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I INTRODUCTION 
 

This paper aims to take stock of some of the important  contributions to spectral analysis, 

especially as they apply to nonstationary processes. Traditional spectral analysis is confined 

to stationary and purely indetermininistic processes (e.g. Fishman (1969)). Nonstationary 

processes are particularly relevant in the empirical sciences where most phenomena often 

exhibit pronounced departures from stationarity. This is particularly true of economics where  

trends, cycles and erratic shocks make variables depart strongly from stationarity. The 

standard approach adopted , particularly in economics, is to apply a filtering device to render 

the series stationary. Filtering, however,  has two undesirable consequences: (i) it may 

eliminate 

information on several frequencies of interest and (ii) it may introduce artificial distortions of 

the spectrum.That detrending and various other filtering procedures such as the Hodrick-

Prescott lead to distortions in the estimated spectrum has been known ever since the early 

works of Slutzky (1937), Moran (1953), Grenander & Rosenblatt (1957) etc. This suggests 

that analysing the spectrum of nonstationary processes directly may have much to 

recommend itself.  

 

The literature on time-varying spectra (also often referred to as time-frequency analysis) 

attempts to generalize the concepts of the spectrum (and cross-spectrum) to series which need 

not be necessarily covariance stationary. Of course, not every type of non-stationarity can be 

satisfactorily accommodated, yet the class of non-stationary processes to which the methods 

can apply is sufficiently wide to be of general practical interest. A number of alternative 

approaches have been proposed in the literature (e.g. Page (1952), Tjostheim (1976), Melard 
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(1985), and Priestley (1965,1988)). Of these, the evolutionary spectrum of Priestley (1988) is 

particularly appealing for applications, because it has a recognizable physical interpretation.  

The plan of the paper is as follows. Before introducing the case of time-varying spectra, we 

provide a quick overview of the stationary case (Section II), from a slightly more advanced 

viewpoint than that adopted in most standard text-books. In Section III, the mathematical 

preliminaries necessary for the development of time-frequency methods are briefly reviewed. 

Section IV provides a taxonomy of the various approaches to time-frequency analysis 

suggested in the literature, while Section V quickly reviews some earlier heuristic 

approaches, which were later abandoned as more formal approaches appeared on the scene. 

Section VI is devoted to a method which was very popular earlier – the so-called 

spectrogram method based on the short-time Fourier transform. An approach to time-

frequency analysis that is becoming very popular in recent years is based on wavelets. Space 

considerations do not allow us to discuss this approach in detail . However a skeletal sketch is 

provided in Section VII. A full discussion could well be a topic for a distinct paper. A time-

varying spectrum based on the Wigner-Ville distribution has established itself as the standard 

mode of analysis of non-stationary processes in physics and engineering and is reviewed in 

Section VIII. It is the author’s contention that from the point of view of economics and 

finance, a more appealing approach is the evolutionary spectral analysis developed by 

Priestley and his associates. This approach forms the subject matter of Section IX. An 

approach very similar to the evolutionary spectrum approach is that due to Kolmogorov and 

Zurbenko, and is often claimed to be applicable to a wider class of non-stationary processes. 

This is discussed fully in Section X. Section XI gives two applications of the evolutionary 

spectrum in economics developed by the author. Conclusions are gathered in section XII. 

 

 

  

II. STATIONARY CASE REVISITED 
 

1. Basic Concepts  
 

Even though the main focus of this paper is on time-varying spectra, to put the discussion  in 

perspective, a quick retreading of familiar ground relating to the stationary case may be 

necessary. In developing the discussion in this section, we have endeavoured to see that many 

of the fundamental contributions initiated by  Parzen (1957, 1967) and Kolmogorov & 

Zurbenko (1978) and later followed up by Priestley (1981) and Zurbenko (1980, 1982, 1986) 

are given due consideration. This enables us to view time-frequency analysis as a natural and 

logical extension of the stationary case.  

 

Let X(t) be a discrete covariance- stationary complex time-series on which the record 

{X(1)….X(N)} of length N is available, and we assume without loss of generality that 

                                                     

E[X(t)] = 0.                                                                                                                        (1) 

 

Definition 1  : It is well-known that for a stationary process X(t) the following spectral 

representation can be defined  

 










 )()exp()( dZittX                                                                                                     (2) 
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where Z() is a stochastic process with orthogonal increments (see Hannan (1967), p.139-

142) 

 

Definition 2  : Let  )(),()(   tXtXcorrK , denote the autocorrelation of X(t) at lag . 
The (normalized) spectrum f (λ) of X(t)  is defined as 



























  )exp()(
2

)(

2

iKf X                                                            (3) 

where   
     {    } 

As f(λ) is periodic (with period 2) its study might be restricted  to (-,) 

 

We also have 

 










 difK )exp()()(                                                                                                    (4) 

 
In case X(t)   is real , (3) may be written as 

 

























1

2

)cos()(
1

2
)(







 Kf X                                                                                    (5) 

where 2)( XtXVar            

The above definition of the spectrum is purely theoretical. For practical applications, we need 

to pass on to estimation issues.  

 

Definition 3: An estimate of the power spectrum of the form 




 





 dxxIxf NNN )()()(                                                                                             (6) 

 

(where )(xI N  is the modified periodogram and )(xN is a function continuous on 

 (-, +), with Fourier coefficients )()( tb N ), is called an estimator of the Grenander-

Rosenblatt type.  )(xN is called the spectral window of the estimator. 

 

Parzen (1957, 1967) focussed attention on a restricted class of the estimators (6) in which the 

spectral window )(xN  can be represented as  

 

NAxAAx NnNN 1),()(                                                                             (7) 

 

with 

 














 dtitxtKx ]exp{)(

2

1
)(


                                                                                           (8) 

 

and the covariance window K(t) is such that 
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)()( tb
A

t
K N

n











                                                                                                                  (9) 

 

Definition 4 :  The index of K(t) is defined as   )(rK  where r is  the largest value of  for 

which 

 













 







t

tK
K

t

)(1
lim

0

)(
                                                                                                        (10) 

 

 is defined. 

 

We now state an important result due to Parzen (1957) 

 

2. Parzen’s Theorem 

 

An important milestone in spectral analysis is the following result due to Parzen. 

 

Parzen’s Theorem: Let C(s) be the autocovariance function of the stationary process X(t) and 

suppose  0 such that  

 







s

sCs )(


                                                                                                    (11) 

 

If the constants NA  in (7) are chosen so that  

 

a
A

N

N
N






)21/1(

lim


                                                                                                      (12) 

Then for the spectral estimate (6) with covariance window (9) and index  )(rK  , we have 

 











2
)()(22

2
)]21/(2[ )()()](1)[()/1()()(lim   fKadxxKfaffEN N

N
                                                                             

                                                                                                                            ........(13) 

where  

 

(i) X(t) possesses moments upto and including  4
th

 order 

(ii) )()exp()()2/1()( sCisisf
s






                                                       

(iii) 
)][mod(0,0)(

)][mod(0,1)(








 

(iv)       r  

 

3. Zurbenko’s Extension of Parzen’s Results: 
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An important consequence of the above theorem is that it shows that the least possible 

order of the MSE(mean square error)  of  )(

Nf  is )]21/(2[ 00  
N  where 0  is the 

maximal  for which (12) remains valid. However, the theorem is mute on the issue of 

whether this constitutes the least possible order on the class of all spectral estimates of the 

Grenander-Rosenblatt type. The solution of this more general problem was fully worked 

out by Zurbenko (1978) and Vorobjev & Zurbenko (1979).  

For the sake of expository simplicity, the discussion is confined to the discrete parameter 

processes X(t). Let {X(0)……X(N)}  be a given record of such a process and choose integers 

L,M, T (all functions of N) such that 

 

(i) L < M < N 

(ii) N = (T-1)L + M + 1 

(iii) LT  N 

 

Let aM(t), t = …..-1,0,1…   be a non-negative function vanishing outside [0,M]. Construct the 

functions 

 

)()exp()()( tXitQtaW
t

M

Q

M  




                                                                                      (14) 

and 

 







t

M

Q

M itxQtax )exp()()(                                                                                              

(15) 

 The quantities   
     are referred to as spectral kernels. 

It is easily seen that 

 

]exp[)()( 0 iQxxx M

Q

M                                                                                      (16) 

 

Let the coefficients { aM(t)} be so chosen that  

 

                                

                                                                                                                 ………(17)  

Zurbenko (1986) now defines the estimate of the spectral density f() of the process X(t) by 

 






 
1

0

2

)()/1()(
T

k

Lk

MN WTf                                                                                  (18) 

 

Several important properties of this estimate are derived by Zurbenko (1986) elaborating on 

the earlier results of  Bentkus & Zurbenko (1976). Expressions are derived for the bias, 

variance and the MSE of  the estimate (18). One result of particular significance  places a 

lower bound on the MSE of the Zurbenko spectral estimate and may thus be regarded as an 

extension of Parzen’s theorem discussed above.  

 










1)(
2

0 dxxM



6 

 

In practical applications of Zurbenko’s results, we may use any of the standard windows  

such as the ones suggested by Bartlett , Parzen, Abel etc.   Kolmogorov & Zurbenko (1978) 

propose the following window 

 

]1,1[,3

]1,[,2

],0[,1

3,2,1),(),()(









PKKtj

KPtj

Ptjwhere

jtQPKta jM









        

 

with M=K+P, and 

 

 

 

 

Further, C
K

P  are binomial coefficients and (K,P) is chosen to satisfy the normalising 

condition (17). 

 

 

III MIXING CONDITIONS 
 

In this Section we occupy ourselves with certain preliminary considerations, which are 

necessary for the development of time-frequency analysis. 

 

Let, in the usual notation,          denote a probability space
1
 . For any two sub-fields 

      of the             let             . Define the two quantities  

 

          [               ]                                                                                   
(19) 

 

and  

 

          [ (  |  )      ]                                                                                           
(20) 

  

with the supremum in (19) and (20) being taken over all              

 

Now, it is well-known that a collection of random variables generates a         (see e.g. 

Ivanov and Leonenko (1989)). Suppose {                                    } is a sequence 

of random variables. For          , let   
  denote the         generated by the 

random variables              [   ]. We denote this as  

 

                                                 
1
 These and related concepts are discussed at length in Nachane (2006), chapters 3 and 4.  





















1

0

3

2

0

1

2)(

1)(

2)(

tM

k

Pk

P

t

k

Pk

P

CtQ

tQ

CtQ
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    {             [   ]}                                                                                                      

(21) 

 

Now define the two quantities corresponding to (19) and (20) above viz. 

 

        ⏟
   

  {   
 

     
 }                                                                                                          

(22) 

                                                                                                                                                                                                                                         

        ⏟
   

  {   
 

     
 }                                                                                                         

(23) 

 

 

Since most of the latter results depend on “mixing” conditions, we begin by defining two 

types of mixing conditions in the light of the above considerations. 

 

Rosenblatt Mixing Condition (Rosenblatt, 1985) : The sequence of random variables 

{                               } as defined above is said to be strongly-mixing or α-

mixing if         in (22). This is referred to as the Rosenblatt mixing condition (see 

Rosenblatt (1985))                                                                                           

 

Ibragimov Mixing Condition (Ibragimov, 1962) : The sequence of random variables 

{                               } as defined above is said to be weakly-mixing or   -

mixing if 

 

(i)         in (23) and  

(ii) ∑             
     

This is referred to as the Ibragimov mixing condition (see Ibragimov (1962), Falk (1984) 

etc.). 

  

Further discussion on these and related mixing conditions may be found in Kolmogorov and 

Rozanov (1960), Iosifescu (1977), Doukhan and Louhichi (1999), Bradley (2005) etc. An 

excellent text, of course, is Doukhan (1994). 

 

 

 

 

IV APPROACHES TO TIME_VARYING SPECTRA : A TAXONOMY 
 

 The analysis of non-stationary series in the frequency domain is a relatively unexplored 

field. This article wishes to bring to the notice of the profession the rich potential that 

frequency domain methods offer for empirical analysis in economics and finance, where the 

occurrence of non-stationarity is the rule rather than an exception. 

 

Taxonomically speaking, we group the major approaches into the following 5 categories: 

 

 

1. Early Approaches (Precursors) 
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2.   Spectrogram Method 

3.   Wavelet Transform (Scalogram) Method 

      4.  Wigner-Ville Time-Frequency Distribution Method 

5. Priestley’s Evolutionary Spectrum 

6. Kolmogorov-Zurbenko Approach  

The essential features of each of the above approaches is now reviewed successively in the 

following six sections. 

 

V EARLY APPROACHES (PRECURSORS) 
 

 

Page Spectrum: One of the earliest approaches to analyse time-dependent spectra occurs in 

Page (1952). For a continuous parameter process X(t), Page introduces the quantity 

 
2

0

)exp()()(  

T

T dttitXg                                                                            (24) 

 

and defines the instantaneous power spectrum as 

 

)}({)(  








 Tt gE

dt

d
f                                                                                        (25) 

 

The Page instantaneous power spectrum thus is a rough approximation to the difference 

between the power distribution of the process over the interval (0,t) and (0, t + dt ). 

 

Mark’s Physical Spectrum :  For a continuous parameter process X(t), Mark (1970) 

introduces the notion of a physical spectrum as follows: 

 












 





duuiuXutWEWtS )exp()()(),,(                                              (26) 

 

where W(.) is a suitable real-valued function concentrated in the neighbourhood of  

t = 0, with  

 






 0)0(,1)(2 WanddttW                                                                              (27) 

 

Tjostheim Spectrum: Cramer (1961) has shown that for a discrete parameter purely 

indeterministic process X(t), we have the following one-sided linear representation 

 







0

)()()(
u

t utuatX                                                                                      (28) 

 

where (t) is a white noise process with variance 2

  and the )(uat are time-varying 

coefficients. 
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Tjostheim (1976) proposed a definition of time-varying spectrum based on the representation 

(28) 

 
2

0

2

)exp()(
2

)( 



















u

tt uiuaf 



                                                                      (29) 

 

Melard (1978, 1985) has suggested a similar approach. Both the Melard and Tjostheim 

approaches may be viewed as special cases of Priestley’s evolutionary spectrum (to be 

discussed below) 

 

VI. Spectrogram Method 
 

The spectrogram utilizes two important concepts in spectral analysis viz. segmentation  and 

short-time Fourier transform. 

 

Segmentation:  The method of segmentation was first suggested in the engineering literature 

by Welch (1967) and may be described as follows. Suppose we have a time series X(t), 

t=0,1,2,….(N-1) and we divide it into P segments of equal length which are overlapping. 

 

Next define  

 

Xj (t) = X[j(1-)N+t]        ( j = 0,1,2,….P-1; t = 0,1,2,….N-1)                                      (30) 

 

where  is the fraction of overlap and N is the length of each segment. 

 

Each segment is multiplied by a window function of the type (7)-(8) and its discrete Fourier 

transform (DFT) computed.  

 

Welch suggests an ingenious device for keeping the correlation between the segments low .  

 

A covariance function C(k) of a stationary time series X(t) gives us an idea of how rapidly 

the correlation between  X(t) and X(t+k) declines as k increases. 

 

Definition 5 : The correlation distance x  of X(t) is the value of k at which the covariance 

between X(t) and X(t+k) is 10% of var X(t).  

 

Welch shows that for a low correlation between the various segments, we must have the 

following condition to hold 

 

{(1-)N}    {x  + w }                                                                                                  (31) 

 

where  x  and w are respectively the  correlation distance of X(t) and the selected window.   

  

For the sake of completeness, we reproduce below certain basic ideas from filtering theory 

(see Brillinger (1975) and Percival & Walden (1998)) 

 

Definition 6: Let f(t) be a linear filter. Then its transfer function F() is defined as 
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





t

titfF ]exp[)()(                                                                                    (32) 

Further f(t) is said to be a bandpass filter centred at 0  and with bandwidth 2 if its transfer 

function F() has the following form 

 

otherwiseF

forF

,0)(

,1)( 0








 

                                                                                                        …………..(33)  

 

We now introduce the idea of a short-term Fourier transform (STFT) (see Portnoff (1980)) 

                                                                                 

Definition 7: The STFT of the series X(t) is defined as  

 









 ]exp[)()(),(* itWXtX                                                                                    

(34) 

where W(t) is a low-pass filter. W(t) could be a typical window of the type (8).  

 

Definition 8 : The effective length Meff of a window W(t) is defined as 

 
































s

s

eff

sW

sWs

M

)(

)(

2
2

22

                                                                                                               

(35)                                                                

 

With the above definitions at our disposal, we are now in a position to proceed to the 

calculation of the spectrogram. 

Step 1: Divide the total time span of the record into overlapping segments of equal length M, 

where M is the truncation parameter of the window (sometimes also called its length), but 

keeping the non-overlapping part of the segments equal to the effective length Meff of the 

window. The total number of segments is of course  P = (N/Meff) 

 

Step 2 : We now compute the STFT for each segment at the representative point (n+0.5) Meff 

 where n=0,1,2…P are the segment numbers. 

 

Step 3 : The spectrogram is now computed as  

effeffX MkPnMnXknS )/....(1,0;,...1,0]k,)5.0[(*),(
2

)1(               (36) 

 

where  is  a constant depending on the selected window and the STFT X*(t,w) is as defined 

by (34).  

 

The spectrogram is plotted in the time-frequency domain and may be treated as an estimate 

of the time varying spectrum. 
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VII Wavelet Transform Method 
 

Definition 9: The wavelet transform of a time series X(t) is defined by 

 

 




































 tXtX

0
0

)(),(                                                                             

(37) 

where (t) is a bandpass filter centred at 0  0. (Naidu (1996), Meyer (1993)) 

 

Note: The bandwidth of the scaled filter {(/0)(-t)} does not remain fixed but increases 

with the frequency . 

 

We can now define an estimator of the time varying spectrum as  
2)2( ),(),(  ttS XX                                                                                                      (38) 

 

The estimator (38) is alternately referred to either as the scalogram or as the multiscale 

spectrogram. 

 

The choice of the appropriate wavelet (.) is of course a key question in the scalogram 

analysis. The chosen wavelet has to satisfy the so-called admissibility condition. 

 

Definition 10:  A wavelet (.) satisfies the admissibility condition if the following conditions 

are satisfied 

 

(i) (0) = 0 where (.)  is the Fourier transform of (.) or alternatively 

(ii) 





t

t 0)(   in the time domain 

 

Fortunately an easily available admissible  wavelet is the second derivative of the Gaussian 

function defined by 

 

   
2

exp1)(
22 ttt                                                                                                         (39) 

 

 

VIII. WIGNER-VILLE DISTRIBUTION 
 

A fundamental contribution to the spectral  analysis of nonstationary data was made by 

Wigner (1932) in the context of quantum mechanics. The significance of this contribution is 

emphasized by Kay (1989), Hlawatsch & Boudreaux-Bartels (1992), and several others.The 

Wigner-Ville approach has now established itself as one of the most practically useful 

approaches in time-frequency analysis. 

 

Suppose we have a time series X(t), t=0,1,2,….(N-1), the Wigner-Ville  distribution is a time-

frequency function defined as: 

 

                                                                               (40) 











R

X
N

ki
tYtW






2
exp),(2),(
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where  

(i)  = (k/N) 

(ii) Y(t,) = X(t + )X(t - ) 

(iii)  is an integer, whose range R depends on t in the following fashion 

 

               ]1},2/1({),1(

]2/)1(,0[,





NNttN

Ntt





 

A time varying spectrum based on the Wigner-Ville distribution can be simply written as 

 
















1

1

2
exp)(),(2),(

N

N

X
N

ik
wtYtW




                                                                      

(41) 

 

where w() is a standard spectral window. If the window is symmetric, (41) can be 

written as (see Naidu (1996)) 

 

)0()(2
2

exp)(),(Re4),( 2
1

0

wtX
N

ik
wtYtW

N

X 
















 






                                        (42) 

Further details on the properties of this estimate may be found in Martin & Flandrin 

(1985), and a convenient computational method is presented in Chen et al (1993) (see 

also Sun et al (1989)). 

 

There is an analytic closed form relationship between the Wigner-Ville distribution and 

the spectrogram on the one hand and the scalogram on  the other, which we exhibit 

below. 

 

 

 


 


n

xXX dntWnWtS





 ),(),()2/1(),()1(                                                   (43) 
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
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







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n

XX 



















  


 
0

0)2( ,),()2/1(),(                                

(44) 

 

 

where the scalogram  is based on the wavelet (t)  centred at 0  0 (see (37). 
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We now discuss two important approaches to time-frequency analysis viz. Priestley’s 

evolutionary spectrum and the Kolmogorov-Zurbenko approach. Both these approaches are 

mathematically rigorous and hence theoretically appealing.  

 

IX. PRIESTLEY’S EVOLUTIONARY SPECTRUM 

 
1.Mathematical Preliminaries  

 

The concept of the evolutionary spectrum was developed by Priestley in a series of papers 

(1965,1966, 1969) but finds its clearest exposition in his book (1988). Throughout this 

section, the underlying process X(t) is assumed to be real discrete parameter process. 

 

If X(t) were stationary, it would admit of the spectral representation (6) and its covariance 

kernel R(s,t) would additionally be expressible as  

 





 )()](exp[),(  dHstitsR                                                                        (45) 

 

where H() is the integrated spectrum of X(t). 

 

For non-stationary processes , both representations (6) and (15) are invalid. However 

Priestley (1981) showed that for a fairly general class of stochastic processes, the covariance 

kernel R(s,t) has the representation  

 






 )()()(),(  dtsR ts                                                                          (46) 

 

where )(t  are a family of functions {} defined on the real line and () is  a measure. 

Sharper results might be obtained by assuming that  () is absolutely continuous with 

respect to the Lebesgue measure on the real line
2
 

 

  

Of special significance in this context are the so-called oscillatory functions. 

 

Definition 11: The function )(t  is called an oscillatory function  if  for some (necessarily 

unique) function (), it admits of the representation  

 

])(exp[)()( tiAtt                                                                                   (47) 

 

where further, 

 






 )()exp[)(  dKitAt                                                                                   (48) 

                                                 
2
 The concept of Lebesgue measure can be found in any standard text on real analysis such as e.g. Royden and 

Fitzpatrick (2010). A measure  is said to be absolutely continuous w.r.t. a measure   if for every measurable 

set A, with (A) = 0, we have (A) = 0. 
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where  = 0, yields an absolute maximum for )(dK  

 

The oscillatory function concept is a building block for the concept of an oscillatory process, 

which is defined as follows see Melard (1985) and Melard and Schutter  (1989): 

 

Definition 12:  If there exists a family of oscillatory functions )(t  in terms of which X(t) 

is expressible as  

 






 )()()(  dZtX t                                                                                           (49) 

 

with 

 

)()(
2

 ddZE                                                                                                 (50) 

 

where (.) is a suitable measure, then X(t) is said to be an oscillatory process. 

                                                                         

 

For a given process X(t), there would exist in general a number of different families of 

oscillatory functions, in terms of each of which X(t) has the representation (49). If {} 

denotes a specific family of such oscillatory functions, then the evolutionary spectrum of X(t) 

w.r.t. the family {} is defined as 

 

)()()(
2

 dAdH
tt                                                                                       (51) 

 

If additionally, the measure () is absolutely continuous w.r.t. the Lebesgue measure on the 

real line, we may write for each t, 

 

 dhdH tt )()(                                                                                             (52) 

 

and the quantity )(th  may be called the evolutionary spectral density function (or simply 

the evolutionary spectrum)
3
 

 

2. Bandwidth Considerations: 

 

For each family  with oscillatory functions represented by  (47), we may define  

 

)()(  dKB                                                                                           (53) 

 

Further define   1
)(sup



  


BB                                                                      (54) 

                                                 
3
 Although the evolutionary spectrum defined by (51) is not invariant to the choice of the family , the integral  






 )](var[)( tXdHt   is independent of this choice 
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If B   is finite , the family  is said to be semi-stationary and B  itself is referred to as the 

characteristic width of the family  

A semi-stationary process {X(t)} is one for which  a semi-stationary family , which can 

furnish a spectral representation for {X(t)}. 

Let   denote the class of all such semi-stationary families and define  

 

 


 BBX


sup                                                                                                          (55) 

then  XB  is termed the bandwidth of the semi-stationary process {X(t)}. 

 

3. Estimation Considerations 

 

Let {  } be a discrete parameter oscillatory  process over t = 0, 1, ...T. The evolutionary 

spectrum can then be estimated via the two-stage procedure suggested by Priestley & Tong 

(1973) which involves the following 2 stages: 

 

(i) first, passing the data through a linear filter concentrated on a typical 

frequency 0  yielding the output  

       ∑          {         } 
                                     (56) 

 

where    are certain window weights. 

 

(ii) computing a weighted average of  
2

)(tu  in the neighbourhood of the time 

point t. This yields the following estimate of the evolutionary spectrum    

at    

 

  ̂     ∑   |    |
  

                                                                                    (57)                                                                                                                                  

 

Note that the windows or filters  {    } and {  }   have to satisfy certain conditions. 

Formally expressed, the filter {    } has a transfer function () which is peaked in the 

neighbourhood of the origin  and is normalised to integrate to unity, over (-, +). Also in 

the interests of high time-domain resolution 
4
the filter width gB  of {    } has to be  

substantially  smaller than XB  of (55). Similarly the filter {  }   is normalised to integrate to 

unity, and has a width    substantially  exceeding gB (to reduce the variance of the 

estimator)
5
.  

 

The following double window suggested by Priestley (1965, 1966) and Chan and Tong  

(1975) is often used in applications. 

 

(i)    
 

 √  
   | |                          

                                                 
4
 The problem of resolution in spectral analysis refers to the ability of estimators to distinguish fine structure in 

the spectrum. The resolution of  an estimator can be improved by decreasing its bandwidth (see Koopmans 

(1995), p. 303-306).  
5
 Reducing bandwidth (to improve resolution), however, increases the variance of an estimator – the so-called 

Grenander Uncertainty Principle (see Grenander (1958) and Priestley (1981), p. 527) 
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(ii)    
 

     | |  
  

 
                     

 

where          are parameters to be selected bearing in mind the bandwidth considerations 

mentioned above.  

 

The above window has the following three useful properties (            ̂    denote the 

evolutionary spectrum and its estimate): 

 

(i)  {  ̂   }        

(ii)    {  ̂   }  (
  

   )   
     

(iii)    {   
̂        

̂     }    

 if either the time periods           or the frequencies    and    are sufficiently apart.
6
  

 

 

X Kolmogorov-Zurbenko Results 

  

We have already discussed Zurbenko’s concept of the spectral density in Section II, and the 

spectrum itself was defined in (18).  Several results of fundamental significance in the 

spectral analysis of non-stationary series were initiated by Kolmogorov & Zurbenko (1978) 

and were later followed up by Zurbenko (1980, 1982, 1986). From an analytical perspective 

they are best viewed as extensions (to the non-stationary case) of the results presented in 

Section II.3 above. 

 

1. Extensions to the Non-stationary Case: 
 

A non-stationary process X(t,u) is conceived of as dependent on two parameters t and u.  

X(t,u) a is assumed to be covariance stationary with respect to the discrete parameter t and 

dependent on the continuous parameter u, which is supposed to capture slow changes in the 

spectrum. A number of conditions are imposed on X(t,u). 

 

(iii) X(t,u) possesses uniformly bounded absolute moments of upto the 4
th

 

order. 

(iv) X(t,u) is continuous in mean square with respect to the parameter u  

(v) The 4
th

 order cumulants
7
 of X(t,u) are also continuous with respect to u 

(vi) Either the Rosenblatt or Ibragimov mixing condition (Section II) is 

satisfied 

 

Let C(k,u) = Cov[X(t,u),X(t+k,u)] be the auto-covariance function of X(t,u). Under the 

assumed conditions (i) to (iv) above C(k,u) exists and is bounded. (Note that C(k,u) is 

independent of t  in view of the stationarity of X(t,u) in t ). 

 

Theorem (Ibragimov & Linnic (1971)):  Under assumptions (i) to (iv) above {with the 

Ibragimov version of the mixing condition in (iv)} both C(k,u) and the spectral density 

function f(,u) are weakly dependent 
8
on u i.e. 

                                                 
6
 The term sufficiently apart means that either (i) |     |                |    |  or (ii) |     |   
         {  }    
7
 Cumulants are defined and discussed in Brillinger (1975), p. 19-21 

8
 The notion of weak dependence is discussed in Billingsley (1968), p. 363-367 
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


                                                  (49) 

 

where         and  are as defined in Section III (Ibragimov mixing condition). 

 

The above theorem is predicated on the Ibragimov version of the mixing condition. Similar 

results can be derived for the Rosenblatt version too.  

 

The modified periodogram for the time-varying case can be defined analogously to (14) as 

follows (Zurbenko (1991)) 

 

Define 

),()exp()(),( utXitQtauW
t

M

Q

M  




                                                         (50) 

The other entities figuring in (15) and (16) can also be appropriately modified leading to the 

following definition of the time-varying spectrum 

 






 
1

0

2

),()/1(),(
T

k

Lk

MN uWTuf                                                                       (51) 

with L,M,T satisfying the conditions listed earlier (Section II.3) 

 

Zurbenko (1991) has proved that the spectral estimate (51) is asymptotically normal with the 

true spectral density f(,u) as the mean, and variance equal to 

 















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                                                                          (52) 

 

Further, and quite interestingly, it is also shown that small deviations from stationarity will 

have a small influence on the variance (52) in view of the following inequality 

 

 


 





 )()2/(1)(][)/8(),(),(var[ 1
4

22 NouodxxXEuNufuuf Q

MNN

                                                                                                     …………………(53) 

where o(.) is the usual small o order of convergence
9
. 

 

From an inferential point of view, prime interest attaches to the following matrix 

 

 2

),( ki

L

Mk uW                                                                                                          (54) 

with k=1,2…T and i  (0,) 

 

This matrix is composed of asymptotically uncorrelated elements distributed as  

 

                                                 
9
 The notions of small o and big O are explained in Nachane (2006), p. 131 
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                                                                                                      (55) 

 

 

 

XI. APPLICATIONS OF TIME VARYING SPECTRA 

 
In this section, we endeavour to show the potentiality of time varying spectral methods for 

applications. In particular, they can be usefully deployed in two contexts. Firstly, for 

checking a time series for stationarity and secondly for testing Granger-causality when the 

underlying series are non-stationary and possibly cointegrated.     

 

 

1. Testing For Stationarity 

 

 

We now present the salient features of the test for stationarity based on the evolutionary 

spectrum, suggested by Priestley and Subba Rao (1969) and further developed by Priestley 

(1988).  

Suppose we are given a series            of (T+1) observations on a discrete time series 

{  } with evolutionary spectrum   . To test {  } for stationarity, we select a set of equispaced 

time points {  }       , as also a set of equispaced frequencies {  }       . While 

selecting these we need to ensure that the successive    and    are sufficiently apart to ensure 

the validity of condition (iii) noted at the end of section IX above.  

We now define  

      {    
̂(  )};       {   

(  )} ;             

Priestley (1988, p. 178) postulates that  

 

     [        (  ̂   )]                                                                                                      

(56) 

 

To test {  } for stationarity a two-factor ANOVA  model is set up (see e.g. Morrison (1976)) 

with  

 

    ∑ [       ]
  

           (between times sum of squares)                                                       

(57) 

 

    ∑ [       ]
  

           (between frequencies sum of squares)                                            

(58) 

 

   ∑ ∑ [       ]
 
   

  
           (total  sum of squares)                                                             

(59) 

 

                              (interaction plus residual sum of squares)                              

(60) 

 

Where in the standard ANOVA notation  

 

2

)2(),(  ki uf
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    (
 

 
)∑    

 
                                                                                                                          

(61) 

 

    (
 

 
)∑    

 
                                                                                                                          

(62) 

 

    (
 

  
)∑ ∑     

 
   

 
                                                                                                                

(63) 

 

 

 The test can now be executed in 3 steps 

 

Step 1 : Compare (
    

  
) to a            

   If (
    

  
) is significant, then the test is inconclusive. 

We proceed further only if (
    

  ) is insignificant 

Step 2 : Compare (
  

  ) to a       
   . If (

  

  ) is significant the process    is nonstationary. 

Otherwise it is stationary.  

Step 3 : A great advantage of this procedure is that it can help us locate in which particular 

frequency band the non-stationarity is located (this procedure is explained in detail in 

Nachane (1997)) 

  

While, we have used the concept of Priestley’s evolutionary spectrum in the test for 

stationarity, a similar test can be derived based on the Kolmogorov-Zurbenko approach by 

using (55).  

 

An application of this test to an economic problem is given in Nachane (1997), where the 

analysis is applied to examine relative and absolute purchasing power parity for a group of 10 

OECD countries for the 20-year period 1973-1993. 

 

2. Causality in the Frequency Domain  For Non-Stationary Series 

The idea that the nature of economic relationships can vary according to the time horizon considered, 

is hardly new. Economists like Marshall, Edgeworth, Keynes and others recognized that behaviour of 

economic agents could vary over different decision making horizons. Spectral analysis can be an 

extremely useful analytical tool in this context.  

While the seminal paper by Granger (1969) on causality gave a balanced emphasis on both the time 

and frequency domains, the latter aspect seems to have caught little attention at the time and most of 

the early empirical work relied almost exclusively on the time domain. The next development of note 

occurs with Geweke (1982, 1984) who enunciated frequency-wise Granger-causality tests for 

stationary series. Generalization of this type of analysis to non-stationary series was the logical next 

step but presented complications on account of the possibility of cointegration. Early attempts to 

circumvent this problem proved to be computationally cumbersome requiring either FM-OLS (fully 

modified ordinary least squares) estimation (as in Toda & Phillips (1993) ) or nonlinear restrictions 

testing via the delta method based on numerical derivatives (Yao & Hosoya (2000)). In what must be 

regarded as a major breakthrough Breitung & Candelon (2006) suggested a simple but effective 

method of frequency-wise testing for causation for systems involving nonstationary variables and 

possible cointegration. The method relies on the well-known result (see Toda & Yamamoto (1995) 
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and Dolado & Lutkepohl (1996)) that the Wald test of restrictions in the presence of nonstationary 

variables has a standard asymptotic distribution in an over-parametrized VAR model.
10

  

 The essence of the Breitung & Candelon (2006) (henceforth BC-) test may be described as 

follows. First consider the bivariate case in which  tX  and tY  are the two series of interest 

(t=1,2…N). Let  XYC   denote the causal measure from tY  to  tX  at frequency  . The null 

hypothesis to be tested is that  XYC  = 0 (i.e. tY  does not cause tX  at frequency  ). Suppose the 

true order of the bivariate VAR model involving the two variables is (p-1) (estimated in empirical 

applications by any consistent lag selection procedure such as the AIC, BIC etc.) we then augment the 

bivariate model with one redundant lag and write down the equation for tX as  

t

p

j

jtj

p

j

jtjt YXX  






 
11

                                                                                                          

(64) 

As shown by Breitung & Candelon (2006), our null hypothesis (viz.  XYC  = 0) is equivalent to  

  0:0 RH                                                                                                                                      

(65) 

where   p .............1    and   

 

  









)sin(..)2sin()sin(

)cos(..)2cos()cos(






p

p
R                                                                                          

(66) 

Testing for any frequency   ,0   is done by the usual F-statistic with degrees of freedom 

[2, N-2p]. At  ,0  the second row in (66) is identically zero so that only a single restriction 

applies. In this case the test statistic becomes F [1, N-2p]. 

So far we have concentrated only on the bivariate case. In the multivariate case, following 

Geweke (1984) the concept of conditional causality may be introduced. Let  
ZXY

C


 denote the 

conditional causality from tY  to tX  given a vector of variables ].....,[ 21
 ktttt ZZZZ .  

Conditional causality testing can be done either by the method originally suggested by Geweke (1984) 

or by Hosoya(2001). In the first we run the regression  

 

t

p

j

jtj

p

j

jtj

p

j

jtjt ZYXX  










 
111

                                                                          

(67) 

 

and in the second, the following regression is executed 

                                                 
10

 The suggested test has reasonable size properties and the power of the test increases substantially with sample 

size. Other properties of the test are noted in Breitung & Candelon (2006).  
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
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1 01

                                                                          

(68) 

(where ]......[ 2,1 ktttt WWWW   with jtW  denotes the residual from a regression of jtZ  

 on kttttt ZZZandXY  ,......,, 21   with k a suitably chosen lag) 

The restrictions (65) are now tested in (67) or (68) just as before with the F-distribution. 
11

 

 It is important to note that in Hosoya’s approach the information about the contemporaneous 

values of the conditioning variables tZ  enter the regression via the residual vector tW , which sits 

uneasily with the predictive notion of causality. It is thus often preferable to fall back on the Geweke 

method (equation (67)). 

The robust growth in Asia (as well as the BRICS
12

 group of countries) in the decade 

following the Asian Crisis – a growth largely un-interrupted  by the U.S. slowdown in the 

wake of the dot.com bust of -----has led a number of researchers (e.g. Akin and Kose (2008), 

Kose et al (2008), Fidrmuc et al (2008) etc) to examine the hypothesis that several of the 

larger EMEs, especially in Asia, have decoupled from the developed Western economies. 

Nachane and Dubey (  ) have used the Breitung-Candelon approach to examine this 

hypothesis. They find limited support for the decoupling hypothesis in the case of a selection 

of seven prominent Asian EMEs viz. India, China, Korea, Malaysia, Pakistan, Bangladesh 

and the Philippines.   

 

 

XII. CONCLUSIONS 
 

Stationarity is an important simplification in time-series analysis and most of the received 

literature on time series analysis proceeds within this simplified framework. However non-

stationarity is a fact of life that cannot be wished away. A standard approach adopted to deal 

with non-stationarity is to reduce the given (possibly non-stationary) series to stationarity via 

trend-removal/ successive differencing etc. However such filters may very likely introduce 

distortions in certain key features of the underlying series such as the well-known Slutzky-

Yule effect. To obviate this possibility, is the central purpose of time-frequency analysis, in 

which the non-stationarity is dealt with directly. These methods have far-reaching 

implications for applied disciplines, which have not yet been fully realised. The aim of this 

paper is to redress this lacuna. 

 

Several approaches to the problem of estimation of  time-varying spectra have been reviewed 

in this paper. From a theoretical point of view, the methods of Priestley and Zurbenko have 

several features in common – the idea of oscillatory process on which Priestley bases the 

concept of his evolutionary spectrum loosely corresponds to Zurbenko’s idea of a slowly 

changing process. Zurbenko’s reliance on mixing conditions corresponds to Priestley’s 

remote frequency dependence. The methods reviewed in Sections VI to VIII, differ 

fundamentally from the other methods in that they view the non-stationary process as a signal 

and as such eschew statistical considerations of inference and hypothesis testing. This need 

                                                 
11

 The degrees of freedom are however adjusted to F[2, N-3p] 
12

 The term BRICS is now a common acronym for the following group of countries—Brazil, Russia, India, 

China and S. Africa 
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not, of course, necessarily detract from their practical utility. The time-frequency plot can be 

a vital device in detecting the presence and sources of stationarity, as the  successful  use of 

signal proceesing methods in engineering, amply testifies. 

 

Of the various methods discussed in the paper, Priestley’s evolutionary spectrum and the 

Kolmogorov-Zurbenko approach appear to be both theoretically satisfactory and practically 

appealing. In section X, we have illustrated the potentiality  of these methods for practical 

applications in two contexts. Firstly, a test for stationarity based on the evolutionary spectrum 

is demonstrated and its application to an economic problem noted. Secondly, a method based 

on a combination of time varying spectra and a VAR model is discussed and an economic 

application indicated.  

 

It is hoped that this paper will stimulate interest among economists and financial specialists in  

experimenting  with such methods for exploratory data analysis in their respective areas of 

expertise.   
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