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Evaluating Reliability of some Symmetric and Asymmetric Univariate Filters

Anusha
Indira Gandhi Institute of Development Research(IGIDR)

1 Introduction

Trend estimates are used to calculate deviations of an economic indicator from its potential

level. This deviation from trend is referred to as the “gap” and is the cyclical component which

is useful in forecasting as a leading indicator of cyclical changes in the economy. Aim of this

study is to compare and find a reliable method of estimating trend at the end of the sample

which has the property of accurately detecting direction of change and is consistent in terms

of minimum revision error as the estimate is recomputed at given time point when new data

becomes available. Current economic analysis requires computation of estimates in the real

time, which implies using only ex-ante data.

Commonly used filters for trend estimation like Hodrick-Prescott filter (HP hereafter) are bi-

ased at the end of the sample as they are basically symmetric filters and work as a centered

moving average in the middle of the sample but are truncated at start and end of the sample.

Suboptimality of HP filter in this regard has been documented in studies by Kaiser andMaravall

(1999), Mise, Kim, and Newbold (2005), St-Amant and Norden (1997). Studies by Orphanides

and Norden (2002) and Watson (2007) have demonstrated the unreliability of trend estimates

in real time across alternative detrending methods and potentially high costs of policy decisions

based on them.

Therefore before moving onto the discussion of alternative methods of trend estimation, we

discuss the inherent limitations of filters due to finite length of data and explain why it oc-

curs.

Improving reliability of end of sample estimates can take two approaches : Extrapolate the

series and apply symmetric filters or use one-sided/asymmetric filters. Given the problem

of truncated weighing pattern in two sided filters, filters which use asymmetric weights at

beginning and end of sample are viable alternatives to explore. In this regard, Henderson filters
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have been widely used in economic applications. Another area in which we can improve is in

the application of HP filter, which is commonly used symmetric filter, by making the selection

of smoothing parameter more objective.

An important aspect to be emphasized in the comparison of symmetric and asymmetric filter

is in terms of quantitative accuracy and degree of smoothing necessary for detection of turning

points. A filter designed to detect turning points must ideally be a zero phase shift filter.

Asymmetric filters can minimize the mean square of filter but cause a phase shift. Although

symmetric filters have inherent limitation of higher mean square error at the boundary points

relative to interior data, they have the property of being zero shift filters which allows them

to be theoretically better for timely detection of turning points. Thus the two goals of filtering

in terms of accuracy and lag in turning point detection involve a tradeo↵ and filters have to

separately evaluated on these two criterion.

With this context, we compare commonly used HP and Henderson filters and their extensions

for the purpose of end of sample reliability on the various metrics. HP filter can be generalized

to penalized splines (Paige and Trindade, 2010) which allows for objective choice of smoothing

parameter based on data characteristics. The historically used Henderson filters have been

embedded in Reproducing Kernel Hilbert Space (RKHS) in a recent set of papers by Dagum and

Bianconcini (2008) and Dagum and Giannerini (2006) who have found them to have better noise

suppression and signal properties than the classical Henderson filters implemented in X-12

Census Bureau software. We thus apply this set of filters to the important macroeconomic series

and illustrate the results with time series of Industrial Production in India and US, US bank

credit and a simulated dataset to find how each filter works in terms of metrics for statistical

reliability of leading indicators of cyclical change.

The paper is organized as follows: Section 2 discusses unreliability of HP filter at the end of

sample and inherent limitation of symmetric filter in this regard. We then look at alternative

methods in Section 3 which briefly summarizes extensions of HP filters to splines and discusses

Henderson smoothers in RKHS. Section 4 describes the measures used for evaluating accuracy

and consistency of the estimates. Section 5 presents tables and graphs for selected filters

and illustrates performance of these filters with Indian and US macroeconomic time series.

Conclusions are gathered in Section 6.
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2 Limitations of Symmetric Filters for Current Economic Analysis

HP filter is criticized in the literature for unreliability at the end of sample and spurious cycles,

for example (Canova, 1998; Pedersen, 2001). Before we explore alternative methods for trend

estimation, it is important to understand the source of error and inherent limitations of filtering

with a finite dataset. In particular, we discuss the end of sample properties of HP filter and

highlight reasons for high uncertainty of trend estimates for current economic analysis.

2.1 Hodrick Presscott Filter

Hodrick and Prescott (1997) based their filter on the assumption that the growth component of

aggregate economic series varies smoothly over time. It can be thought of an an approximation

of high pass filter which extracts trend of about 8 to 9 yrs.

This filter decomposes time series into cyclic and growth components i.e. trend + cycle or

y

t

= ⌧

t

+c
t

. To recover these two components from the data, the following optimization problem

is solved

min
⌧

t

[
TX

t=1

(y
t

� ⌧
t

)2 +�
T�1X

t=2

[(⌧
t+1 � ⌧t)� (⌧t � ⌧t�1)]2] (1)

� imposes penalty on changes in trend’s slope i.e. parameter � penalizes acceleration in the

trend relative to the business cycle component and determines the degree of smoothing.

Gain function 1 which characterizes the HP filter is given by

G(w) =
4�(1� cosw)2

1 + 4�(1� cosw)2

As deduced by King and Rebelo (1993), this filter is equivalent to a two sided infinite moving

average symmetric filter with time varying coe�cients. It does not induce phase shift and

removes unit root components up to fourth order.

For finite sample approximation of HP filter, the weights are derived using an alternative way

to avoid loss of observations at the end of the sample. As discussed in detail by Mills (2003), the

1Technical terms for filters have been explained in the appendix to this paper.
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optimization problem in (1) is written in terms of system of equations to be solved

c

t

= y

t

� ⌧
t

= �(⌧
t�2 � 4⌧t�1 + 6⌧

t

� 4⌧
t+1 + ⌧

t+2)

with modifications for end of the sample as this expression cannot be used at t = 1, 2, T-1 and

T. Using matrix notation, this set of equations can be written as c = ��⌧ where the matrix � is

given by 0
BBBBBBBBBBBBBBBBB@

1 �2 1 0 0 0 0 ··· 0
�2 5 �4 1 0 0 0 ··· 0
1 �4 6 �4 1 0 0 ··· 0
0 1 �4 6 �4 1 0 ··· 0
.

.

.

.

.

.

0 ··· 0 1 �4 6 �4 1 0
0 ··· 0 0 1 �4 6 �4 1
0 ··· 0 0 0 1 �4 5 �2
0 ··· 0 0 0 0 1 �2 1

1
CCCCCCCCCCCCCCCCCA

The non-symmetric nature of the matrix of weights induces a phase shift near the end points

of data and distorts the gain function. Note that as we move closer to the center of the data,

these phase shifts disappear and gains become more similar to that of an ideal filter. Therefore,

approximation of HP filter for finite sample is optimal mid-sample but not at the end of the

sample.

St-Amant and Norden (1997) give some more insights to understand HP filter estimates for

most recent observations. Since HP filter is like a two sided moving average in the middle to

the sample, each observation gets about 6% weightage but at the end of sample, its a one sided

average and last observation gets 20% of the weight. Clearly the distortion in the weighting

pattern causes HP filter to be more variable at the end of sample. Basically, the optimization

problem is a tradeo↵ between deviations from trend and smoothness which means that in face

of a transitory shock, the filter is reluctant to change the trend as the penalty term would

require raising the trend before the shock and lowering it afterwards. At the end of sample,

latter penalty is absent. Note that second term in the optimization problem sums from t = 2

rather than t = 1 upto t = T � 1 which implies that trend estimated at the end of sample will be

more a↵ected by a transitory shock.

Kaiser and Maravall (1999) give substantial empirical evidence that HP filter is ine�cient at the

end of sample using extensive Monte Carlo simulations. To overcome this defect, they extend

series by forward and backward forecasts using ARIMA models. Mise, Kim, and Newbold

(2005) further investigate the HP filter at the endpoints and confirms these findings through
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simulations and find mean square error at time T to be much higher than at T � 20. The study
also shows that degree of unreliability and reduction in revision errors depends on value of the

smoothing parameter.

We can therefore conclude that HP filter optimally applies to infinitely long time series or to

center of a series of typical length but not for the recent observations which are of interest

for decision purposes. However this problem is not restricted to HP filter but is an inherent

limitation of symmetric filters in general. To further understand why the symmetric filters are

ine�cient at the end of sample, we summarize key aspects of applying two sided filters.

Symmetry of filter implies that the most recent signal cannot be estimated without extrapolating

the series with forecasts and backcasts. There is a substantial revision in estimates as new

data becomes available. It is only when more data becomes available that the trend cycle

decomposition at a given time point is stabilized.

Chatfield (2003) notes that a symmetric filter will always have an end e↵ects problem as the

filter with say k weights can only be calculated for t = k+1 to t = N-k. This end e↵ects problem

has been noted and discussed in Kendall, Stuart, and Ord (1983, Sec.46.11) and is particularly

important in forecasting studies which requires smoothed values for the most recent time point.

Solution is to either project the smoothed values or use an asymmetric filter that uses only

present and past values of the series.

1. Problem of truncated weighing pattern

Why is Mean Square Error(MSE hereafter) of symmetric filter higher for the boundary of the

sample ? Peña, Tiao, and Tsay (2001) argues that the weighting pattern becomes deformed

towards the boundary as there are not enough observations to apply to the filter. As the size

of local neighborhood shrinks towards the boundary, the bias part of the MSE will be lower

in the boundary area as compared to the interior area. On the other hand, variance part will

increase since fewer observations are included and more recent observations get more than

optimal weight.

2. Problem with using forecast augmented series

One way to use symmetric filter e�ciently is to augment the series with forecasts and backcasts
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and then apply the filter. This method is criticized as the trend estimates will depend on how

good the forecasts are and another problem is that we do not know how the filter processes the

error in the forecast or impact of these estimates when used for further analysis.

Mohr (2005) states that stochastic model of HP filter can be used to forecast the series where

trend is modeled as a second order random walk and says that the there is no end point problem

if new data that arrives comply with implicit forecast of HP filter. Therefore the end point

problem exists because the stochastic model underlying the filter is a weak representation of

the data generating process.

Another way is to extend the series by using reflection of the series at either end. Pollock

(1999) claims that if the series is strongly trended, then it will increase or decrease the estimates

relative to that obtained through linear extrapolation and therefore not a viable approach.

3. Problem of Spurious Cycles and Slutzky e↵ect

The finite approximation of filter can also cause leakage i.e. spurious cycles that may lead to

false turning points and inaccurate estimates of the length of cycles in the data. The use of HP

filter is highly criticized in studies like Pedersen (2001), Harvey and Jaeger (1993), Cogley and

Nason (1995) and Canova (1994), Canova (1998) on account of its distortionary e↵ects.

One of the reasons for spurious cycles is the Slutzky-Yule e↵ect which refers to the spurious

periodicity seen in output when averaging and di↵erencing procedures applied to a random

series induces sinusoidal variation in the data i.e. cycles are induced in the data due to method

used for filtering.

4. E↵ect of Finite data length on Approximation of Filters

Koopmans (1974, pg.177) gives mathematical reasoning for e↵ect of finite data length on the

filtered estimates and we present a summary of the key ideas.

When applying this ideal filter to a finite segment of a time series X(t), x1,x2, .....xN , we can

extend the series by putting x

t

= 0 for t  0 and t � N + 1. The resulting output is not the

same as the characteristics of filter are based on assumption that the entire input is being used.

Another way to express a finite data sample is by using an indicator function I[1,N ] as a data
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window and comparing the results of applying the filter to X(t) and I[1,N ](t)X(t) say U(t) and

Y (t) respectively i.e. U(t) is the result of applying ideal filter and Y (t) is result of applying it to

finite data length.

The frequency response function of a low pass filter with cuto↵ frequency f0 is 1 for |f |  f0 and 0

otherwise. This corresponds to weights

a

k

(f ) =

8>>>><>>>>:

sin f0k
⇡k

k = ±1,±2, ...
f

o

⇡

k = 0

Measure of deviation from the ideal can be expressed as E[U(t) � Y (t)]2 and using spectral

representation in the frequency domain, bound on the error in terms of the weight of the filter

can then be obtained as

E[U(t)�Y (t)]2  2⇡M
X

a

k

2

It is to be noted that magnitude of the error depends on data length N and on how rapidly the

filter weights tend to 0 with increase in the lag index k. Typically larger weights are concentrated

around k = 0.

The following quote from this study summarizes the impact of finite data length on filtering

time series data.

The most compelling reason for not using ideal low pass filter is that the rate of

decrease of filter weights is very slow. Thus the actual outputs of these filters will

di↵er substantially from the ideal. Put in another way, any attempt to explain the

outputs of these filters to a finite length of data by the characteristics of ideal filter

will be in error. The magnitude of error which can be estimated from equation will

be uncomfortably large for all values of t. Thus it is desirable to work with low

pass filters which are less than ideal but for which actual filter characteristics are

more closely described over given range of t values by the transfer function of the

corresponding linear filter.

Thus, we acknowledge that there will be errors in filtered series at the end of sample. This is

helpful while taking economic decisions and take into account the uncertainty associated with

8



the computation using any method. We note the limitations of symmetric filters in terms of

higher MSE for real time trend extraction and explore an asymmetric filter which may overcome

the limitation of distorted weighting pattern at the end of sample.

3 Alternative Methods of Trend Estimation

3.1 Penalized and Smoothing Splines

Spline functions are widely used for smoothing data as exposited in classic work by Wahba

(1990). We motivate the use of spline functions for smoothing and filtering purposes by seeing

it as a generalization of HP filter. Nonparametric methods of splines or piecewise continuous

functions for smoothing univariate time series data open up variety of data driven methods

for selecting the smoothing parameter which implies that instead of relying on trial and error

or a fixed number, we have an objective way of choosing correct amount of smoothing in the

data.

HP filter can be seen as a special case of penalized spline smoothing as demonstrated in the

paper by Paige and Trindade (2010). They establish link between HP filter and Penalized splines

by proving that HP filter is a linear penalized spline model with knots placed at all data points

except first and last point and uncorrelated residuals. Infact, it is stated as a theorem that HP

filter is exactly equivalent to (is a special case of) the solution obtained from a penalized spline

of degree 1, equispaced knots at points 2, . . . ,n� 1 and independent errors.

Other important papers which discuss filtering with penalized splines are Krivobokova and

Kauermann (2007), Eilers and Marx (1996) and Kauermann, Krivobokova, and Semmler (2011)

where they use penalized splines for filtering time series based on mixed model representation

and Restricted Maximum Likelihood(REML hereafter) selection of � . The empirical findings

with US macroeconomic data suggest that residuals or the cyclical component derived using

penalized splines have better properties in terms of correlation and cross correlation compared

to HP and band pass filters.

Thus, instead of using HP filter routinely with � as 1600 or any arbitrary value, we can use data

driven methods for filtering time series which are easily applicable and also allow flexibility
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in adjusting the metrics and methods for smoothness based on the nature of data and research

question. Penalized splines are therefore considered as viable alternative to HP filter which have

the advantage of using a data driven choice of smoothing parameter and takes serial correlation

in the data into account.

3.1.1 Generalizing HP filter’s optimization problem

Consider the HP filter with solves the following optimization problem to extract trend and

cycle, y
t

= ⌧

t

+ c

t

and examine the equation in terms of interpretation of each component.

min
⌧

t

[
TX

t=1

(y
t

� ⌧
t

)2 +�
T�1X

t=2

[(⌧
t+1 � ⌧t)� (⌧t � ⌧t�1)]2 (2)

The first term in this equation is a measuring fidelity of estimates to the data and the second

term is using second di↵erence as a metric for amount of smoothing which is controlled by

parameter � . Therefore, the objective function for smoothing can be expressed as follows and

various metrics can be chosen for each feature.

(measure of fit) + � (measure of roughness)

Smoothing Splines

For the general problem of smoothing univariate data using nonparametric methods, suppose

the responses y1, y2, . . . yn be observed at design points t1 < · · · < t

n

following the regression

model

y

i

= f (t
i

) + ✏

i

, i = 1,2, .....,n

x where f (t
i

) is an unknown function and ✏1, . . . ,✏n are zero mean uncorrelated random er-

rors.

Minimizing the residual sum of squares(RSS),

RSS(f ) =
nX

i=1

(y
i

� f (t
i

))2

is a starting point for linear regression with f (t) being a straight line but is ine�cient in most

situations. For a middle path between curves of constant slopes and interpolation, one way is

to penalize functions whose slopes vary too rapidly. The rate of change of slope of a function g
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is given by g

00 or the second derivative. Thus, an overall measure of change in slope of potential

fitted function is given by J(g) =
R
t

n

t1
g

00(t)2dt.

As elucidated in Silverman (1985), the least squares problem of the first part can be made zero

by using an interpolating function which is not statistically admissible as it will be too fluctu-

ating. To derive a estimates of a curve ⌧ or the trend , we can either restrict the curve to some

parametric class (like a degree m polynomial) or we can add a "roughness penalty". A measure of

rapid local variations in a curve can be given by a roughness penalty such as integrated squared

second derivative.Therefore the modified estimation criterion which incorporates a penalty for

irregularity is

RSS(g) +�J(g), � � 0

which is minimized over all functions with twice continuous derivatives. Adding a penalty to

RSS criterion means given equal RSS, prefer one with less average curvature. The smoothing

parameter � can be seen as a handle on flexibility or curvature as � = 1 implies choosing a

straight line and � = 0 corresponds to interpolation. � represents exchange between residual

error and local variation. Objective function on adding a penalty on degree of curvature can be

written as

L(m,�) ⌘ 1
n

nX

i=1

(y
i

� f (t
i

))2 +�

Z
t

n

t1

g

00(t)2dt (3)

Solution to this optimization problem is a function or curve which gives the best compromise

between smoothness and goodness of fit and called a smoothing spline. Remarkably, it has

been shown mathematically that regardless of initial data, all solutions to (3) take the form of

piecewise cubic polynomials which are continuous. The boundaries between pieces are located at

the original data points and referred to as knots of the spline.

In a more general extension of objective function (3) where penalty term is an integral of mth

derivative and n �m , the solution is a natural polynomial spline of order 2m and degree 2m-1

with knots at the design points. In fact, the smoothing spline becomes a polynomial of order m

outside of [t1, tn] and thus satisfies natural boundary conditions

g

(m+j)(t1) = g

(m+j)(t
n

) = 0, j = 0, . . . ,m� 1
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from which the term natural spline is derived. This implies that for the case m=2 illustrated

above, f
�

is a piecewise cubic polynomial with two continuous derivatives that is linear outside

of [t1, tn]. Natural splines therefore have the beneficial feature that the usually high variance

near the boundary points in case of polynomial functions is minimized. In practice however,

they may overfit and are thus used with caution.

3.1.2 Penalized Splines Regression Model

To use penalized splines for extracting trend in a univariate dataset, we can consider the function

f (t
i

) as an approximation of the mean or true conditional expectation which can be defined as

the trend or the long term variation. Residuals ✏
t

i

can be interpreted as the cyclical component

and short term variations. We will present a general formulation of penalized spline regression

and illustrate the basic ideas. A complete discussion can be found in Hastie and Tibshirani

(1990) and Paige and Trindade (2010).

For a time series y(t) , y1, y2, . . . , yn, consider the model

y

i

= µ(t
i

) + ✏

i

, i = 1,2, .....,n

To extract trend from this model using splines, we represent the function µ(t
i

) as a linear

combination of a rich flexible set of spline basis functions B(t)with knots ⌧
i

chosen over the

observed time points t1, . . . , tn and a vector of coe�cients ✓. i.e.

µ(t) = B(t)✓

. A simple choice of basis functions for penalized splines are truncated polynomials and splines

or piecewise continuous functions which can be written as

B(t) = 1, t, t2, . . . , tq, (t � ⌧1)q+, . . . , (t � ⌧k)q+

where q is the maximum degree of polynomials,(x)+ = x for x > 0 and 0 otherwise. The knots

⌧1, . . . ,⌧k are chosen equidistantly at say every fifth observation or at quantiles and k ⌧ n and

covering the range of time points t. Number of knots chosen varies with the spline basis and

sometimes all time points may be taken as knots.
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Defining the coe�cient vector ✓ = [�,u]T = [�0, . . .�p,u1, . . .uk]T leads to representation of the

mean or trend function as

µ(x
i

) = �0 + �1ti + �

q

t

q

i

+
KX

k=1

u

k

(t
i

� ⌧
k

)q+

which can be written in matrix form as

y ⌘ X� +Zu + ✏ ⌘ B✓ + ✏ (4)

where B = [X,Z] and the matrices X and Z correspond to X(t) = 1, t, t2, . . . , tq and Z(t) = (t �
⌧1)

q

+), . . . , (t � ⌧
k

)q+

The model is fitted via Penalized Least Squares i.e.

min(k(y �X� �Zu)2 +�k(u)k2) where k(v)k =
p
(vT v)

Representation of data in (4) is in the form of semiparametric or generalized additive model

which contains both smooth functionals (nonparametric) and ordinary linear (parametric) com-

ponents. e.g. y
i

= �0+�1x1i+f (x2i)+✏i . A penalized spline can be represented as a linear mixed

model by treating both u and ✏ as random e↵ects and thus maximum likelihood as a method

of estimation becomes possible. Representation of penalized spline as a linear mixed model

also allows meaningful expressions of � and u as best linear unbiased predictors. Notably, the

smoothing parameter is expressible as ratio of variance components in this framework.

Choice of Basis Functions and Knots Popular choices of basis functions include cubic splines,

truncated polynomials and B-spline functions. P-splines combine B-splines with di↵erence

penalties which have the advantage that they do not have boundary e↵ects (Eilers and Marx,

1996).

Regarding number and selection of knots, it has been shown in Ruppert, Wand, and Carroll

(2003) that choice of knots does not play an influential role in the resulting penalized fit as long

as number of knots, K is large e.g K = min(n/4, 40) (Krivobokova and Kauermann, 2007). This

is important feature for making this procedure easier to apply and for comparative analysis

when using variety of series.

Smoothing Parameter Selection with Correlated Errors
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E�cacy of any nonparametric method of smoothing depends critically on the choice of smooth-

ing parameter, referred to as � for notational convenience. We would not expect the same value

of � to work for every dataset. The shape and smoothness of estimated function depends to a

large extent on the specific value of �which can vary with selection criterion or penalty function

specified. It has been noted in Wahba (1990) that the optimal value of smoothing parameter

depends upon the sample size, the noise variance and the smoothness of the true curve. Choice

of smoothing parameter must therefore be dictated by the nature of the data.

Cross Validation for � in univariate spline and kernel smoothing makes the assumption that

the errors are i.i.d. However when dealing with time series data, the curve estimates can be

adversely a↵ected if the errors are autocorrelated but treated as if they were independent and

can lead to overfitting.

Opsomer, Wang, and Yang (2001) give simulation evidence that nonparametric regression tech-

niques are sensitive to presence of correlation in the errors and highlight the importance of

good choice of � for smoothing. Altman (1990) shows that the standard techniques of selecting

� in kernel smoothing work properly when error are correlated but only when correlations are

su�ciently short term. Approaches for spline and kernel regression in context of dependent

data are discussed in detail in Kohn, Schimek, and Smith (2000).

Most recently, Krivobokova and Kauermann (2007) show that a maximum likelihood based

choice of smoothing parameter is robust to moderate misspecification of correlation structure

in the data. Using both theory and simulations, two � selectors, MSE based Akaike Information

Criterion(AIC) and REML estimate are compared for penalized spline smoothing modeled as

linear mixed model. Smoothing parameter selection based on REML is found to be better

alternative for correlated errors and works even when the correlation is not known or specified.

This finding has also been supported by Paige and Trindade (2010).

Another advantage of REML method is that when applied in mixed model formulation of Penal-

ized splines, it estimates � as a ratio of variance components which is the actual interpretation

of � in the HP filter and � as the inverse of signal to noise ratio. We therefore use this technique

in the empirical work.
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3.2 Henderson Filters

Henderson Filters are based on local cubic polynomials modified to correct for end point dis-

tortions. They have been widely used in o�cial statistics and part of the X-11, X-12 software

of US Census Bureau. Framework for obtaining filter weights has been developed by Gray and

Thomson (1997) which can adapt the filter weights according to degree of smoothness, fidelity,

length of moving average and end of sample properties required. Henderson filters work well

as trend-cycle turning point detectors and relevant for short term trend.

Note that Henderson filter for symmetric and asymmetric are calculated separately and it

applies asymmetric filters at the beginning and end of sample. The asymmetric Henderson

smoothers currently in use were developed on the basis of minimizing mean squared revisions

between final (applying symmetric filter) and preliminary estimates(applying asymmetric filter).

They have been shown to have unwanted ripples or false turning points in a study by Dagum

(1996) and improved by augmenting series with ARIMA forecasts and removing outliers and

extreme values to reduce the noise entering in the filtering process.

3.2.1 Henderson Smoothers in RKHS

A recent of studies by Dagum and Giannerini (2006), Dagum and Bianconcini (2013) introduce

a new set of trend-cycle filters as an embedding of Henderson filters in RKHS

RKHS is a Hilbert space characterized by a kernel that reproduces via an inner

product, every function of the space or, equivalently, a Hilbert space of real valued

functions with the property that every point evaluation functional is bounded and

linear.

The authors introduce RKHS representation of Henderson smoothers with particular emphasis

on the asymmetric ones applied to most recent observations. The gain functions of kernel based

filters are shown to have much better properties of signal passing and noise suppression. Papers

by Bianconcini and Quenneville (2010) and Dagum and Bianconcini (2008) and Dagum and

Giannerini (2006) empirically show that Henderson smoothers in kernel hierarchy give much

better results for current economic analysis.
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Therefore, we choose these set of asymmetric filters to assess how they compare with spline

based filters on the metrics chosen for selected macroeconomic series.

4 Criterion for Assessing Reliability of Cycle Estimates

Selection of gap estimates to be used as leading indicator of cyclical changes with focus on

accuracy of estimates using data available upto the time of computation is based on the fol-

lowing criteria (1) Minimize error of estimates (2) Minimum revision error as estimates are

recomputed with additional data (3) Timely and correct detection of direction of change or

turning points.

4.1 Measures of Quantitative Accuracy

Mean square forecast error is the standard measure of predictive performance over the fore-

casting horizon. As trend estimates at time T are one-step ahead forecasts for time T+1 in the

context of time series, we can compare them in terms of quantitative measures of ME (Mean

Error), MAE (Mean Absolute Error) and RMSE(Root Mean Square Error).

4.2 Measures of Statistical Reliability

Study by Orphanides and Norden (2002) defines final and quasi Real Estimates for separating

source of error in output gap estimates due to “data revisions” (changes in published data) and

“statistical revisions” due to method of detrending. As also emphasized in study by Camba-

Mendez and Rodriguez-Palenzuela (2003), most important requirement for end of sample relia-

bility of gap estimates is to have temporal consistency i.e. revision error between sequentially

estimated measures and finally estimated measures must be minimum.

In a sample of size T , final estimate yF
t|T at time t is computed using all the data available and

quasi estimate y

Q

t|t at time t is obtained using only data upto time t i.e without using future

observations. Therefore, di↵erence between final and quasi estimates is only due to more data

being available for the final estimates.

Other terms which can be used for quasi real time estimates are recursive or concurrent or

backward looking estimates and work similar to Asymmetric filters in the sense that both do
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not use future observations for calculations at given time. For notational clarity, we will be

referring to them in this thesis as quasi estimates.

Following methodology used in key studies like Kaiser and Maravall (1999), Dagum and Luati

(2000) and Mohr (2005), we create sequences of data for computing quasi estimates at each

time point. Estimation of cycle using symmetric filters at the middle of the sample gives final

estimates while at the end of sample, the filter is truncated and hence leads to revision error. To

compute error in estimates as new data becomes available, the performance of the filter using

full sample is compared with the quasi estimates in the middle of the sample where they are

relatively accurate.

More precisely, given a sample of monthly time series from March 1994 to March 2013, we set

100 as the minimum sample size for applying a filter and allow atleast 24 observations for the

final estimates to stabilize.2 Then at each time s between 2003 to 2010, we get quasi estimate

by applying filter to data from 1994 � s and final esitmate at time s by using all data from

1994-2013.

The following statistics can be used for evaluating revision error between final and quasi esti-

mates

MAPR =
1
N

NX

t=1

������
ŷ

F

t

� ŷQ
t

ŷ

Q

t

������

where ŷ

Q

t

is last estimate of trend when series is truncated at time t (Jan2003) and then one

observation is sequentially added to the calculations till Jan 2010. ŷF
t

is the corresponding final

estimate for each point computed using all the data from 1994-2013. 3

4.3 Measures of Directional Accuracy

Forecasts of direction of change give information on whether the indicator variable will increase

or decrease which is valuable information for current economic decisions. Leading indica-

tors are useful essentially for their ability to predict the direction of change or turning Points.

2 Minimum sample size of 100 is set on the basis of studies cited above which have taken minimum of 84
observations. Sample of 24 observations are left at the end for final estimates to converge and is based on suggestion
by Baxter and King (1999) to drop 12 observations at the end when using HP filter and by Mise, Kim, and Newbold
(2005) which find 28 observations to be su�cient.

3Adjusted MAPR is computed as = 1
N

P
N

t=1

�����
ŷ

F

t

�ŷQ
t

ŷ

F

t

+ŷQ
t

�����
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Application of directional tests to evaluate smoothed estimates are relevant to account for over-

smoothing which may delay the detection of turning point in the series or undersmoothing

which may lead to false turning points.

Instead of using rules of thumb for choosing turning points, our choice of directional tests as a

metric for evaluation is guided by practical requirement of a simple unified procedure to select

gap estimates across a variety of time series and methods. Also, we do not require detection of

turning points at this step of investigation but only to check how closely the direction of cyclical

changes match with the predicted cycle and use it as a criterion for selecting method of gap

estimation.

Directional Tests for macroeconomic series were first adapted by Schnader and Stekler (1990)

from the Henriksson and Merton (1981) test for market timing. Pesaran and Timmermann

(1992) and Pesaran and Timmermann (1994) then built a nonparametric test for evaluating

qualitative forecasting performance. Some examples of studies using directional tests for fore-

cast evaluation are Pons (2000), Sinclair, Stekler, and Kitzinger (2010), Ash, Smyth, and Heravi

(1998) , Greer (2003) and Tsuchiya (2013). The three most commonly used tests are Chi Square

test, Fisher Exact Test and Pesaran Timmermann test. More detailed explanation of the tests

and applications can be found in Diebold and Rudebusch (1996) and Mariano (2002).

4.3.1 Pesaran Timmermann Test of Directional Accuracy

Evaluating directional change accuracy based on contingency table is based on dichotomizing

changes into up and down, i.e predicting an increase or decrease in the variable. The following

table illustrates the main idea.

Table 1: Contingency Table for Actual and Forecast Estimates

Forecast

Actual Up Down Subtotal

Up Alarm Missed Alarm Observed Up

Down False Alarm Correct Negative Observed Down

Subtotal Forecast Up Forecast Down Total
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The contingency table shows the marginal probabilities as shown in the subtotals and the

conditional probabilities for hits and false alarms. A good forecast will have high values along

the diagonal i.e. when the forecast is correct.

Null hypothesis of directional tests is that sign of change in a forecast and that in the realization

are independent. Rejecting the null implies that forecast is useful predictor of actual change

in the variable. Note that the test ignores the size of errors and is based only on the signs of

predicted and actual changes i.e small and large errors are treated equally.

Basic idea of constructing the 2x2 contingency table is to have attribute variables based on

number of times that actual (x
t

) and forecast(y
t

) data are both of the same sign. The test is

based on the proportion of times that direction of change in x

t

is correctly predicted in the

sample.

Table 2: Contingency Table for Directional Accuracy

Forecast

Signal �F > 0 �F  0 Subtotal

Actual

�A > 0 (CP)P11 c (FN)P12 N1 a

�A  0 (FP)P21 d (TN)P22 N2 b

Subtotal n1 n2 N
a N1 = number of observations when actual change is > 0
b N2 = number of observations when actual change is  0.
c CP = number of correct forecasts given that actual change is > 0
d FP = number of incorrect forecasts given that actual change is  0
Similarly, CN and FN stand for correct and false negative.

Pesaran and Timmermann (1992) construct a nonparametric test for correct prediction of direc-

tion of change in the indicator series as follows.

Let x
t

and y

t

denote the indicator and predictor respectively. The following variables are then
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defined for calculating the test statistic.

Y

t

= 1 if y

t

> 0 and 0 otherwise. p
y

= prob(y
t

> 0)

X

t

= 1 if x

t

> 0 and 0 otherwise. p
x

= prob(x
t

> 0)

Z

t

= 1 if x

t

⇤ y
t

= 0 and 0 otherwise. p
z

= prob(z
t

> 0)

Then p̂

y

= Ȳ , p̂

x

= X̄, p̂ = Z̄ and p̂⇤ = p̂

y

p̂

x

+ (1 � p̂
y

)(1 � p̂
x

) where ˆ and ¯denote estimates and

sample means respectively.

Test statistic used by Pesaran and Timmermann (1992) is devised to distinguish between ob-

served sample estimate of probability of forecast with correct sign and estimate of what the

estimate will be under the null hypothesis of independence between forecasts and outcomes.

i.e. p̂ = sample estimate of probability of correct signal forecast and p̂⇤ is an estimator of its

expectations under the null that forecasts and outcomes are independent.

s

2
n

=
(p̂ � p̂⇤)2

var(p̂)� var(p̂⇤)
!N (0,1)

Pesaran and Timmermann (1992) show that the �

2 goodness-of-fit statistic based on contin-

gency table and their test are not equivalent and are only asymptotically equivalent in the 2x2

case.

Sign Concordance is a simple measure to calculate proportion of times when there is same sign

for cyclical change and forecast. In terms of above numbers, measure for sign concordance as

denoted by signC i.e.

signC = (CP +CN )/N

which is mean(z
t

). Pesaran Timmermann test and signC are also applied for final and quasi

estimates as done in the study by Camba-Mendez and Rodriguez-Palenzuela (2003) and this is

the method that we have also followed in the empirical computations.

5 Empirical Results

We perform comparative analysis of HP filter vs Penalized splines, Henderson Classical and

Kernel filters and HP filter vs Henderson Filters to find which method works best for time series

in terms of selected critetion.
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We illustrate choice of filtering methods based on assessment criteria for Indian macroeconomic

data Index of Industrial Production in India and US, and bank credit in US for the period

1994-2013. The series are seasonally adjusted using X-13 ARIMA and log transformed 4.

Final and quasi cyclical estimates using each method are plotted for comparison. Following

abbreviations of filter names are used to keep the notations simple: HP for Hodrick-Presscott

filter, HDF for Henderson filter, SPL for Splines and su�xes refer to the characteristics of the

smoothing parameters: the value of smoothing parameter for HP filter and number of terms in

Henderson filters.
4A minimum of 12 observations are used to calculate the filters.
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5.1 Tables and Graphs

5.1.1 Indian Industrial Production

Table 3: IIP: Quantitative and Directional Accuracy Measures

ME RMSE MAE MAPE MAPR adjMAPR dacTest p.value Sign

SPL-Smooth 0.00 0.01 0.01 281.00 358.69 -98.54 7.77 *; 0.0001 0.76

SPL-Penalized 0.00 0.01 0.01 202.35 227.92 11.22 4.98 *; 0.0001 0.67

SPL-cubic 0.00 0.01 0.01 1081.46 182.49 -90.47 5.62 *; 0.0001 0.69

HP-400000 0.01 0.04 0.03 257.21 236.79 14.48 -1.46 0.93 0.45

HP-14400 0.00 0.02 0.01 354.56 144.97 -29.55 6.02 *; 0.0001 0.70

HP-129600 0.01 0.03 0.03 1148.02 330.64 79.03 -0.43 0.67 0.49

HDF-Kernel9 0.02 0.03 0.02 1040.23 1374.67 -90.68 3.16 0.00078 0.57

HDF-Kernel23 0.05 0.06 0.05 3628.24 5353.38 -73.52 2.14 0.016 0.67

HDF-Kernel13 0.04 0.05 0.05 1294.64 1842.71 -201.80 0.57 0.28 0.19

HDF-Classical9 0.02 0.03 0.03 1132.49 1064.01 -150.13 2.53 0.0056 0.37

HDF-Classical23 0.07 0.08 0.07 1032.68 839.76 -141.67 1.42 0.078 0.18

HDF-Classical13 0.04 0.04 0.04 1209.65 1900.40 -75.84 0.58 0.28 0.21

4SPL refers to splines and HDF to Henderson filters.The su�xes refer to choice of parameters.
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Figure 1: Index of Industrial Production: Final and Quasi Estimates
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Table 4: USIIP: Quantitative and Directional Accuracy Measures

ME RMSE MAE MAPE MAPR adjMAPR dacTest p.value Sign

SPL-Smooth 0.00 0.00 0.00 188.84 146.40 -103.77 8.07 *; 0.0001 0.77

SPL-Penalized 0.00 0.00 0.00 203.82 186.17 -14.78 6.99 *; 0.0001 0.74

SPL-cubic 0.00 0.00 0.00 442.78 217.85 -68.65 7.93 *; 0.0001 0.77

HP-400000 0.01 0.03 0.03 157.49 85.79 -96.82 5.08 *; 0.0001 0.67

HP-14400 0.00 0.03 0.02 438.10 538.15 156.12 1.06 0.14 0.54

HP-129600 0.00 0.03 0.03 436.63 189.54 10.90 3.54 0.0002 0.62

HDF-Kernel9 0.01 0.02 0.01 3123.82 3435.06 -26.65 2.46 0.0069 0.58

HDF-Kernel23 0.01 0.04 0.03 2832.83 2449.33 -67.27 1.29 0.099 0.78

HDF-Kernel13 0.03 0.03 0.03 423.89 406.50 -1356.49 -0.07 0.53 0.16

HDF-Classical9 0.01 0.02 0.02 1019.63 1669.26 28.57 0.07 0.47 0.24

HDF-Classical23 0.03 0.05 0.05 2786.69 6153.46 -147.75 0.96 0.17 0.20

HDF-Classical13 0.02 0.03 0.03 356.77 346.17 -2596.19 -0.16 0.56 0.23
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5.1.2 US Industrial Production
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Figure 2: US Industrial Production: Final and Quasi Estimates
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Table 5: USTBKC: Quantitative and Directional Accuracy Measures

ME RMSE MAE MAPE MAPR adjMAPR dacTest p.value Sign

SPL-Smooth 0.00 0.00 0.00 189.32 218.18 -51.80 4.23 *; 0.0001 0.64

SPL-Penalized 0.00 0.01 0.01 156.23 123.45 -23.09 3.40 0.00034 0.62

SPL-cubic 0.00 0.01 0.01 135.08 112.57 -11.40 3.46 0.00027 0.62

HP-400000 0.01 0.03 0.02 529.34 378.77 -132.01 6.14 *; 0.0001 0.70

HP-14400 0.00 0.02 0.01 365.65 476.53 -318.56 3.52 0.00021 0.62

HP-129600 0.00 0.03 0.02 279.95 400.88 -314.79 5.45 *; 0.0001 0.68

HDF-Kernel9 0.01 0.02 0.01 4612.18 2838.70 -11.04 0.56 0.29 0.53

HDF-Kernel23 0.03 0.04 0.04 782.47 768.47 -0.27 4.58 *; 0.0001 0.91

HDF-Kernel13 0.05 0.05 0.05 329.02 337.02 -188.88 0.53 0.30 0.07

HDF-Classical9 0.02 0.03 0.02 515.35 821.72 -256.65 0.96 0.17 0.20

HDF-Classical23 0.07 0.07 0.07 224.48 217.63 -277.05 0.82 0.21 0.12

HDF-Classical13 0.03 0.04 0.04 238.80 248.33 -228.35 0.55 0.29 0.14

5.1.3 US Total Bank Credit
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4Quasi estimates are represented by the dotted lines.
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Figure 3: US Total Bank Credit: Final and Quasi Estimates

5.2 Simulated Data

The estimated trends from the filters are illustrated using a simple simulated data which has

been used in Kohn, Schimek, and Smith (2000) to illustrate problem with smoothing correlated

data. Consider the model f (x
t

) = 1280x4
t

(1�x
t

)4 where t = 1, . . . ,100 and x

t

= t/100. AR(1) errors

with ⇢ = 0.3713 are added to produce a random sample from the model y
t

= f (x
t

+ e

t

).

Table 6: SIMN: Quantitative and Directional Accuracy Measures

ME RMSE MAE MAPE MAPR adjMAPR dacTest p.value Sign

SPL-Smooth 0.01 0.55 0.44 340.21 240.51 -89.15 7.64 *; 0.0001 0.76

SPL-Penalized -0.02 0.46 0.38 272.98 179.17 22.24 11.32 *; 0.0001 0.88

SPL-cubic -0.06 0.48 0.40 194.97 185.47 59.65 11.19 *; 0.0001 0.88

HP-400000 0.04 1.03 0.90 334.20 404.81 91.35 6.67 *; 0.0001 0.73

HP-14400 -0.05 0.42 0.35 552.21 205.76 21.97 11.46 *; 0.0001 0.89

HP-129600 -0.05 0.81 0.70 426.24 360.81 -13.78 8.16 *; 0.0001 0.78

HDF-Kernel9 -0.01 1.12 0.92 844.42 351.36 -36.00 3.16 0.0008 0.61

HDF-Kernel23 0.05 1.10 0.89 511.26 423.99 88.14 6.98 *; 0.0001 0.74

HDF-Kernel13 0.01 1.19 0.98 6736.44 465.65 -6418.71 4.62 *; 0.0001 0.66

HDF-Classical9 -0.01 1.26 1.04 207841.15 400.33 26.39 3.16 0.0008 0.61

HDF-Classical23 0.08 1.26 1.02 660.06 444.29 17.79 6.84 *; 0.0001 0.73

HDF-Classical13 0.01 1.27 1.05 626.75 532.50 101.37 4.62 *; 0.0001 0.66

4Quasi estimates are represented by the dotted lines
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Figure 4: Simulated time series : Final and Quasi Estimates
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5.2.1 General Findings

Comparison between Splines and HP filter

Overall penalized splines have been found to be comparatively better in terms of all three

criterion for real data series. The benefit of penalized splines fitting is that they take correlation

of residuals into account and use a data driven value of smoothing parameter rather than an

arbitrary choice of lambda in HP filter. Smoothing splines may also be used in case where the

Penalized splines models give singular convergence.

Many studies use a high value of � = 400000 which has not been found to be good in terms of

the evaluation criterion in comparison to the standard value of 14400. Error statistics for HP

filter with high value of � are low only for simulated series.

Comparison between Splines and Henderson based Filters

Although RKHS based henderson smoothers are found to be lower in MSE and MAPR than

classical henderson filters, they have not found to be useful in terms of the three metrics

for macroeconomic series used in this study. For the data series used in this study, spline

based filters are found to be comparatively better than Henderson based filters on the three

criterion. In most cases, only HP and spline methods of filtering reject null hypothesis of

Pesaran Timmermann test which implies directional accuracy.

However, there is one main limitation of penalized splines. In case of stock series NFC, M3 and

MCWP, the spline models using quasi estimates gives singular convergence when applied in

quasi real time which implies that they may not be applicable in some series. This may be due

to zero residuals and the matrix not being positive definite.

Comparison of filters using USIIP and USTBKC

As penalized splines for non food credit donot converge for quasi real time, we discuss the

results in more detail for US IIP and US Total Bank credit.

For US Industrial production, RMSE andMAPR are comparitively lowest for splines withMAPR

being minimum value of 85.79 and 146.40 for HP-400000 and smoothing splines respectively.
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On directional accuracy, sign concordance is higher for smoothing splines at 0.77 as compared

to 0.67 for HP-400000. Both methods are able to reject the null hypothesis of PT test but

smoothing splines has the higher sign concordance at 0.77 compared to 0.67 for HP-400000. HP

with standard value of � does not fair well on all three criterion.

For Henderson based filters, 13 terms based weights perform the best in terms of MAPR but

at 356.77 for classical and 423.89 for Kernel filters, it is too high. Also, the p-value of Pesaran

Timmermann test is not able to reject the null hypothesis which implies that the filters are not

directionally accurate. Also the sign concordance is lowest for classical filters though use kernel

weights does increase the sign concordance. However, HDF with 23 terms kernel weights is

high in Sign statistic at 0.78 and low in adjMAPR which might be helpful in explaining why

they may be useful for assessing build up of financial stress in India.

For US Total bank credit however, HP-400000 has the best sign concordance of 0.7 among

splines and HDF-Kernal with 23 terms has a remarkable sign concordance of 0.91 but MAPR

for both filters is high. Also, within spline based methods, cubic and penalized splines have the

lowest MAPR and sign concordance is 0.64 which is lower but comparable to HP-400000. HP

filter with all three values of � is able to reject PT. Splines however are lowest in RMSE, MAPE

and adjMAPR.

Given the statistics and overall results, if quantiative accuracy is important, splines seem to be

better but taking directional accuracy into account, explains why many studies have used HP

with very high smoothing parameter as filter for detecting credit booms and found the results

to be working as good leading indicators of financial crisis and build up of vulnerability.

6 Conclusions

This paper considered alternative methods of estimating trend where deviations from trend or

“gap” are used as leading indicators of cyclical changes. Comparison of popular choices of filters

in macroeconomics: HP and their generalization to penalized splines and Henderson Filters,

with classical and filter weights are evaluated in terms of Mean Square Error, statistical revision

error and forecasting directional change.

Results suggest that spline based filters, especially penalized splines generally score better on
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all three criterion, in particular mean square error which makes them filter of choice to compute

potential level of a variable, interpreted as it’s value of long term trend. HP filter with high

value of smoothing parameter comes close to penalized splines in terms of directional accuracy

which explains why it has been found useful in studies on early warning indicators.

AmongHenderson filters, RKHS based filters have been found to be an improvement on classical

filters. In case of US IIP, 13 term smoothing weights had the best results while for US total

bank credit, 23 term RKHS based weights had the highest sign concordance and adjusted

MAPR.

Summing up the results, the overall conclusion is that choice of filtering procedure must take

the properties of time series into account and metrics most relevant for the analysis must be

used as selection criterion.

One limitation of this study is that we have restricted ourselves to the two most commonly

known filters. Investigation of other filters and their properties for various applications is

therefore recommended. Some of the filtering methods have been reviewed in Alexandrov et al.

(2012) and future work can consider their applicability rather than using HP filter as a routine

procedure.

Given importance of methods of filtering and smoothing on the results of further analysis,

and advances in the filters available, we would further like to explore other filters or their

extensions so that trend and cyclical estimates can be computed in a simple way but does not

require using HP filter mechanically. This will allow choice of filter according to the purpose

and requirements of the analysis.
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