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1 Introduction

There are many markets in which two different sets of agents interact with the help of platforms.

One set’s benefit in joining the platform depends on the number of agents in the other set who join

the platform. This type of market is known as a “Two Sided Market”. Some famous examples of

two sided markets are: cab aggregators like UBER and OLA (where riders would want to use an app

on which they can get a cab easily i.e. a platform on which there are many drivers and drivers would

want to join a platform that has many riders), universities (students would want to join a university

that has good teachers whereas a teacher would want to join the university that has a large number

of good students), television channels (viewers typically prefer to watch a channel which has less

commercial ads whereas an advertiser is willing to pay more to place the ad on a channel with more

viewers), credit cards, night clubs, heterosexual dating apps and shopping malls.

In the last two decades, the reach of internet has increased manifold and so have the examples

and the literature on the two sided markets. Some of the pioneering works on two sided markets have

developed group-specific pricing mechanisms for platforms under different environments (Rochet and

Tirole (2003), Calliaud and Jullien (2003), Armstrong (2006), Armstrong (2007)). This paper is an

extension of the Armstrong (2006), where it was concluded that there are three main factors that

determine the price offered to the two groups by the platform –

Relative size of the cross group externalities: If an agent of group 1 provides a large positive exter-

nality to each agent of group 2, then the platform aggressively targets the agents of group 1. This

large, positive cross group externality of group-1 agents intensify the competition among platform

and, therefore, reduce platform’s profit.

Fixed fees or per-transaction charges: If a platform charges on a lump sum basis, then the agent’s

payment does not explicitly depend on how well the platform performs on the other side of the

market. However, in the case of a per-transaction charge, an agent’s payment might be an explicit

function of the effort of the platform in attracting agents of the other side. The main difference

between the two charging methods is that the network effect is weaker in the latter case.

Single homing or multi-homing: When an agent joins only one platform, then we say that this agent

is single homing. When an agent joins several platforms then he/she is said to be multi-homing.

Now suppose a multi homing agent wants to interact with an agent who is single homing, then the

multi homing agent has no choice but to deal with a platform of single homing agents. The platform

1



with single homing agents has monopoly power over providing access to multi homing agents.

Armstrong (2006), however, neglects the possibility that agents also care about the number of

agents from the same group who join the platform. Since an individual cares about the number of

agents with whom he/she is competing, this ’congestion’ is an important factor affecting the pricing

mechanism and the profit of the platform. This paper assumes that an agent on a platform feels

congestion when the number of agents from the same group exceed a proportion of the number of

agents on the opposite side. That proportion is known as threshold or tolerance parameter. For

example, in the case of cab aggregators, a rider may feel congestion when the number of riders

using the same app to book a cab is higher than the number of drivers present on the other side of

the same platform. In this case, congestion is reflected in higher expected time of arrival or surge

pricing. Similarly from the view point of driver, if the number of drivers is more than number of

riders, then the chances of getting a booking will become low for a given driver, or the price the

rider pays will decrease.

This paper extends Armstrong’s model by adding an extra term which capture the congestion

effect (Armstrong, 2006). The utility function of an agent on the platform is not only dependent on

the cross-group externalities and price charged by the platform, but also on the level of congestion in

the platform. As discussed above, dis-utility from congestion will be function of both - the number of

agents in the same group and the number of agents in the opposite group. This paper concludes that

because of congestion, the network effect or cross group externalities increases, reducing the price

setting power of platform, but the effective transportation cost of switching between platforms also

increases, giving power to the platform to set a higher price (a conclusion in line with the Hotelling

problem). These two opposing effects will determine the equilibrium price and profit for the platform,

especially when agents on both side are single homing. In the single homing case, when tolerance

parameter is small (less than one), congestion will fetch more profit for the platforms. However, in

the multi-homing case, the condition under which congestion is beneficial for platforms is reversed

and profit becomes higher when tolerance parameter is higher (greater than two).

Rochet and Tirole (2006) discuss the conditions under which a market can be classified as a

two-sided market. It is concluded by them that the structure of the market is main determinant for

two-sided market, instead of the pricing mechanism. Rochet and Tirole also show that the failure

of the Coase theorem is a necessary but not a sufficient condition for a market to be classified as

2



two-sided. Caillaud and Jullien (2003) first develop the model for single homing case with perfect

competition where agents have no intrinsic preference for any platform (expect for the price charged

by the platform). Thus, all the agents join that platform which offers lowest price and therefore, the

efficient outcome involves all the agents using same platform and profit for that platform being zero.

In contrast, this paper considers an explicit transportation cost which set intrinsic preferences of

agents for the platforms. For multi-homing case, Caillaud and Jullien (2003) find that in equilibrium,

the group which is multi-homing will be left with no surplus and the single homing side will be treated

favourably.

There is some literature on congestion in two-sided markets, but mainly confined on the debate

of net-neutrality. Cheng et al.(2011) capture the congestion in two-sided market by modelling the

situation with and without preferential treatment of some content providers. When one content

provider gets preferential treatment, then that content provider faces congestion only from the

traffic of their own content-watchers. But other content providers face congestion because of the

entire traffic. Cheng et al. find that if the principle of net-neutrality is abandoned, then the Internet

Service Provider (ISP) will always benefit. And a content provider will be worse-off. Surplus of a

consumer can be higher or lower depending upon the parameter used in the paper (e.g. Poisson

arrival rate of content). Thus, overall social surplus can be higher or lower accordingly. Congestion

captured in this paper is not specific to net-neutrality or for ISPs. This paper addresses congestion

for the generic case. Another paper on congestion is a empirical work done on UBER surge pricing

(Chen and Sheldon, 2015). Chen and Sheldon (2015) collect the data of randomly selected UberX

partners for every trip in five different cities (Chicago, DC, Miami, San Diego and Seattle). They find

that the drivers on UBER platform respond to surge pricing and surge price significantly increase

the supply of drivers. The assumption of this work differs as the Chen and Sheldon (2003) assume

that the driver quits once they hit a daily income target.

This paper is structured as follows. Section 2 will discuss the case of single homing and different

cases under which price and profit is higher because of congestion. Section 3 will discuss the multi-

homing case and construct a symmetric equilibrium for the case. Section 4 concludes the paper.
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2 Competition in Two Sided Single Homing Platform

There are two competing platforms and here we assume that each agent choose to join single platform.

Suppose there are two groups of agents-1 and 2, and two platforms- A and B. Both platforms

allow the two groups of agent on their respective platforms to interact. A member in each group

cares about both - the number of agents in the other group and the number of agents of their own

group on the platform. An agent in any group derives a positive utility from the presence of agents

in the other group and negative utility from the agents in their own group. If agents of group 1 and

2 join the platform A, their utility will be (uA1 , u
A
2 ) respectively. If platform A attracts nA1 and nA2

agents of the two groups, then the utilities they derive are -

uA1 = α1n
A
2 − pA1 − β1(nA1 − λnA2 )

uA2 = α2n
A
1 − pA2 − β2(nA2 − λnA1 )

where pA1 and pA2 are the prices charged by the platform A to the two groups. The parameter

α1 measures the benefit a group-1 agent derives from interacting with each group-2 agent, and

α2 measures the benefit a group-2 agent derives from interacting with each group-1 agent. The

parameter β1 is the measure of loss in the utility due to congestion i.e. as n1 increases by unit one,

with λ ∗ n2 constant, each agent of group-1 experiences disutility measured by β1. Similarly, β2 is

the measure of loss due to congestion for group-2 agents. The parameter β is known as congestion

parameter. λ is a tolerance or threshold parameter which can be interpreted as follows- for a given nA1

and nA2 in equation (1), as λ increases, disutility from congestion reduces. Thus, λ is the parameter

which measures the tolerance of each agent for congestion. It is assumed that tolerance level for

both groups is same. Thus, the utility functions for the two group of agents on platform A are:

uA1 = (α1 + β1λ)nA2 − pA1 − β1nA1 (1)

uA2 = (α2 + β2λ)nA1 − pA2 − β2nA2 (2)

Similarly, for the agents who join platform B, the utility function for the two groups of agents

are:
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uB1 = (α1 + β1λ)nB2 − pB1 − β1nB1 (3)

uB2 = (α2 + β2λ)nB1 − pB2 − β2nB2 (4)

Utility offered by platforms A and B to an agent of group 1 is (uA1 , u
B
1 ), and similarly for an

agent of group 2 is (uA2 , u
B
2 ). It is assumed that the number of agents who join platform A is given

by the Hotelling specification. The platforms are located at two endpoints and agents are uniformly

located on [0, 1].

nA1 =
1

2
+
uA1 − uB1

2t1
; nA2 =

1

2
+
uA2 − uB2

2t2
(5)

where t1, t2 are the product differentiation parameters for the two groups that describe the com-

petitiveness of two sides of the market. It is a concept similar to transportation cost in Hotelling

problem. Another possible interpretation for it is- cost of signing up for a service, initial set up cost

for learning about a new service or cost of reaching the platforms.

Now using Equation (1), (2), (3), (4) in equation (5) and the fact that nB1 = 1 − nA1 , we get

following expression -

nA1 =
1

2
+

(α1 + β1λ)(2nA2 − 1)− (pA1 − pB1 )− β1(2nA1 − 1)

2t1
;

nA2 =
1

2
+

(α2 + β2λ)(2nA1 − 1)− (pA2 − pB2 )− β1(2nA2 − 1)

2t2

(6)

We can further simplify equation (6) to get the following -

nA1 =
1

2
+

(α1 + λβ1)(2nA2 − 1)− (pA1 − pB1 )

2(t1 + β1)
;

nA2 =
1

2
+

(α2 + β2λ)(2nA1 − 1)− (pA2 − pB2 )

2(t2 + β2)

(7)

Equation (7) says that one extra agent of group-2 on the platform will attract (α1+β1λ)
(t1+β1)

additional

agents of group-1 on the platform. Also, upon comparison of equation (7) with the case of no

congestion (Armstrong model) i.e. β1 and β2 equal to 0, it can be concluded that the market power

of platform increases from t1,t2 to (t1 + β1),(t2 + β2) and network effect increases from α1, α2 to

(α1 + λβ1),(α2 + λβ2) for platforms A and B, respectively.
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Given that platforms will charge the price pairs (pA1 , p
A
2 ),(pB1 , p

B
2 ), solving equations (6) or (7)

simultaneously gives the following outcome:

nA1 =
1

2
+

(α1 + λβ1)(pB2 − pA2 ) + (t2 + β2)(pB1 − pA1 )

2[(t1 + β1)(t2 + β2)− (α1 + β1λ)(α2 + β2λ)]
;

nA2 =
1

2
+

(α2 + λβ2)(pB1 − pA1 ) + (t1 + β1)(pB2 − pA2 )

2[(t1 + β1)(t2 + β2)− (α1 + β1λ)(α2 + β2λ)]

(8)

Assuming that each platform has a per-agent cost f1 and f2 for serving agents of group-1 and

group-2, respectively, the profit of platform A is

πA = (pA1 − f1)
[1

2
+

(α1 + λβ1)(pB2 − pA2 ) + (t2 + β2)(pB1 − pA1 )

2[(t1 + β1)(t2 + β2)− (α1 + β1λ)(α2 + β2λ)]

]
+

(pA2 − f2)
[1

2
+

(α2 + λβ2)(pB1 − pA1 ) + (t1 + β1)(pB2 − pA2 )

2[(t1 + β1)(t2 + β2)− (α1 + β1λ)(α2 + β2λ)]

] (9)

The necessary and sufficient condition for market sharing equilibria to exist is

4(t1 + β1)(t2 + β2) > ((α1 + α2) + λ(β1 + β2))2 (10)

This expression can be derived from the stability condition i.e. determinant of Hessian matrix is

greater than zero.

From expression (9), the best response function of platform A’s to platform B’s price pair can

be derived through first order condition. From expression (10), it can be concluded that there is no

asymmetry. Thus, for the case of symmetric equilibrium, where each platform offers the same price

pair (p1, p2), the first order conditions for equilibrium prices are

p1 =f1 + (t1 + β1)− (α2 + λβ2)

(t2 + β2)
(α1 + λβ1 + p2 − f2);

p2 =f2 + (t2 + β2)− (α1 + λβ1)

(t1 + β1)
(α2 + λβ2 + p1 − f1)

(11)

If there is no cross group externalities or congestion, then in Hotelling model the equilibrium

price would be p1 = f1+t1. Thus, all the term other than f1 and t1 is due to cross group externalities

with congestion.

Now, on solving the two equations (11) simultaneously, the following can be derived:
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Lemma 1. Suppose that the condition (10) holds, then, the congestion model with two-sided single

homing has a unique equilibrium, and this equilibrium is symmetric. Equilibrium prices for group-1

and group-2 are given by

p1 =f1 + (t1 + β1)− (α2 + λβ2);

p2 =f2 + (t2 + β2)− (α1 + λβ1)
(12)

Let the equilibrium price levels for group-1 and group-2 in case of no congestion be denoted by

po1 and po2, respectively. This is obtained by putting congestion parameters, β1 and β2, equal to zero.

Obtained expression is

po1 =f1 + t1 − α2;

po2 =f2 + t2 − α1

(13)

This is the same as the equilibrium price level in Armstrong’s model (2006). Upon comparing

equations (12) and (13), it can be concluded that transportation cost increases from (t1, t2) to

((t1 + β1), (t2 + β2)) for both groups because of congestion. Similarly network parameter increases

from (α1, α2) to ((α1+λβ1), (α2+λβ2)) in case of congestion. Increase in transportation cost in case

of congestion is due to the fact that when an agent of group i joins a platform, the agent will not

only incur a transportation cost ti, but also get a dis-utility βi due to congestion. So the effective

transportation cost will become (ti + βi). This increase in transportation cost will give more power

to platforms to set a higher price. Increase in network effect is due to the fact that, in case of

congestion, when an agent of group j joins a platform, he/she will not only increase the utility of

the opposite group by αi, but also decrease the disutility because of congestion by λβi. Thus, the

effective network effect becomes (αi + λβi). This increase in network effect reduces the power the

platform to set higher prices.

From (9) and (12), in equilibrium each platform makes a profit equal to

π∗ =
(t1 + β1) + (t2 + β2)− (α1 + λβ1)− (α2 + λβ2)

2
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Now, the profit expression in case of no congestion (Armstrong’s model) i.e. β1 and β2 equal to

zero is given by

πo =
(t1 + t2)− (α1 + α2)

2

So the condition when congestion is beneficial and fetches more profit for the platform is given

by - (π∗ − πo) > 0.

Proposition 1. Suppose condition (10) holds and equilibrium price for both the groups is given by

equation (12). Then condition under which platforms earn higher profit because of congestion is -

λ < 1

It means that the when tolerance parameter is less than one, it is profitable for the platform.

This result is intuitive since the market power of platforms to set higher price because of conges-

tion increases by βi (since transportation cost is increass to (ti + βi) from ti) and decreases by λβi

(network effect increases to (αi + λβi) from αi) for group i. Thus, the value of λ will determine the

overall increase in market power of platform for each group and subsequently the profit for platform.

The various cases that arise depending upon the possible value of λ are discussed below. Equation

(12) can be re-written in following manner -

p1 = f1 + t1 − α2 + (β1 − λβ2);

p2 = f2 + t2 − α1 + (β2 − λβ1)

Upon comparing the above expression with equation (13), it is seen that p1 > po1 whenever

(β1 − λβ2) > 0 or λ < (β1

β2
). Therefore, when λ < (β1

β2
), the equilibrium price charged by the

platforms to group 1 is greater in case of congestion. Similarly when (β2 − λβ1) > 0 or λ < (β2

β1
),

equilibrium price charged to group 2 by the platform is higher in case of congestion.

Case 1. when λ < min

[(
β1

β2

)
,
(
β2

β1

)]
In this case, price charged to both the groups is higher because of congestion (i.e. p1 > po1

and p2 > po2). Since λ < min
[(

β1

β2

)
,
(
β2

β1

)]
, it implies λ is less than one also. Thus, the platform
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earns more profit due to congestion (π∗ > πo). This is because the increment in the transportation

cost (from ti to (ti + βi)) is higher than the increase in network effect (which increase from αi to

(αi + λβi) due to which platforms can set higher price for both the groups and earn higher profits

in the equilibrium.

Case 2. when λ > max

[(
β1

β2

)
,
(
β2

β1

)]
In this case price charged to both the groups is lower because of congestion (i.e. p1 < po1 and

p2 < po2). Since λ > max
[(

β1

β2

)
,
(
β2

β1

)]
, it implies λ is also greater than one. Thus, the platform

earns lesser profit due to congestion (π∗ < πo). This is because the increment in the transportation

cost (from ti to (ti + βi)) is lower than the increase in network effect (which increase from αi to

(αi + λβi) due to which platform’s power to set higher price for both the groups reduces and thus

earn lower profits in the equilibrium in comparison to no-congestion case.

For the other two cases, let us assume without loss of generality that β1 > β2.

Case 3. when
(
β2

β1

)
< λ < 1 <

(
β1

β2

)
In this case price charged to group-1 agents is higher and to group-2 agents is lower because of

congestion (p1 > po1 and p2 < po2). Due to congestion, agents of group-2 get a subsidy at the cost of

a higher price charged to group-1 (the group which has a higher congestion parameter have to pay

a higher price). Since λ is less than one, the overall profit of both the platforms is higher because

of congestion (π∗ > πo). Platforms extract more from group-1 and then it transfers the benefit to

agents of group-2, due to which overall profit of platform rises.

Case 4. when
(
β2

β1

)
< 1 < λ <

(
β1

β2

)
This case is similar to the previous case, with the only difference that the profit of both platforms

is lower with congestion than without congestion, i.e., p1 > po1 and p2 < po2 but π∗ < πo. Unlike

the previous case, the platform cannot extract more from group-1 agents and transfer the benefit to

group-2 agents, due to which overall profit of platform decreases.

Remark: This is a static model and it is be difficult to capture dynamics of the congestion through

this model. Nonetheless, some implications of dynamic game can be inferred from this analysis.

Suppose tolerance parameter is greater than one initially. Then it is beneficial for platforms to

reduce the tolerance parameter (and hence tolerance) of the agents on the platform. The only way
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for this is to give better and innovative service to all the agents. Over time, tolerance parameter

(and hence tolerance) will reduce and platforms will start earning more profit by congestion. Thus,

congestion will lead to better service and innovation. This is true for net-neutrality principle also.

By abandoning net-neutrality principle, platforms start getting more profit immediately and there

is very less effect of congestion on pricing and profit of the platform. Thus, abandoning of net-

neutrality principle can seriously hamper innovation and urge to provide better service to the agents

on the platform.

3 Competitive Bottlenecks: Multi-homing case

This section represent the case when multi-homing is possible. Multi-homing means an agent joins

both the platforms. Now there are two cases to consider: (i) one group of agents is single home and

other group is multi-home, and (ii) both the groups are multi-homes. If the main purpose of joining

the platform is to derive a utility by interacting with the opposite group, then case (ii) will not arise,

so only case (i) is discussed here. This is because if the opposite group is already a multi-home,

then the agents of single homing group have no incentive to join the next platform. Thus, the group

which is multi-home should not get any intrinsic utility just by joining any platform and agents of

single homing group get intrinsic utility only once (duplicate intrinsic utility is not allowed). Before

going into the details of multi-homing, the condition under which a group is always single homing is

derived. An agent will join only one platform when the cost of joining other platform is higher than

the utility it gets from joining another platform. The cost of joining the another platform for an

agent of group i with congestion is (ti +βi) (effective transportation cost in case of congestion) plus

price charged by the platform, whereas the utility it gets by joining another platform is given by

(αi+λβi). So, whenever the price of joining a new platform is non-negative and (ti+βi) > (αi+λβi),

an agent will not join the other platform. Prices have to be non-negative for sufficient condition

because when transportation cost is higher that utility derived, but platform pays (i.e negative price)

for subscription then it is be possible that net utility becomes higher by joining one more platform.

Non-negative restriction on price avoids that above case.

Without loss of generality it is assumed that agents of group-1 are single homing and group-

2 agents are multi-homing. Thus, for group-1 (t1 + β1) > (α1 + λβ1), with non-negative price

restriction, holds. For agents of group-2, transportation cost must be less than network effect. For
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simplicity it is assumed that t2 = 0. Also, the non-negative restriction of price charged is put on

the platform for both the groups. Thus, to model the multi-homing case, following assumptions are

made:

A1. Intrinsic utility of joining the platform for agents of group-1 (say, uo1) is sufficiently high and

intrinsic utility of group-2 agents (say, uo2) by joining any platform is zero. This assumption ensures

that all the agents of group-1 will join at least one platform and agents of group-2 will join any

platform only if net utility becomes higher by joining the platform.

A2. Price charged by the platforms from both the group must be non-negative.

A3. (t1 + β1) > (α1 + λβ1). A2 and A3 ensure that the group-1 is single homing. A3 can also be

expressed as: λ < 1 +
(
t1−α1

β1

)
A4. t2 = 0. This assumption ensures that every agent of group-2 will either join a platform or will

not join. It does away with the case where some agents of group-2 join a given platform and some

do not. When transportation cost (t2) is zero, agents become homogeneous i.e. there is no difference

within the group.

A5. f2 <
t1
2 . There are two benefits for platforms in serving the agents of group-2. First, revenue

for the platforms will increase. Second, it will enable the platforms to compete better for agents of

group-1. The benefit of an agent of group-2 joining the platform must outweigh the cost of serving

the agent. A5 ensure this condition.

If assumptions A1 to A5 hold, then the agents of group-1 will always be single homing and there

will be four possible configurations of group-2 to consider: (i) all agents of group-2 will multi-home,

(ii) all agents of group-2 will single home on platform A, (iii) all agents of group-2 will single home

on platform B, and (iv) all agents of group-2 do not join any platform. Here it is also assumed that,

when an agent of group-2 is indifferent between joining or not joining any platform, then (s)he will

join the platform.

Configuration 1. All agents of group-2 will multi-home.

Since every agent of group-2 joins both the platform, nA2 = nB2 = 1, and the utility function of
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an agent of group-1 upon joining platform A is given by-

uA1 = α1(nA2 )− pA1 − β1(nA1 − λ(nA2 )) + uo1

uA1 = α1(1)− pA1 − β1(nA1 − λ(1)) + uo1

Above can also be written in following manner:

uA1 = (α1 + β1λ)− pA1 − β1nA1 + uo1

Similarly,

uB1 = (α1 + β1λ)− pB1 − β1nB1 + uo1

As in the previous section, it is assumed that the platforms are located at two endpoints of [0, 1] and

agents are distributed uniformly on [0, 1]. It is also assumed that the number of agents of group-1

on any platform is given by the Hotelling specification. Thus, the number of agents of group-1 who

will join platforms A and B is given by:

nA1 =
1

2
+

pB1 − pA1
2(t1 + β1)

;

nB1 =
1

2
+

pA1 − pB1
2(t1 + β1)

(14)

where (pA1 , p
B
1 ) are the prices charged by the platforms A and B to the agents of group 1.

Now, the utility of an agent of group 2 (who joins both the platforms) is given by -

uAB2 = α2(nA1 + nB1 )− pA2 − pB2 − β2(nA2 − λnA1 )− β2(nB2 − λnB1 )

uAB2 = α2 − pA2 − pB2 − β2(2− λ)

Agents of group-2 will multi-home if following conditions hold:

Condition 1. Agents of group-2 should prefer multi-homing in comparison to not joining any plat-

form. That is, the utility derived by the group-2 agents by multi-homing must be non-negative.

uAB2 = α2 − pA2 − pB2 − β2(2− λ) > 0

pA2 + pB2 6 (α2 + β2λ)− 2β2

Condition 2. Group-2 agents prefer multi-homing to single homing on platform A. This happens

only when the agents of group-2 get higher utility in case of multi-homing.

α2 − pA2 − pB2 − β2(2− λ) > α2(nA1 )− pA2 − β2(1− λnA1 )
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pB2 6 (α2 + β2λ)nB1 − β2 (15)

Condition 3. Group-2 agents prefer multi-homing to single homing at platform B. Same as above,

utility in case of multi-homing should be higher (or equal) to utility in the case of multi-homing.

α2 − pA2 − pB2 − β2(2− λ) > α2(nB1 )− pB2 − β2(1− λnB1 )

pA2 6 (α2 + β2λ)nA1 − β2 (16)

It can be confirmed that condition 1 is satisfied when conditions 2 and 3 hold.

The profit function of the platforms A and B are:

πA = (pA1 − f1)
[1

2
+

pB1 − pA1
2(t1 + β1)

]
+ (pA2 − f2) (17)

πB = (pB1 − f1)
[1

2
+

pA1 − pB1
2(t1 + β1)

]
+ (pB2 − f2) (18)

Configuration 2. All agents of group-2 will join only platform A.

Since group-2 agents only join platform A, nA2 = 1;nB2 = 0. The proportion of group-1 agents

who join platform A is given by-

nA1 =
1

2
+

(pB1 − pA1 ) + (α1 + λβ1)

2(t1 + β1)

All agents of group-2 will join only platform A if the following conditions hold:

Condition 1. Group-2 agents prefer to join platform A in comparison to not joining any platform:

α2(nA1 )− pA2 − β2(1− λnA1 ) > 0

pA2 6 (α2 + β2λ)nA1 − β2

Condition 2. Group-2 agents prefer to single home on platform A in comparison to multi-home:

α2(nA1 )− pA2 − β2(1− λnA1 ) > α2 − pA2 − pB2 − β2(1− λ)

pB2 > (α2 + β2λ)nB1

13



Condition 3. Group-2 agents prefer to single home on platform A instead of platform B:

α2(nA1 )− pA2 − β2(1− λnA1 ) > α2(1− nA1 )− pB2 − β2(−λnB1 )

pB2 − pA2 > (α2 + β2λ)(1− 2nA1 ) + β2

Condition 3 follows from conditions 1 and 2.

The profit functions of the platforms A and B are:

πA = (pA1 − f1)
[1

2
+
pB1 − pA1 + (α1 + λβ1)

2(t1 + β1)

]
+ (pA2 − f2)

πB = (pB1 − f1)
[1

2
+
pA1 − pB1 − (α1 + λβ1)

2(t1 + β1)

]
Configuration 3. All agents of group-2 will only join platform B.

By symmetry nA2 = 0;nB2 = 1 and proportion of group-1 agent on platform B is given by:

nB1 =
1

2
+

(pA1 − pB1 ) + (α1 + λβ1)

2(t1 + β1)

All agents of group-2 will join only platform B if following conditions hold:

Condition 1. Group-2 agents prefer to join platform B in comparison to not joining any platform:

α2(nB1 )− pB2 − β2(1− λnB1 ) > 0

pB2 6 (α2 + β2λ)nB1 − β2

Condition 2. Group-2 agents prefer to single home on platform B instead of multi-home:

α2(nB1 )− pB2 − β2(1− λnB1 ) > α2 − pB2 − pA2 − β2(1− λ)

pA2 > (α2 + β2λ)nA1

14



Condition 3. Group-2 agents prefer to single home on platform B in comparison to single home on

platform A:

α2(nB1 )− pB2 − β2(1− λnB1 ) > α2(1− nB1 )− pA2 − β2(−λnA1 )

pA2 − pB2 > (α2 + β2λ)(1− 2nB1 ) + β2

The profit functions of the platforms A and B are:

πA = (pA1 − f1)
[1

2
+
pB1 − pA1 − (α1 + λβ1)

2(t1 + β1)

]

πB = (pB1 − f1)
[1

2
+
pA1 − pB1 + (α1 + λβ1)

2(t1 + β1)

]
+ (pB2 − f2)

Configuration 4. All agents of group-2 do not join any platform.

The proportion of agents of group-1 who join platforms A and B is the same as equation (14).

This configuration is derived from the Hotelling problem for agents of group-1 where pricing for

group-1 is given by -

pA1 = pB1 = f1 + t1 + β1

This configuration is realized only when all the inequalities of configuration 1 are reversed.

Remark : For a range of prices; there is more than one configuration is possible. For example: suppose

both the platform offer same pair of prices (p1, p2). If p2 6 (α2+λβ2)
2 − β2, then configuration 1 is

consistent. If in addition to above condition; p2 also satisfies the condition p2 > (α2 + λβ2)
(

1
2 −

(α1+λβ1)
2(t1+β1)

)
, then configurations 1 and 2, both, are consistent. Thus agents have to coordinate their

choices for a given price pair.

Now to deal with the issue of multiplicity of consistent demand configurations, certain restrictions

have to be imposed. As in Armstrong and Wright (2007), this paper also imposes the following two

restrictions on the range of possible equilibria.

1. Inertia Condition: This condition states that the equilibrium must be robust to the deviation

or change in price set by the platform, provided the change in price does not result in a change in

configuration, i.e., the original configuration remains consistent with changed price. If the configu-

ration changes, then the new configuration will require simultaneous coordination of agents to move.
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Thus, the inertia condition implies that if it is difficult for agents to coordinate to move to a new

configuration, the equilibrium price should be such that no deviation is possible.

2. Monotonicity Condition: According to this condition, if a platform deviates from the equi-

librium price pair such that (weakly) reduces both the prices, then it must (weakly) increase that

platform’s demand from both the groups.

Given these two conditions (or restrictions), the equilibrium pricing for both the platforms is

constructed. If the inertia condition holds, the equilibrium price set by both the platforms is such

that group-2 is left with no surplus.

Proposition 2. Let assumptions A1, A3 and A4 hold and suppose that the inertia condition applies.

Then in equilibrium, agents of group-2 will be left with no surplus.

Proof: The following is a proof for configuration 1. Similar logic can be applied to other

configurations as well. Let the equilibrium price pair for group-2 be (pA2 , p
B
2 ). Now, consider by

contradiction, that the agents of group-2 are left with some surplus in equilibrium. This means that

the first condition of configuration-1 does not satisfy with equality (this condition is obtained by the

condition uAB2 > 0). Either inequality (15) or (16) does not satisfy with equality. Thus, from the

expressions (17) and (18), it is possible for the platform to increase the profit until the expression

(15) and (16) are satisfied with equality. Inertia condition ensure that we remain in configuration 1

scenario. However, this cannot be equilibrium price. At equilibrium, the expressions (15) and (16)

satisfy with equality and group-2 agents are not left with any surplus.

Now to construct a symmetric equilibrium, configurations 2 and 3 are not considered, and only

configuration 1 or 4 will remain. From the point of view of two-sided markets, however, configuration-

4 is uninteresting (in fact pricing mechanism is already mentioned previously). Thus, focus is

mainly on configuration-1 for symmetric equilibrium. By proposition 2, any equilibrium will need

expressions (15) and (16) to hold with equality. And in case of symmetric equilibrium, price charged

to group-2 will be given by -

p2 = pA2 = pB2 =
(α2 + λβ2)

2
− β2
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or,

p2 =
α2 + (λ− 2)β2

2

where (p1, p2) is a symmetric equilibrium price pair set by both the platforms. If platform B sets

the price (p1,
(
α2+(λ−2)β2

2

)
) in equilibrium, then platform A can deviate if deviation is profitable.

Thus if p1 is equilibrium price for group-1, then it has to be in a manner such that any deviation

from p1 is non-profitable for both the platforms.

The fact that zero surplus is left with group-2 in equilibrium reduces the possible set of equilibria

significantly. The reason is that that suppose platform A undercuts the price for group-1 slightly,

then by monotonicity condition this slight undercut will attract more agents of group-1 on platform

A (and hence fewer on platform B). Since initially the utility of agents of group-2 is zero on both the

platforms, a slight undercut of price by platform A for group-1 agent will result in negative utility

for group-2 agents on platform B. Thus, a small undercut in price for group-1 agent by platform

A will result in group-2 agents joining platform A exclusively. That is, a small reduction in price

of group-1 leads to a movement from configuration-1 to configuration-2. But in case of symmetric

equilibrium, both the platforms undercut the price of subscription for group-1. Thus, the reduction

in pA1 or pB1 is profitable only when the equilibrium price,p1, is greater than marginal cost of serving

of group-1 agent. That is, deviation is profitable only when p1 > f1.

Lemma 2. When α1, α2 > 0 and monotonicity condition holds in addition to assumptions A1,

A3 and A4, then any symmetric equilibrium price for single homing side will be below the cost of

serving, i.e., p1 6 f1.

Another possible deviation available for platform A is to increase the price of group-1 agents (pA1 )

and reduce the price for group-2 (pA2 ) such that configuration-1 remains feasible. Given the inertia

condition, this deviation will not result in a change in configuration. For (p1, p2) to equilibrium,

there does not exist such deviation which will increase the profit of platform A. That is, derivative

of profit expression with respect to pA1 at (pA1 = p1) should be non-positive.
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πA = (pA1 − f1)nA1 + (pA2 − f2)

πA = (pA1 − f1)nA1 + (α2 + β2λ)nA1 − β2 − f2

πA = (pA1 − f1 + (α2 + β2λ))
(1

2
+

p1 − pA1
2(t1 + β1)

)

Derivative of πA with respect to pA1 at (pA1 = p1) is given by:

∂πA

∂pA1

∣∣
pA1 =p1

=
1

2
− (p1 − f1 + (α2 + λβ2))

2(t1 + β1)

The above expression has to be non-positive for p1 to be symmetric equilibrium price. Thus,

p1 > f1 + t1 + β1 − (α2 + λβ2)

For the existence of p1 another restriction is required.

A6. t1 + β1 6 (α2 + λβ2). This assumption ensures that the expression f1 + t1 + β1 − (α2 + λβ2) is

less than f1, so that the equilibrium value of p1 exists.

The symmetric equilibria for configuration-1 can now be defined as follows.

Proposition 3. Assume A1 to A6 hold and α1, α2 > 0. Then there exists a range of symmetric

equilibrium prices (p1, p2), such that p2 = α2+(λ−2)β2

2 and p1 lies in the interval given by -

max{0, f1 + t1 + β1 − (α2 + λβ2)} 6 p1 6 f1

Group-1 is single homing and group-2 is multi homing.

The profit of both platforms A and B will be equal in equilibrium and is given by:

π = πA = πB =
(p1 − f1)

2
+ (p2 − f2)

From proposition 3, it is clear that (p1 − f1) 6 0, thus, the maximum value of profit for the

platform is accrued when p1 = f1. And maximum profit is given by -

πmax =
α2 + (λ− 2)β2

2
− f2
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Expression for maximum profit without congestion, i.e., (β2 = 0) is given by:

πo =
α2

2
− f2

So the condition when congestion is beneficial (fetchs more profit) for the platform is given by:

πmax − πo > 0.

Proposition 4. Suppose assumptions A1 to A6 hold and pricing at equilibrium is given by propo-

sition 3, then the condition under which platforms earn more profit because of congestion is given

by -

λ > 2

In case of competitive bottleneck with congestion, a higher tolerance parameter implies a higher

profit for the platforms. In this case, platforms do not earn any profit from group-1 agents and all

the profit comes from group-2 agents. And the decision of group-2 agents to join any platform is

independent of whether they already join any platform or not. Therefore, if tolerance of agents of

group-2 is high, utility earned by group-2 agents will also be higher and the platform can extract a

higher profit. When λ > 2, the effect of congestion on profit of platform gets reversed.

Remark: From A3, we know that λ < 1 +
(
t1−α1

β1

)
. If

(
t1−α1

β1

)
< 1, then λ < 2 always. It

means when t1 < (α1 + β1), then congestion will always reduce the profits of platform. Therefore,

t1 > (α1 + β1) is a necessary condition for congestion to improve the profit of platforms. But it is

not a sufficient condition.

4 Conclusion

By incorporating congestion into the utility function of agents, cross group externalities (effective

network effect) and effective transportation cost both increase. In case of single homing, it is

concluded that when tolerance parameter is less than one, overall profits of both the platforms

is higher because of congestion. Unlike single-homing case, in multi-homing there exists a non-

symmetric equilibrium where all the agents of one group join only one platform. This paper finds

out a symmetric equilibrium for multi-homing. Condition under which congestion is profitable for

platform get reversed in multi-homing case. Now when tolerance parameter is greater than two,
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then profits of both the platform is increased due to congestion. This paper offers a static analysis,

and it is difficult to capture overall dynamics of congestion on the platform. With time, tolerance

parameter of agents change, so does the overall profit of the platforms. Thus, one plausible extension

of this work is to make tolerance parameter dynamic in nature instead of static.
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