     |
| 59    | Jan–Dec   | 2003      | 536   | 535   | 547    | 541       | 525    | 528      |        |          | 235   | 119   | 311    | 146        | 236   | 121       |        |         |
| 58    | Jul–Dec   | 2002      | 537   | 530   | 546    | 534       | 529    | 523      |        |          | 214   | 118   | 281    | 140        | 219   | 118       |        |         |
| 57    | Jul–Jun   | 2001-2    | 531   | 547   | 546    | 553       | 523    | 542      |        |          | 241   | 110   | 314    | 139        | 241   | 111       |        |         |
| 56    | Jul–Jun   | 2000-1    | 532   | 525   | 544    | 531       | 525    | 519      |        |          | 221   | 116   | 287    | 140        | 217   | 117       |        |         |
| 55    | Jul–Jun   | 1999-2000 | 522   | 513   | 531    | 518       | 510    | 509      | 478    | 490      | 231   | 117   | 299    | 139        | 253   | 128       | 204    | 111     |
| 54    | Jan–Jun   | 1998      | 530   | 506   | 539    | 509       | 524    | 504      |        |          | 207   | 99    | 263    | 114        | 202   | 99        |        |         |
| 53    | Jan–Dec   | 1997      | 541   | 516   | 550    | 521       | 535    | 513      |        |          | 222   | 111   | 291    | 131        | 222   | 114       |        |         |
| 52    | Jul–Jun   | 1995–6    | 542   | 522   | 551    | 525       | 538    | 520      |        |          | 234   | 107   | 295    | 124        | 233   | 109       |        |         |
| 51    | Jul–Jun   | 1994–5    | 547   | 514   | 560    | 519       | 541    | 511      |        |          | 237   | 112   | 317    | 136        | 241   | 117       |        |         |
| 50    | Jul–Jun   | 1993-4    | 538   | 513   | 553    | 521       | 531    | 511      | 504    | 496      | 234   | 121   | 328    | 155        | 267   | 139       | 219    | 120     |
| 49    | Jan–Jun   | 1993      | 532   | 506   | 545    | 509       | 527    | 504      |        |          | 243   | 113   | 311    | 130        | 232   | 109       |        |         |
| 48    | Jan–Dec   | 1992      | 541   | 502   | 556    | 507       | 536    | 501      |        |          | 250   | 125   | 313    | 146        | 244   | 122       |        |         |
| 47    | Jul–Dec   | 1991      | 538   | 511   | 546    | 516       | 534    | 509      |        |          | 244   | 120   | 294    | 132        | 238   | 117       |        |         |
| 46    | Jul–Jun   | 1990-1    | 542   | 508   | 553    | 513       | 535    | 506      |        |          | 242   | 123   | 292    | 143        | 230   | 124       |        |         |
| 45    | Jul–Jun   | 1989-90   | 537   | 501   | 548    | 512       | 528    | 503      |        |          | 252   | 124   | 319    | 146        | 230   | 121       |        |         |
| 43    | Jul-Jun   | 1987-8    | 517   | 496   | 539    | 506       | 504    | 492      | 501    | 477      | 245   | 118   | 323    | 152        | 220   | 119       | 207    | 110     |
| 38    | Jan-Dec   | 1983      | 528   | 500   | 547    | 512       | 511    | 492      | 482    | 473      | 248   | 120   | 340    | 151        | 227   | 118       | 198    | 106     |
| 32    | Jul–Jun   | 1977-8    | 537   | 497   | 552    | 508       | 519    | 490      |        |          | 248   | 123   | 331    | 156        | 232   | 125       |        |         |
| 27    | Oct-Sep   | 1972-3    | na    | na    | 565    | 533       | 549    | 521      |        |          | na    | na    | 330    | 143        | 287   | 131       |        |         |

Notes: Figures in bold represent regular quinquennial surveys; others are thin sample surveys; Worker population ratios (WPRs) represent the ratio of worker population in total population in the respective categories; ps—principal status; SS—subsidiary status.

Source: NSS 60th round (January–July 2004) Report No.506(60/10/1) and earlier NSS Reports.

Table A14.3

Per 1000 distribution of the Usually Employed by Status of Employment for All (Principal Subsidiary Status Workers)

| Round | Survey  | Period    |                   |                                   | WPR              | : Male            |                                   |                  |                   |                                   | WPRs             | : Female          |                                   |                  |
|-------|---------|-----------|-------------------|-----------------------------------|------------------|-------------------|-----------------------------------|------------------|-------------------|-----------------------------------|------------------|-------------------|-----------------------------------|------------------|
|       | Month   | Year      | Self-<br>employed | Rural<br>Regular<br>Wage/Salaried | Casual<br>Labour | Self-<br>employed | Urban<br>Regular<br>Wage/Salaried | Casual<br>Labour | Self-<br>employed | Rural<br>Regular<br>Wage/Salaried | Casual<br>Labour | Self-<br>employed | Urban<br>Regular<br>Wage/Salaried | Casual<br>Labour |
| (1)   | (2)     | (3)       | (4)               | (5)                               | (6)              | (7)               | (8)                               | (9)              | (10)              | (11)                              | (12)             | (13)              | (14)                              | (15)             |
| 60    | Jan–Jun | 2004      | 572               | 93                                | 335              | 441               | 406                               | 153              | 616               | 38                                | 347              | 446               | 362                               | 192              |
| 59    | Jan–Dec | 2003      | 578               | 87                                | 335              | 429               | 415                               | 156              | 616               | 33                                | 351              | 454               | 339                               | 207              |
| 58    | Jul–Dec | 2002      | 569               | 88                                | 344              | 443               | 407                               | 150              | 558               | 36                                | 406              | 459               | 308                               | 233              |
| 57    | Jul–Jun | 2001-2    | 580               | 81                                | 339              | 430               | 415                               | 154              | 589               | 29                                | 382              | 441               | 298                               | 261              |
| 56    | Jul–Jun | 2000-1    | 589               | 95                                | 316              | 414               | 411                               | 175              | 593               | 32                                | 375              | 444               | 315                               | 241              |
| 55    | Jul-Jun | 1999-2000 | 550               | 88                                | 362              | 415               | 407                               | 168              | 573               | 31                                | 396              | 453               | 333                               | 214              |
| 54    | Jan–Jun | 1998      | 553               | 70                                | 377              | 425               | 395                               | 181              | 534               | 25                                | 442              | 384               | 327                               | 288              |
| 53    | Jan-Dec | 1997      | 594               | 73                                | 333              | 400               | 415                               | 185              | 570               | 21                                | 409              | 397               | 313                               | 290              |
| 52    | Jul–Jun | 1995–6    | 590               | 77                                | 333              | 410               | 425                               | 165              | 564               | 24                                | 412              | 400               | 332                               | 268              |
| 51    | Jul–Jun | 1994–5    | 604               | 68                                | 328              | 404               | 431                               | 165              | 570               | 22                                | 408              | 426               | 301                               | 273              |
| 50    | Jul-Jun | 1993-4    | 577               | 85                                | 338              | 417               | 420                               | 163              | 586               | 27                                | 387              | 458               | 284                               | 258              |
| 49    | Jan–Jun | 1993      | 591               | 79                                | 330              | 389               | 395                               | 216              | 585               | 23                                | 392              | 407               | 262                               | 331              |
| 48    | Jan-Dec | 1992      | 608               | 83                                | 309              | 412               | 394                               | 193              | 591               | 32                                | 377              | 425               | 288                               | 287              |
| 47    | Jul-Dec | 1991      | 595               | 92                                | 313              | 489               | 399                               | 172              | 568               | 31                                | 401              | 470               | 280                               | 250              |
| 46    | Jul–Jun | 1990-1    | 557               | 128                               | 315              | 407               | 442                               | 151              | 586               | 38                                | 376              | 490               | 259                               | 251              |
| 45    | Jul–Jun | 1989–90   | 597               | 98                                | 305              | 423               | 413                               | 164              | 609               | 28                                | 363              | 486               | 292                               | 222              |
| 43    | Jul-Jun | 1987-8    | 586               | 100                               | 314              | 417               | 437                               | 146              | 608               | 37                                | 355              | 471               | 275                               | 254              |
| 38    | Jan-Dec | 1983      | 605               | 103                               | 292              | 409               | 437                               | 154              | 619               | 28                                | 353              | 458               | 258                               | 284              |
| 32    | Jul–Jun | 1977-8    | 628               | 106                               | 266              | 404               | 464                               | 132              | 321               | 28                                | 351              | 495               | 249                               | 256              |
| 27    | Oct-Sep | 1972-3    | 659               | 121                               | 220              | 392               | 507                               | 101              | 645               | 41                                | 314              | 484               | 279                               | 237              |

Notes: Figures in bold represent regular quinquennial surveys; others are thin sample surveys; Worker population ratios (WPRs) represent the ratio of worker population in total population in the respective categories.

Source: NSS 60th round (January–July 2004) Report No.506(60/10/1) and earlier NSS Reports.

TABLE A14.4 Unemployed Rates

(Number of persons unemployed per 1000 persons in the labour force)

| Round | Survey  | Period    |                 |                   |                             | Ma                         | ale             |                   |                             |                            |                 |                   |                             | Fen                        | nale            |                   |                             |                            |
|-------|---------|-----------|-----------------|-------------------|-----------------------------|----------------------------|-----------------|-------------------|-----------------------------|----------------------------|-----------------|-------------------|-----------------------------|----------------------------|-----------------|-------------------|-----------------------------|----------------------------|
|       | Month   | Year      |                 | Ru                | ral                         |                            |                 | Ur                | ban                         |                            |                 | Ru                | ral                         |                            |                 | Url               | oan                         |                            |
|       |         |           | Usual<br>Status | Usual<br>Adjusted | Current<br>Weekly<br>Status | Current<br>Daily<br>Status |
| (1)   | (2)     | (3)       | (4)             | (5)               | (6)                         | (7)                        | (8)             | (9)               | (10)                        | (11)                       | (12)            | (13)              | (14)                        | (15)                       | (16)            | (17)              | (18)                        | (19)                       |
| 60    | Jan–Jun | 2004      | 24              | 18                | 47                          | 90                         | 46              | 40                | 57                          | 81                         | 22              | 13                | 45                          | 93                         | 89              | 67                | 90                          | 117                        |
|       |         |           | (13)            | (10)              | (25)                        | (47)                       | (25)            | (22)              | (32)                        | (45)                       | (5)             | (4)               | (12)                        | (19)                       | (12)            | (11)              | (14)                        | (16)                       |
| 59    | Jan–Dec | 2003      | 19              | 15                | 28                          | _                          | 43              | 40                | 51                          | _                          | 10              | 6                 | 16                          | _                          | 44              | 35                | 49                          | _                          |
|       |         |           | (10)            | (9)               | (15)                        |                            | (24)            | (23)              | (28)                        |                            | (2)             | (2)               | (4)                         |                            | (5)             | (5)               | (6)                         |                            |
| 58    | Jul-Dec | 2002      | 18              | 15                | 28                          | _                          | 47              | 45                | 55                          | _                          | 10              | 6                 | 16                          | _                          | 61              | 47                | 57                          | _                          |
|       |         |           | (10)            | (8)               | (15)                        |                            | (26)            | (25)              | (31)                        |                            | (2)             | (2)               | (4)                         |                            | (8)             | (7)               | (7)                         |                            |
| 57    | Jul–Jun | 2001-2    | 14              | 11                | 26                          | _                          | 42              | 39                | 46                          | _                          | 20              | 14                | 26                          | _                          | 49              | 38                | 48                          | _                          |
|       |         |           | (7)             | (6)               | (14)                        |                            | (24)            | (22)              | (26)                        |                            | (5)             | (5)               | (7)                         |                            | (6)             | (5)               | (6)                         |                            |
| 56    | Jul–Jun | 2000-1    | 16              | 14                | 23                          | _                          | 42              | 39                | 48                          | _                          | 6               | 4                 | 18                          | _                          | 38              | 29                | 39                          | _                          |
|       |         |           | (9)             | (8)               | (12)                        |                            | (23)            | (22)              | (26)                        |                            | (1)             | (1)               | (4)                         |                            | (5)             | (4)               | (5)                         |                            |
| 55    | Jul–Jun | 1999-2000 | 21              | 17                | 39                          | 72                         | 48              | 45                | 56                          | 73                         | 15              | 10                | 37                          | 70                         | 71              | 57                | 73                          | 94                         |
|       |         |           | (11)            | (9)               | (21)                        | (37)                       | (26)            | (24)              | (30)                        | (38)                       | (4)             | (3)               | (10)                        | (15)                       | (9)             | (8)               | (10)                        | (12)                       |
| 54    | Jan–Jun | 1998      | 24              | 21                | 29                          | _                          | 53              | 51                | 54                          | _                          | 20              | 15                | 27                          | _                          | 81              | 68                | 78                          | _                          |
|       |         |           | (13)            | (11)              | (15)                        |                            | (28)            | (27)              | (29)                        |                            | (4)             | (4)               | (6)                         |                            | (9)             | (8)               | (8)                         |                            |
| 53    | Jan–Dec | 1997      | 16              | 12                | 20                          | _                          | 37              | 39                | 43                          | _                          | 9               | 7                 | 18                          | _                          | 51              | 44                | 58                          | _                          |
|       |         |           | (9)             | (7)               | (11)                        |                            | (21)            | (21)              | (23)                        |                            | (2)             | (2)               | (4)                         |                            | (6)             | (6)               | (7)                         |                            |
| 52    | Jul–Jun | 1995-6    | 15              | 13                | 18                          | _                          | 40              | 38                | 41                          | _                          | 8               | 7                 | 9                           | _                          | 36              | 31                | 35                          | _                          |
|       |         |           | (8)             | (7)               | (10)                        |                            | (22)            | (21)              | (22)                        |                            | (2)             | (2)               | (2)                         |                            | (4)             | (4)               | (4)                         |                            |
| 51    | Jul–Jun | 1994-5    | 12              | 10                | 18                          | _                          | 37              | 34                | 39                          | _                          | 5               | 4                 | 12                          | _                          | 41              | 34                | 40                          | _                          |
|       |         |           | (7)             | (6)               | (10)                        |                            | (20)            | (18)              | (21)                        |                            | (1)             | (1)               | (3)                         |                            | (5)             | (5)               | (5)                         |                            |
| 50    | Jul–Jun | 1993-4    | 20              | 14                | 31                          | 56                         | 45              | 41                | 52                          | 67                         | 14              | 8                 | 30                          | 56                         | 83              | 61                | 79                          | 104                        |
|       |         |           | (11)            | (8)               | (17)                        | (30)                       | (24)            | (22)              | (28)                        | (36)                       | (3)             | (3)               | (8)                         | (13)                       | (11)            | (10)              | (12)                        | (14)                       |
| 49    | Jan–Jun | 1993      | 16              | _                 | _                           | _                          | 38              | _                 | _                           | _                          | 10              | _                 | _                           | _                          | 43              | -                 | _                           | _                          |
| 48    | Jan–Dec | 1992      | 16              | _                 | _                           | _                          | 46              | _                 | _                           | _                          | 12              | _                 | _                           | _                          | 67              | -                 | _                           | _                          |
| 47    | Jul–Dec | 1991      | 20              | 16                | 22                          | _                          | 43              | 39                | 45                          | _                          | 18              | 7                 | 12                          | _                          | 56              | 51                | 50                          | _                          |
| 46    | Jul–Jun | 1990-1    | 13              | _                 | _                           | _                          | 45              | _                 | _                           | _                          | 4               | _                 | _                           | _                          | 54              | _                 | _                           | _                          |
| 45    | Jul–Jun | 1989-90   | 16              | 13                | 26                          | _                          | 44              | 39                | 45                          | _                          | 8               | 6                 | 21                          | _                          | 39              | 27                | 40                          | _                          |
| 43    | Jul–Jun | 1987-8    | 28              | 18                | 42                          | 46                         | 61              | 52                | 66                          | 88                         | 35              | 24                | 44                          | 67                         | 85              | 62                | 92                          | 120                        |
| 38    | Jan–Dec |           | 21              | 14                | 37                          | 75                         | 59              | 51                | 67                          | 92                         | 14              | 7                 | 43                          | 90                         | 69              | 49                | 75                          | 110                        |
| 32    | Jul–Jun | 1977-8    | 22              | 13                | 36                          | 71                         | 65              | 54                | 71                          | 94                         | 55              | 20                | 41                          | 92                         | 178             | 124               | 109                         | 145                        |
| 27    | Oct-Sep | 1972-3    | _               | 12                | 30                          | 38                         | _               | 48                | 60                          | 80                         | _               | 5                 | 55                          | 112                        | _               | 60                | 90                          | 137                        |

Notes: Figures in bold represent regular quinquennial surveys; others are thin sample surveys; Worker population ratios (WPRs) represent the ratio of worker population in total population in the respective categories; Figures in brackets indicate the proportion of unemployed per 1000 (person—days).

Source: NSS 60th round (January–July 2004) Report No.506(60/10/1) and earlier NSS Reports.

Table A14.5 Statewise Labour Force and Work Force Participation Rates by Place of Residence and Sex, 1983 to 1999-2000

| State             |           |      | Labour Fo | rce Particip | ation Ra | te (LFPRs) |         |              | Work For | ce Participa | ition Rate | (WFPRs) |         |
|-------------------|-----------|------|-----------|--------------|----------|------------|---------|--------------|----------|--------------|------------|---------|---------|
|                   | Year      |      | Rural     |              |          | Urabn      |         |              | Rural    |              |            | Urabn   |         |
|                   |           | Male | Female    | Persons      | Male     | Female     | Persons | Male         | Female   | Persons      | Male       | Female  | Persons |
| (1)               | (2)       | (3)  | (4)       | (5)          | (6)      | (7)        | (8)     | (9)          | (10)     | (11)         | (12)       | (13)    | (14)    |
| Andhra Pradesh    | 1999–2000 | 61.1 | 48.0      | 54.6         | 53.2     | 18.4       | 36.2    | 99.0         | 99.6     | 99.3         | 96.1       | 96.7    | 96.1    |
|                   | 1993-4    | 63.5 | 52.1      | 57.8         | 56.0     | 20.7       | 38.7    | 99.4         | 100.0    | 99.5         | 97.1       | 96.1    | 97.2    |
|                   | 1983      | 61.2 | 47.2      | 54.1         | 53.4     | 18.6       | 36.4    | 99.0         | 99.8     | 99.5         | 95.3       | 96.7    | 95.7    |
| Assam             | 1999-2000 | 54.6 | 16.1      | 36.4         | 56.5     | 13.8       | 36.8    | 96.9         | 93.8     | 95.9         | 92.4       | 81.2    | 90.2    |
|                   | 1993-4    | 54.1 | 17.2      | 37.3         | 55.9     | 12.4       | 35.2    | 95.4         | 92.4     | 94.6         | 94.5       | 74.2    | 91.2    |
|                   | 1983      | 51.1 | 12.9      | 33.3         | 52.4     | 8.6        | 32.7    | 98.0         | 98.0     | 97.9         | 95.6       | 90.4    | 95.3    |
| Bihar             | 1999-2000 | 50.3 | 17.4      | 34.4         | 46.6     | 8.2        | 28.7    | 97.8         | 99.4     | 98.3         | 92.7       | 91.5    | 92.7    |
|                   | 1993-4    | 52.1 | 17.3      | 35.6         | 47.1     | 7.6        | 29.1    | 98.1         | 99.4     | 98.6         | 93.2       | 90.8    | 93.1    |
|                   | 1983      | 51.5 | 24.9      | 38.3         | 49.5     | 21.0       | 45.5    | 98.7         | 99.7     | 98.9         | 95.1       | 99.2    | 95.6    |
| Gujarat           | 1999-2000 | 58.7 | 41.3      | 50.1         | 54.7     | 13.8       | 35.2    | 99.5         | 100.0    | 99.6         | 98.0       | 97.8    | 98.0    |
| ,                 | 1993-4    | 58.1 | 39.7      | 49.2         | 55.1     | 14.8       | 35.9    | 98.8         | 99.7     | 99.2         | 97.1       | 95.9    | 96.7    |
|                   | 1983      | 55.4 | 41.2      | 48.5         | 54.5     | 13.6       | 35.3    | 99.2         | 99.8     | 99.5         | 95.4       | 96.8    |         |
| Haryana           | 1999-2000 | 48.1 | 20.2      | 34.9         | 52.0     | 10.1       | 32.3    | 98.8         | 100.0    | 99.1         | 97.3       | 97.0    | 95.3    |
| •                 | 1993-4    | 47.0 | 27.2      | 37.7         | 53.2     | 15.7       | 36.1    | 98.5         | 99.6     | 98.7         | 97.6       | 96.8    | 97.5    |
|                   | 1983      | 48.0 | 23.3      | 36.4         | 55.8     | 11.6       | 35.2    | 96.8         | 99.6     | 97.9         | 95.7       | 93.9    |         |
| Himachal Pradesh  | 1999-2000 | 54.6 | 47.4      | 50.9         | 53.3     | 14.2       | 34.4    | 98.2         | 99.4     | 98.8         | 93.6       | 91.5    |         |
|                   | 1993-4    | 59.5 | 52.0      | 55.6         | 50.5     | 20.2       | 37.2    | 99.2         | 100.0    | 99.6         | 96.6       | 99.5    | 97.6    |
|                   | 1983      | 53.6 | 47.8      | 50.7         | 57.6     | 18.5       | 40.2    | 98.7         | 99.5     | 99.0         | 92.5       | 92.8    | 93.6    |
| Jammu and Kashmir | 1999-2000 | 55.4 | 33.0      | 44.7         | 50.0     | 6.8        | 29.6    | 98.9         | 99.1     | 98.9         | 95.6       | 91.2    | 94.9    |
|                   | 1993-4    | 52.4 | 39.3      | 45.9         | 52.2     | 14.3       | 34.0    | 99.0         | 99.5     | 99.3         | 94.1       | 90.9    | 93.2    |
|                   | 1983      | 55.6 | 28.5      | 42.6         | 55.6     | 10.8       | 34.6    | 99.4         | 99.7     | 99.6         | 96.8       | 92.6    | 96.1    |
| Karnataka         | 1999-2000 | 60.1 | 38.1      | 49.1         | 56.2     | 18.6       | 37.8    | 99.0         | 99.7     | 99.2         | 97.0       | 95.7    | 96.8    |
|                   | 1993–4    | 60.9 | 43.2      | 52.1         | 55.8     | 19.1       | 37.9    | 99.2         | 99.5     | 99.2         | 97.1       | 94.8    | 96.6    |
|                   | 1983      | 59.1 | 38.8      | 49.0         | 53.5     | 20.4       | 37.4    | 99.3         | 99.3     | 99.3         | 95.7       | 95.7    | 95.8    |
| Kerala            | 1999-2000 | 58.7 | 27.3      | 42.2         | 59.1     | 25.4       | 41.5    | 94.2         | 87.2     | 91.7         | 94.4       | 79.9    | 89.9    |
|                   | 1993–4    | 56.8 | 26.4      | 40.9         | 59.9     | 25.0       | 42.0    | 94.5         | 90.2     | 93.2         | 93.3       | 81.2    | 89.8    |
|                   | 1983      | 52.2 | 33.8      | 42.8         | 55.1     | 25.9       | 39.8    | 93.1         | 92.8     | 92.9         | 90.6       | 84.7    | 88.5    |
| Madhya Pradesh    | 1999-2000 | 54.0 | 38.3      | 46.4         | 50.9     | 13.6       | 33.4    | 99.3         | 99.7     | 99.6         | 95.9       | 98.5    | 96.4    |
| 7                 | 1993–4    | 57.6 | 41.1      | 49.7         | 49.8     | 14.8       | 33.2    | 99.3         | 99.8     | 99.4         | 94.6       | 95.9    | 94.9    |
|                   | 1983      | 56.4 | 43.3      | 49.9         | 49.3     | 14.7       | 33.2    | 99.7         | 100.0    | 99.8         | 96.9       | 98.8    | 97.1    |
| Maharashtra       | 1999–2000 | 54.2 | 43.7      | 49.0         | 56.3     | 14.6       | 37.3    | 98.0         | 99.3     | 98.8         | 94.5       | 93.8    | 94.3    |
|                   | 1993–4    | 55.8 | 47.8      | 51.8         | 54.9     | 17.7       | 36.1    | 98.7         | 99.8     | 99.2         | 95.8       | 95.5    | 95.4    |
|                   | 1983      | 56.6 | 47.4      | 52.0         | 54.2     | 15.7       | 33.1    | 99.1         | 99.8     | 99.5         | 94.6       | 96.6    | 95.1    |
| Orissa            | 1999–2000 | 56.4 | 30.2      | 43.2         | 51.1     | 15.3       | 33.9    | 97.7         | 99.0     | 97.9         | 93.0       | 94.8    | 93.5    |
| 011004            | 1993–4    | 57.7 | 31.9      | 44.9         | 54.6     | 16.1       | 33.1    | 98.1         | 99.4     | 98.4         | 93.4       | 93.8    | 93.4    |
|                   | 1983      | 58.3 | 29.6      | 43.9         | 52.6     | 11.8       | 36.7    | 98.5         | 99.4     | 99.0         | 95.4       | 94.1    | 95.0    |
| Punjab            | 1999–2000 | 54.3 | 28.2      | 41.7         | 56.5     | 12.8       | 36.3    | 97.6         | 99.3     | 98.3         | 97.2       | 97.7    | 97.2    |
| 1 unjuo           | 1993–4    | 55.4 | 22.3      | 39.7         | 57.1     | 9.9        | 34.8    | 98.6         | 98.7     | 98.7         | 96.8       | 93.9    | 96.6    |
|                   | 1983      | 59.3 | 32.4      | 46.6         | 55.8     | 13.6       | 36.4    | 98.0         | 98.4     | 97.9         | 96.4       | 95.5    | 95.2    |
| Rajasthan         | 1999–2000 | 50.3 | 38.9      | 44.8         | 49.9     | 14.1       | 33.2    | 99.4         | 99.7     | 99.6         | 97.4       | 97.9    | 97.3    |
| Tu)uotiiuii       | 1993–4    | 54.2 | 45.8      | 50.2         | 49.8     | 16.3       | 34.0    | 99.6         | 99.8     | 99.6         | 98.4       | 100.0   | 98.5    |
|                   | 1983      | 55.3 | 46.5      | 51.1         | 49.6     | 19.7       | 35.3    | 99.5         | 100.0    | 99.7         | 96.2       | 99.1    | 97.1    |
| Tamil Nadu        | 1999–2000 | 61.0 | 43.4      | 52.3         | 58.5     | 22.7       | 41.0    | 97.4         | 99.1     | 98.1         | 96.2       | 94.7    | 95.9    |
|                   | 1993–4    | 61.3 | 48.1      | 54.6         | 60.1     | 24.7       | 42.3    | 98.2         | 99.4     | 98.7         | 95.7       | 93.1    | 95.0    |
|                   | 1983      | 61.0 | 46.0      | 53.4         | 57.9     | 22.5       | 40.2    | 97.6         | 98.8     | 98.2         | 93.3       | 94.0    | 93.6    |
| Uttar Pradesh     | 1999–2000 | 48.6 | 20.1      | 34.8         | 51.2     | 9.7        | 31.7    | 99.0         | 100.0    | 99.1         | 95.7       | 96.9    | 95.9    |
|                   | 1993–4    | 52.7 | 21.9      | 38.1         | 49.8     | 10.3       | 31.4    | 99.1         | 100.0    | 99.2         | 96.8       | 99.0    | 97.1    |
|                   | 1983      | 53.5 | 25.7      | 40.3         | 52.2     | 9.9        | 32.3    | 99.4         | 100.0    | 99.4         | 96.2       | 97.4    | 96.2    |
| West Bengal       | 1999–2000 | 54.9 | 16.5      | 35.9         | 61.2     | 12.9       | 37.8    | 97.3         | 97.0     | 97.2         | 92.6       | 90.7    | 92.6    |
| rrest Deligai     | 1999–2000 | 56.7 | 18.9      | 38.2         | 58.7     | 16.7       | 39.3    | 98.2         | 97.0     | 98.4         | 93.7       | 85.6    | 92.0    |
|                   | 1993–4    | 55.2 | 19.6      | 37.8         | 59.1     | 14.8       | 38.7    | 97.5         | 98.7     | 97.7         | 91.7       | 88.4    | 91.1    |
| All India         | 1999–2000 | 54.0 | 30.2      | 37.0         | 54.2     | 14.8       | 30.7    | 53.1         | 29.9     | 41.7         | 51.8       | 13.9    | 33.7    |
| ını IIIula        | 1999–2000 |      |           |              | 54.2     |            |         |              |          |              |            |         |         |
|                   |           | 56.1 | 33.0      |              | 34.3     | 16.5       |         | 55.3<br>54.7 | 32.8     | 44.4         | 52.1       | 15.5    | 34.7    |
|                   | 1983      |      |           |              |          |            |         | 54.7         | 34.0     | 44.5         | 51.2       | 15.1    | 34.0    |

Notes: Labour force participation rates (LFPRs) represent the ratio of worker population in total population in the respective categories; The work force participation rate (WFPR) represents the proportion of the labour force actually working (in percentage).

Sources: GOI (1990), Sarvekshana, Vol. XIV, Nos 1 & 2, July-September; GOI (1997), Employment and Unemployment in India, NSS Report No 409, March 1977, pp. 62–3, 78–9; GOI (2001), Employment and Unemployment Situation in India, 1999–2000: Part 1, NSS Report No. 458, May 2001, pp. 62–3, 80–1.

Table A14.6 Statewise Sectoral Distribution of Usual (Principal + Subsidiary) Status Workers, 1983 to 1999–2000

| State             | Year      |       | Agriculture |       | ]     | Manufacturin | g     | N     | Non-agricultu | re    |
|-------------------|-----------|-------|-------------|-------|-------|--------------|-------|-------|---------------|-------|
|                   |           | Rural | Urban       | Total | Rural | Urban        | Total | Rural | Urban         | Total |
| (1)               | (2)       | (3)   | (4)         | (5)   | (6)   | (7)          | (8)   | (9)   | (10)          | (11)  |
| Andhra Pradesh    | 1999–2000 | 78.8  | 9.6         | 65.5  | 6.2   | 22.0         | 9.2   | 21.2  | 90.4          | 34.5  |
|                   | 1993-4    | 79.2  | 16.5        | 67.1  | 7.6   | 22.0         | 10.1  | 20.8  | 83.5          | 32.9  |
|                   | 1983      | 80.1  | 15.7        | 69.3  | 7.9   | 25.0         | 10.7  | 19.9  | 84.3          | 30.7  |
| Assam             | 1999-2000 | 67.6  | 5.9         | 60.2  | 5.4   | 12.9         | 6.3   | 32.4  | 94.1          | 39.8  |
|                   | 1993-4    | 78.9  | 3.0         | 70.5  | 5.5   | 13.8         | 6.4   | 21.1  | 97.0          | 29.5  |
|                   | 1983      | 79.3  | 7.4         | 72.3  | 4.4   | 16.2         | 5.6   | 20.7  | 92.6          | 27.7  |
| Bihar             | 1999-2000 | 80.6  | 11.1        | 73.1  | 6.4   | 21.2         | 8.0   | 19.4  | 88.9          | 26.9  |
|                   | 1993-4    | 84.2  | 11.9        | 76.6  | 4.1   | 21.5         | 6.0   | 15.8  | 88.1          | 23.4  |
|                   | 1983      | 83.5  | 14.3        | 76.5  | 6.3   | 24.8         | 8.1   | 16.5  | 85.7          | 23.5  |
| Gujarat           | 1999-2000 | 80.0  | 9.8         | 59.7  | 7.0   | 27.3         | 12.8  | 20.0  | 90.2          | 40.3  |
|                   | 1993-4    | 78.8  | 8.0         | 58.9  | 9.5   | 34.8         | 16.6  | 21.2  | 92.0          | 41.1  |
|                   | 1983      | 85.0  | 18.0        | 68.7  | 5.7   | 35.0         | 12.9  | 15.0  | 82.0          | 31.3  |
| Haryana           | 1999-2000 | 68.4  | 10.6        | 53.0  | 8.3   | 23.9         | 12.5  | 31.6  | 89.4          | 47.0  |
| •                 | 1993-4    | 71.7  | 11.6        | 56.9  | 4.8   | 28.3         | 10.6  | 28.3  | 88.4          | 43.1  |
|                   | 1983      | 77.1  | 16.0        | 64.1  | 6.4   | 26.1         | 10.6  | 22.9  | 84.0          | 35.9  |
| Himachal Pradesh  | 1999-2000 | 73.8  | 10.4        | 69.6  | 4.7   | 9.5          | 5.0   | 26.2  | 89.6          | 30.4  |
|                   | 1993-4    | 79.6  | 17.8        | 75.9  | 3.6   | 4.6          | 3.7   | 20.4  | 82.2          | 24.1  |
|                   | 1983      | 87.0  | 12.4        | 82.8  | 3.4   | 12.0         | 3.9   | 13.0  | 87.6          | 17.2  |
| Jammu and Kashmir | 1999-2000 | 73.7  | 12.8        | 62.9  | 5.6   | 10.5         | 6.5   | 26.3  | 87.2          | 37.1  |
|                   | 1993-4    | 75.1  | 13.8        | 63.9  | 4.2   | 12.9         | 5.8   | 24.9  | 86.2          | 36.1  |
|                   | 1983      | 79.7  | 16.1        | 68.9  | 4.7   | 28.7         | 8.8   | 20.3  | 83.9          | 31.1  |
| Karnataka         | 1983      | 84.4  | 19.9        | 69.6  | 6.0   | 28.9         | 11.3  | 15.6  | 80.1          | 30.4  |
|                   | 1993-4    | 81.9  | 16.6        | 65.7  | 6.7   | 26.9         | 11.7  | 18.1  | 83.4          | 34.3  |
|                   | 1999-2000 | 82.1  | 10.9        | 62.5  | 5.9   | 27.1         | 11.8  | 17.9  | 89.1          | 37.5  |
| Kerala            | 1999-2000 | 48.5  | 9.6         | 38.7  | 14.3  | 23.5         | 16.6  | 51.5  | 90.4          | 61.3  |
|                   | 1993-4    | 56.0  | 25.4        | 48.1  | 13.5  | 21.4         | 15.5  | 44.0  | 74.6          | 51.9  |
|                   | 1983      | 92.8  | 27.7        | 56.3  | 14.7  | 22.5         | 16.1  | 37.2  | 72.3          | 43.7  |
| Madhya Pradesh    | 1999-2000 | 87.2  | 15.5        | 73.9  | 4.2   | 21.7         | 7.4   | 12.8  | 84.5          | 26.1  |
|                   | 1993-4    | 89.9  | 16.4        | 77.7  | 3.5   | 20.5         | 6.3   | 10.1  | 83.6          | 22.3  |
|                   | 1983      | 90.3  | 15.4        | 79.5  | 3.9   | 25.9         | 7.1   | 9.7   | 84.6          | 20.5  |
| Maharashtra       | 1999-2000 | 82.7  | 5.7         | 56.4  | 5.2   | 28.1         | 13.1  | 17.3  | 94.3          | 43.6  |
|                   | 1993-4    | 82.6  | 9.2         | 59.4  | 5.3   | 27.5         | 12.3  | 17.4  | 90.8          | 40.6  |
|                   | 1983      | 85.8  | 12.6        | 66.2  | 5.0   | 31.7         | 12.1  | 14.2  | 87.4          | 33.8  |
| Orissa            | 1999-2000 | 78.5  | 13.3        | 71.0  | 8.5   | 21.7         | 10.0  | 21.5  | 86.7          | 29.0  |
|                   | 1993-4    | 81.0  | 15.8        | 73.8  | 6.8   | 19.9         | 8.2   | 19.0  | 84.2          | 26.2  |
|                   | 1983      | 79.2  | 16.2        | 73.3  | 8.7   | 24.0         | 10.1  | 20.8  | 83.8          | 26.7  |
| Punjab            | 1999-2000 | 72.5  | 8.9         | 53.4  | 7.8   | 26.8         | 13.5  | 27.5  | 91.1          | 46.6  |
|                   | 1993-4    | 74.5  | 9.2         | 56.4  | 5.9   | 28.5         | 12.2  | 25.5  | 90.8          | 43.6  |
|                   | 1983      | 82.5  | 14.0        | 66.8  | 6.4   | 30.1         | 11.8  | 17.5  | 86.0          | 33.2  |
| Rajasthan         | 1999-2000 | 77.6  | 13.1        | 65.9  | 4.9   | 24.3         | 8.4   | 22.4  | 86.9          | 34.1  |
|                   | 1993-4    | 79.8  | 16.3        | 69.2  | 4.6   | 21.7         | 7.4   | 20.2  | 83.7          | 30.8  |
|                   | 1983      | 86.7  | 27.3        | 77.6  | 4.3   | 23.0         | 7.2   | 13.3  | 72.7          | 22.4  |
| Tamil Nadu        | 1999-2000 | 68.3  | 9.0         | 46.8  | 14.4  | 33.4         | 21.3  | 31.7  | 91.0          | 53.2  |
|                   | 1993-4    | 70.2  | 11.9        | 52.5  | 13.6  | 32.2         | 19.3  | 29.8  | 88.1          | 47.5  |
|                   | 1983      | 74.3  | 15.4        | 58.9  | 11.4  | 34.8         | 17.5  | 25.7  | 84.6          | 41.1  |
| Uttar Pradesh     | 1999-2000 | 76.1  | 9.4         | 63.6  | 8.6   | 29.2         | 12.5  | 23.9  | 90.6          | 36.4  |
|                   | 1993-4    | 80.0  | 15.0        | 69.0  | 7.1   | 27.1         | 10.5  | 20.0  | 85.0          | 31.0  |
|                   | 1983      | 82.0  | 12.2        | 71.7  | 7.4   | 29.2         | 10.6  | 18.0  | 87.8          | 28.3  |
| West Bengal       | 1999-2000 | 63.0  | 3.0         | 46.1  | 17.7  | 31.1         | 21.4  | 37.0  | 97.0          | 53.9  |
| •                 | 1993-4    | 63.6  | 5.7         | 48.1  | 17.0  | 31.8         | 21.0  | 36.4  | 94.3          | 51.9  |
|                   | 1983      | 73.6  | 4.8         | 56.4  | 11.2  | 36.4         | 17.5  | 26.4  | 95.2          | 43.6  |

Source: Chadha, G.K. and P.P. Sahu (2002), 'Post-Reform Setbacks In Rural Employment—Issues That Need Further Scrutiny', Economic and Political Weekly, 25 May.

**TABLE A14.7** Statewise Composition of Rural and Urban Usual (Principal + Subsidiary) Status Workers, 1983 to 1999-2000

| State             | Year      |       | Rural F | Persons |      |       | Urban I | Persons |      |       | All P | ersons |      |
|-------------------|-----------|-------|---------|---------|------|-------|---------|---------|------|-------|-------|--------|------|
|                   |           | SE    | RE      | CL      | ICL  | SE    | RE      | CL      | ICL  | SE    | RE    | CL     | ICL  |
| (1)               | (2)       | (3)   | (4)     | (5)     | (6)  | (7)   | (8)     | (9)     | (10) | (11)  | (12)  | (13)   | (14) |
| Andhra Pradesh    | 1999–2000 | 45.80 | 5.90    | 48.30   | 819  | 36.70 | 38.70   | 24.60   | 64   | 44.10 | 12.14 | 43.75  | 360  |
| Tanana Tanacon    | 1993–4    | 47.50 | 5.20    | 47.30   | 910  | 40.30 | 34.10   | 25.60   | 75   | 46.01 | 10.92 | 43.07  | 394  |
|                   | 1983      | 48.10 | 7.74    | 43.46   | 561  | 41.80 | 37.38   | 20.67   | 55   | 47.09 | 12.74 | 39.58  | 311  |
| Assam             | 1999–2000 | 58.20 | 16.60   | 25.20   | 152  | 44.70 | 42.90   | 12.40   | 29   | 56.49 | 19.74 | 23.77  | 120  |
| 11030111          | 1993–4    | 57.80 | 14.40   | 27.80   | 193  | 45.30 | 43.10   | 11.60   | 27   | 56.20 | 17.63 | 26.16  | 148  |
|                   | 1983      | 61.60 | 18.70   | 19.10   | 102  | 44.35 | 45.88   | 9.10    | 20   | 60.00 | 21.49 | 18.13  | 84   |
| Bihar             | 1999–2000 | 52.30 | 3.50    | 44.20   | 1263 | 53.70 | 30.20   | 16.10   | 53   | 52.52 | 13.68 | 30.64  | 640  |
| Dillai            | 1999–2000 | 52.30 | 4.00    | 43.70   | 1093 | 47.80 |         | 16.60   | 47   | 51.72 | 7.19  | 41.09  | 572  |
|                   |           |       |         |         |      |       | 35.60   |         |      |       |       |        |      |
| Containe          | 1983      | 56.62 | 4.88    | 37.89   | 776  | 48.45 | 33.57   | 17.64   | 53   | 55.67 | 8.06  | 35.68  | 443  |
| Gujarat           | 1999–2000 | 54.20 | 6.30    | 39.50   | 627  | 41.00 | 34.10   | 24.90   | 73   | 50.36 | 14.45 | 35.19  | 244  |
|                   | 1993–4    | 50.20 | 6.80    | 43.00   | 632  | 38.30 | 40.90   | 20.80   | 51   | 46.91 | 16.22 | 36.87  | 227  |
|                   | 1983      | 59.75 | 5.15    | 34.64   | 672  | 41.66 | 39.94   | 18.32   | 46   | 55.30 | 13.68 | 30.64  | 224  |
| Haryana           | 1999–2000 | 66.40 | 12.40   | 21.20   | 171  | 44.80 | 42.80   | 12.40   | 29   | 60.52 | 20.61 | 18.87  | 92   |
|                   | 1993–4    | 67.70 | 9.40    | 22.90   | 244  | 45.00 | 40.40   | 14.60   | 36   | 62.38 | 16.95 | 20.67  | 122  |
|                   | 1983      | 70.23 | 12.85   | 19.90   | 155  | 50.31 | 38.90   | 10.71   | 28   | 62.49 | 18.49 | 17.87  | 97   |
| Himachal Pradesh  | 1999–2000 | 78.70 | 10.10   | 11.20   | 111  | 37.60 | 51.60   | 10.80   | 21   | 75.53 | 13.04 | 11.43  | 88   |
|                   | 1993–4    | 85.60 | 7.10    | 7.30    | 103  | 38.40 | 52.50   | 9.10    | 17   | 82.39 | 9.99  | 7.62   | 76   |
|                   | 1983      | 89.17 | 5.21    | 5.51    | 106  | 36.87 | 54.86   | 8.27    | 15   | 85.79 | 8.26  | 5.81   | 70   |
| Jammu and Kashmir | 1999–2000 | 81.80 | 8.60    | 9.60    | 112  | 48.10 | 40.40   | 11.50   | 28   | 75.90 | 14.25 | 9.84   | 69   |
|                   | 1993–4    | 82.40 | 10.00   | 7.60    | 76   | 45.00 | 50.30   | 4.70    | 9    | 75.20 | 17.68 | 7.12   | 40   |
|                   | 1983      | 82.57 | 6.38    | 10.79   | 169  | 56.06 | 36.89   | 6.57    | 18   | 77.79 | 11.85 | 9.52   | 80   |
| Karnataka         | 1999-2000 | 50.20 | 5.30    | 44.50   | 840  | 38.80 | 39.60   | 21.60   | 55   | 47.03 | 14.83 | 38.14  | 257  |
|                   | 1993-4    | 55.90 | 4.80    | 39.30   | 819  | 41.30 | 36.90   | 21.80   | 59   | 52.40 | 12.78 | 34.82  | 272  |
|                   | 1983      | 55.93 | 4.65    | 38.82   | 835  | 35.36 | 36.80   | 27.65   | 75   | 51.16 | 12.20 | 36.18  | 297  |
| Kerala            | 1999-2000 | 42.90 | 13.70   | 43.40   | 317  | 41.30 | 29.10   | 29.60   | 102  | 42.35 | 17.53 | 40.12  | 229  |
|                   | 1993-4    | 45.40 | 11.50   | 43.10   | 375  | 39.80 | 26.80   | 33.40   | 125  | 43.86 | 15.44 | 40.70  | 264  |
|                   | 1983      | 50.17 | 13.16   | 36.60   | 278  | 41.20 | 30.06   | 28.63   | 95   | 48.37 | 16.35 | 35.21  | 215  |
| Madhya Pradesh    | 1999-2000 | 56.60 | 3.50    | 39.90   | 1140 | 46.30 | 33.00   | 20.70   | 63   | 54.63 | 9.01  | 36.36  | 404  |
| ,                 | 1993-4    | 61.90 | 4.00    | 34.10   | 853  | 41.30 | 38.50   | 20.20   | 52   | 58.56 | 9.67  | 31.77  | 329  |
|                   | 1983      | 66.20 | 6.13    | 27.28   | 445  | 40.58 | 42.42   | 16.87   | 40   | 62.49 | 11.33 | 25.76  | 227  |
| Maharashtra       | 1999-2000 | 44.30 | 7.30    | 48.40   | 663  | 33.80 | 51.50   | 14.70   | 29   | 40.69 | 22.44 | 36.87  | 164  |
|                   | 1993–4    | 48.70 | 7.60    | 43.70   | 575  | 36.60 | 49.60   | 13.80   | 28   | 44.95 | 20.84 | 34.21  | 164  |
|                   | 1983      | 51.39 | 8.02    | 40.50   | 505  | 31.14 | 49.02   | 17.52   | 36   | 46.52 | 19.21 | 34.20  | 178  |
| Orissa            | 1999–2000 | 48.70 | 4.20    | 47.10   | 1121 | 42.80 | 35.80   | 21.40   | 60   | 48.00 | 7.88  | 44.12  | 560  |
|                   | 1993–4    | 56.40 | 4.50    | 39.10   | 869  | 37.20 | 44.30   | 18.50   | 42   | 54.33 | 8.84  | 36.82  | 416  |
|                   | 1983      | 53.33 | 7.99    | 38.32   | 480  | 38.15 | 42.32   | 19.39   | 46   | 51.92 | 11.23 | 36.51  | 325  |
| Punjab            | 1999–2000 | 65.50 | 13.00   | 21.50   | 165  | 47.70 | 40.90   | 11.40   | 28   | 59.88 | 21.47 | 18.65  | 87   |
| 1 unjuo           | 1993–4    | 62.70 | 10.50   | 26.80   | 255  | 48.90 | 40.00   | 11.10   | 28   | 58.84 | 18.75 | 22.41  | 120  |
|                   | 1983      | 73.82 | 9.44    | 16.67   | 177  | 48.95 | 42.89   | 7.48    | 17   | 68.03 | 16.73 | 14.94  | 88   |
| Rajasthan         | 1999–2000 | 79.90 | 4.90    | 15.20   | 310  | 49.90 | 36.50   | 13.60   | 37   | 74.49 | 10.63 | 14.88  | 140  |
| Kajastiiaii       | 1993–2000 | 79.00 | 4.60    | 16.40   |      | 51.00 | 37.90   | 11.10   | 29   | 74.49 | 10.05 | 15.48  | 152  |
|                   |           |       |         |         | 357  |       |         |         |      |       |       |        |      |
| T 2 N I           | 1983      | 84.52 | 3.95    | 11.44   | 289  | 60.54 | 26.69   | 12.69   | 48   | 80.76 | 7.53  | 11.64  | 154  |
| Tamil Nadu        | 1999–2000 | 36.70 | 11.80   | 51.50   | 436  | 34.70 | 44.10   | 21.20   | 48   | 36.00 | 23.51 | 40.49  | 172  |
|                   | 1993–4    | 41.60 | 9.30    | 49.10   | 528  | 36.10 | 37.30   | 26.60   | 71   | 39.89 | 17.86 | 42.24  | 236  |
| II. D. I. I       | 1983      | 44.24 | 8.23    | 47.18   | 574  | 35.63 | 35.20   | 29.07   | 83   | 41.94 | 15.44 | 42.17  | 273  |
| Uttar Pradesh     | 1999–2000 | 72.70 | 5.60    | 21.70   | 388  | 55.00 | 32.30   | 12.70   | 39   | 69.32 | 10.61 | 20.07  | 189  |
|                   | 1993–4    | 74.30 | 4.50    | 21.10   | 469  | 58.70 | 29.50   | 11.80   | 40   | 71.68 | 8.65  | 19.66  | 227  |
|                   | 1983      | 77.78 | 4.77    | 17.30   | 363  | 55.06 | 32.42   | 12.27   | 38   | 74.40 | 8.91  | 16.53  | 185  |
| West Bengal       | 1999–2000 | 52.20 | 7.00    | 40.80   | 583  | 43.20 | 40.00   | 16.82   | 42   | 49.60 | 16.25 | 34.15  | 210  |
|                   | 1993–4    | 55.70 | 9.50    | 34.80   | 366  | 37.30 | 47.00   | 15.70   | 33   | 50.76 | 19.60 | 29.63  | 151  |
|                   | 1983      | 52.34 | 9.85    | 37.57   | 381  | 35.64 | 49.79   | 14.57   | 29   | 48.02 | 20.20 | 31.61  | 156  |

Notes: SE—self-employed; RE—regular salaried; CL—casual; Labour; ICL—index of casualization; CIL shows the number of casual wage earners for every 100 regular salaried employees.

Source: As in Table A14.6.

 ${\it TABLE~A14.8}$  Trends in Number and Employment of Agricultural (excluding crop production and plantation) and Non-Agricultural Enterprises, 1980–2005 and Growth

|    |                           |       |                        |          |       | Total                  | Employmen | t in Thou | ısands                 |              |       |                       |          |
|----|---------------------------|-------|------------------------|----------|-------|------------------------|-----------|-----------|------------------------|--------------|-------|-----------------------|----------|
|    |                           |       | th Econor<br>Census 20 |          |       | th Econor<br>Census 19 |           |           | rd Econor<br>Census 19 |              |       | nd Econo<br>Census 19 |          |
|    |                           | Rural | Urban                  | Combined | Rural | Urban                  | Combined  | Rural     | Urban                  | Combined     | Rural | Urban                 | Combined |
|    | All-India                 | 50185 | 48782                  | 98968    | 39901 | 43399                  | 83299     | 33296     | 38780                  | 72076        | 24474 | 29194                 | 53668    |
| 1  | Andhra Pradesh            | 5718  | 3152                   | 8871     | 4635  | 2877                   | 7512      | 4082      | 2652                   | 6734         | 2658  | 2054                  | 4712     |
| 2  | Arunachal Pradesh         | 64    | 43                     | 107      | 52    | 28                     | 81        | 62        | 31                     | 93           | 32    | 13                    | 44       |
| 3  | Assam                     | 1792  | 943                    | 2735     | 1551  | 644                    | 2195      | 1120      | 570                    | 1689         | Cens  | sus not co            | nducted  |
| 4  | Bihar                     | 1383  | 893                    | 2276     | 1775  | 1654                   | 3429      | 1743      | 1710                   | 3454         | 1532  | 1245                  | 2777     |
| 5  | Chattisgarh               | 1014  | 597                    | 1610     |       |                        |           | Inclu     | ided in M              | adhya Prade  | sh    |                       |          |
| 6  | Goa                       | 120   | 125                    | 246      | 98    | 118                    | 216       | 98        | 121                    | 219          | 136   | 116                   | 252      |
| 7  | Gujarat                   | 2569  | 3245                   | 5814     | 2351  | 2929                   | 5280      | 2022      | 2704                   | 4726         | 1528  | 2124                  | 3652     |
| 8  | Haryana                   | 1074  | 1138                   | 2212     | 595   | 964                    | 1559      | 524       | 829                    | 1353         | 370   | 604                   | 974      |
| 9  | Himachal Pradesh          | 462   | 205                    | 667      | 387   | 189                    | 577       | 312       | 156                    | 469          | 236   | 108                   | 344      |
| 10 | Jammu and Kashmir         | 364   | 387                    | 752      | 217   | 256                    | 474       | Cens      | us not co              | nducted      | 247   | 242                   | 489      |
| 11 | Jharkhand                 | 580   | 589                    | 1169     |       |                        |           | Inc       | luded in l             | Bihar        |       |                       |          |
| 12 | Karnataka                 | 3320  | 2659                   | 5978     | 2757  | 2496                   | 5253      | 2588      | 2495                   | 5083         | 2003  | 1863                  | 3866     |
| 13 | Kerala                    | 3684  | 1876                   | 5559     | 2760  | 1089                   | 3849      | 1889      | 1400                   | 3289         | 1603  | 849                   | 2452     |
| 14 | Madhya Pradesh            | 1868  | 2352                   | 4220     | 2441  | 2815                   | 5256      | 2363      | 2522                   | 4886         | 1601  | 1689                  | 3290     |
| 15 | Maharashtra               | 4625  | 7201                   | 11827    | 3688  | 6756                   | 10445     | 2847      | 6113                   | 8960         | 2145  | 4605                  | 6750     |
| 16 | Manipur                   | 121   | 114                    | 235      | 97    | 104                    | 201       | 77        | 80                     | 157          | 46    | 59                    | 105      |
| 17 | Meghalaya                 | 137   | 107                    | 245      | 97    | 87                     | 184       | 85        | 85                     | 170          | 49    | 59                    | 109      |
| 18 | Mizoram                   | 32    | 69                     | 101      | 23    | 54                     | 77        | 21        | 51                     | 72           | 18    | 27                    | 46       |
| 19 | Nagaland                  | 73    | 111                    | 184      | 64    | 111                    | 175       | 50        | 80                     | 130          | 39    | 36                    | 75       |
| 20 | Orissa                    | 2572  | 1004                   | 3575     | 2158  | 937                    | 3095      | 1716      | 896                    | 2612         | 1250  | 699                   | 1949     |
| 21 | Punjab                    | 1059  | 1628                   | 2688     | 743   | 1357                   | 2100      | 580       | 1190                   | 1770         | 415   | 921                   | 1336     |
| 22 | Rajasthan                 | 2271  | 1969                   | 4240     | 1793  | 1749                   | 3542      | 1318      | 1520                   | 2838         | 1138  | 1179                  | 2317     |
| 23 | Sikkim                    | 41    | 28                     | 69       | 27    | 21                     | 48        | 28        | 19                     | 47           | 15    | 15                    | 31       |
| 24 | Tamil Nadu                | 5188  | 4678                   | 9867     | 3583  | 3608                   | 7191      | 2882      | 3354                   | 6236         | 2305  | 2841                  | 5146     |
| 25 | Tripura                   | 249   | 130                    | 379      | 168   | 101                    | 268       | 132       | 89                     | 220          | 83    | 52                    | 134      |
| 26 | Uttar Pradesh             | 4196  | 4344                   | 8540     | 3232  | 4248                   | 7480      | 2949      | 3959                   | 6909         | 2621  | 3122                  | 5743     |
| 27 | Uttranchal                | 396   | 353                    | 749      |       |                        |           | Inclu     | ided in U              | ttar Pradesh |       |                       |          |
| 28 | West Bengal               | 4921  | 4397                   | 9318     | 4374  | 4397                   | 8771      | 3636      | 3811                   | 7448         | 2242  | 3101                  | 5343     |
|    | Chandigarh                | 13    | 239                    | 252      | 6     | 212                    | 218       | 8         | 195                    | 203          | 4     | 117                   | 121      |
|    | Delhi                     | 73    | 4007                   | 4080     | 86    | 3415                   | 3501      | 73        | 2012                   | 2085         | 96    | 1375                  | 1471     |
|    | Pondicherry               | 64    | 129                    | 193      | 49    | 132                    | 182       | 30        | 90                     | 120          | 26    | 55                    | 81       |
|    | Andaman & Nicobar Islands | 28    | 36                     | 64       | 37    | 25                     | 63        | 31        | 21                     | 52           | 21    | 17                    | 38       |
|    | Dadra and Nagar Haveli    | 47    | 18                     | 65       | 28    | 5                      | 33        | 12        | 3                      | 14           | 5     | 2                     | 7        |
|    | Daman and Diu             | 57    | 10                     | 68       | 21    | 11                     | 32        | 11        | 10                     | 21           | In    | cluded in             | Goa      |
|    | Lakshadweep               | 7     | 5                      | 12       | 5     | 11                     | 16        | 6         | 10                     | 16           | 8     | 6                     | 14       |

Table A14.8 (contd.)

|    |                          |            |          |          | An      | nual Grov | vth Rate - E | mployme | nt (per ce                  | ent)     |         |         |          |
|----|--------------------------|------------|----------|----------|---------|-----------|--------------|---------|-----------------------------|----------|---------|---------|----------|
|    |                          |            | 1990–200 | 5        |         | 1998–200  | 5            |         | 1990–8                      |          |         | 1980–90 | )        |
|    |                          | Rural      | Urban    | Combined | Rural   | Urban     | Combined     | Rural   | Urban                       | Combined | Rural   | Urban   | Combined |
|    | All–India                | (2.72)     | (1.49)   | (2.08)   | (3.33)  | (1.68)    | (2.49)       | (2.15)  | (1.34)                      | (1.71)   | (2.88)  | (2.81)  | (2.84)   |
| 1  | Andhra Pradesh           | (2.27)     | (1.16)   | (1.85)   | (3.05)  | (1.32)    | (2.40)       | (1.60)  | (1.02)                      | (1.38)   | (4.38)  | (2.59)  | (3.64)   |
| 2  | Arunachal Pradesh        | (0.26)     | (2.09)   | (0.93)   | (3.07)  | (6.02)    | (4.17)       | (-2.13) | (-1.23)                     | (-1.82)  | (6.97)  | (9.65)  | (7.80)   |
| 3  | Assam                    | (3.18)     | (3.42)   | (3.26)   | (2.08)  | (5.61)    | (3.19)       | (4.15)  | (1.54)                      | (3.32)   | na      |         |          |
| 4  | Bihar                    | (0.80)     | (-0.95)  | (-0.02)  | (1.79)  | (-1.77)   | (0.27)       | (-0.95) | (-0.42)                     | (-0.68)  | (1.30)  | (3.23)  | (2.20)   |
| 5  | Chattisgarh              | na         |          |          | (3.82)  | (1.19)    | (2.78)       | na      |                             |          | na      |         |          |
| 6  | Goa                      | (1.41)     | (0.23)   | (0.78)   | (2.99)  | (0.88)    | (1.87)       | (0.04)  | (-0.34)                     | (-0.17)  | na      |         |          |
| 7  | Gujarat                  | (1.61)     | (1.22)   | (1.39)   | (1.27)  | (1.48)    | (1.39)       | (1.90)  | (1.01)                      | (1.40)   | (2.84)  | (2.44)  | (2.61)   |
| 8  | Haryana                  | (4.90)     | (2.13)   | (3.33)   | (8.80)  | (2.40)    | (5.12)       | (1.60)  | (1.90)                      | (1.79)   | (3.56)  | (3.21)  | (3.34)   |
| 9  | Himachal Pradesh         | (2.64)     | (1.82)   | (2.38)   | (2.54)  | (1.13)    | (2.09)       | (2.73)  | (2.43)                      | (2.63)   | (2.85)  | (3.73)  | (3.13)   |
| 10 | Jammu and Kashmir        | na         |          |          | (7.65)  | (6.08)    | (6.82)       | na      |                             |          | na      |         |          |
| 11 | Jharkhand                | na         |          |          | (0.66)  | (-1.21)   | (-0.32)      | na      |                             |          | na      |         |          |
| 12 | Karnataka                | (1.67)     | (0.43)   | (1.09)   | (2.69)  | (0.91)    | (1.86)       | (0.79)  | (0.01)                      | (0.41)   | (2.60)  | (2.96)  | (2.77)   |
| 13 | Kerala                   | (4.55)     | (1.97)   | (3.56)   | (4.21)  | (8.08)    | (5.39)       | (4.85)  | (-3.09)                     | (1.99)   | (1.66)  | (5.13)  | (2.98)   |
| 14 | Madhya Pradesh           | (1.33)     | (1.05)   | (1.19)   | (1.69)  | (0.54)    | (1.04)       | (0.41)  | (1.38)                      | (0.92)   | (3.97)  | (4.09)  | (4.03)   |
| 15 | Maharashtra              | (3.29)     | (1.10)   | (1.87)   | (3.29)  | (0.91)    | (1.79)       | (3.29)  | (1.26)                      | (1.93)   | (2.87)  | (2.87)  | (2.87)   |
| 16 | Manipur                  | (3.03)     | (2.36)   | (2.70)   | (3.24)  | (1.28)    | (2.25)       | (2.85)  | (3.32)                      | (3.09)   | (5.26)  | (3.16)  | (4.13)   |
| 17 | Meghalaya                | (3.28)     | (1.54)   | (2.46)   | (5.05)  | (3.02)    | (4.12)       | (1.76)  | (0.26)                      | (1.03)   | (5.55)  | (3.71)  | (4.58)   |
| 18 | Mizoram                  | (2.91)     | (1.99)   | (2.27)   | (4.96)  | (3.45)    | (3.91)       | (1.15)  | (0.74)                      | (0.86)   | (1.27)  | (6.51)  | (4.67)   |
| 19 | Nagaland                 | (2.65)     | (2.17)   | (2.35)   | (1.95)  | (0.02)    | (0.75)       | (3.27)  | (4.08)                      | (3.78)   | (2.44)  | (8.46)  | (5.70)   |
| 20 | Orissa                   | (2.73)     | (0.76)   | (2.11)   | (2.54)  | (0.99)    | (2.08)       | (2.90)  | (0.56)                      | (2.14)   | (3.22)  | (2.51)  | (2.97)   |
| 21 | Punjab                   | (4.10)     | (2.11)   | (2.82)   | (5.19)  | (2.64)    | (3.59)       | (3.15)  | (1.65)                      | (2.16)   | (3.40)  | (2.60)  | (2.85)   |
| 22 | Rajasthan                | (3.69)     | (1.74)   | (2.71)   | (3.44)  | (1.71)    | (2.60)       | (3.92)  | (1.77)                      | (2.81)   | (1.48)  | (2.57)  | (2.05)   |
| 23 | Sikkim                   | (2.49)     | (2.71)   | (2.58)   | (6.41)  | (4.32)    | (5.52)       | (-0.81) | (1.33)                      | (0.08)   | (6.36)  | (2.22)  | (4.48)   |
| 24 | Tamil Nadu               | (4.00)     | (2.24)   | (3.11)   | (5.43)  | (3.78)    | (4.62)       | (2.76)  | (0.91)                      | (1.80)   | (2.26)  | (1.68)  | (1.94)   |
| 25 | Tripura                  | (4.34)     | (2.58)   | (3.68)   | (5.84)  | (3.71)    | (5.07)       | (3.05)  | (1.60)                      | (2.48)   | (4.80)  | (5.50)  | (5.07)   |
| 26 | Uttar Pradesh            | (2.99)     | (1.15)   | (1.99)   | (4.98)  | (1.40)    | (3.03)       | (1.76)  | (0.88)                      | (1.27)   | (1.19)  | (2.40)  | (1.87)   |
| 27 | Uttranchal               | na         |          |          | (7.06)  | (2.04)    | (4.45)       | na      |                             |          | na      |         |          |
| 28 | West Bengal              | (2.04)     | (0.96)   | (1.51)   | (1.70)  | (-0.00)   | (0.87)       | (2.34)  | (1.80)                      | (2.07)   | (4.95)  | (2.09)  | (3.38)   |
|    | Chandigarh               | (3.03)     | (1.37)   | (1.44)   | (12.11) | (1.71)    | (2.07)       | (-4.30) | (1.07)                      | (0.89)   | (6.94)  | (5.25)  | (5.31)   |
|    | Delhi                    | (0.05)     | (4.70)   | (4.58)   | (-2.26) | (2.31)    | (2.21)       | (2.12)  | (6.84)                      | (6.70)   | (-2.81) | (3.88)  | (3.55)   |
|    | Pondicherry              | (5.09)     | (2.46)   | (3.22)   | (3.83)  | (-0.37)   | (0.88)       | (6.21)  | (5.00)                      | (5.31)   | (1.66)  | (4.93)  | (3.99)   |
|    | Andaman & Nicobar Island | ls (-0.67) | (3.60)   | (1.36)   | (-3.90) | (5.15)    | (0.35)       | (2.25)  | (2.26)                      | (2.25)   | (4.02)  | (2.39)  | (3.33)   |
|    | Dadra and Nagar Haveli   | (9.82)     | (13.12)  | (10.59)  | (7.56)  | (22.03)   | (10.33)      | (11.82) | (5.85)                      | (10.81)  | (8.28)  | (3.86)  | (7.23)   |
|    | Daman and Diu            | (11.91)    | (0.29)   | (8.25)   | (15.32) | (-0.06)   | (11.49)      | (9.01)  | (0.60) (5.50) Not available |          |         |         |          |
|    | Lakshadweep              | (0.45)     | (-4.13)  | (-1.99)  | (3.53)  | (-9.60)   | (-4.00)      | (-2.17) | (0.91)                      | (-0.20)  | (-2.99) | (5.89)  | (1.40)   |

## 280 APPENDIX TABLES

Table A14.8 (contd.)

|    |                           |       |                        |          |       |                        | r of Enterpri |           |                        |          |           |                       |          |
|----|---------------------------|-------|------------------------|----------|-------|------------------------|---------------|-----------|------------------------|----------|-----------|-----------------------|----------|
|    |                           |       | th Econor<br>Census 20 |          |       | th Econor<br>Census 19 |               |           | rd Econoı<br>Census 19 |          |           | nd Econo<br>Census 19 |          |
|    |                           | Rural | Urban                  | Combined | Rural | Urban                  | Combined      | Rural     | Urban                  | Combined | Rural     | Urban                 | Combined |
|    | All-India                 | 25809 | 16314                  | 42124    | 17707 | 12641                  | 30349         | 14722     | 10280                  | 25002    | 11141     | 7220                  | 18362    |
| 1  | Andhra Pradesh            | 2896  | 1128                   | 4023     | 2007  | 895                    | 2903          | 1737      | 749                    | 2487     | 1152      | 462                   | 1614     |
| 2  | Arunachal Pradesh         | 19    | 10                     | 29       | 15    | 6                      | 21            | 16        | 5                      | 21       | 9         | 2                     | 11       |
| 3  | Assam                     | 633   | 293                    | 926      | 404   | 189                    | 593           | 353       | 143                    | 495      | cens      | us not co             | nducted  |
| 4  | Bihar                     | 872   | 418                    | 1290     | 872   | 571                    | 1443          | 783       | 445                    | 1228     | 713       | 331                   | 1045     |
| 5  | Chattisgarh               | 454   | 202                    | 656      | Inclu | ıded in M              | adhya Prade   | sh        |                        |          |           |                       |          |
| 6  | Goa                       | 43    | 38                     | 81       | 38    | 34                     | 72            | 34        | 27                     | 61       | 32        | 21                    | 53       |
| 7  | Gujarat                   | 1343  | 1075                   | 2419     | 1084  | 830                    | 1915          | 842       | 656                    | 1498     | 699       | 490                   | 1188     |
| 8  | Haryana                   | 453   | 375                    | 828      | 237   | 295                    | 533           | 209       | 248                    | 457      | 159       | 161                   | 320      |
| 9  | Himachal Pradesh          | 219   | 52                     | 272      | 182   | 44                     | 225           | 148       | 35                     | 183      | 115       | 24                    | 139      |
| 10 | Jammu and Kashmir         | 185   | 139                    | 324      | 111   | 105                    | 216cens       | us not co | nducted                |          | 125       | 71                    | 197      |
| 11 | Jharkhand                 | 294   | 197                    | 491      | Inc   | luded in 1             | Bihar         |           |                        |          |           |                       |          |
| 12 | Karnataka                 | 1598  | 902                    | 2500     | 1152  | 760                    | 1912          | 1033      | 661                    | 1694     | 883       | 492                   | 1375     |
| 13 | Kerala                    | 2117  | 731                    | 2848     | 1241  | 324                    | 1565          | 827       | 402                    | 1229     | 659       | 213                   | 872      |
| 14 | Madhya Pradesh            | 953   | 826                    | 1778     | 1207  | 917                    | 2124          | 1154      | 720                    | 1873     | 867       | 474                   | 1341     |
| 15 | Maharashtra               | 2262  | 2113                   | 4375     | 1613  | 1621                   | 3234          | 1308      | 1315                   | 2624     | 965       | 874                   | 1839     |
| 16 | Manipur                   | 58    | 46                     | 104      | 43    | 37                     | 80            | 34        | 27                     | 61       | 19        | 16                    | 35       |
| 17 | Meghalaya                 | 56    | 28                     | 85       | 36    | 20                     | 56            | 32        | 18                     | 50       | 21        | 12                    | 33       |
| 18 | Mizoram                   | 18    | 29                     | 47       | 10    | 15                     | 25            | 10        | 13                     | 23       | 8         | 6                     | 13       |
| 19 | Nagaland                  | 21    | 17                     | 38       | 14    | 16                     | 30            | 13        | 11                     | 24       | 9         | 7                     | 16       |
| 20 | Orissa                    | 1425  | 367                    | 1791     | 1157  | 293                    | 1450          | 853       | 240                    | 1094     | 629       | 174                   | 804      |
| 21 | Punjab                    | 497   | 576                    | 1072     | 303   | 415                    | 717           | 254       | 345                    | 599      | 202       | 261                   | 463      |
| 22 | Rajasthan                 | 1210  | 746                    | 1957     | 911   | 620                    | 1531          | 689       | 481                    | 1169     | 606       | 357                   | 964      |
| 23 | Sikkim                    | 14    | 6                      | 19       | 8     | 5                      | 13            | 7         | 3                      | 11       | 5         | 3                     | 8        |
| 24 | Tamil Nadu                | 2737  | 1710                   | 4447     | 1408  | 1106                   | 2514          | 1167      | 944                    | 2111     | 981       | 787                   | 1767     |
| 25 | Tripura                   | 136   | 52                     | 188      | 70    | 34                     | 104           | 61        | 25                     | 85       | 39        | 14                    | 54       |
| 26 | Uttar Pradesh             | 2194  | 1822                   | 4016     | 1479  | 1564                   | 3043          | 1291      | 1342                   | 2633     | 1151      | 1015                  | 2166     |
| 27 | Uttranchal                | 200   | 128                    | 329      | Inclu | ıded in U              | ttar Pradesh  |           |                        |          |           |                       |          |
| 28 | West Bengal               | 2831  | 1455                   | 4286     | 2044  | 1191                   | 3234          | 1818      | 932                    | 2750     | 1044      | 659                   | 1704     |
|    | Chandigarh                | 8     | 58                     | 66       | 3     | 37                     | 40            | 5         | 29                     | 33       | 1         | 15                    | 16       |
|    | Delhi                     | 28    | 726                    | 754      | 30    | 656                    | 686           | 23        | 432                    | 455      | 28        | 262                   | 290      |
|    | Pondicherry               | 17    | 33                     | 50       | 13    | 29                     | 43            | 10        | 21                     | 31       | 10        | 13                    | 23       |
|    | Andaman & Nicobar Islands | 6     | 7                      | 12       | 9     | 5                      | 14            | 8         | 3                      | 12       | 5         | 2                     | 7        |
|    | Dadra and Nagar Haveli    | 5     | 4                      | 9        | 3     | 1                      | 4             | 2         | 1                      | 3        | 1         | 0                     | 2        |
|    | Daman and Diu             | 7     | 4                      | 11       | 3     | 3                      | 6             | 2         | 3                      | 5 incl   | uded in ( | Goa                   |          |
|    | Lakshadweep               | 2     | 1                      | 3        | 2     | 3                      | 5             | 2         | 3                      | 5        | 3         | 1                     | 5        |

Table A14.8 (contd.)

|    |                          |            | A        | Annual Grow | th Rate - | Number o | of Enterprise | es (per ce | nt)     |          | (       | conclude | d)       |
|----|--------------------------|------------|----------|-------------|-----------|----------|---------------|------------|---------|----------|---------|----------|----------|
|    |                          |            | 1990–200 | )5          |           | 1998–200 | 5             |            | 1990–8  |          |         | 1980–90  |          |
|    |                          | Rural      | Urban    | Combined    | Rural     | Urban    | Combined      | Rural      | Urban   | Combined | Rural   | Urban    | Combined |
|    | All–India                | (3.76)     | (3.07)   | (3.49)      | (5.53)    | (3.71)   | (4.80)        | (2.27)     | (2.50)  | (2.36)   | (2.83)  | (3.60)   | (3.14)   |
| 1  | Andhra Pradesh           | (3.47)     | (2.76)   | (3.26)      | (5.37)    | (3.35)   | (4.78)        | (1.82)     | (2.25)  | (1.95)   | (4.19)  | (4.96)   | (4.42)   |
| 2  | Arunachal Pradesh        | (1.07)     | (4.86)   | (2.15)      | (3.65)    | (7.08)   | (4.74)        | (-1.14)    | (2.96)  | (-0.07)  | (5.72)  | (10.25)  | (6.61)   |
| 3  | Assam                    | (3.98)     | (4.91)   | (4.26)      | (6.62)    | (6.46)   | (6.57)        | (1.72)     | (3.58)  | (2.28)   | na      |          |          |
| 4  | Bihar                    | (2.69)     | (2.18)   | (2.51)      | (4.50)    | (0.50)   | (3.07)        | (1.35)     | (3.15)  | (2.03)   | (0.94)  | (3.00)   | (1.63)   |
| 5  | Chattisgarh              | na         |          |             | (3.24)    | (2.64)   | (3.06)        | na         |         |          | na      |          |          |
| 6  | Goa                      | (1.59)     | (2.34)   | (1.93)      | (1.75)    | (1.75)   | (1.75)        | (1.46)     | (2.85)  | (2.09)   | na      |          |          |
| 7  | Gujarat                  | (3.17)     | (3.35)   | (3.25)      | (3.11)    | (3.77)   | (3.40)        | (3.22)     | (2.99)  | (3.12)   | (1.88)  | (2.96)   | (2.34)   |
| 8  | Haryana                  | (5.31)     | (2.78)   | (4.04)      | (9.68)    | (3.46)   | (6.50)        | (1.62)     | (2.19)  | (1.93)   | (2.78)  | (4.43)   | (3.64)   |
| 9  | Himachal Pradesh         | (2.68)     | (2.65)   | (2.67)      | (2.73)    | (2.60)   | (2.71)        | (2.63)     | (2.70)  | (2.64)   | (2.49)  | (4.00)   | (2.76)   |
| 10 | Jammu and Kashmir        | na         |          |             | (7.64)    | (4.06)   | (5.99)        | na         |         |          | na      |          |          |
| 11 | Jharkhand                | na         |          |             | (3.44)    | (2.41)   | (3.02)        | na         |         |          | na      |          |          |
| 12 | Karnataka                | (2.95)     | (2.10)   | (2.63)      | (4.78)    | (2.49)   | (3.91)        | (1.37)     | (1.76)  | (1.52)   | (1.59)  | (2.98)   | (2.11)   |
| 13 | Kerala                   | (6.47)     | (4.07)   | (5.77)      | (7.93)    | (12.33)  | (8.93)        | (5.21)     | (-2.66) | (3.07)   | (2.29)  | (6.56)   | (3.49)   |
| 14 | Madhya Pradesh           | (1.33)     | (2.40)   | (1.76)      | (1.74)    | (1.40)   | (1.58)        | (0.57)     | (3.07)  | (1.58)   | (2.90)  | (4.27)   | (3.40)   |
| 15 | Maharashtra              | (3.72)     | (3.21)   | (3.47)      | (4.95)    | (3.86)   | (4.41)        | (2.65)     | (2.65)  | (2.65)   | (3.09)  | (4.17)   | (3.61)   |
| 16 | Manipur                  | (3.71)     | (3.48)   | (3.61)      | (4.46)    | (2.92)   | (3.76)        | (3.05)     | (3.97)  | (3.47)   | (6.01)  | (5.62)   | (5.84)   |
| 17 | Meghalaya                | (3.81)     | (3.18)   | (3.59)      | (6.48)    | (5.05)   | (5.98)        | (1.54)     | (1.56)  | (1.55)   | (4.44)  | (4.43)   | (4.24)   |
| 18 | Mizoram                  | (4.34)     | (5.33)   | (4.94)      | (8.40)    | (10.39)  | (9.60)        | (0.91)     | (0.98)  | (0.95)   | (2.23)  | (8.77)   | (5.53)   |
| 19 | Nagaland                 | (3.34)     | (2.96)   | (3.17)      | (6.05)    | (1.22)   | (3.64)        | (1.02)     | (4.51)  | (2.75)   | (3.91)  | (4.64)   | (4.24)   |
| 20 | Orissa                   | (3.48)     | (2.86)   | (3.35)      | (3.02)    | (3.26)   | (3.07)        | (3.88)     | (2.51)  | (3.59)   | (3.09)  | (3.25)   | (3.13)   |
| 21 | Punjab                   | (4.56)     | (3.47)   | (3.95)      | (7.34)    | (4.80)   | (5.91)        | (2.19)     | (2.33)  | (2.27)   | (2.35)  | (2.81)   | (2.61)   |
| 22 | Rajasthan                | (3.83)     | (2.98)   | (3.49)      | (4.15)    | (2.69)   | (3.57)        | (3.55)     | (3.24)  | (3.42)   | (1.28)  | (3.01)   | (1.95)   |
| 23 | Sikkim                   | (4.24)     | (3.66)   | (4.06)      | (8.39)    | (1.16)   | (5.83)        | (0.74)     | (5.89)  | (2.54)   | (3.40)  | (1.08)   | (2.62)   |
| 24 | Tamil Nadu               | (5.85)     | (4.04)   | (5.09)      | (9.96)    | (6.43)   | (8.49)        | (2.38)     | (2.00)  | (2.21)   | (1.75)  | (1.84)   | (1.79)   |
| 25 | Tripura                  | (5.52)     | (5.12)   | (5.41)      | (9.85)    | (6.37)   | (8.79)        | (1.87)     | (4.05)  | (2.53)   | (4.41)  | (5.72)   | (4.77)   |
| 26 | Uttar Pradesh            | (4.20)     | (2.52)   | (3.29)      | (7.07)    | (3.14)   | (5.14)        | (1.71)     | (1.93)  | (1.83)   | (1.15)  | (2.83)   | (1.97)   |
| 27 | Uttranchal               | na         |          |             | (7.72)    | (4.16)   | (6.21)        | na         |         |          | na      |          |          |
| 28 | West Bengal              | (3.00)     | (3.01)   | (3.00)      | (4.77)    | (2.90)   | (4.10)        | (1.48)     | (3.11)  | (2.05)   | (5.70)  | (3.52)   | (4.90)   |
|    | Chandigarh               | (3.50)     | (4.82)   | (4.65)      | (15.57)   | (6.67)   | (7.46)        | (-6.01)    | (3.22)  | (2.25)   | (15.16) | (6.92)   | (7.72)   |
|    | Delhi                    | (1.19)     | (3.53)   | (3.43)      | (-0.91)   | (1.45)   | (1.36)        | (3.07)     | (5.38)  | (5.27)   | (-1.84) | (5.12)   | (4.60)   |
|    | Pondicherry              | (3.70)     | (3.16)   | (3.33)      | (3.37)    | (1.67)   | (2.22)        | (3.99)     | (4.47)  | (4.32)   | (-0.31) | (4.99)   | (2.94)   |
|    | Andaman & Nicobar Island | ds (-2.40) | (4.88)   | (0.54)      | (-6.16)   | (4.92)   | (-1.36)       | (0.82)     | (3.86)  | (1.78)   | (4.70)  | (5.08)   | (4.81)   |
|    | Dadra and Nagar Haveli   | (6.49)     | (12.78)  | (8.32)      | (8.65)    | (20.98)  | (12.31)       | (3.69)     | (4.82)  | (3.94)   | (4.14)  | (2.29)   | (3.71)   |
|    | Daman and Diu            | (7.90)     | (1.08)   | (4.57)      | (13.64)   | (1.39)   | (7.85)        | (2.49)     | (0.66)  | (1.42)   | na      |          |          |
|    | Lakshadweep              | (-0.04)    | (-4.86)  | (-2.36)     | (1.80)    | (-11.31) | (-5.02)       | (-1.30)    | (0.94)  | (0.02)   | (-4.73) | (5.77)   | (-0.25)  |

Scope of Economic Censuses: Economic censuses cover all enterprises—public and private, big and small; they do not cover crop production and plantations. The emphasis in them is on non-farm enterprises but some of the allied agricultural enterprises in dairying, etc; are covered. The censuses cover only enterprises including 'household' enterprises but not "households" (which are consumption units and not producer units); thus they exclude house servants and homebased workers and possibly even part-time labour not reported as regular employers for any enterprises.

Notes: Annual growth rate for All-India between 1990 and 2005 is worked out after excluding Jammu and Kashmir as Economic Census for 1990 was not conducted; Annual growth rate for Bihar, Madhya Pradesh and Uttar Pradesh for 1990 to 2005 are worked out after including Jharkhand, Chattisgarh and Uttranchal, respectively; Similarly growth rate between 1980-90 and 1990-98 for all-India excludes Assam and Jammu and Kashmir as Economic Census of Assam was not conducted in 1980 and that for Jammu & Kashmir was not conducted in 1990.

Source: GOI (2006), Press note dated June 12 on Fifth Economic Census 2005 and earlier Economic Census Reports.

Table A14.9

Percentage Distribution of Gainfully Employed Persons (ie by usual status for all workers ie PS+SS), by Industry

| Round<br>Number |         | rvey<br>riod | Agriculture<br>and Allied | Mining<br>and | Manufac-<br>turing | Construction | Electricity  | Trade,<br>Hotel, | Transport,<br>Storage, | Other<br>Services |
|-----------------|---------|--------------|---------------------------|---------------|--------------------|--------------|--------------|------------------|------------------------|-------------------|
|                 | Month   | Year         | Activities                | Quarrying     | Č                  |              |              | etc.             | etc.                   |                   |
|                 |         |              |                           |               | Rural—Perso        | ons          |              |                  |                        |                   |
| 59              | jan–Jul | 2003         | 75.9                      | 0.5           | 7.4                | 4.4          | 0.1          | 4.4              | 2.0                    | 5.2               |
| 58              | Jul-Dec | 2002         | 74.0                      | 0.5           | 7.4                | 4.0          | 0.2          | 5.2              | 2.6                    | 6.4               |
| 57              | Jul–Jun | 2001-2       | 73.6                      | 0.4           | 8.9                | 3.8          | 0.1          | 5.7              | 2.2                    | 5.4               |
| 56              | Jul–Jun | 2000-1       | 73.2                      | 0.4           | 9.0                | 3.9          | 0.2          | 5.1              | 2.6                    | 5.5               |
| 55              | Jul-Jun | 1999-2000    | 76.3                      | 0.5           | 7.4                | 3.3          | 0.2          | 5.1              | 2.1                    | 5.2               |
| 54              | Jan–Jun | 1998         | 79.7                      | 0.5           | 5.5                | 2.7          | 0.3          | 4.3              | 1.5                    | 5.4               |
| 53              | Jan–Dec | 1997         | 80.0                      | 0.5           | 6.3                | 2.4          | 0.2          | 3.7              | 1.4                    | 5.5               |
| 52              | Jul–Jun | 1995–6       | 78.8                      | 0.4           | 6.9                | 2.7          | 0.2          | 4.0              | 1.5                    | 5.5               |
| 51              | Jul–Jun | 1994–5       | 79.6                      | 0.4           | 6.7                | 2.2          | 0.2          | 4.1              | 1.4                    | 5.2               |
| 50              | Jul-Jun | 1993-4       | 76.9                      | 0.7           | 7.1                | 2.6          | 0.2          | 4.6              | 1.6                    | 6.2               |
| 49              | Jan–Jun | 1993         | 79.2                      | 0.5           | 6.8                | 3.1          | 0.3          | 4.2              | 1.3                    | 5.6               |
| 48              | Jan–Dec | 1992         | 79.4                      | 0.6           | 6.5                | 2.1          | 0.3          | 4.0              | 1.4                    | 5.7               |
| 47              | Jul-Dec | 1991         |                           |               |                    |              |              |                  |                        |                   |
| 46              | Jul–Jun | 1990-1       | 75.5                      | 0.6           | 7.7                | 2.2          | 0.4          | 3.9              | 1.5                    | 8.2               |
| 45              | Jul–Jun | 1989–90      | 75.1                      | 0.6           | 8.2                | 3.3          | 0.1          | 3.5              | 1.6                    | 7.6               |
| 43              | Jul-Jun | 1987-8       | 78.3                      | 0.6           | 7.2                | 3.3          | 0.2          | 4.0              | 1.3                    | 5.1               |
| 38              | Jan-Dec | 1983         | 81.2                      | 0.5           | 6.7                | 1.7          | 0.1          | 3.5              | 1.1                    | 5.2               |
| 32              | Jul-Jun | 1977-8       | 83.4                      | 0.4           | 6.2                | 1.3          | 0.1          | 3.3              | 0.8                    | 4.5               |
| 27              | Oct-Sep | 1972-3       | 85.4                      | 0.4           | 5.3                | 1.4          | 0.1          | 2.5              | 0.7                    | 4.2               |
| 21              | Jul–Jun | 1966–7       | 80.3                      | 0.7           | 7.4                | 2.6          | 0.1          | 2.6              | 0.9                    | 5.5               |
| 19              | Jul–Jun | 1964-5       | 80.0                      | 0.8           | 7.1                | 1.7          | 0.1          | 2.8              | 0.7                    | 6.7               |
| 17              | Sep–Jul | 1961-2       | 79.6                      | 0.4           | 8.0                | 2.0          | 0.2          | 2.8              | 0.9                    | 6.2               |
| 16              | Jul–Jun | 1960-1       | 82.2                      | 0.6           | 6.4                | 1.4          | 0.1          | 3.2              | 1.1                    | 5.1               |
| 15              | Jul–Jun | 1959-60      | 79.6                      | 1.0           | 7.7                | 1.9          | 0.2          | 3.2              | 0.9                    | 5.7               |
| 14              | Jul–Jun | 1958–9       | 81.1                      | 0.6           | 7.7                | 1.5          | 0.1          | 2.6              | 1.0                    | 5.5               |
| 11-12           | Aug-Aug | 1956–7       | 78.2                      | 0.7           | 8.8                | 1.5          | 0.1          | 3.5              | 1.3                    | 6.0               |
| 10              | Dec-May | 1955–6       | 82.1                      | 0.6           | 8.0                | 0.8          | 0.2          | 2.3              | 1.0                    | 5.0               |
| 9               | May-Nov | 1955         | 84.0                      | 0.5           | 7.7                | 0.9          | 0.2          | 1.9              | 0.8                    | 4.1               |
| 7               | Oct–Mar | 1953–4       | 83.8                      | 0.3           | 6.9                | 1.0          | incl in con. | 2.3              | 0.6                    | 5.2               |

*Note:* Dark lines represent regular Quinquennial Surveys. Others are thin sample surveys. Quinquennial surveys are conducted at roughly 5-year intervals. In these surveys Sch 1.0 dealing with house hold consumer expenditure and Sch.10, with employment and unemployment were canvassed.

Source: NSS 59th Report.

Table A14.9 (contd.)

| Round<br>Number |         | rvey<br>riod | Agriculture<br>and Allied | Mining<br>and | Manufac-<br>turing | Construction | Electricity  | Trade,<br>Hotel, | Transport,<br>Storage, | Other<br>Services |
|-----------------|---------|--------------|---------------------------|---------------|--------------------|--------------|--------------|------------------|------------------------|-------------------|
|                 | Month   | Year         | Activities                | Quarrying     |                    |              |              | etc.             | etc.                   |                   |
|                 |         |              |                           |               | Rural—Mal          | es           |              |                  |                        |                   |
| 59              | jan–Jul | 2003         | 70.8                      | 0.6           | 7.5                | 5.7          | 0.2          | 6.0              | 3.1                    | 6.0               |
| 58              | Jul-Dec | 2002         | 68.8                      | 0.6           | 7.5                | 5.4          | 0.2          | 6.7              | 3.8                    | 6.8               |
| 57              | Jul–Jun | 2001-2       | 67.8                      | 0.5           | 8.4                | 5.4          | 0.2          | 8.1              | 3.3                    | 6.2               |
| 56              | Jul–Jun | 2000-1       | 69.0                      | 0.4           | 8.1                | 4.8          | 0.3          | 6.9              | 3.8                    | 6.6               |
| 55              | Jul-Jun | 1999-2000    | 71.4                      | 0.6           | 7.3                | 4.5          | 0.2          | 6.8              | 3.2                    | 6.1               |
| 54              | Jan–Jun | 1998         | 75.7                      | 0.6           | 5.7                | 3.5          | 0.4          | 5.5              | 2.1                    | 6.4               |
| 53              | Jan–Dec | 1997         | 75.8                      | 0.6           | 6.5                | 3.2          | 0.3          | 4.9              | 2.0                    | 6.8               |
| 52              | Jul–Jun | 1995–6       | 74.8                      | 0.5           | 7.2                | 3.4          | 0.3          | 4.9              | 2.2                    | 6.6               |
| 51              | Jul–Jun | 1994–5       | 75.6                      | 0.5           | 6.5                | 3.0          | 0.3          | 5.5              | 2.1                    | 6.5               |
| 50              | Jul–Jun | 1993-4       | 74.1                      | 0.7           | 7.0                | 3.2          | 0.3          | 5.5              | 2.2                    | 7.0               |
| 49              | Jan–Jun | 1993         | 75.0                      | 0.6           | 6.2                | 3.7          | 0.4          | 5.2              | 1.9                    | 7.0               |
| 48              | Jan-Dec | 1992         | 75.7                      | 0.9           | 6.4                | 2.7          | 0.4          | 4.9              | 2.1                    | 6.9               |
| 47              | Jul-Dec | 1991         |                           |               |                    |              |              |                  |                        |                   |
| 46              | Jul–Jun | 1990-1       | 71.0                      | 0.8           | 8.1                | 2.7          | 0.5          | 4.6              | 2.1                    | 10.2              |
| 45              | Jul–Jun | 1989-90      | 71.6                      | 0.7           | 7.0                | 4.2          | 0.2          | 4.4              | 2.4                    | 9.5               |
| 43              | Jul–Jun | 1987–8       | 74.5                      | 0.7           | 7.4                | 3.7          | 0.3          | 5.1              | 2.0                    | 6.2               |
| 38              | Jan-Dec | 1983         | 77.5                      | 0.6           | 7.0                | 2.2          | 0.2          | 4.4              | 1.7                    | 6.1               |
| 32              | Jul-Jun | 1977-8       | 80.6                      | 0.5           | 6.4                | 1.7          | 0.2          | 4.0              | 1.2                    | 5.3               |
| 27              | Oct-Sep | 1972-3       | 83.2                      | 0.4           | 5.7                | 2.6          | 0.1          | 3.1              | 1.0                    | 4.7               |
| 21              | Jul–Jun | 1966–7       | 77.9                      | 0.8           | 7.5                | 2.9          | 0.2          | 3.2              | 1.4                    | 6.3               |
| 19              | Jul–Jun | 1964-5       | 78.6                      | 0.9           | 7.2                | 2.0          | 0.1          | 3.4              | 1.0                    | 6.9               |
| 17              | Sep–Jul | 1961-2       | 78.4                      | 0.4           | 7.9                | 2.2          | 0.2          | 3.2              | 1.2                    | 6.6               |
| 16              | Jul–Jun | 1960-1       | 80.3                      | 0.7           | 6.5                | 1.7          | 0.1          | 3.9              | 1.4                    | 5.5               |
| 15              | Jul–Jun | 1959-60      | 78.7                      | 1.2           | 7.4                | 2.1          | 0.1          | 3.6              | 1.2                    | 5.6               |
| 14              | Jul–Jun | 1958–9       | 80.3                      | 0.7           | 7.4                | 1.8          | 0.1          | 3.0              | 1.4                    | 5.4               |
| 10              | Dec-May | 1955–6       | 82.2                      | 0.6           | 7.3                | 0.9          | 0.1          | 2.7              | 1.3                    | 4.9               |
| 7               | Oct–Mar | 1953-4       | 82.9                      | 0.4           | 6.3                | 1.1          | incl in con. | 2.8              | 0.9                    | 5.6               |

Note: Dark lines represent regular Quinquennial Surveys. Others are thin sample surveys. Quinquennial surveys are conducted at roughly 5-year intervals. In these surveys Sch 1.0 dealing with house hold consumer expenditure and Sch.10, with employment and unemployment were canvassed.

Source: NSS 59th Report.

## 284 APPENDIX TABLES

Table A14.9 (contd.)

| Round<br>Number |         | rvey<br>riod | Agriculture<br>and Allied | Mining<br>and | Manufac-<br>turing | Construction | Electricity  | Trade,<br>Hotel, | Transport,<br>Storage, | Other<br>Services |
|-----------------|---------|--------------|---------------------------|---------------|--------------------|--------------|--------------|------------------|------------------------|-------------------|
| runibei         | Month   | Year         | Activities                | Quarrying     | turing             |              |              | etc.             | etc.                   | Services          |
|                 |         |              |                           |               | Rural—Fema         | les          |              |                  |                        |                   |
| 59              | jan–Jul | 2003         | 85.2                      | 0.4           | 7.3                | 1.9          | 0.0          | 1.6              | 0.1                    | 3.7               |
| 58              | Jul-Dec | 2002         | 84.9                      | 0.3           | 7.2                | 1.1          | 0.0          | 2.1              | 0.1                    | 4.1               |
| 57              | Jul–Jun | 2001-2       | 84.0                      | 0.3           | 9.9                | 0.8          | 0.0          | 1.4              | 0.1                    | 3.6               |
| 56              | Jul–Jun | 2000-1       | 81.8                      | 0.4           | 10.6               | 2.2          | 0.0          | 1.4              | 0.1                    | 3.5               |
| 55              | Jul-Jun | 1999-2000    | 85.4                      | 0.3           | 7.6                | 1.1          | 0.0          | 2.0              | 0.1                    | 3.7               |
| 54              | Jan–Jun | 1998         | 88.5                      | 0.2           | 5.3                | 1.0          | 0.2          | 1.7              | 0.1                    | 3.1               |
| 53              | Jan–Dec | 1997         | 88.5                      | 0.3           | 5.9                | 0.9          | 0.1          | 1.2              | 0.0                    | 3.0               |
| 52              | Jul–Jun | 1995–6       | 86.8                      | 0.3           | 6.3                | 1.3          | 0.1          | 2.0              | 0.0                    | 3.2               |
| 51              | Jul–Jun | 1994–5       | 87.2                      | 0.3           | 7.3                | 0.7          | 0.0          | 1.6              | 0.1                    | 2.9               |
| 50              | Jul-Jun | 1993-4       | 86.2                      | 0.4           | 7.0                | 0.9          | 0.0          | 2.1              | 0.1                    | 3.4               |
| 49              | Jan–Jun | 1993         | 87.2                      | 0.3           | 4.9                | 2.1          | 0.1          | 2.2              | 0.1                    | 3.1               |
| 48              | Jan–Dec | 1992         | 86.2                      | 0.2           | 6.6                | 0.9          | 0.1          | 2.3              | 0.1                    | 3.6               |
| 47              | Jul-Dec | 1991         |                           |               |                    |              |              |                  |                        |                   |
| 46              | Jul–Jun | 1990-1       | 84.9                      | 0.1           | 6.7                | 1.3          | 0.0          | 2.6              | 0.1                    | 4.3               |
| 45              | Jul–Jun | 1989–90      | 81.5                      | 0.4           | 10.3               | 1.7          | 0.0          | 1.9              | 0.2                    | 4.0               |
| 43              | Jul-Jun | 1987-8       | 84.7                      | 0.4           | 6.9                | 2.7          | 0.0          | 2.1              | 0.1                    | 3.0               |
| 38              | Jan-Dec | 1983         | 87.5                      | 0.3           | 6.4                | 0.7          | 0.0          | 2.1              | 0.1                    | 2.8               |
| 32              | Jul-Jun | 1977-8       | 88.1                      | 0.2           | 5.9                | 0.6          | 0.0          | 1.9              | 0.1                    | 3.0               |
| 27              | Oct-Sep | 1972-3       | 89.7                      | 0.2           | 4.7                | 1.1          | 0.0          | 1.5              | 0.0                    | 2.8               |
| 21              | Jul–Jun | 1966–7       | 85.1                      | 0.0           | 7.1                | 2.2          | 0.0          | 1.3              | 0.1                    | 4.2               |
| 19              | Jul–Jun | 1964-5       | 83.3                      | 0.5           | 7.0                | 1.1          | 0.1          | 1.5              | 0.1                    | 6.3               |
| 17              | Sep-Aug | 1961-2       | 82.6                      | 0.4           | 8.2                | 1.3          | 0.5          | 1.8              | 0.1                    | 5.2               |
| 16              | Jul–Jun | 1960-1       | 86.3                      | 0.4           | 6.2                | 0.8          | 0.2          | 1.7              | 0.5                    | 4.2               |
| 15              | Jul–Jun | 1959–60      | 82.1                      | 0.4           | 8.2                | 1.1          | 0.3          | 1.9              | 0.1                    | 5.9               |
| 14              | Jul–Jun | 1958–9       | 82.8                      | 0.2           | 8.5                | 0.9          | 0.1          | 1.7              | 0.2                    | 5.6               |
| 10              | Dec–May | 1955–6       | 81.7                      | 0.4           | 10.1               | 0.5          | 0.4          | 1.4              | 0.1                    | 6.5               |
| 7               | Nov-Mar | 1953-4       | 85.4                      | 0.2           | 8.0                | 0.7          | incl in con. | 1.3              | 0.1                    | 4.4               |

*Note:* Dark lines represent regular Quinquennial Surveys. Others are thin sample surveys. Quinquennial surveys are conducted at roughly 5-year intervals. In these surveys Sch 1.0 dealing with house hold consumer expenditure and Sch.10, with employment and unemployment were canvassed.

Source: NSS 59th Report.

Table A14.9 (contd.)

| Round<br>Number |         | rvey      | Agriculture<br>and Allied | Mining<br>and | Manufac-<br>turing | Construction | Electricity  | Trade,<br>Hotel, | Transport,<br>Storage, | Other<br>Services |
|-----------------|---------|-----------|---------------------------|---------------|--------------------|--------------|--------------|------------------|------------------------|-------------------|
|                 | Month   | Year      | Activities                | Quarrying     |                    |              |              | etc.             | etc.                   |                   |
|                 |         |           |                           |               | urban—Perso        | ons          |              |                  |                        |                   |
| 59              | jan–Dec | 2003      | 8.8                       | 0.6           | 23.8               | 8.1          | 0.7          | 23.8             | 8.5                    | 25.8              |
| 58              | Jul-Dec | 2002      | 9.0                       | 0.7           | 23.2               | 8.7          | 0.7          | 22.2             | 8.4                    | 27.2              |
| 57              | Jul–Jun | 2001-2    | 10.3                      | 1.1           | 23.8               | 7.0          | 0.5          | 24.2             | 8.4                    | 24.7              |
| 56              | Jul–Jun | 2000-1    | 8.8                       | 0.9           | 25.1               | 8.6          | 0.8          | 21.7             | 8.3                    | 25.9              |
| 55              | Jul-Jun | 1999-2000 | 8.8                       | 0.8           | 22.7               | 8.0          | 0.7          | 26.9             | 8.7                    | 23.6              |
| 54              | Jan–Jun | 1998      | 11.3                      | 1.2           | 20.0               | 8.7          | 1.7          | 21.5             | 7.8                    | 27.9              |
| 53              | Jan–Dec | 1997      | 10.1                      | 1.0           | 23.9               | 7.6          | 1.3          | 18.4             | 7.8                    | 29.9              |
| 52              | Jul–Jun | 1995–6    | 10.4                      | 0.8           | 24.5               | 6.6          | 1.2          | 20.2             | 8.0                    | 28.3              |
| 51              | Jul–Jun | 1994–5    | 11.0                      | 1.2           | 23.4               | 7.4          | 1.2          | 19.6             | 8.6                    | 27.7              |
| 50              | Jul–Jun | 1993-4    | 10.6                      | 1.2           | 23.6               | 6.6          | 1.1          | 19.9             | 8.4                    | 28.6              |
| 49              | Jan–Jun | 1993      | 13.2                      | 1.2           | 22.7               | 7.6          | 2.1          | 17.9             | 8.1                    | 27.2              |
| 48              | Jan–Dec | 1992      | 13.1                      | 1.0           | 25.7               | 5.7          | 1.3          | 17.3             | 7.7                    | 28.2              |
| 47              | Jul-Dec | 1991      |                           |               |                    |              |              |                  |                        |                   |
| 46              | Jul–Jun | 1990-1    | 12.3                      | 1.9           | 25.8               | 5.0          | 1.4          | 17.3             | 7.6                    | 29.6              |
| 45              | Jul–Jun | 1989-90   | 12.8                      | 0.9           | 23.8               | 5.7          | 1.2          | 18.1             | 9.3                    | 28.2              |
| 44              | Jul–Jun | 1988-9    |                           |               |                    |              |              |                  |                        |                   |
| 43              | Jul-Jun | 1987-8    | 7.5                       | 1.5           | 23.3               | 5.1          | 1.3          | 17.2             | 9.6                    | 26.3              |
| 38              | Jan-Dec | 1983      | 16.5                      | 1.4           | 23.8               | 4.7          | 0.9          | 18.4             | 8.1                    | 25.6              |
| 32              | Jul–Jun | 1977-8    |                           |               | 28.0               | 3.8          | 0.8          | 18.8             | 7.9                    | 24.6              |
| 27              | Oct-Sep | 1972-3    | 14.8                      | 0.9           | 26.5               | 4.1          | 0.7          | 18.1             | 7.5                    | 27.4              |
| 21              | Jul–Jun | 1966–7    | 13.5                      | 0.9           | 29.9               | 4.0          | 0.9          | 16.0             | 8.0                    | 26.7              |
| 19              | Jul–Jun | 1964-5    | 12.9                      | 1.0           | 30.4               | 4.1          | 0.6          | 16.1             | 7.8                    | 27.3              |
| 18              | Feb–Jun | 1963-4    | 15.7                      | 0.8           | 29.2               | 4.1          | 0.5          | 16.9             | 8.0                    | 24.9              |
| 17              | Sep–Jul | 1961-2    | 16.6                      | 0.4           | 29.4               | 3.5          | 0.7          | 15.6             | 8.3                    | 25.5              |
| 16              | Jul–Jun | 1960-1    | 16.6                      | 0.7           | 30.2               | 3.6          | 0.6          | 15.5             | 7.5                    | 25.3              |
| 15              | Jul–Jun | 1959-60   | 15.5                      | 0.5           | 31.1               | 3.6          | 0.6          | 15.0             | 7.5                    | 26.6              |
| 14              | Jul–Jun | 1958–9    | 16.6                      | 0.6           | 29.5               | 2.9          | 0.9          | 14.6             | 8.0                    | 26.9              |
| 13              | Sep–Mar | 1957–8    | 16.7                      | 0.3           | 30.5               | 3.5          | 0.8          | 15.5             | 8.2                    | 24.3              |
| 11-12           | Aug-Aug | 1956–7    | 14.8                      | 0.5           | 32.1               | 3.2          | 0.6          | 16.3             | 8.7                    | 23.9              |
| 10              | Dec–May | 1955–6    | 19.9                      | 0.3           | 28.7               | 3.3          | 1.1          | 14.2             | 8.0                    | 26.5              |
| 9               | May-Nov | 1955      | 19.4                      | 0.4           | 29.6               | 3.4          | 0.8          | 14.5             | 8.2                    | 23.7              |
| 7               | Oct–Mar | 1953-4    | 23.9                      | 0.5           | 23.9               | 3.6          | incl in con. | 14.0             | 6.6                    | 25.4              |

Note: Dark lines represent regular Quinquennial Surveys. Others are thin sample surveys. Quinquennial surveys are conducted at roughly 5-year intervals. In these surveys Sch 1.0 dealing with house hold consumer expenditure and Sch.10, with employment and unemployment were canvassed.

Source: NSS 59th Report.

## 286 APPENDIX TABLES

Table A14.9 (contd.)

| Round<br>Number |         | rvey      | Agriculture<br>and Allied | Mining<br>and | Manufac-<br>turing | Construction | Electricity  | Trade,<br>Hotel, | Transport,<br>Storage, | Other<br>Services |
|-----------------|---------|-----------|---------------------------|---------------|--------------------|--------------|--------------|------------------|------------------------|-------------------|
|                 | Month   | Year      | Activities                | Quarrying     |                    |              |              | etc.             | etc.                   |                   |
|                 |         |           |                           |               | Urban—Mal          | les          |              |                  |                        |                   |
| 59              | jan–Jul | 2003      | 6.3                       | 0.7           | 23.0               | 9.1          | 0.8          | 26.7             | 10.3                   | 23.2              |
| 58              | Jul-Dec | 2002      | 7.0                       | 0.8           | 22.7               | 9.3          | 0.9          | 24.7             | 10.1                   | 24.5              |
| 57              | Jul–Jun | 2001-2    | 7.8                       | 1.0           | 22.9               | 7.7          | 0.5          | 27.5             | 9.9                    | 22.6              |
| 56              | Jul–Jun | 2000-1    | 6.6                       | 0.9           | 24.5               | 9.3          | 0.9          | 24.3             | 10.0                   | 23.6              |
| 55              | Jul-Jun | 1999-2000 | 6.6                       | 0.9           | 22.4               | 8.7          | 0.8          | 29.4             | 10.4                   | 21.0              |
| 54              | Jan–Jun | 1998      | 9.2                       | 1.2           | 20.2               | 8.8          | 2.0          | 23.3             | 9.0                    | 26.3              |
| 53              | Jan–Dec | 1997      | 7.8                       | 1.2           | 23.4               | 7.9          | 1.5          | 20.6             | 9.3                    | 28.2              |
| 52              | Jul–Jun | 1995–6    | 8.2                       | 0.9           | 24.2               | 7.0          | 1.4          | 22.1             | 9.4                    | 26.8              |
| 51              | Jul–Jun | 1994–5    | 8.8                       | 1.4           | 22.4               | 7.7          | 1.4          | 21.8             | 9.7                    | 26.8              |
| 50              | Jul-Jun | 1993-4    | 9.0                       | 1.3           | 23.5               | 6.9          | 1.2          | 21.9             | 9.7                    | 26.4              |
| 49              | Jan–Jun | 1993      | 10.2                      | 1.3           | 22.3               | 8.3          | 2.5          | 19.9             | 9.5                    | 26.0              |
| 48              | Jan–Dec | 1992      | 10.7                      | 1.1           | 25.5               | 6.2          | 1.5          | 19.4             | 9.3                    | 26.3              |
| 47              | Jul-Dec | 1991      |                           |               |                    |              |              |                  |                        |                   |
| 46              | Jul–Jun | 1990-1    | 9.2                       | 1.1           | 25.4               | 5.4          | 1.7          | 19.1             | 9.1                    | 29.0              |
| 45              | Jul–Jun | 1989-90   | 10.0                      | 1.0           | 23.2               | 6.3          | 1.4          | 20.1             | 11.1                   | 26.9              |
| 43              | Jul-Jun | 1987–8    | 9.1                       | 1.3           | 25.7               | 5.8          | 1.2          | 21.5             | 9.7                    | 25.2              |
| 38              | Jan-Dec | 1983      | 10.3                      | 1.2           | 26.8               | 5.1          | 1.1          | 20.3             | 9.9                    | 24.8              |
| 32              | Jul-Jun | 1977-8    | 10.6                      | 0.9           | 27.6               | 4.2          | 1.1          | 21.6             | 9.8                    | 24.3              |
| 27              | Oct-Sep | 1972-3    | 10.7                      | 1.0           | 26.9               | 4.3          | 0.8          | 20.1             | 9.0                    | 27.0              |
| 21              | Jul–Jun | 1966–7    | 10.8                      | 0.9           | 30.0               | 4.2          | 1.1          | 17.6             | 9.5                    | 25.9              |
| 19              | Jul–Jun | 1964–5    | 9.9                       | 1.1           | 29.9               | 4.6          | 0.6          | 18.1             | 9.2                    | 26.7              |
| 15              | Jul–Jun | 1959-60   | 13.5                      | 0.5           | 30.7               | 3.6          | 0.5          | 17.0             | 8.9                    | 25.4              |
| 14              | Jul–Jun | 1958–9    | 14.4                      | 0.4           | 29.0               | 3.0          | 0.8          | 16.5             | 9.4                    | 26.5              |
| 13              | Sep–Mar | 1957-8    | 13.7                      | 0.4           | 30.5               | 3.9          | 0.8          | 17.4             | 9.8                    | 23.6              |
| 10              | Dec-May | 1955–6    | 17.3                      | 0.3           | 29.3               | 3.4          | 0.9          | 15.7             | 9.2                    | 24.0              |
| 9               | May-Nov | 1955      | 16.4                      | 0.4           | 29.7               | 3.8          | 0.8          | 16.3             | 9.5                    | 23.2              |
| 7               | Oct–Mar | 1953-4    | 22.2                      | 0.6           | 24.7               | 4.0          | incl in con. | 16.6             | 8.2                    | 23.8              |

*Note:* Dark lines represent regular Quinquennial Surveys. Others are thin sample surveys. Quinquennial surveys are conducted at roughly 5-year intervals. In these surveys Sch 1.0 dealing with house hold consumer expenditure and Sch.10, with employment and unemployment were canvassed.

Source: NSS 59th Report.

Table A14.9 (contd.)

| Round<br>Number |         | rvey<br>riod | Agriculture<br>and Allied | Mining<br>and | Manufac-<br>turing | Construction | Electricity  | Trade,<br>Hotel, | Transport,<br>Storage, | Other<br>Services |
|-----------------|---------|--------------|---------------------------|---------------|--------------------|--------------|--------------|------------------|------------------------|-------------------|
|                 | Month   | Year         | Activities                | Quarrying     |                    |              |              | etc.             | etc.                   |                   |
|                 |         |              |                           |               | Urban—Fema         | ales         |              |                  |                        |                   |
| 59              | jan–Jul | 2003         | 19.0                      | 0.2           | 27.0               | 4.0          | 0.1          | 12.3             | 1.0                    | 36.6              |
| 58              | Jul-Dec | 2002         | 17.1                      | 0.4           | 25.1               | 6.0          | 0.1          | 11.8             | 1.6                    | 38.0              |
| 57              | Jul–Jun | 2001-2       | 21.1                      | 1.5           | 27.4               | 4.2          | 0.4          | 10.2             | 1.7                    | 33.8              |
| 56              | Jul–Jun | 2000-1       | 18.3                      | 0.7           | 27.5               | 5.8          | 0.2          | 10.8             | 1.4                    | 35.3              |
| 55              | Jul-Jun | 1999-2000    | 17.7                      | 0.4           | 24.0               | 4.8          | 0.2          | 16.9             | 1.8                    | 34.2              |
| 54              | Jan–Jun | 1998         | 22.1                      | 0.7           | 19.2               | 7.8          | 0.3          | 12.6             | 1.6                    | 35.6              |
| 53              | Jan–Dec | 1997         | 20.0                      | 0.3           | 25.6               | 6.0          | 0.5          | 8.9              | 1.4                    | 37.3              |
| 52              | Jul–Jun | 1995–6       | 20.9                      | 0.4           | 25.5               | 4.7          | 0.3          | 11.4             | 1.3                    | 35.5              |
| 51              | Jul–Jun | 1994–5       | 20.5                      | 0.3           | 27.4               | 6.2          | 0.4          | 10.0             | 3.7                    | 31.6              |
| 50              | Jul-Jun | 1993-4       | 24.7                      | 0.6           | 24.1               | 4.1          | 0.3          | 10.0             | 1.3                    | 35.0              |
| 49              | Jan–Jun | 1993         | 25.8                      | 0.8           | 24.7               | 4.7          | 0.4          | 9.3              | 1.9                    | 32.4              |
| 48              | Jan–Dec | 1992         | 22.4                      | 0.5           | 26.0               | 3.6          | 0.7          | 9.0              | 1.6                    | 36.2              |
| 47              | Jul-Dec | 1991         |                           |               |                    |              |              |                  |                        | 0                 |
| 46              | Jul–Jun | 1990-1       | 24.9                      | 0.4           | 27.2               | 3.6          | 0.4          | 10.2             | 1.7                    | 31.6              |
| 45              | Jul–Jun | 1989-90      |                           |               |                    |              |              |                  |                        | 0.0               |
| 43              | Jul-Jun | 1987-8       | 29.4                      | 0.8           | 27.0               | 3.7          | 0.2          | 9.8              | 0.9                    | 27.8              |
| 38              | Jan-Dec | 1983         | 31.0                      | 0.6           | 26.7               | 3.1          | 0.2          | 9.5              | 1.5                    | 26.6              |
| 32              | Jul-Jun | 1977-8       | 31.9                      | 0.5           | 29.6               | 2.2          | 0.1          | 8.7              | 1.0                    | 26.0              |
| 27              | Oct-Sep | 1972-3       | 32.8                      | 0.7           | 25.0               | 3.3          | 0.1          | 9.4              | 0.9                    | 27.0              |
| 21              | Jul–Jun | 1966–7       | 27.2                      | 0.9           | 29.3               | 2.8          | 0.3          | 7.5              | 0.9                    | 31.8              |
| 19              | Jul–Jun | 1964–5       | 26.7                      | 0.6           | 32.8               | 1.7          | 0.4          | 6.7              | 1.2                    | 31.1              |
| 15              | Jul–Jun | 1959-60      | 25.0                      | 0.6           | 32.8               | 2.3          | 0.8          | 5.3              | 0.8                    | 37.9              |
| 14              | Jul–Jun | 1958–9       | 27.4                      | 1.1           | 32.2               | 2.6          | 1.2          | 5.4              | 1.2                    | 32.1              |
| 13              | Sep–Mar | 1957–8       | 30.7                      | 0.2           | 30.6               | 2.0          | 0.7          | 7.0              | 1.2                    | 30.4              |
| 10              | Dec-May | 1955–6       | 32.8                      | 0.3           | 25.6               | 3.0          | 1.8          | 7.3              | 2.0                    | 28.7              |
| 9               | May-Nov | 1955         | 34.5                      | 0.7           | 28.9               | 1.7          | 1.2          | 6.1              | 1.6                    | 27.2              |
| 7               | Oct–Mar | 1953-4       | 40.2                      | 0.4           | 20.7               | 2.2          | incl in con. | 3.9              | 0.6                    | 38.9              |

*Note:* Dark lines represent regular Quinquennial Surveys. Others are thin sample surveys. Quinquennial surveys are conducted at roughly 5-year intervals. In these surveys Sch 1.0 dealing with house hold consumer expenditure and Sch.10, with employment and unemployment were canvassed.

Source: NSS 59th Report.

## A15 HOUSEHOLD INDEBTEDNESS

 ${\it TABLE~A15.1} \\ {\it Household~Indebtedness~in~India:~A~Profile}$ 

| 1. Amoun | t of Debt by O  | ccupationa              | l categories | of Household      | ls (Rs crore) |       |                          | 2. Propo        | rtion of Hoi            | iseholds R | eporting Debt     |           |      |
|----------|-----------------|-------------------------|--------------|-------------------|---------------|-------|--------------------------|-----------------|-------------------------|------------|-------------------|-----------|------|
| Year     | Ru              | ral Househ              | olds         | Urba              | an Househ     | olds  | All                      | Ru              | ral Househo             | olds       | Urb               | an Househ | olds |
|          | Culti-<br>vator | Non-<br>culti-<br>vator | All          | Self-<br>employed | Others        | All   | House-<br>holds<br>(4+7) | Culti-<br>vator | Non-<br>culti-<br>vator | All        | Self-<br>employed | Others    | All  |
| (1)      | (2)             | (3)                     | (4)          | (5)               | (6)           | (7)   | (8)                      | (2)             | (3)                     | (4)        | (5)               | (6)       | (7)  |
| 2002     | 81709           | 29759                   | 111468       | 24341             | 40977         | 65327 | 176795                   | 29.7            | 21.8                    | 26.5       | 17.9              | 17.8      | 17.8 |
| 1991     | 17668           | 4543                    | 22211        | 6306              | 8805          | 15232 | 37443                    | 34.6            | 26.8                    | 32.0       | 28.5              | 25.9      | 26.9 |
| 1981     | 5737            | 456                     | 6193         | 1406              | 1617          | 3023  | 9216                     | 21.7            | 12.0                    | 19.4       | 16.6              | 17.4      | 17.2 |
| 1971     | 3374            | 474                     | 3848         | na                | na            | na    | na                       | 44.4            | 33.3                    | 41.3       | na                | na        | na   |

## 3. Percentage Share of Outstanding Debt by Credit Agency, Rural and Urban

|                      |      |      | Ru   | ral  |      |      |      | Urban |      |
|----------------------|------|------|------|------|------|------|------|-------|------|
|                      | 2002 | 1991 | 1981 | 1971 | 1961 | 1951 | 2002 | 1991  | 1981 |
| A. Institutional     | 57.1 | 56.6 | 61.2 | 29.2 | 17.3 | 7.2  | 75.1 | 64.3  | 59.9 |
| Government           | 2.3  | 5.7  | 4.0  | 6.7  | 6.6  | 3.7  | 7.6  | 9.3   | 14.6 |
| Co-op Society/Bank   | 27.3 | 18.6 | 28.6 | 20.1 | 10.4 | 3.5  | 20.5 | 14.2  | 17.5 |
| Commercial Bank      | 24.5 | 29.0 | 28.0 | 2.2  | 0.3  | 0.0  | 29.7 | 17.7  | 22.5 |
| Insurance            | 0.3  | 0.5  | 0.3  | 0.1  | 0.0  | 0.0  | 3.5  | 1.4   | 2.1  |
| Provident Fund       | 0.3  | 0.9  | 0.3  | 0.1  | 0.0  | 0.0  | 2.0  | 3.3   | 3.2  |
| Other Institutions   | 2.4  | 1.9  | 0.0  | 0.0  | 0.0  | 0.0  | 11.9 | 18.5  | 0.0  |
| B. Non-institutional | 42.9 | 39.6 | 38.8 | 70.8 | 82.7 | 92.8 | 24.9 | 32.0  | 40.1 |
| Landlords            | 1.0  | 4.0  | 4.0  | 8.6  | 1.1  | 3.5  | 0.2  | 0.8   | 1.0  |
| Agrl. Moneylenders   | 10.0 | 6.3  | 8.6  | 23.1 | 47.0 | 25.2 | 0.9  | 1.2   | 3.6  |
| Prof. Moneylenders   | 19.6 | 9.4  | 8.3  | 13.8 | 13.8 | 46.4 | 13.2 | 7.9   | 8.9  |
| Traders              | 2.6  | 6.7  | 3.4  | 8.7  | 7.5  | 5.1  | 1.0  | 5.8   | 4.8  |
| Relatives/Friends    | 7.1  | 6.7  | 9.0  | 13.8 | 5.8  | 11.5 | 7.6  | 10.4  | 15.2 |
| Others               | 2.6  | 9.9  | 5.5  | 2.8  | 7.5  | 1.1  | 1.9  | 5.9   | 6.6  |
| C. Not Specified     | 0.0  | 3.8  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 3.6   | 0.0  |

# 4. Cash Debt of Households Classified By Purpose of Loan (per cent)

|                           |        |             | Rural Ho | ouseholds |               |        |        |               |        |
|---------------------------|--------|-------------|----------|-----------|---------------|--------|--------|---------------|--------|
|                           |        | Cultivators |          | N         | lon-Cultivato | rs     |        | All Household | s      |
|                           | 2002   | 1991        | 1981     | 2002      | 1991          | 1981   | 2002   | 1991          | 1981   |
| . Farm Business           |        |             |          |           |               |        |        |               |        |
| Capital Expenditure       | 34.3   | 14.4        | 45.3     | 6.3       | 2.4           | 8.4    | 26.8   | 12.0          | 42.4   |
| Current Expenditure       | 18.2   | 3.2         | 18.5     | 3.0       | 0.7           | 5.9    | 14.2   | 2.7           | 17.6   |
| 2. Non-farm Business      |        |             |          |           |               |        |        |               |        |
| Capital Expenditure       | 7.4    | 4.7         | 6.3      | 14.2      | 9.8           | 18.8   | 9.2    | 5.8           | 7.2    |
| Current Expenditure       | 2.0    | 1.5         | 1.5      | 4.8       | 3.8           | 4.5    | 2.8    | 2.0           | 1.7    |
| . Households              |        |             |          |           |               |        |        |               |        |
| Capital Expenditure       | 27.7   | 5.1         | 20.0     | 55.0      | 11.8          | 51.0   | 35.0   | 6.5           | 22.4   |
| in Residential Building   |        |             |          |           |               |        |        |               |        |
| Current Expenditure       | na     | 0.5         | na       | na        | 0.4           | na     | na     | 0.5           | na     |
| . Productive Purposes     | 89.6   | 28.9        | 91.6     | 83.3      | 28.5          | 88.6   | 88.0   | 29.0          | 91.3   |
| (1+2+3)*                  | (61.9) | (23.8)      | (71.6)   | (28.3)    | (16.7)        | (37.6) | (53.0) | (22.5)        | (68.9) |
| 5. Other Purposes         | 10.4   | 45.4        | 8.1      | 16.4      | 57.6          | 11.4   | 12.0   | 48.0          | 8.5    |
| Repayment of Debt         | 1.5    | na          | 0.8      | 1.3       | na            | 1.5    | 1.4    | na            | 0.8    |
| Expenditure on Litigation | 0.3    | na          | 0.1      | 0.2       | na            | 0.0    | 0.3    | na            | 0.2    |
| Fin. Investment Exp.      | 0.6    | na          | 1.0      | 1.0       | na            | 0.5    | 0.7    | na            | 0.9    |
| Other purposes            | 8.0    | na          | 6.2      | 13.9      | na            | 9.4    | 9.6    | na            | 6.6    |
| . Unspecified             | 0.0    | 25.2        | 0.3      | 0.3       | 13.5          | 0.0    | 0.1    | 22.8          | 0.2    |

|                        | Self-employed |        |        |       | Others |        | All Households |        |        |  |
|------------------------|---------------|--------|--------|-------|--------|--------|----------------|--------|--------|--|
|                        | 2002          | 1991   | 1981   | 2002  | 1991   | 1981   | 2002           | 1991   | 1981   |  |
| 1. Farm Business       |               |        |        |       |        |        |                |        |        |  |
| Capital Expenditure    | 7.3           | 5.7    | 7.2    | 0.9   | 0.3    | 4.3    | 3.3            | 2.5    | 5.6    |  |
| Current Expenditure    | 4.4           | 0.2    | 8.1    | 0.4   | 0.1    | 1.1    | 1.9            | 0.1    | 4.4    |  |
| 2. Non-farm Business   |               |        |        |       |        |        |                |        |        |  |
| Capital Expenditure    | 36.1          | 21.1   | 41.6   | 4.8   | 3.3    | 7.3    | 16.5           | 10.8   | 23.2   |  |
| Current Expenditure    | 7.5           | 8.1    | 15.0   | 0.7   | 1.0    | 2.5    | 3.2            | 4.0    | 8.3    |  |
| 3. Households          |               |        |        |       |        |        |                |        |        |  |
| Capital Expenditure    | 32.8          | 28.7   | 13.1   | 72.1  | 44.6   | 54.3   | 57.5           | 37.9   | 35.0   |  |
| in Residential Bldg    |               |        |        |       |        |        |                |        |        |  |
| Current Expenditure    | na            | 0.1    | na     | na    | 2.5    | na     | na             | 1.5    | na     |  |
| 4. Productive Purposes | 88.1          | 63.9   | 85.0   | 78.9  | 51.8   | 69.5   | 82.4           | 56.8   | 76.5   |  |
| (1+2+3)*               | (55.3)        | (35.1) | (71.9) | (6.8) | (4.7)  | (15.2) | (24.9)         | (17.4) | (41.5) |  |
| 5. Other Purposes      | 11.9          | 33.9   | 14.7   | 21.1  | 46.6   | 30.4   | 17.6           | 41.4   | 23.2   |  |
| 6. Unspecified         | 0.0           | 2.2    | 0.3    | 0.1   | 1.4    | 0.2    | 0.0            | 1.8    | 0.2    |  |

#### 5. Amount of Cash Borrowing and Repayments by Occupational Category of Households

| Year   | Round      | Amount of<br>Borrowings<br>(Rs crore) |         |                       |                    | Amount of<br>Repayment<br>(Rs crore) |                       | Culti               | re of<br>vator<br>(%) | Per cent of<br>Repayments<br>to Borrowings |                   |
|--------|------------|---------------------------------------|---------|-----------------------|--------------------|--------------------------------------|-----------------------|---------------------|-----------------------|--------------------------------------------|-------------------|
|        | Cultivator | Non-<br>cultivator                    | All Hhs | Cultivator            | Non-<br>cultivator | All Hhs                              | Total<br>Borrowings   | Total<br>Repayment  | All Hhs               | Cultivator                                 |                   |
| Rural  |            |                                       |         |                       |                    |                                      |                       |                     |                       |                                            |                   |
| 2002-3 | 59         | 39294                                 | 15825   | 55119                 | 17729              | 7154                                 | 24883                 | 71.3                | 71.3                  | 45.1                                       | 45.1              |
| 1991-2 | 48         | 10636                                 | 2862    | 13498                 | 4070               | 1133                                 | 5203                  | 78.8                | 78.3                  | 38.5                                       | 38.3              |
| 1981-2 | 37         | 3757                                  | 427     | 4185                  | 1899               | 193                                  | 2091                  | 89.8                | 90.9                  | 50.0                                       | 50.5              |
| 1971-2 | 26         | 1155                                  | 190     | 1345                  | 1009               | 146                                  | 1155                  | 85.9                | 87.4                  | 85.9                                       | 87.4              |
|        |            | Self-<br>employed                     | Others  | All Hhs<br>(incl.n.r) | Self-<br>employed  | Others                               | All Hhs<br>(incl.n.r) |                     | of Self-<br>ved (%)   | Per cent of Repay-<br>ments to Borrowings  |                   |
|        |            |                                       |         |                       |                    |                                      |                       | Total<br>Borrowings | Total<br>Repayment    | All Hhs                                    | Self-<br>employed |
| Urban  |            |                                       |         |                       |                    |                                      |                       |                     |                       |                                            |                   |
| 2002-3 | 26         | 12215                                 | 21965   | 34181                 | 6679               | 11768                                | 18447                 | 35.7                | 36.2                  | 54.0                                       | 54.7              |
| 1991-2 | 37         | 2815                                  | 5098    | 7918                  | 1513               | 3027                                 | 4540                  | 35.7                | 33.3                  | 57.3                                       | 53.7              |
| 1981-2 | 48         | 830                                   | 1156    | 1986                  | 536                | 653                                  | 1189                  | 41.8                | 45.1                  | 59.9                                       | 64.6              |

Notes: \* Figues in brackets relate to those given by NSSO for productive purposes (1+2); na—details are not available; nr—not reported.

Source: NSSO (2005), Household Indebtedness in India as on 30 June 2002, AIDIS Report No. 501(59/18.2/2), December; NSSO (2006), Household Borrowing and Repayments in India during 1 July 2002 to 30 June 2003, AIDIS Report No. 502(59/18.2/3), January.

## A16 INTERNATIONAL COMPARISON

Table A16.1 Development Characteristics of Some Selected Countries

| Country            | Group* | Population (million) | Density<br>(people/<br>sq. km) | G                       | DP                          | P            | DP<br>er<br>oita    | PPP (<br>Nati<br>Income | onal                     | per<br>capita<br>GNI | Expe                  | ife<br>ctancy<br>Birth  |
|--------------------|--------|----------------------|--------------------------------|-------------------------|-----------------------------|--------------|---------------------|-------------------------|--------------------------|----------------------|-----------------------|-------------------------|
|                    |        | 2004                 | 2004                           | US\$<br>billion<br>2003 | PPP US\$<br>billion<br>2003 | US\$<br>2003 | PPP<br>US\$<br>2003 | \$<br>billion<br>2004   | \$ per<br>capita<br>2004 | (US\$)<br>2004       | Male<br>Years<br>2003 | Female<br>Years<br>2003 |
| (1)                | (2)    | (3)                  | (4)                            | (5)                     | (6)                         | (7)          | (8)                 | (9)                     | (10)                     | (11)                 | (12)                  | (13)                    |
| Norway             | HI     | 4.6                  | 15                             | 220.1                   | 171.9                       | 48412        | 37670               | 177                     | 38550                    | 52030                | 77                    | 82                      |
| Switzerland        | HI     | 7.4                  | 187                            | 320.1                   | 224.6                       | 43553        | 30552               | 261                     | 35370                    | 48230                | 78                    | 83                      |
| United States      | HI     | 293.5                | 32                             | 10948.5                 | 10923.4                     | 37648        | 37562               | 11655                   | 39710                    | 41400                | 75                    | 80                      |
| Sweden             | HI     | 9.0                  | 22                             | 301.6                   | 239.6                       | 33676        | 26750               | 267                     | 29770                    | 35770                | 78                    | 82                      |
| United Kingdom     | HI     | 59.4                 | 247                            | 1794.9                  | 1610.6                      | 30253        | 27147               | 1869                    | 31460                    | 33940                | 75                    | 80                      |
| Netherlands        | HI     | 16.3                 | 480                            | 511.5                   | 476.5                       | 31532        | 29371               | 507                     | 31220                    | 31700                | 76                    | 81                      |
| France             | HI     | 60.0                 | 109                            | 1757.6                  | 1654.0                      | 29410        | 27677               | 1759                    | 29320                    | 30990                | 76                    | 83                      |
| Germany            | HI     | 82.6                 | 237                            | 2403.2                  | 2291.0                      | 29115        | 27756               | 2310                    | 27950                    | 30120                | 76                    | 81                      |
| Australia          | HI     | 20.1                 | 3                              | 522.4                   | 589.1                       | 26275        | 29632               | 588                     | 29200                    | 26900                | 77                    | 83                      |
| Singapore          | HI     | 4.3                  | 6470                           | 91.3                    | 104.0                       | 21492        | 24481               | 115                     | 26590                    | 24220                | 76                    | 80                      |
| Spain              | HI     | 41.3                 | 83                             | 838.7                   | 920.3                       | 20404        | 22391               | 1035                    | 25070                    | 21210                | 76                    | 84                      |
| New Zealand        | HI     | 4.1                  | 15                             | 79.6                    | 90.5                        | 19847        | 22582               | 90                      | 22130                    | 20310                | 77                    | 81                      |
| Korea, Rep.        | HI     | 48.1                 | 488                            | 605.3                   | 861.0                       | 12634        | 17971               | 982                     | 20400                    | 13980                | 71                    | 78                      |
| Saudi Arabia       | HI     | 23.2                 | 11                             | 214.7                   | 298.0                       | 9532         | 13226               | 325                     | 14010                    | 10430                | 72                    | 75                      |
| Hungary            | UMC    | 10.1                 | 109                            | 82.7                    | 147.7                       | 8169         | 14584               | 157                     | 15620                    | 8270                 | 69                    | 77                      |
| Mexico             | UMC    | 103.8                | 54                             | 626.1                   | 937.8                       | 6121         | 9168                | 995                     | 9590                     | 6770                 | 71                    | 77                      |
| Poland             | UMC    | 38.2                 | 125                            | 209.6                   | 434.6                       | 5487         | 11379               | 482                     | 12640                    | 6090                 | 71                    | 79                      |
| Chile              | UMC    | 16.0                 | 21                             | 72.4                    | 162.1                       | 4591         | 10274               | 168                     | 10500                    | 4910                 | 73                    | 80                      |
| Malaysia           | UMC    | 25.2                 | 77                             | 103.7                   | 235.7                       | 4187         | 9512                | 243                     | 9630                     | 4650                 | 71                    | 76                      |
| Uruguay            | UMC    | 3.4                  | 19                             | 11.2                    | 28.0                        | 3308         | 8280                | 31                      | 9070                     | 3950                 | 72                    | 79                      |
| Turkey             | UMC    | 71.7                 | 93                             | 240.4                   | 478.9                       | 3399         | 6772                | 551                     | 7680                     | 3750                 | 66                    | 71                      |
| South Africa       | UMC    | 45.6                 | 38                             | 159.9                   | 474.1                       | 3489         | 10346               | 500                     | 10960                    | 3630                 | 45                    | 46                      |
| Russian Federation | UMC    | 142.8                | 8                              | 432.9                   | 1323.8                      | 3018         | 9230                | 1374                    | 9620                     | 3410                 | 60                    | 72                      |
| Brazil             | LMC    | 178.7                | 21                             | 492.3                   | 1375.7                      | 2788         | 7790                | 1433                    | 8020                     | 3090                 | 65                    | 73                      |
| Jamaica            | LMC    | 2.7                  | 246                            | 8.1                     | 10.8                        | 3083         | 4104                | 10                      | 3630                     | 2900                 | 74                    | 78                      |
| Thailand           | LMC    | 62.4                 | 122                            | 143.0                   | 471.0                       | 2305         | 7595                | 500                     | 8020                     | 2540                 | 67                    | 72                      |
| Iran, Islamic Rep. | LMC    | 66.9                 | 41                             | 137.1                   | 464.4                       | 2066         | 6995                | 505                     | 7550                     | 2300                 | 68                    | 71                      |
| Algeria            | LMC    | 32.4                 | 14                             | 66.5                    | 194.4                       | 2090         | 6107                | 203                     | 6260                     | 2280                 | 70                    | 72                      |
| Colombia           | LMC    | 45.3                 | 44                             | 78.7                    | 298.8                       | 1764         | 6702                | 309                     | 6820                     | 2000                 | 69                    | 75                      |
| China              | LMC    | 1296.5               | 139                            | 1417.0                  | 6445.9                      | 1100         | 5003                | 7170                    | 5530                     | 1290                 | 69                    | 73                      |
| Philippines        | LMC    | 83.0                 | 278                            | 80.6                    | 352.2                       | 989          | 4321                | 406                     | 4890                     | 1170                 | 68                    | 72                      |
| Indonesia          | LMC    | 217.6                | 120                            | 208.3                   | 721.5                       | 970          | 3361                | 753                     | 3460                     | 1140                 | 65                    | 69                      |
| Georgia            | LMC    | 4.5                  | 65                             | 4.0                     | 13.3                        | 778          | 2588                | 13                      | 2930                     | 1040                 | 69                    | 78                      |
| Sri Lanka          | LMC    | 19.4                 | 301                            | 18.2                    | 72.7                        | 948          | 3778                | 78                      | 4000                     | 1010                 | 72                    | 76                      |
| India              | LIC    | 1079.7               | 363                            | 600.6                   | 3078.2                      | 564          | 2892                | 3347                    | 3100                     | 620                  | 63                    | 64                      |
| Pakistan           | LIC    | 152.1                | 197                            | 82.3                    | 311.3                       | 555          | 2097                | 328                     | 2160                     | 600                  | 63                    | 65                      |
| Vietnam            | LIC    | 82.2                 | 252                            | 39.2                    | 202.5                       | 482          | 2490                | 222                     | 2700                     | 550                  | 68                    | 72                      |
| Sudan              | LIC    | 34.4                 | 14                             | 17.8                    | 64.1                        | 530          | 1910                | 64                      | 1870                     | 530                  | 57                    | 60                      |
| Kenya              | LIC    | 32.4                 | 57                             | 14.4                    | 33.1                        | 450          | 1037                | 34                      | 1050                     | 460                  | 45                    | 46                      |
| Bangladesh         | LIC    | 140.5                | 1079                           | 51.9                    | 244.4                       | 376          | 1770                | 278                     | 1980                     | 440                  | 62                    | 63                      |
| Ghana              | LIC    | 21.1                 | 93                             | 7.6                     | 46.3                        | 369          | 2238                | 48                      | 2280                     | 380                  | 54                    | 55                      |
| Cambodia           | LIC    | 13.6                 | 77                             | 4.2                     | 27.9                        | 315          | 2078                | 30                      | 2180                     | 320                  | 53                    | 56                      |
| Uganda             | LIC    | 25.9                 | 132                            | 6.3                     | 36.8                        | 249          | 1457                | 39                      | 1520                     | 270                  | 43                    | 44                      |
| Nepal              | LIC    | 25.2                 | 176                            | 5.9                     | 35.0                        | 237          | 1420                | 37                      | 1470                     | 260                  | 60                    | 60                      |
| Zimbabwe           | LIC    | 13.2                 | 34                             | -                       | 31.4                        | _            | 2443                | 28                      | 2180                     | _                    | 39                    | 38                      |

Table A16.1 (contd.)

| Country            | Group* | Infant M<br>Rate (pe<br>live bi | er 1000 | Adult<br>Literacy<br>Rate                |                     | Internat                       | ional Pove                         | erty Line                      |                                    |                | _         | on below<br>overty Lir | ne              |
|--------------------|--------|---------------------------------|---------|------------------------------------------|---------------------|--------------------------------|------------------------------------|--------------------------------|------------------------------------|----------------|-----------|------------------------|-----------------|
|                    |        | 1980                            | 2002    | ages 15<br>and older<br>(%)<br>1998–2004 | Survey<br>Year      | Population below \$1 a day (%) | Poverty<br>Gap<br>\$1 a day<br>(%) | Population below \$2 a day (%) | Poverty<br>Gap<br>\$2 a day<br>(%) | Survey<br>Year | Rural (%) | Urban<br>(%)           | National<br>(%) |
| (1)                | (2)    | (14)                            | (15)    | (16)                                     | (17)                | (18)                           | (19)                               | (20)                           | (21)                               | (22)           | (23)      | (24)                   | (25)            |
| Norway             | HI     | 9                               | 4       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Switzerland        | HI     | 9                               | 5       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| United States      | HI     | 13                              | 7       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Sweden             | HI     | 7                               | 3       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| United Kingdom     | HI     | 12                              | 5       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Netherlands        | HI     | 9                               | 5       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| France             | HI     | 10                              | 4       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Germany            | HI     | 13                              | 4       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Australia          | HI     | 11                              | 6       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      |                 |
| Singapore          | HI     | 11                              | 3       | 93                                       | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Spain              | HI     | 13                              | 5       | _                                        | _                   | _                              | _                                  | _                              | _                                  |                | _         | _                      | _               |
| New Zealand        | HI     | 13                              | 6       | _                                        | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Korea, Rep.        | HI     | 16                              | 5       | _                                        | 1998#               | <2.0                           | < 0.5                              | <2.0                           | < 0.5                              | _              | _         | _                      | _               |
| Saudi Arabia       | HI     | 65                              | 23      | 79                                       | -                   | -                              | -                                  | _                              | -                                  | _              | _         | _                      | _               |
| Hungary            | UMC    | 24                              | 8       | 99                                       | 2002*               | <2.0                           | <0.5                               | <2.0                           | <0.5                               | 1997           | _         | _                      | 17.3            |
| - '                |        | 56                              |         | 99                                       | 2002<br>2000*       | 9.9                            | 3.7                                |                                | 10.9                               | 1988           | _         |                        |                 |
| Mexico<br>Poland   | UMC    |                                 | 24      |                                          | 2000<br>2002*,@     |                                |                                    | 26.3                           |                                    |                |           | _                      | 10.1            |
|                    | UMC    | 21                              | 8       | -                                        | 2002                | <2.0                           | <0.5                               | <2.0                           | <0.5                               | 1993           | _         | _                      | 23.8            |
| Chile              | UMC    | 49                              | 10      | 96                                       |                     | <2.0                           | < 0.5                              | 9.6                            | 2.5                                | 1998           | -         | -                      | 17.0            |
| Malaysia           | UMC    | 31                              | 8       | 89                                       | 1997#               | <2.0                           | < 0.5                              | 9.3                            | 2.0                                | 1989           | 15.5      |                        |                 |
| Uruguay            | UMC    | 37                              | 14      | -                                        | 2000#               | <2.0                           | < 0.5                              | 3.9                            | 0.8                                | _              | _         | _                      | _               |
| Turkey             | UMC    | 103                             | 35      | 88                                       | 2002*,@             | 4.8                            | 1.0                                | 24.7                           | 7.5                                | _              | _         | _                      | -               |
| South Africa       | UMC    | 64                              | 52      | -                                        | 2000                | 10.7                           | 1.7                                | 34.1                           | 12.6                               | -              | _         | _                      | _               |
| Russian Federation | UMC    | 28                              | 18      | 99                                       | 2002*               | <2.0                           | < 0.5                              | 7.5                            | 1.3                                | 1994           | _         |                        | 30.9            |
| Brazil             | LMC    | 67                              | 33      | 88                                       | 2001#               | 8.2                            | 2.1                                | 22.4                           | 8.8                                | 1998           | 51.4      | 14.7                   | 22.0            |
| Jamaica            | LMC    | 28                              | 17      | 88                                       | 2000                | < 2.0                          | < 0.5                              | 13.3                           | 2.7                                | 2000           | 25.1      | 12.8                   | 18.7            |
| Thailand           | LMC    | 45                              | 24      | 93                                       | 2000*,@             | <2.0                           | < 0.5                              | 32.5                           | 9.0                                | 1992           | 15.5      | 10.2                   | 13.1            |
| Iran, Islamic Rep. | LMC    | 92                              | 34      | 77                                       | 1998*               | <2.0                           | < 0.5                              | 7.3                            | 1.5                                | -              | -         | _                      | -               |
| Algeria            | LMC    | 94                              | 39      | 70                                       | 1995                | <2.0                           | < 0.5                              | 15.1                           | 3.8                                | 1998           | 16.6      | 7.3                    | 12.2            |
| Colombia           | LMC    | 40                              | 19      | 94                                       | 1999#               | 8.2                            | 2.2                                | 22.6                           | 8.8                                | 1999           | 79.0      | 55.0                   | 64.0            |
| China              | LMC    | 49                              | 30      | 91                                       | 2001*               | 16.6                           | 3.9                                | 46.7                           | 18.4                               | 1998           | 4.6       | <2                     | 4.6             |
| Philippines        | LMC    | 55                              | 28      | 93                                       | 2000*               | 15.5                           | 3.0                                | 47.5                           | 17.8                               | 1997           | 50.7      | 21.5                   | 36.8            |
| Indonesia          | LMC    | 79                              | 32      | 88                                       | 2002*               | 7.5                            | 0.9                                | 52.4                           | 15.7                               | 1999           | -         | -                      | 27.1            |
| Georgia            | LMC    | 34                              | 24      | -                                        | 2001*               | 2.7                            | 0.9                                | 15.7                           | 4.6                                | 1997           | 9.9       | 12.1                   | 11.1            |
| Sri Lanka          | LMC    | 34                              | 16      | 90                                       | 2002 <sup>*,@</sup> | 5.6                            | < 0.5                              | 41.6                           | 11.9                               | 1995-6         | 27.0      | 15.0                   | 25.0            |
| India              | LIC    | 113                             | 65      | 61 1                                     | 999–2000*           | 35.3                           | 7.2                                | 80.6                           | 34.9                               | 1999-2000      | 30.2      | 24.7                   | 28.6            |
| Pakistan           | LIC    | 105                             | 76      | 49                                       | 2001*,@             | 17.0                           | 3.1                                | 73.6                           | 26.1                               | 1998-9         | 35.9      | 24.2                   | 32.6            |
| Vietnam            | LIC    | 44                              | 20      | 90                                       | -                   | _                              | _                                  | _                              | -                                  | 2002           | 35.6      | 6.6                    | 28.9            |
| Sudan              | LIC    | 86                              | 64      | 59                                       | _                   | _                              | _                                  | _                              | _                                  | _              | _         | _                      | _               |
| Kenya              | LIC    | 73                              | 78      | 74                                       | 1997*               | 22.8                           | 5.9                                | 58.3                           | 23.9                               | 1997           | 53.0      | 49.0                   | 52.0            |
| Bangladesh         | LIC    | 129                             | 48      | 41                                       | 2000*               | 36                             | 8.1                                | 82.8                           | 36.3                               | 2000           | 53.0      | 36.6                   | 49.8            |
| Ghana              | LIC    | 96                              | 60      | 54                                       | 1998–9*             | 44.8                           | 17.3                               | 78.5                           | 40.8                               | 1998-9         | 49.9      | 18.6                   | 39.5            |
| Cambodia           | LIC    | 110                             | 96      | 74                                       | 1997*               | 34.1                           | 9.7                                | 77.7                           | 34.5                               | 1999           | 40.1      | 13.9                   | 35.9            |
| Uganda             | LIC    | 107                             | 83      | 69                                       | _                   | _                              | _                                  | _                              | _                                  | 1997           | _         | _                      | 44.0            |
| Nepal              | LIC    | 124                             | 62      | 49                                       | 1995–6*             | 39.1                           | 11.0                               | 80.9                           | 37.6                               | 1995-6         | 44.0      | 23.0                   | 42.0            |
| Zimbabwe           | LIC    | 69                              | 76      | 90                                       | 1995–6*             | 56.1                           | 24.2                               | 83.0                           | 48.2                               | 1995–6         | 48.0      | 7.9                    | 34.9            |

Notes: \*—expenditure base; #—income base; @—primary data,-denotes no data; Col. 1 classifies all World Bank member economies and all other economies with population of more than 30,000. Economies are divided among income groups according to 2004 GNI per capita, calculated using the World Bank Atlas method; Groups are: low-income economies (LIC) with \$825 or less, lower middle income economies (LMC), \$826–\$3255, Upper-middle income economies (UMC), \$3256-\$10,065, and high-income economies, \$10,066 or more.

Source: World Development Report 2004 and 2006 (http://devdata.worldbank.org/wdi2005/Section1.htm).