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1 Introduction

When options markets became established and liquid, market price of options
were used to directly calculate the market forecast of volatility called the
“implied volatility” (iv). iv is a direct measure of the forecast of volatility
made by economic agents. An extensive literature has documented the high
quality of volatility forecasting that is embedded in iv.

Different options on the same underlying yield different values for the iv.
Analytical methods are thus required to reduce multiple values for iv from
different traded options on the same underlying into an efficient point esti-
mate of iv for that underlying.

One endeavour to isolate a volatility forecast from multiple values of iv was
based on developing models of option pricing that incorporated the factors
that caused iv to change deterministically, such as moneyness of the option,
volatility dynamics or the liquidity of the underlying.

The other strategy adopted was to develop an index of implied volatility. This
was discussed extensively in the literature, which led up to the introduction
of the CBOE vix in 1993. This implied volatility index was calculated for the
S&P 100 index options using the methodology proposed by Whaley (1993)
and was disseminated by the CBOE in real time. The index was calculated
using only at-the-money (ATM) options with a defined weighting scheme
over the iv values calculated. In 2003, the CBOE shifted the vix calcula-
tion methodology to one that used option prices over a wide range of strike
values. In the following years, similar computation of an implied volatility
index has commenced on numerous options exchanges worldwide. Trading
in derivatives on VIX has also commenced.

The CBOE VIX methodology is predicated on all option prices being mea-
sured sharply. However, in the real world, there is substantial cross-sectional
variation in the liquidity of option series. As an example, in tranquil times
(September 2007), the bid-offer spread of options on the S&P 500 index at
the cboe ranged from near 0 to 200%. In turbulent times (September 2008),
many more options were afflicted with illiquidity.

At present, a variety of heuristics are being utilised by exchanges worldwide
in addressing this problem. In this paper, we try to frontally address the
problem of illiquid options markets by constructing a weighting scheme for
the construction of a volatility index, that directly incorporates the liquidity
of the option. The empirical work of this paper is based on one of the most
active option markets in the world: options on the NSE-50 (Nifty) index,
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traded at the National Stock Exchange. We use the bid-offer spread in a
weighting scheme that adjusts for illiquidity when calculating the vix. We
call this the spread adjusted vix, (svix).

We compare the performance of svix against three alternative weighting
schemes: the 1993 CBOE index (called vxo), the vega weighted index (vvix)
and a volatility elasticity weighted index (evix). The performance is mea-
sured as the forecasting success of each vix candidate against the realised
volatility (rv) of the market index. The testing procedure employed is the
Model Confidence Set (MCS) test (Hansen et al., 2003). We find that the
new svix that we propose is a better predictor of future rv. We also run
univariate regressions of rv on each volatility index and find that while all
volatility indexes contain information about future volatility, they are biased
forecasts. However, the SVIX shows the smallest bias among the candidates
in our test.

Option implied volatility is an important component of the information set
of the financial system. The world over, options markets are being used to
create implied volatility indexes using ideas similar to that of the CBOE vix.
Since all options markets have substantial cross-sectional variation in option
liquidity, the ideas of this paper may potentially yield improved measurement
of volatility indexes.

We present the paper as follows: Section 2 presents the issues surrounding the
creation of a volatility index. It also presents the evaluation framework used
to compare the performance of alternative volatility indexes. Section 3 re-
views alternative schemes to construct volatility indexes. Section 4 describes
the data used for the analysis. Section 5 discusses the liquidity adjusted
weighting scheme, after which we present our analysis in Section 6. Section
7 concludes.

2 Issues in constructing IV indexes

Gastineau (1977) proposed the use of an index to resolve the problem of
multiple values of ivs from different options on the same underlying. An iv
index calculated as a weighted average of the ivs from different option prices,
would be the summary measure of underlying future volatility.

The first weighting schemes were suggested by Trippi (1977) and Schmalensee
and Trippi (1978) which placed equal weights on all the ivs used in calculating
the index. However, since the literature showed that the Black-Scholes model
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priced some options more accurately than others, schemes where the weights
varied according to different factors were proposed. In following years, several
researchers made significant progress in developing these concepts further
(Galai, 1989; Cox and Rubinstein, 1985; Brenner and Galai, 1993; Whaley,
1993).

The maturation of knowledge in this field was signalled with the launch of
an information product in 1993: an iv index based on trading in options on
the S&P 100 index. This was called the CBOE vix. A research literature
rapidly demonstrated that vix was useful in volatility forecasting, over and
beyond the state of the art volatility models, since option prices harnessed
the superior information set of traders.1

Given the importance of volatility indexes such as vix in the global financial
system, it is useful to explore the methodological issues in the construction
of these indexes. The process of creating an optimal methodology for a
volatility index involves two parts:

1. Identifying alternative weighting schemes based on available data about fac-
tors that directly influence the shape of the iv smile.

2. Choosing an optimal weighting scheme.

2.1 Factors influencing IV values

If the Black-Scholes model held exactly, all options should have the same
implied volatility. However, an extensive literature has demonstrated that
iv varies with moneyness, maturity, vega and liquidity. We discuss each of
these in turn.

1Christensen and Prabhala (1998); Christensen et al. (2001) identified and corrected
some of the data and methodological problems present in the early studies on this ques-
tion. They conclude that iv is a more efficient forecast for future volatility than volatility
calculated from historical returns. Latane and Rendleman (1976), Chiras and Manaster
(1978), and Beckers (1981) find that iv performs better in capturing future volatility than
standard deviations obtained from historical returns. Blair et al. (2001) find that volatility
forecasts provided by the early CBOE volatility index are unbiased, and they outperform
forecasts augmented with GARCH effects and high-frequency observations. Similar results
were reported early on by Jorion (1995) for foreign exchange options.

Corrado and Miller (2005) examine the forecasting quality of three implied volatility
indexes based on S&P 100, S&P 500 and Nasdaq 100. They find that the forecasting
quality of the volatility index based on the S&P 100 and S&P 500 has improved since
1995, and that those based on the Nasdaq 100 provides better forecasts of future volatility.
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Moneyness/Strike The first documented variation in iv was as a function
of strikes or the moneyness. iv was consistently lower for lower values
of the moneyness of the option. This variation came to be known as the
volatility smile. Rubinstein (1994), Jackwerth and Rubinstein (1996),
Dumas et al. (1998) showed that the pattern of the implied volatility
of the S&P 500 index options changed from a smile to a sneer after the
1987 crash.

Maturity Prices of near month options show lower iv than far months.
Heynen et al. (1994), Xu and Taylor (1994) and Campa and Chang
(1995) show that implied volatilities are a function of time to expiration
and thus exhibit a term structure.

Vega The derivative of the Black-Scholes price with respect to volatility is
called vega. The vega can be shown to be consistently different for dif-
ferent values of the strike, as well as the maturity of the contract.2 Thus
the vega of an option naturally lent itself as an input to differentiating
the iv of different options when calculating an iv index (Latane and
Rendleman, 1976). Chiras and Manaster (1978) suggested weighting
by volatility elasticity instead of vega.

Among other influential papers, Beckers (1981) and Whaley (1982)
suggested minimizing

∑
i
wi[Ci − BSi(σ̂)]2 where Ci refers to market

price and BSi refers to Black Scholes price of option i and wi could
either be vega or equal weights.3

Liquidity A more recent literature has explored the impact of option liq-
uidity on estimated iv. Brenner et al. (2001) show that there is a
significant illiquidity premium between two sets of currency options,
when one set is traded and the other is not. Bollen and Whaley (2004)
documented an empirical link between the shape of the iv smile and
the depth of the market on the buy and the sell side of options with
different moneyness. They show that net buying pressure affects the
shape of the iv smile in both the index as well as the single stock op-
tions markets. Further, they show that the shape of the iv smile is
driven by different market forces for index options compared to single
stock options.

2Vega is higher for options that are further away from the money since they have a
lower extrinsic value and are less likely to change with changes in implied volatility. It is
also higher for options with longer expiration in order to compensate for additional risk
taken by the seller.

3This method thus allows the call prices to provide an implicit weighting scheme that
yields an estimate of standard deviation which has least prediction error.
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Models of asymmetric information have been used to provide theoreti-
cal underpinnings for the link between liquidity and option price. Nandi
(1999) set up a model of asymmetric information linking the level and
the shape of iv function to net order flow of options. The model shows
that an increase in net options order flow increases the mispricing by
the Black-Scholes model. Garleanu et al. (2009) formalise the findings
in Bollen and Whaley (2004) by incorporating end-user demand in a
model for options prices. Here they exploit the feature that end-users
tend to hold long index options and short equity options to explain the
relative expensiveness of index options. Another model to explicitly in-
corporate liquidity in the price of stock options was Cetin et al. (2006),
who show market liquidity premium4 as a significant part of the option
price.

The empirical evidence has also linked iv to option liquidity. Etling
and Miller (2000) explore the relationship between bid–ask spread as
a liquidity proxy with moneyness of options and find that ATM op-
tions have the highest liquidity. Chou et al. (2009) explore how the
iv function varies as a function of liquidity in both the spot and op-
tions market. They find that order based measures of liquidity (such as
the bid–ask spread) better explain the variation in iv than trade based
measures (such as traded volume). They also find that both spot and
options markets liquidity matter for the variation in iv.

This evidence, about the various factors that influence iv, has led to many
alternative approaches to constructing an iv index. The different weighting
schemes are further discussed in Section 3. What is the efficient weighting
scheme rests upon the performance of the forecast from each scheme against
some benchmark volatility measure. We now examine the framework to carry
out such a performance evaluation of different weighting schemes in the next
section.

2.2 Performance evaluation

One of the reasons that there is no consensus on one best weighting scheme
for a volatility index is the lack of an observable volatility. The time-series
econometrics literature has extensive work on a framework to evaluate the
performance of a volatility forecast even though volatility is not observed.

4The paper models the liquidity using a generic supply function where option price
monotonically increases with size of order.

7



For example, these ideas have been used in testing the forecasts of volatility
models such as GARCH, EWMA, etc. This framework has two broad ap-
proaches: one which delivers a relative measure of performance amongst a set
of candidate models, and the other which delivers a measure of performance
of each of the candidate models against a single benchmark.

These questions were revisited when intra-day data revealed a superior volatil-
ity proxy: realised volatility (rv). Once rv was observed, it became possible
to measure how well iv forecasts the rv of the underlying asset over the life
of an option. Most studies use a predictive regression of the iv estimate on
future volatility where the goodness of prediction is measured through the
coefficients of predictive regressions. The early studies by Day and Lewis
(1988), Lamoureux and Lastrapes (1993) and Canina and Figlewski (1993)
showed that iv is not a good predictor for future return volatilities.

The framework of encompassing regressions was then used to assess the
predictability of iv estimates against other forecast variables. This frame-
work addresses the relative importance of competing volatility forecasts and
whether one volatility forecast subsumes all information contained in other
volatility forecast(s). Within this approach, Poteshman (2000); Jiang and
Tian (2005b); Corrado and Miller (2005) have found that iv estimates are
biased, but efficient and informative relative to forecasts from other volatility
estimates.

A recent study by Becker et al. (2007) used an approach that differs from the
traditional forecast encompassing approach used in earlier studies and finds
that the S&P 500 iv index does not contain any such incremental information
relevant for forecasting volatility. Becker et al. (2009) compare the index
against a combination of forecasts of S&P 500 volatility by using the Model
Confidence Set (MCS) methodology and finds that a combination of forecasts
outperforms individual model based forecasts and implied volatility.

In this paper, we use two steps to compare the performance of our volatility
indexes:

1. Forecasting regressions following Christensen and Prabhala (1998) to test
the information content of the volatility measures. We also run instrumental
variable regressions to correct for potential errors-in-variable problems in
implied volatility estimates as discussed by previous studies.5

2. The Model Confidence Set (MCS) methodology of Hansen et al. (2003). This
addresses the problem of choosing the best forecasting model. It contains

5Christensen and Prabhala (1998), Jiang and Tian (2005b), Corrado and Miller (2005).
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the best model with a given level of confidence. It may contain a number of
models, which indicates they are of equal predictive ability. It has several
advantages over other methods like superior predictive ability (SPA) test
and the reality check (RC) test.6

The construction of the MCS test is an iterative procedure in that it requires
a sequence of tests for equal predictive ability. The set of candidate models
is trimmed by deleting models that are found to be inferior. The final
surviving set of models in the MCS contain the optimal model with a given
level of confidence and are not significantly different in terms of their forecast
performance.7

The critical question that remains in this is still the choice of the benchmark
measure for volatility which we discuss in Section 4.2.

3 Choices of IV indexes

In this section, we describe the different methods we use in order to calculate
iv indexes. We start with a description of the two most widely computed
volatility indexes by several exchanges across the world, namely, vxo and
vix.

3.1 VXO

This volatility index is calculated using prices of options on the S&P 100
index. The implied volatilities are calculated using the Black-Scholes model,
and the vxo is an average of the ivs on eight near-the-money options, in-
cluding options at the two nearest maturities.8

In 2003, VXO was criticised for using an option pricing model and being
biased due to the trading day conversion. In addition there were two struc-
tural changes9 in the US economy that reduced the usefulness of vxo as a
measure of future volatility. These were:

1. S&P 500 options became the most actively traded index options.

6See Hansen et al. (2003).
7Hansen et al. (2003).
8See Whaley (1993) for details on construction of VXO.
9See Whaley (2009).
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2. Earlier index calls and puts were equally important in investor trading
strategies but in later years the market became dominated by portfolio
insurers who bought out-of-the-money and at-the-money index puts for
insurance purposes.

Such criticisms of vxo along with changes in the structure of the US options
market led to a new approach to calculating the volatility index, vix, based
on the prices of options trading on the S&P 500.

3.2 VIX

In contrast to vxo, vix has been derived from the concept of fair value of a
volatility swap (Demeterfi et al., 1999). Here, even though the variance is de-
rived from market observable option prices and interest rates, the theoretical
underpinning is rooted in the broader context of model-free implied variance
of Dupire (1993) and Neuberger (1994). This concept was further devel-
oped by Carr and Madan (1998), Demeterfi et al. (1999) and Britten-Jones
and Neuberger (2000). Jiang and Tian (2005a) establish that the variance
measure under this framework is theoretically equivalent to the model-free
implied variance formulated by Britten-Jones and Neuberger (2000).

The CBOE calculates and publishes a real time value of VIX.10 which has
been accepted as the market measure of volatility. In this paper, we do not
directly analyse the vix methodology. However, to the extent that the main
argument of this paper is appropriate – that price information for illiquid
option series is less informative – it should impact upon the vix methodology
also.

3.3 Volatility linked weights

The early literature (Latane and Rendleman, 1976; Chiras and Manaster,
1978), suggests two different weighting schemes based on vega and volatility
elasticity weighting scheme to calculate the market iv index.

1. Vega weights are calculated as:

σtj =

∑
i
wit,jσit∑
i
wit,j

10See www.cboe.com/micro/vix/vixwhite.pdf for details on construction of VIX.
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where wit,j is the Black-Scholes vega for the ith option contract at time t.
j = 1, 2 denotes the two nearest maturities.

2. Volatility elasticity weights are calculated as:

σtj =

∑
i
wit,j

σit,j
Cit,j

σit,j∑
i
wit,j

σit,j
Cit,j

where wit,j is the Black-Scholes vega and Cit,j is the price for the ith option
contract at time t , j = 1, 2 denotes the two nearest maturities.

The scheme that uses volatility elasticities puts more weight on out-of-the-
money options (with low prices Cit,j) than the vega weights model.

3.4 Adjustment for rollover

The implied volatility estimates obtained for the two nearest maturity is
linearly interpolated to obtain a 30 day estimate. Rollover to the next ex-
piration occurs eight calendar days prior to the expiry of the nearby option.
The interpolation scheme used is :

vix = 100×
[
σt1

(
Nc2 − 30

Nc2 − Nc1

)
+ σt2

(
30− Nc1

Nc2 − Nc1

)]

where σti are implied volatilities and Nci is the number of calendar days to
expiration. Here, i = 1, 2 for the near and next month respectively.

4 Measurement

We use data on the NSE-50 (Nifty) index options at the National Stock
Exchange of India Ltd (NSE). The NSE is an extremely active exchange and
is a high quality source of data on exchange-traded derivatives. NSE is the
fifth largest derivative exchange in the world in terms of number of contracts
traded (Table 1). It is also the third largest exchange in terms of number of
contracts traded in equity index (Table 2).

Table 3 shows the average number of records of intra-day data for the Nifty
index option contracts from March 2009 to April 2010. The large number of
records suggests a highly active market.
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Table 1 Global exchanges: number of contracts traded

Rank Exchanges Jan-Jun 2009 Jan-Jun 2010 % change

1 Korea Exchange 1,464,666,838 1,781,536,153 21.6%
2 CME Group 1,283,607,627 1,571,345,534 22.4%
3 Eurex 1,405,987,678 1,485,540,933 5.7%
4 NYSE Euronext 847,659,175 1,210,532,100 42.8%
5 National Stock Exchange of India 397,729,690 783,897,711 97.1%

Source: FIA, http://www.futuresindustry.org/volume-.asp

Table 2 Ranked by the number of contracts traded in equity index

Rank Exchanges Jan-Jun 2009 Jan-Jun 2010 % change

1 Kospi 200 Options, KRX 1,375,065,894 1,671,466,852 21.6%
2 Emini S&P 500 Futures, CME 308,764,146 299,603,623 3.0%
3 S&P CNX Nifty Options, NSE India 146,706,110 221,430,570 50.9%
4 SPDR S&P 500 ETF Options, CME 181,699,626 219,409,316 20.8%
5 DJ Euro Stoxx 50 Futures, Eurex 178,923,108 205,280,712 14.7 %

Source: FIA, http://www.futuresindustry.org/volume-.asp

Table 3 Records of intra-day data per month, with the Nifty index options
market

Month Avg no. of records

March 2009 2891142
April 2009 3596361
May 2009 2732869
June 2009 3409783
July 2009 4563929
August 2009 4724429
September 2009 4855215
October 2009 4790568
November 2009 6014413
December 2009 7768108
January 2010 7163127
February 2010 8429391
March 2010 7527610
April 2010 8767319

Source: NSE
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The numerical values shown in the three tables (1, 2, 3) all show very high
growth rates at NSE. Thus, while the NSE is an important exchange on the
global scale, its importance is likely to go up in the future if these growth
rates continue.

4.1 Price measurement

Even though we have both traded prices as well as mid–quote prices available
at high frequency, we choose the mid–quote of the bid–ask orders of the
options from the options limit order book as the benchmark input price in
the Black-Scholes model to compute iv.

This is because of the relative illiquidity of the options market by way of
trade updates compared to order updates. Very frequently, the next-month
options market suffers from illiquidity in terms of trades, and there is no
traded price that is observable. However, the order book has more liquidity
in terms of order updates. Thus, there is information in the order book data
that is not reflected in the traded prices. This makes it meaningful to use the
mid–quote prices rather than traded prices to calculate iv for the volatility
indexes since it reduces the effect of missing data.

The use of mid–quote prices has an automatic liquidity/illiquidity impact
in the volatility index calculation – where the options prices are moving
due to changes in the limit order book rather than a realised price from a
transaction. This problem is prevalent in other emerging markets, and has
implicitly driven an incorporation of liquidity considerations into volatility
index calculations (Tzang et al., 2010).

4.2 Measurement of realised volatility

Of the volatility indexes discussed in Section 3, we aim to compute the fol-
lowing four using the Nifty options data. These are: vxo, vvix, evix and
svix. We then plan to compare the dynamic behaviour of these different
indexes with realised volatility (rv) as the benchmark measure of market
volatility.

The theory of quadratic variation suggests that, under suitable conditions, rv
is an unbiased and highly efficient estimator of volatility of returns (Andersen
et al., 2001). rv is computed as sum of intra-day squared returns. rv over
[0,T] is defined as:

13



rvT = Σn
i=1r

2
iT
n

here r iT
n

refers to index returns from time (i− 1)T
n

to iT
n

.

For the calculation of rv, we use data on Nifty index price which is available
at within-one-second intervals from the trades and orders dataset. As a first
step, we discretise this data at 10-minutes. This discretised data is then used
to calculate daily market index volatility.

Earlier studies like Canina and Figlewski (1993) use overlapping samples to
evaluate the performance of implied volatility estimates, while other studies
like Christensen and Prabhala (1998), Jiang and Tian (2005b), Corrado and
Miller (2005) use non-overlapping samples by using data at a lower frequency
(monthly) in evaluating the performance of implied volatility estimates.

For our analysis, all volatility indexes are reduced to daily values (at the
end of the trading day), by dividing them by the square root of the number
of calendar days, 365. Since volatility indexes are ex–ante measures of the
volatility, we adjust each days volatility index to the next period.

5 A volatility index that explicitly utilises

liquidity in weights

The linkages between liquidity and implied volatilities presented in Section
2.1 appear to lead to a calculated vix value which may be biased due to
illiquidity and non–continuous strike prices. The literature has documented
that across different underlyings, options on less liquid underlyings have a
larger premium compared to those on more liquid underlyings. An extreme
version of the difficulties caused by illiquidity is documented in Jiang and
Tian (2005a), who found that the vix constructed by the CBOE is flawed
due to truncation errors that arise from the unavailability of option data for
very low and very high strikes in practice.

We propose two elements of a strategy for confronting the problem of illiq-
uidity. First, we utilise the mid–quote price rather than traded prices. This
reduces noise. Secondly, we explicitly weight option iv by option liquidity,
which we measure as the bid-ask spread available at that point in time in the
limit order book for that option. These weights are calculated as follows:

14



σtj =

∑
i
wit,jσit∑
i
wit,j

where wit,j = 1/sit,j and sit,j refers to the percentage spread defined as (ask-
bid)/mid-price of option i at t, and j = 1, 2 stands for the two nearest
maturities.

This strategy attaches greater weight to liquid products, where observed
prices or quotes have reduced noise. The lack of availability of options prices
traded at a wide range of strikes is known to magnify the truncation error
of the CBOE vix calculation methodology, and increase the bias of the vix
measure. Our method automatically adjusts for the lack of data by incorpo-
rating it in the value of the spread. If there is data missing on either side of
the book, the spread would take a value of infinity, and the weight attributed
to that option would be zero.

5.1 Stylised facts on the cross-sectional variation of
option liquidity

The crucial issue that affects this research is the cross-sectional variation of
option liquidity. Our empirical work is based on Indian data. This raises
the concern that the results are an artifact of this emerging markets setting -
perhaps one where liquidity is spotty, where arbitrage is weak, or one where
liquidity risk is large.

In order to evaluate this question, we plot bid-offer spreads on put options
in the US (Figure 1) and in India (Figure 3). We also plot bid-offer spreads
on call options in the US (Figure 2) and in India (Figure 4).

In both countries, we see high cross-sectional variation of option liquidity. If
anything, option illiquidity is a smaller problem in India. Thus, our empirical
results may be biased towards understating the gains from bringing liquidity
considerations integrally into the construction of an implied volatility index.

Further, all four figures show that in the crisis period (September 2008),
option illiquidity was a much bigger issue when compared with a tranquil
period (September 2007). This suggests that the importance of this work
would be enhanced under stressed market conditions.
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Figure 1 Variation of put option spreads, US

These graphs show the relationship between percentage spread and moneyness for the the US market
index options markets for the month of september 2007 (pre-crises) vs. september 2008 (crises). The first
is the plot of the put options market on the S&P 500 at the Chicago Board Options Exchange (CBOE)
with near month expiry for the month of september 2007. On the y-axis is the percentage spread (%) and
on the x-axis is the moneyness of the option, calculated as (Strike - Current index level)/(Strike) and also
expressed in %. Similarly, the second is the plot of the put options market for the market index at CBOE
with near month expiry for the month of september 2008. The graphs show that put spreads worsened
during the crises period in the US options market.

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●

●●●●●●●●●●●

●

●●

●

●
●

●●
●●

●

●●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●

● ● ● ●●●●

●

●

●

●

●
●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●●

●●

●

●

●

●●●
●

●●●●●●●●●

●

●●

●●

●

●

●

●

●
●●

●●●●●●●●●

●● ●

●●

●

●

●
●

●
●●●●●●●●●●

●

●
●

●

●●
●

●
●●●●●●●●

●

●●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●●

●
●

●

●●
●●●●●

●●

●

●●
●●●●●

●●

●

●
●●●●●●

● ● ● ●

●

●

●

●

●●

●●

●

●●

●●●
●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●
●
●
●
●●
●●●●●●

● ● ● ●

●

●

●

●●

●

●
●

●

●

●

●
●

●●
●●

●●●●●●●●●●●●

● ●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●
●
●
●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●●●●●●●●●●●●●

−100 −50 0 50 100

0
50

10
0

15
0

20
0 SPX Put options for September 2007

Moneyness (%)

P
er

ce
nt

ag
e 

S
pr

ea
d

● ● ● ●●●●

●●●●

●●

●
●
●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●

●●●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●●
●

●

●

●
●

●●
●
●●●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●
●

●●

●

●

●

●●●
●
●●
●
●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●
●

●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●●

●

●

●

●●●●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●
●

●
●●●

●
●
●●
●
●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●

●

●●

●
●
●

●●
●

●
●

●
●
●
●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●●●

●

●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●

●●

●

●

●

●
●
●

●

●
●

●
●●

●
●●

●●
●
●

●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●
●

●

●

●●●
●

●

●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●●●
●
●

●

●

●
●●

●●
●

●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●
●
●

●

●
●
●●
●

●

●●●●●●
●●
●

●

●●●●●●●
●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●●●
●

●●
●●
●●

●

●●
●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

● ●

●

●●
●

●

●

●

●

●
●
●

●

●

●
●●●
●

●

●●●

●
●●

●
●●
●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●●●●

●
●●

●
●

●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●
●
●

●●

●
●●

●

●
●

●

●

●

●●

●●●

●

●
●

●
●

●
●●●●
●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●●●●
●

●
●●

●

●●
●
●
●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●●

●

●
●
●●

●

●

●

●

●
●

●
●
●

●

●

●
●●●●

●

●
●

●

●●
●
●●

●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●

●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

−100 −50 0 50 100

0
50

10
0

15
0

20
0 SPX Put options for September 2008

Moneyness (%)

P
er

ce
nt

ag
e 

S
pr

ea
d

16



Figure 2 Variation of call option spreads, US

These graphs show the relationship between percentage spread and moneyness for the US market index
options marketsfor the month of september 2007 (pre-crises) vs. september 2008 (crises). The first is the
plot of the call options market on the S&P 500 at the Chicago Board Options Exchange (CBOE) with
near month expiry for the month of september 2007. On the y-axis is the percentage spread (%) and
on the x-axis is the moneyness of the option, calculated as (Current index level-strike)/(Strike) and also
expressed in %. Similarly, the second is the plot of the call options market for the market index at CBOE
with near month expiry for the month of september 2008. The graphs show that call spreads worsened
during the crises period in the US options market.
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Figure 3 Variation of put option spreads, India

These graphs show the relationship between percentage spread and moneyness for the Indian market index
options markets for the month of september 2007 (pre-crises) vs. september 2008 (crises). The first is the
plot of the put options market on the NIFTY with near month expiry for the month of september 2007.
On the y-axis is the percentage spread (%) and on the x-axis is the moneyness of the option, calculated
as (Strike - Current index level)/(Strike) and also expressed in %. Similarly, the second is the plot of the
put options market on the NIFTY with near month expiry for the month of september 2008. The graphs
show that put spreads worsened during the crises period in the Indian options market.
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Figure 4 Variation of call option spreads, India

These graphs show the relationship between percentage spread and moneyness for the Indian market index
options markets for the month of september 2007 (pre-crises) vs. september 2008 (crises). The first is the
plot of the call options market on the NIFTY with near month expiry for the month of september 2007.
On the y-axis is the percentage spread (%) and on the x-axis is the moneyness of the option, calculated
as (Current index level-strike)/(Strike) and also expressed in %. Similarly, the second is the plot of the
call options market on the NIFTY with near month expiry for the month of september 2008. The graphs
show that call spreads worsened during the crises period in the Indian options market.
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6 Empirical results

We have proposed three alternative weighting schemes in Section 3 through
which iv is estimated. The first weighting scheme uses the Black-Scholes
vega (vvix), the second uses volatility elasticity (evix) and the third uses
the bid offer spread in order to construct the weights (svix) for computing
a volatility index.

The performance of these three volatility indexes, along with the old CBOE
methodology (vxo) is compared against the benchmark of realised volatility
(rv). We compare the performance of the volatility indexes in two ways:

1. Forecasting regressions that test the information content of the volatil-
ity indexes. We also run instrumental variable regressions to correct for
potential errors-in-variables problems in implied volatility estimates.

2. The MCS methodology which allows comparison of multiple volatility
forecasts and chooses the volatility forecast which is best in tracking
rv.

Figure 5 shows how each volatility index tracks the rv. A common feature
is that all the candidates appear to be an overestimate of volatility, which
is measured as rv. One possible reason for the bias is that rv is computed
as a sum of intra-day squared returns from opening of trading to the closing
11, and does not include the close to open volatility. This is unlike the
assumption about the IV as a forecast of the volatility of returns which is
calculated as price change from closing to closing of the day. For example,
data on |r| compared to rv for the four quarters in Table 4 shows that
volatility of closing-to-closing returns tends to be higher on average than the
rv.

The graph of svix clearly indicates that it is best in tracking rv followed
by vvix. Differences between rv on day t and iv observed on the day t− 1
represent observed forecast errors.

Table 5 gives the summary statistics for each type of volatility index for both
the raw and log values. They are all higher on average than the corresponding
rv series. The iv values are thus likely biased forecast for rv. In addition,
the reported skewness and kurtosis reveal that the log volatility index is more
conformable with the normal distribution while the volatility index itself is
not.

11See Section4.2.
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Table 4 rv vs. |r|

The table presents the difference between r̄v and ¯|r| for market index returns in four quarters of data.
2009Q3 is the quarter covering the period Oct, Nov, Dec 2009 while 2010Q2 includes Jul, Aug, Sep 2010.
rv is computed as explained in Section 4.2 while |r| is computed as |rt| = | ln (pt/pt−1)| where pt refers
to closing price of the market index on day t.

Nifty 2009Q3 2009Q4 2010Q1 2010Q2

¯|r| 15.21 14.31 15.05 12.07
r̄v 15.23 11.57 11.00 8.25

Figure 5 Volatility indexes vs. rv
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Table 5 Summary statistics of rv and iv
Volatility Log Volatility

rv vxo vvix evix svix lrv lvxo lvvix levix lsvix

No. of obs. 216 216 216 216 216 216 216 216 216 216
Min 0.35 1.07 0.88 1.17 0.54 -1.04 0.07 -0.13 0.16 -0.62
Max 3.43 4.00 4.32 3.64 3.41 1.23 1.39 1.46 1.29 1.23
Mean 1.13 2.16 1.78 2.05 1.55 0.02 0.72 0.52 0.68 0.37
Kurtosis 4.85 2.58 4.26 2.68 3.04 2.36 2.24 2.40 2.15 2.65
Skewness 1.14 0.58 1.07 0.74 0.65 0.05 0.03 0.30 0.28 -0.17
Std Dev 0.52 0.66 0.63 0.61 0.56 0.45 0.30 0.34 0.28 0.36

Q1 0.70 1.67 1.31 1.57 1.15 -0.35 0.52 0.27 0.45 0.14
Q2 1.04 1.98 1.57 1.92 1.44 0.04 0.68 0.45 0.65 0.36
Q3 1.45 1.90 2.17 2.35 1.90 0.37 0.97 0.78 0.37 0.64

Table 6 Regression results

Note: For each regression, the t statistic is computed by following a robust procedure taking into account
the heteroscedastic and autocorrelated error structure ((Newey and West, 1987)). The parenthesis below
each coefficient reports the p-value.

Volatility Indexes a0 a1 Adj.R2 χ2 DW

lvxo -0.83 1.17 0.62 731.1 1.38
(0.00) (0.00) (0.00)

lvvix -0.50 1.01 0.57 249.1 1.23
(0.00) (0.00) (0.00)

levix -0.69 1.05 0.43 269.0 0.99
(0.00) (0.00) (0.00)

lsvix -0.33 0.95 0.59 153.5 1.39
(0.00) (0.00) (0.00)

6.1 Volatility forecast regressions

We run univariate regressions of log rv on each of the log volatility indexes
separately to test several hypothesis associated with the information content
of the volatility measures. Regressions are run using log volatility series to
ensure that the probability density of the error term is close to the normal
density. If the volatility forecast contains no information about the future
volatility then the slope coefficient a1 would be zero.

We consider

lrvt = a0 + a1lvixi(t−1) + εt

Here lvixi belongs to the set of log values of vxo, vvix, evix, svix.
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Table 6 summarises the regression results. The slope coefficient is positive
and significant at 1% for all volatility indexes indicating that all of them
contain important information about future volatility. The slope coefficient
is not significantly different from one for vvix, evix and svix.

If a given volatility forecast is an unbiased estimator of future realised volatil-
ity, the slope coefficient a1 should be one and the intercept a0 should be zero.
The null hypothesis of no bias is tested using the Newey-West covariance ma-
trix. χ2 statistics and p values are reported in Table 6. The null hypothesis
is rejected at the 1% significance level in all cases with estimated coefficients
a1 ranging from 0.95 to 1.17.

This result is not surprising because summary statistics in Table 5 indicate
that all volatility indexes are on average greater than the rv. The evidence
is also consistent with the existing option pricing literature which documents
that stochastic volatility is priced with a negative market price of risk (or
equivalently a positive risk premium). The volatility implied from option
prices is thus higher than their counterpart under the objective measure due
to investor risk aversion (Jiang and Tian, 2005b).

The adjusted R2 of vxo is slightly higher than svix while vvix and evix
have adjusted R2 lower than svix. However, the difference of 3% is not
sufficiently high to conclude that vxo has a better predictive ability than
svix. The DW statistic is significantly different from 2 indicating that the
residuals still reflect dependence across time points.

6.2 Instrumental variable regressions

The instrumental variable approach is adopted when there may be possi-
ble errors in explanatory variables. Many studies such as Christensen and
Prabhala (1998), Jiang and Tian (2005b), Corrado and Miller (2005) have
discussed the possible reasons that may result in the error-in-variable prob-
lem in implied volatility estimates which may further bias the slope coeffi-
cient in the univariate regressions discussed earlier. Following Christensen
and Prabhala (1998), we apply a two-stage least squares regression to imple-
ment the instrumental variable estimation procedure. We use lagged iv as
an instrument for iv. In the first stage, we regress each volatility index on
the instrumental variable. In the second stage, rv is regressed on the fitted
values obtained from the regression in the first stage.
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Table 7 Instrumental variable regression results:

Dependent Variable:
︷ ︸︸ ︷
lvixi(t−1) Dependent Variable: lrvt

1stStage a0 a1 Adj.R2 DW 2nd Stage b0 b1 Adj.R2 χ2 DW

lvxot−2 0.01 0.98 0.94 2.44
︷ ︸︸ ︷
lvxot−1 -0.83 1.17 0.59 598.4 1.29

(0.29) (0.00) (0.00) (0.00) (0.00)

lvvixt−2 0.04 0.92 0.83 2.68
︷ ︸︸ ︷
lvvixt−1 -0.52 1.04 0.51 201.8 1.22

(0.02) (0.00) (0.02) (0.00) (0.00)

levixt−2 0.03 0.95 0.89 2.63
︷ ︸︸ ︷
levixt−1 -0.73 1.10 0.43 243.5 0.97

(0.02) (0.00) (0.00) (0.00) (0.00)

lsvixt−2 0.02 0.94 0.87 2.65
︷ ︸︸ ︷
lsvixt−1 -0.34 0.97 0.54 147.3 1.29

(0.02) (0.00) (0.00) (0.00) (0.00)

We consider the following:︷ ︸︸ ︷
lvixi(t−1) = a0 + a1lvixi(t−2)

lrvt = b0 + b1

︷ ︸︸ ︷
lvixi(t−1) +εt

Table 7 summarises the results for the instrumental variable regressions. We
find no material change in statistical inferences between instrumental variable
and OLS regressions.

6.3 MCS results

Table 8 reports the rankings of all log volatility indexes based on mean square
error (MSE), as well as the MCS results. The MSE errors are the first column
of data in the table which shows that lsvix has the smallest MSE and is
thus the most accurate forecast of future volatility.

The remainder of the columns show the MCS results. Here, it turns out that
the model with the largest range statistic Tr is vxo. The p-value in the first
reduction is 0.019. As it is eliminated in the first round, this automatically
determines that the MCS p-value for vxo is 0.019.

In the second round evix is eliminated with a p-value of 0.011. Since this
p-value is smaller than the MCS p-value of model previously dropped hence
the MCS p-value for evix is 0.019.

In the third round vvix is eliminated with a p-value of 0.006. As this p-value
is smaller than the MCS p-value of model(s) previously dropped the MCS
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Table 8 Loss function rankings and MCS results

VIX MSE pTr MCS(pTr ) pTSQ
MCS(pTSQ

)

lvxo 0.392 0.019 0.019 0.000 0.000
levix 0.304 0.011 0.019 0.000 0.000
lvvix 0.201 0.006 0.019 0.006 0.006
lsvix 0.112 - 1.000 - 1.000

p-value for vvix is 0.019. The results remain the same when we look at the
semi-quadratic statistic TSQ rather than Tr.

The only volatility index that survives in the MCS is svix while all other
volatility indexes are dropped at 5 % level of significance.

6.4 Sensitivity analysis

The main strategy of this paper has involved the bid/offer spread as a mea-
sure of option liquidity, and weights which vary inversely with the spread.
There is a role for exploring alternatives to both these foundations of the
research.

In recent work, Chaudhury (2011) propose two alternative measures of option
liquidity:

Measure 1 s = (ask − bid)/vol

vol = S × σ ×
√

1/252

here S refers to underlying asset price, σ refers to implied volatility of
option.

Measure 2 s = (ask − bid)/( δV
δσ
×σ)

here V refers to the the mid-price of option and σ refers to implied volatility
of option.

The analysis of this paper was repeated using both these measures. The
volatility index computed using either Measure 1 or Measure 2 is inferior to
our main work.12

Another direction of exploration is the variation of the weight by option
spread. The main work of this paper has employed weights w = 1/s. This is

12Detailed results are available on request from the authors.
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an ad-hoc specification lacking theoretical rationale. Hence, we also explore
two alternative specifications:

w =
1

s2

and

w =
1√
s

The former has weights that rapidly drop off, when the spread widens, and
the latter has weights that drop off relatively slowly. Neither of these alter-
natives yielded an improvement when compared with the main work.13

7 Conclusion

The vxo and vix are widely accepted volatility indexes and are computed
by many exchanges across the world. However, options markets show sub-
stantial cross-sectional variation in liquidity. This cross-sectional variation
is accentuated in crisis periods. Price information for illiquid options is less
informative. The present strategies for construction of volatility indexes err
in treating all price data as equally informative.

The contribution of our paper lies in isolating this issue, and proposing a
volatility index where the option IV, which is computed using the midpoint
quote, is weighted by the inverse of the bid-offer spread of the option.

Our work falls under the larger theme of bringing microstructure considera-
tions more integrally into the utilisation of information from financial markets
Shah and Thomas (1998). Some markets which are highly liquid in industrial
countries may be relatively illiquid in emerging markets. While some traded
products (e.g. ATM options) might be highly liquid, other traded products
might be illiquid. While some markets may be ordinarily highly liquid in
ordinary times (e.g. the US TIPS market), they may become illiquid under
stressed conditions. This microstructure perspective can be useful with many
applications of financial market data.

Our results indicate that the liquidity weighted volatility index (svix) outper-
forms other volatility indexes when compared against future realised volatil-
ity. In an ideal world, if all option series are identically liquid, then the svix
would yield an answer which is no different from the conventional scheme:

13Detailed results are available on request from the authors.
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our proposed scheme does no harm at times when all options are highly liq-
uid, but it improves matters when cross-sectional variation in option liquidity
occurs. This improved methodology is thus potentially useful in improving
measurement of implied volatility at option exchanges worldwide.

In this paper, the simplest strategy – weighting by the inverse spread – proved
to yield a volatility index that was superior to traditional methods. More
generally, a superior volatility index might involve utilising information in
both vega and in the bid-offer spread, and can be an interesting avenue for
future research.
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