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1. INTRODUCTION

1.1 BACKGROUND OF THE PROBLEM

This paper deals with the standard social choice problem where an alternative has to be chosen

based on privately known preferences of the individuals in a society. A procedure that maps a

collection of individual preferences to a social alternative is called a social choice function (SCF).

In such a framework, it is natural to assume that individuals may misreport their preferences

whenever it is strictly beneficial for them. An SCF is called (group strategy-proof) strategy-proof if

no individual (group of individuals) finds it beneficial to misreport her preferences and is called

unanimous if it always selects a unanimously agreed alternative whenever that exists.

Most of the subject matter of social choice theory concerns the study of the unanimous and

strategy-proof SCFs for different admissible domains of preferences. In the seminal works by

Gibbard (1973) and Satterthwaite (1975), it is shown that if a society has at least three alternatives

and there is no particular restriction on the preferences of the individuals, then every unanimous

and strategy-proof SCF is dictatorial, that is, a particular individual in the society determines

the outcome regardless of the preferences of the others. The celebrated Gibbard-Satterthwaite

theorem hinges crucially on the assumption that the admissible domain of each individual is

unrestricted. However, it is well established that in many economic and political applications,

there are natural restrictions on such domains. For instance, in the models of locating a firm in a

unidimensional spatial market (Hotelling (1929)), setting the rate of carbon dioxide emissions

(Black (1948)), setting the level of public expenditure (Romer and Rosenthal (1979)), and so on,

preferences admit a natural restriction widely known as single-peakedness. Roughly speaking, the

crucial property of a single-peaked preference is that there is a prior order over the alternatives

such that the preference decreases as one moves away (with respect to the prior order) from her

best alternative.

The study of single-peaked domains dates back to Black (1948), where it is shown that the

pairwise majority rule is strategy-proof on such domains. Moulin (1980) and Weymark (2011)

have characterized the unanimous and strategy-proof SCFs on such domains as min-max rules.1,2

Recently, Achuthankutty and Roy (2018) characterize the domains where the set of unanimous

1Barberà et al. (1993) and Ching (1997) provide equivalent presentations of this class of SCFs.
2A rich literature has developed around the single-peaked restriction by considering various generalizations and

extensions (see Barberà et al. (1993), Demange (1982), Schummer and Vohra (2002), Nehring and Puppe (2007a), and
Nehring and Puppe (2007b)).
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and strategy-proof SCFs coincide with that of min-max rules.

1.2 OUR MOTIVATION

It is both experimentally and empirically established that in many political and economic scenarios

(Niemi and Wright (1987), Feld and Grofman (1988), and Pappi and Eckstein (1998)), where the

preferences of individuals are normally assumed to be single-peaked, they are actually not.

Nevertheless, such preferences have close resemblance with single-peakedness. In this paper, we

model such preferences as partially single-peaked. Roughly speaking, partial single-peakedness

requires the individual preferences to be single-peaked only over a subset of alternatives. It

is worth noting that the structure of the unanimous and (group strategy-proof) strategy-proof

rules on such domains are not explored in the literature. In view of this, our main motivation in

this paper is to develop a general model for partially single-peaked domains and to provide a

characterization of the unanimous and (group strategy-proof) strategy-proof rules on those. Below,

we present some evidences of partially single-peaked domains in the literature. In Section 4, we

will formally define these notions and show that they are special cases of partially single-peaked

domains.

1.2.1 MULTI-PEAKED DOMAINS

In many practical scenarios in economics and politics, the preferences of the individuals often

exhibit multi-peakedness as opposed to single-peakedness. As the name suggests, multi-peaked

preferences admit multiple ideal points in a unidimensional policy space. We discuss a few

settings where it is plausible to assume that individuals have multi-peaked preferences.

• Preference for ‘Do Something’ in Politics: Davis et al. (1970) and Egan (2014) consider public

(decision) problems such as choosing alternate tax regimes, lowering health care costs,

responding to foreign competition, reducing the national debt, etc. They show that a public

problem is perceived to be poorly addressed by the status-quo policy, and consequently

some individuals prefer both liberal and conservative policies to the moderate status quo.

Clearly, such a preference will have two peaks, one on the left of the status quo and another

one on the right.

• Multi-stage Voting System: Denzau and Mackay (1981) and Enelow and Hinich (1983) deal

with multi-stage voting system where individuals vote on a set of issues where each issue
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can be thought of as a unidimensional spectrum and voting is distributed over several

stages considering one issue at a time. In such a model, preference of an individual over the

present issue can be affected by her prediction of the outcome of the future issues. In other

words, such a preference is not separable across issues. They show that the preferences of

the individuals in such scenarios exhibit multi-peaked property.

• Provision of Public Goods with Outside Options: Barzel (1973), Stiglitz (1974), and Bearse et al.

(2001) consider the problem of setting the level of tax rates to provide public funding in

the education sector, and Ireland (1990) and Epple and Romano (1996a) consider the same

problem in the health insurance market. They show that the preferences of individuals

exhibit multi-peaked property due to the presence of outside options (i.e., the public good

is also available in a competitive market as a private good). For instance, in the problem

of determining educational subsidy, an individual with lower income may not prefer a

moderate level of subsidy since she cannot afford to bear the remaining cost for higher

education. Thus, her preference in such a scenario will have two peaks - one at a lower level

of subsidy so that she can achieve primary education, and another one at a very high level

of subsidy so that she can afford the remaining cost for higher education.

• Provision of Excludable Public Goods: Fernandez and Rogerson (1995) and Anderberg (1999)

consider public good provision models such as health insurance, educational subsidies,

pensions, etc. where the government provides the public good to a particular section of

individuals, and show that individuals’ preferences in such scenarios are multi-peaked.

1.2.2 MULTIPLE SINGLE-PEAKED DOMAINS

Reffgen (2015) introduces the notion of multiple single-peaked domains. Such a domain is defined as

a union of some domains each of which is single-peaked with respect to some prior orderings

over the alternatives. A plausible justification for such a domain restriction is provided by Niemi

(1969) who argues that the alternatives can be ordered differently using different criteria (which

he calls an impartial culture) and it is not publicly known which individual uses what criterion.

On one extreme, such a domain becomes an unrestricted domain if there is no consensus among

the individuals on the prior order, and on the other extreme, it becomes a maximal single-peaked

domain if all the individuals agree on a single prior order.3 It is worth noting that such domains

3A single-peaked domain is called maximal if it contains all single-peaked preferences.
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can be seen as a special case of partially single-peaked domains.

1.2.3 SINGLE-PEAKED DOMAINS ON GRAPHS

Demange (1982) and Schummer and Vohra (2002) consider domains that are based on some graph

structure over the alternatives (e.g., locating a new station in a rail-road network). They assume

that the individuals derive their preferences by using single-peakedness over some spanning tree

of the underlying graph. In this paper, we show that when the underlying graph has some specific

structure (involves a cycle or so), then the induced domains become partially single-peaked.

1.3 OUR CONTRIBUTION

In this paper, we develop a unified model for partially single-peaked domains that violate single-

peakedness over both finite and continuous set of alternatives.4 Formally speaking, we assume

that the whole interval of alternatives is divided into subintervals such that every preference

in the domain is required to satisfy single-peakedness over each of those subintervals, and is

allowed to violate the property outside those. We characterize all unanimous and strategy-proof

SCFs on such domains as partly dictatorial min-max rules (PDMMR). Loosely put, a PDMMR acts

like a min-max rule over the subintervals where the domain respects single-peakedness and like

a dictatorial rule everywhere else.

We establish several important auxiliary results. First, we consider an important sub-class

of single-peaked domains, which we call generalized top-connected single peaked domain and

characterize the unanimous and strategy-proof SCFs on such domains as min-max rules (MMR).

Second, we show that notions of strategy-proofness and group strategy-proofness are equivalent

on partially single-peaked domains. Third, since PDMMRs are not anonymous, we consider SCFs

that deviate from anonymity in a minimal way and characterize unanimous and strategy-proof

SCFs that satisfy this property on partially single-peaked domains.

1.4 RELATION WITH REFFGEN (2015)

In this section, we compare our results with those of Reffgen (2015). Reffgen (2015) provides a

characterization of the unanimous and strategy-proof SCFs on multiple single-peaked domains.

4Our results extend to the case where the set of alternatives is any subset of R, however, for notational simplicity
we consider only finite and continuous set of alternatives.
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We think our results significantly improve that in Reffgen (2015) from both practical and theoretical

point of views.

1.4.1 PRACTICAL POINT OF VIEW

• Reffgen (2015) has considered multiple single-peaked domains with respect to multiple prior

orders over the alternatives. His model requires the designer to have complete information

about the prior orders that the agents might use. This assumption is not very practical if

the set of alternatives is a continuous set. On the other hand, only one prior order and an

interval over which a preference might violate single-peakedness are enough to use our

result. Let us illustrate the usefulness of our result by means of the following example.

Consider the situation where the locations x1, . . . , x10 are arranged on a street. Suppose

further that there is a direct route from x4 to x8. This means that a preference with x4 at the

top may have x8 as its second ranked alternative, and that with x8 at the top may have x4

as second ranked alternative. However, it is not possible for the designer to assume any

ordering with respect to which such a preference will be single-peaked (particularly, over

the alternatives x5, x6, and x7). Thus, such domains violate the basic principle of multiple

single-peaked domains which assumes that every agent derives his/her preference with

respect to some prior ordering assumed over the alternatives.

• Multiple single-peaked domains require each single-peaked domain to be maximal. Such

a single-peaked domain requires 2m−1 preferences, where m is the number of alternatives.

This is a strong requirement since many domains of practical importance such as Euclidean

etc. do not satisfy this condition. In contrast, our result applies to multiple single-peaked

domains that require each single-peaked domain to be only top-connected. It is worth

noting that the number of preferences in such single-peaked domain can range from 2m− 2

to 2m−1. This significantly improves the applicability of multiple single-peaked domains.

1.4.2 THEORETICAL POINT OF VIEW

• We generalize the result in Reffgen (2015) for multiple single-peaked domains having

(suitable) weak preferences and over continuous set of alternatives.

• In general, a major step in characterizing the unanimous and strategy-proof SCFs on a

domain is to show that the domain is tops-only. In case of multiple single-peaked domains,
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tops-onlyness follows from Chatterji and Sen (2011). However, the same does not follow for

partial single-peaked domains.

• It follows from Barberà et al. (2010) that every unanimous and strategy-proof SCF on

multiple single-peaked domain is group strategy-proof. However, the same does not hold

for partially single-peaked domains. We establish this independently in this paper.

1.5 OTHER RELATED PAPERS

Chatterji et al. (2013) study a related restricted domain known as a semi-single-peaked domain.

Such a domain violates single-peakedness around the tails of the prior order. They show that if a

domain admits an anonymous (and hence non-dictatorial), tops-only, unanimous, and strategy-

proof SCF, then it is a semi-single-peaked domain. However, we show that if single-peakedness

is violated around the middle of the prior order, then there is no unanimous, strategy-proof,

and anonymous SCF. Thus, our characterization result on partially single-peaked domains

complements that in Chatterji et al. (2013). Recently, Arribillaga and Massó (2016) provide

necessary and sufficient conditions for the comparability of two min-max rules in terms of

their vulnerability to manipulation. However, our results identify the min-max rules that are

manipulable if single-peakedness is violated over a subset of alternatives.

Our characterization result on generalized top-connected single-peaked domains contributes to

the large literature studying unanimous and strategy-proof SCFs on single-peaked domains over

continuous set of alternatives like Moulin (1980), Border and Jordan (1983), Barberà et al. (1993),

Ehlers et al. (2002), Dutta et al. (2007), Massó and De Barreda (2011) and Weymark (2011) among

others. In particular, Massó and De Barreda (2011) consider domain of symmetric single-peaked

preferences. A single-peaked preference is called symmetric if an alternative is strictly preferred

to another one if and only if the former is strictly closer to the top-ranked alternative. In other

words, this means that if an indifference class contains two alternatives then both are located in

the opposite sides of the top-ranked alternative and are at equidistant from the it. Massó and

De Barreda (2011) show that such domains allow min-max rules with discontinuity jumps as

strategy-proof and tops-only SCFs and hence, these form a strictly larger class of SCFs than the

set of min-max rules.5

5An SCF is called tops-only if it is insensitive to changes outside the top-ranked alternatives of a preference profile.
See Section 2.3 for a formal definition.
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1.6 REMAINDER

The rest of the paper is organized as follows. We describe the usual social choice framework in

Section 2. In Section 3, we presents our main results. Section 4 provides a few applications of our

results, and the last section concludes the paper. All the omitted proofs are collected in Appendix

B.

2. PRELIMINARIES

Let N = {1, . . . , n} be a set of at least two agents and X be a set of (finite or infinite) alternatives

with at least three alternatives. When X is finite, we assume it to be the set {a, a + 1, . . . , b− 1, b},

and when it is infinite, we assume it to be the interval [a, b], for some real numbers a and b.6 For

x, y ∈ X with x ≤ y, we define the intervals [x, y] = {z ∈ X | x ≤ z ≤ y}, [x, y) = [x, y] \ {y},

(x, y] = [x, y] \ {x}, and (x, y) = [x, y] \ {x, y}. Let ∆(X) = 1 if X is finite and ∆(X) = 0 if

X is infinite/continuous. In other words, ∆(X) denotes the infimum distance between two

alternatives in X. Throughout this paper, we assume that a number δ with ∆(X) ≤ δ < b− a

and two alternatives x and x with x < x− δ are arbitrary but fixed. For notational convenience,

whenever it is clear from the context, we do not use braces for singleton sets, i.e., we denote sets

{i} by i.

A (weak) preference R over X is a complete and transitive binary relation (also called a weak

order) defined on X. We denote the set of all preferences over X by W(X). For a preference

R, we denote its asymmetric part by P, that is, xPy implies
[
xRy and not yRx

]
. In this paper,

we only consider preferences R for which there is a unique first-ranked alternative R(1) such

that R(1)Py for all y ∈ X \ R(1). Furthermore, when X is finite, we assume that R has a unique

second-ranked alternative R(2) such that R(2)Py for all y ∈ X \ {R(1), R(2)}.7 A domain of

admissible preferences, denoted by D, is a subset of W(X). An element RN = (R1, . . . , Rn) ∈ Dn

is called a preference profile. For notational convenience, for a preference R sometimes we write

R ≡ xy · · · to mean that the first-ranked alternative of R is x and the second-ranked one is y.

6Our results will also hold with suitable modification for the case when X is any subset of R; here we make this
additional assumption in the interest of expositional simplicity.

7If X is infinite, then such a second-ranked alternative may or may not exist for R.
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2.1 DOMAINS AND THEIR PROPERTIES

A domain D of preferences is regular if for all x ∈ X, there exists a preference R ∈ D such that

R(1) = x. All the domains we consider in this paper are assumed to be regular.

Definition 2.1. A domain D satisfies generalized top-connectedness if for all x, y, z ∈ X with y− δ ≤

x < y < z ≤ y + δ, there are two preferences R, R′ ∈ S such that (i) R(1) = R′(1) = y and (ii)

xPz and zP′x.8

Note that when X is finite and δ = ∆(X)(= 1), generalized top-connectedness is equivalent to

requiring that for all x, y ∈ X with |x− y| = 1, there is R ∈ D such that R ≡ xy · · · .

A preference is single-peaked if whenever one moves away from its top-ranked alternative in

any direction, preference declines strictly. Note that two alternatives on the different sides of the

top-ranked alternative might be indifferent according to a (weak) single-peaked preference. We

define single-peaked preferences and domains with respect to the natural ordering < over R, the

same can be defined with respect to arbitrary linear order ≺ in a similar fashion.

Definition 2.2. A preference R ∈W(X) is single-peaked if for all x, y ∈ X, [x < y ≤ R(1) or R(1) ≤

y < x] implies yPx.

A domain S is called a single-peaked domain if each preference in it is single-peaked. We write S

to denote a single-peaked domain with respect to the integer ordering over X. A domain is called

generalized top-connected single-peaked if it is both generalized top-connected and single-peaked.

2.2 PARTIALLY SINGLE-PEAKED DOMAINS

In this section, we introduce a class of domains that violates single-peaked property over the

interval [x, x] and exhibits the property everywhere else. We call such domains partially single-

peaked domains. We present these domains with respect to the natural ordering < over R, the

same can be defined with respect to arbitrary linear order ≺ in a similar fashion.

Definition 2.3. A domain S̃ satisfies single-peakedness outside [x, x] if for all R ∈ S̃ , all u /∈ (x, x),

and all v ∈ X, [
v < u ≤ R(1) or R(1) ≤ u < v

]
implies uPv.

8The term top-connectedness is well-known in the literature for the special case where X is finite and δ = 1. Since
we generalize this notion for arbitrary (finite or infinite) X and δ, we call it generalized top-connectedness.
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To gain more insight about Definition 2.3, first consider a preference with top-ranked alternative

in [x, x]. Then, Definition 2.3 says that such a preference satisfies single-peakedness over the

intervals [a, x] and [x, b]. That is, the relative ordering of two alternatives u, v is derived by using

single-peaked property whenever both of them are either in the interval [a, x] or in the interval

[x, b]. Note that Definition 2.3 does not impose any restriction on the relative ordering of an

alternative in [x, x] and any other alternative. Next, consider a preference R such that R(1) /∈ [x, x].

Suppose, for instance, R(1) ∈ [a, x). Then, Definition 2.3 says that R satisfies single-peakedness

over the interval [a, R(1)]. It further says that if an alternative u lies in the interval (R(1), x] or in

the interval [x, b], then, as required by single-peakedness, it is preferred to any alternative v in

the interval (u, b]. Thus, Definition 2.3 does not impose any restriction on the relative ordering

of an alternative in (x, x) and an alternative in [x, b]. Therefore, in particular, Definition 2.3 does

not impose any restriction on any preference on the relative ordering of two alternatives in the

interval (x, x).

Definition 2.4. A domain S̃ violates single-peakedness over [x, x] if there exist R̃ ≡ xy · · · , R̃′ ≡

xz · · · ∈ S̃ such that either
[
y ∈ (x + δ, x) and z ∈ (x, x− δ)

]
or
[
y = x and z = x

]
.

First note when δ = ∆(X), no domain can violate single-peakedness over [x, x]. Second note

that since R̃(1) + δ < R̃(2) ≤ x and x ≤ R̃′(2) < R̃′(1)− δ, both the preferences R̃ and R̃′ violate

single-peakedness over the interval [x, x].

REMARK 2.1. Definition 2.4 introduces the concept of violation of single-peakedness over an

interval. One may think of domains that violate single-peakedness over several disjoint intervals,

say [y
1
, y1], [y2

, y2], . . . , [y
k
, yk]. However, in such cases, according to Definition 2.4, the domain

violates single-peakedness over the interval [y
1
, yk]. Thus, our notion of violation of single-

peakedness over an interval captures violation of the same over several disjoint intervals as

well.

Definition 2.5. A domain S̃ is called [x, x]-partially single-peaked if

(i) it satisfies single-peakedness outside [x, x] and violates it over [x, x], and

(ii) it contains a generalized top-connected single-peaked domain.

Note that when δ = ∆(X), (i) in Definition 2.5 reduces to requiring single-peakedness over

the whole set of alternatives. In other words, every single-peaked domain is [x, x]-partially

single-peaked when δ satisfies the mentioned condition.
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We illustrate the notion of partially single-peaked domains in Figure 1. Figure 1(a) and

Figure 1(b) present partially single-peaked preferences P with R(1) ∈ [x, x] and R(1) ∈ [a, x),

respectively. Figure 1(c) presents partially single-peaked preferences R̃ = xy · · · and R̃′ = xz · · ·

when y ∈ (x + 1, x) and z ∈ (x, x − 1), and Figure 1(d) presents those when y = x and z = x.

Note that, as explained before, all these preferences are single-peaked over the intervals [a, x]

and [x, b]. Furthermore, for the preference depicted in Figure 1(a), there is no restriction on the

ranking of the alternatives in the interval (x, x), and for the one shown in Figure 1(b), there is no

restriction on the ranking of the alternatives in the interval (x, x) except that x is preferred to all

the alternatives in (x, b]. Also, for the preferences in Figures 1(c) and 1(d), there is no restriction

on the ranking of the alternatives in (x, x) other than that on the second-ranked alternatives.

a x x bR(1)

(a) Partially single-peaked preference R with R(1) ∈ [x, x]

a x x bR(1)

(b) Partially single-peaked preference R with R(1) ∈ [a, x)

a bxR̃(1) = x R̃(2) = y a bx R̃′(1) = xR̃′(2) = z

(c) Partially single-peaked preferences R̃, R̃′ with x + 1 < R̃(2) < x and x < R̃′(2) < x− 1

a bR̃(1) = x R̃(2) = x a bR̃′(1) = xR̃′(2) = x

(d) Partially single-peaked preferences R̃, R̃′ with R̃(2) = x and R̃′(2) = x

Figure 1: Partially single-peaked preferences

In what follows, we present an example of a partially single-peaked domain when the set of

alternatives X is finite.
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Example 2.1. Let X = {x1, x2, x3, x4, x5, x6, x7, x8}, where x1 < x2 < x3 < x4 < x5 < x6 <

x7 < x8. Consider the domain of preferences in the Table 1. Here, for instance, we write

R9 = [x5][x6][x4][x3, x7][x2, x8][x1] to mean x5P9x6P9x4P9x3 I9x7P9x2 I9x8P9x1.

The domain in the Table 1 is a [x3, x6]-partially single-peaked domain. To see this, first

consider a preference with top-ranked alternative in the interval [x3, x6], say R10. Note that

x3P10x2P10x1 and x6P10x7P10x8, which means R10 is single-peaked over the intervals [x1, x3] and

[x6, x8]. Moreover, the position of x4 is completely unrestricted (here at the bottom) in R10. Next,

consider a preference with top-ranked alternative in the interval [x1, x3], say R2. Once again,

note that R2 is single-peaked over the intervals [x1, x3] and [x6, x7]. Thus, the domain in Table 1

satisfies single-peakedness outside the interval [x3, x6]. Now, consider the preferences R̃ and R̃′.

Since R̃(1) = x3, R̃(2) = x3, R̃′(1) = x6, and R̃′(2) = x4, this domain violates single-peakedness

over [x3, x6]. Finally, note that the domain contains a generalized top-connected single-peaked

domain given by R1, R2, R3, R4, R5, R6, R7, R8, R11, R12, R13, and R14.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R̃ R̃′

[x1] [x2] [x2] [x3] [x3] [x4] [x4] [x5] [x5] [x5] [x6] [x6] [x7] [x7] [x8] [x3] [x6]
[x2] [x1] [x3] [x2] [x4] [x3] [x5] [x4] [x6] [x6] [x5] [x7] [x6] [x8] [x7] [x5] [x4]
[x3] [x3] [x1] [x4] [x2] [x5] [x3] [x3] [x4] [x3x7] [x7] [x8] [x5] [x6] [x6] [x2] [x5]
[x4] [x4] [x4] [x5] [x1x5] [x2x6] [x2] [x6] [x3x7] [x2x8] [x4x8] [x5] [x4] [x5] [x5] [x4] [x3]
[x5] [x5] [x5] [x6] [x6] [x7] [x6] [x7] [x2x8] [x1] [x3] [x4] [x3] [x4] [x4] [x1] [x7]
[x6] [x6] [x6] [x1] [x7] [x1] [x7] [x2x8] [x1] [x4] [x2] [x3] [x2] [x3] [x3] [x6] [x2x8]
[x7] [x7] [x7] [x7] [x8] [x8] [x1] [x1] [x1] [x2] [x8x1] [x2] [x2] [x7] [x1]
[x8] [x8] [x8] [x8] [x8] [x1] [x1] [x1] [x8]

Table 1: A partially single-peaked domain

2.3 SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

In this section, we introduce the notion of social choice functions and discuss their properties. A

social choice function (SCF) f on Dn is a mapping f : Dn → X. An SCF f : Dn → X is unanimous if

for all PN ∈ Dn such that r1(Pi) = x for all i ∈ N and some x ∈ X, we have f (PN) = x.

Definition 2.6. An SCF f : Dn → X is manipulable if there exists i ∈ N, RN ∈ Dn, and R
′
i ∈ D

such that f (R
′
i, RN\i)Pi f (RN). An SCF f is strategy-proof if it is not manipulable.

An SCF f : Dn → X is called dictatorial if there exists d ∈ N such that for all RN ∈ Dn,

f (RN) = Rd(1). A domain D is called dictatorial if every unanimous and strategy-proof SCF

f : Dn → X is dictatorial.
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A pair of preference profiles RN , R′N ∈ Dn is called tops-equivalent if Ri(1) = R′i(1) for all agents

i ∈ N. An SCF f : Dn → X is called tops-only if f (RN) = f (R′N) for all tops-equivalent preference

profiles RN , R′N ∈ Dn. A domain D is called tops-only if every unanimous and strategy-proof SCF

f : Dn → X is tops-only.

Definition 2.7. An SCF f : Dn → X is called uncompromising if for all RN ∈ Dn, all i ∈ N, and all

R′i ∈ D:

(i) if Ri(1) < f (RN) and R′i ≤ f (RN), then f (RN) = f (R′i, RN\i), and

(ii) if f (RN) < Ri(1) and f (RN) ≤ R′i(1), then f (RN) = f (R′i, RN\i).

In words, uncompromisingness means that as long as the first-ranked alternative of an agent

does not change its ‘side’ with respect to the outcome, the outcome cannot change.

REMARK 2.2. If an SCF satisfies uncompromisingness, then by definition, it is tops-only.

Next, we define the notion of min-max rules. These are introduced in Moulin (1980).

Definition 2.8. Let β = (βS)S⊆N be a list of 2n parameters satisfying: (i) βS ∈ X for all S ⊆ N, (ii)

β∅ = b, βN = a, and (iii) for any S ⊆ T, βT ≤ βS. Then, an SCF f β : Dn → X is called a min-max

rule with respect to β if

f β(RN) = min
S⊆N
{max

i∈S
{Ri(1), βS}}.

REMARK 2.3. Every min-max rule is uncompromising.

Now, we define the notion of partly dictatorial min-max rules. These rules play a crucial role in

our characterization results. In words, these rules are a subclass of min-max rules where certain

parameters are restricted in a particular manner.

Definition 2.9. A min-max rule f β : Dn → X with parameters β = (βS)S⊆N is a partly dictatorial

min-max rule with respect to [x, x] ([x, x]-PDMMR) if δ > min(X) implies there exists a unique

agent d ∈ N, called the partial dictator of f β, such that βd ∈ [a, x] and βN\d ∈ [x, b].

Note that when δ = ∆(X) then Definition 2.9 does not impose any restriction on a min-max

rule. Therefore, every min-max rule is a [x, x]-PDMMR rule. A few examples of PDMMRs are in

order to help understand the notion better.
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Example 2.2. Any dictatorial rule is an [x, x]-PDMMR for any choice of x and x. For instance,

consider the dictatorial rule with agent 1 as the dictator. One can verify that this rule can be

written as an MMR f β such that for all non-empty S ( N, βS = a if 1 ∈ S and βS = b otherwise.

Since β1 = a ≤ x and βN\1 = b ≥ x, f β is a [x, x]-PDMMR.

Example 2.3. Fix an agent d ∈ N and consider a min-max rule f β such that for all non-empty

S ( N, βS = x if d ∈ S and βS = x otherwise. In particular, this implies that βd = x and

βN\{d} = x. Therefore, f β is a PDMMR with agent d as the partial dictator. However, note that

the agent d is not a dictator of f β if x 6= a or x 6= b. This is because a quick inspection tells us that

f β(RN) = x where Rd(1) = a and Ri(1) = b for all i 6= d, and f β(R′N) = x where Rd(1) = b and

Ri(1) = a for all i 6= d. In Section 3.3, we study these PDMMRs in more detail.

Example 2.4. Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. Consider the following

domain D:

D = {[x1][x2][x3][x4][x5], [x2][x1][x3][x4][x5], [x2][x3][x4][x5][x1], [x2][x4][x1][x3][x5],

[x3][x2][x4][x1x5], [x3][x4][x2][x1x5], [x4][x3][x5][x2][x1], [x4][x5][x3][x2][x1],

[x5][x4][x3][x2][x1], [x5][x3][x4][x2][x1]}.

It can be verified that D is an [x2, x5]-partially single-peaked domain. In Table 2, we present an

[x2, x5]-PDMMR, where agent 1 is the partial dictator. To see this, observe that whenever agent

1’s top-ranked alternative is in [x2, x5] then he is a dictator, i.e., the outcome is his top-ranked

alternative, and whenever agent 1’s top-ranked alternative is x1, then the outcome of the social

choice function is either x1 or x2.

R1

R2 [x1][x2][x3][x4][x5] [x2][x1][x3][x4][x5] [x2][x3][x4][x5][x1] [x2][x4][x1][x3][x5] [x3][x2][x4][x1x5] [x3][x4][x2][x1x5] [x4][x3][x5][x2][x1] [x4][x5][x3][x2][x1] [x5][x4][x3][x2][x1] [x5][x3][x4][x2][x1]

[x1][x2][x3][x4][x5] x1 x2 x2 x2 x2 x2 x2 x2 x2 x2
[x2][x1][x3][x4][x5] x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
[x2][x3][x4][x5][x1] x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
[x2][x4][x1][x3][x5] x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
[x3][x2][x4][x1x5] x3 x3 x3 x3 x3 x3 x3 x3 x3 x3
[x3][x4][x2][x1x5] x3 x3 x3 x3 x3 x3 x3 x3 x3 x3
[x4][x3][x5][x2][x1] x4 x4 x4 x4 x4 x4 x4 x4 x4 x4
[x4][x5][x3][x2][x1] x4 x4 x4 x4 x4 x4 x4 x4 x4 x4
[x5][x4][x3][x2][x1] x5 x5 x5 x5 x5 x5 x5 x5 x5 x5
[x5][x3][x4][x2][x1] x5 x5 x5 x5 x5 x5 x5 x5 x5 x5

Table 2: An [x2, x5]-PDMMR

In Lemma 2.1, we explain why the particular agent d is called the partial dictator of f β.

Lemma 2.1. Let f β : Dn → X be a [x, x]-PDMMR. Suppose agent d is the partial dictator of f β. Then,
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(i) f β(RN) ∈ [a, x] if Rd(1) ∈ [a, x),

(ii) f β(RN) ∈ [x, b] if Rd(1) ∈ (x, b], and

(iii) f β(RN) = Rd(1) if Rd(1) ∈ [x, x].

Proof. First, we prove (i). The proof of (ii) can be established using symmetric arguments. As-

sume for contradiction that Rd(1) ∈ [a, x) and f β(RN) > x. Since f β is a min-max rule, f β is

uncompromising. Therefore, f β(R′d, RN\d) = f β(RN), where R′d(1) = a. Again since f β is a

min-max rule, we have f β(R′N) ≥ f β(RN), where R′i(1) = b for all i 6= d. Because f β(RN) > x,

this means f β(R′N) > x. However, by the definition of f β, f β(R′N) = βd. Since βd ∈ [a, x], this is a

contradiction. This completes the proof of (i).

Now, we prove (iii). Without loss of generality, assume for contradiction that Rd(1) ∈ [x, x] and

f β(RN) > Rd(1). Consider R′d such that R′d(1) ∈ [a, x). By uncompromisingness, f β(R′d, RN\d) =

f β(RN) > Rd(1) ≥ x, which contradicts (i). This completes the proof of (iii). �

REMARK 2.4. Reffgen (2015) defines partly dictatorial generalized median voter scheme (PDGMVS) on

multiple single-peaked domains. It can be shown that an [x, x]-PDMMR coincides with PDGMVS

on those domains where [a, x), [x, x], and (x, b] are the left, middle, and right components,

respectively, of the maximal common decomposition (as defined in Reffgen (2015)) of the domain.9

3. RESULTS

In this section, we start by presenting two central results of our paper (Theorems 3.1 and 3.2)

followed by a few important auxiliary results in the subsequent sections. The following theorem

characterizes all unanimous and strategy-proof SCFs on generalized top-connected single-peaked

domains as min-max rules.

Theorem 3.1. Let S be a generalized top-connected single-peaked domain. An SCF f : Sn → X is

unanimous and strategy-proof if and only if it is a min-max rule.

The proof of this theorem is relegated to Appendix A. It is worth mentioning that Theorem

3.1 is of independent interest as it generalizes a result in Achuthankutty and Roy (2018) for

continuous set of alternatives. The next theorem characterizes all unanimous and strategy-proof

SCFs on partially single-peaked domains as partly dictatorial min-max rules.

9For details, see the proof of Theorem 1 (Steps 1-3) in Reffgen (2015).
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Theorem 3.2. Let S̃ be a [x, x]-partially single-peaked domain. Then, an SCF f : S̃n → X is unanimous

and strategy-proof if and only if it is a [x, x]-PDMMR.

The proof of this theorem is relegated to Appendix 3.2. Our next corollary is a consequence

of Lemma 2.1 and Theorem 3.2. It characterizes a class of dictatorial domains, and thereby it

generalizes the celebrated Gibbard-Satterthwaite (Gibbard (1973), Satterthwaite (1975)) results.

Note that our dictatorial result is independent of those in Aswal et al. (2003), Sato (2010), Pramanik

(2015), and so on.

Corollary 3.1. Every [a, b]-partially single-peaked domain is dictatorial.

REMARK 3.1. An important implication of Corollary 3.1 is that single-peaked domains, despite

admitting a large class of unanimous and strategy-proof SCFs, are not very robust for the existence

of such SCFs. In fact, addition of just two particular non single-peaked preferences to a single-

peaked domain makes it a dictatorial domain.

3.1 GROUP STRATEGY-PROOFNESS

In this section, we consider group strategy-proofness and obtain a characterization of unanimous

and group strategy-proof SCFs on partially single-peaked domains. We begin with the definition

of group strategy-proofness.

Definition 3.1. An SCF f : Dn → X is called group manipulable if there is a preference profile RN,

a non-empty coalition C ⊆ N, and a preference profile R′C ∈ D|C| of the agents in C such that

f (R′C, RN\C)Pi f (RN) for all i ∈ C. An SCF f : Dn → X is called group strategy-proof if it is not

group manipulable.

Theorem 3.3. Every [x, x]-PDMMR is group strategy-proof on a [x, x]-partially single-peaked domain.

3.2 A RESULT ON PARTIAL NECESSITY

Our main result focuses on partially single-peaked domains and have shown that every unan-

imous and strategy-proof SCF on those is a [x, x]-PDMMR. In this subsection, we look at the

converse of this problem, that is, we focus on [x, x]-PDMMR and investigate the class of do-

mains where these rules are unanimous and strategy-proof. We provide a necessary condition of

domains that satisfy this property. A formal definition is as follows.
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Definition 3.2. A domain D is called a [x, x]-PDMMR domain with respect to if

(i) every unanimous and strategy-proof SCF on Dn is a [x, x]-PDMMR, and

(ii) every [x, x]-PDMMR on Dn is strategy-proof.

By Theorem 3.2, every [x, x]-partially single-peaked domain is a [x, x]-PDMMR domain. In

what follows, we show that every [x, x]-PDMMR domain must satisfy single-peakedness outside

[x, x].

Lemma 3.1. Let D be a [x, x]-PDMMR domain. Then D satisfies single-peakedness outside [x, x].

3.3 A CONSIDERATION FOR ANONYMITY

One crucial fact about partially single-peaked domains is that, they, for any deviation from single-

peaked domains, do not permit anonymous social choice functions that are also unanimous and

strategy-proof. Since anonymity is an important fairness property for a social choice function,

in this section we proceed to investigate which unanimous and strategy-proof SCFs are “most

anonymous” in a suitable sense.

For a profile RN and a permutation π of N, we denote by Rπ
N the permuted profile defined

as (Rπ(i))i∈N. Note that if an SCF f is anonymous then f (RN) = f (Rπ
N) for all permutations π

of N. Therefore, to measure the deviation of an SCF from anonymity, we see to what extent the

outcomes of an SCF can vary over different permutations of a profile. The deviation of an SCF f

from anonymity at a profile RN is defined as ∆( f , RN) = max{ f (Rπ
N) | π ∈ Π} −min{ f (Rπ

N) |

π ∈ Π}. An SCF f is most anonymous at a profile RN if ∆( f , RN) ≤ ∆(g, RN) for all SCFs g, and

it is called most anonymous if it is so at every RN ∈ S̃n.

Note that our definition of a most anonymous rule is quite demanding as it requires an SCF to

be so at every preference profile. It is quite possible that there is no such SCF that outperforms

every other SCF at every profile. However, as our next theorem says, a most anonymous rule

does exist on a partially single-peaked domain. For such a rule, each (non-trivial) parameter

value βS is either x or x depending on whether d is contained in S or not.

Theorem 3.4. Let S̃ be a [x, x]-partially single-peaked domain. A unanimous and strategy-proof SCF

f β : S̃n → X is most anonymous if and only if it is a [x, x]-PDMMR such that for all non-empty S ( N,

βS = x if d ∈ S, and βS = x otherwise, where d is the partial dictator of f .

The proof of Theorem 3.4 is relegated to Appendix D.
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4. APPLICATIONS

In this section, we present three applications of our main result.

4.1 MULTI-PEAKED DOMAINS

In Section 1, we have discussed the importance of multi-peaked domains in modeling preferences

of individuals in certain economic and political scenarios. In this subsection, we formally define

this notion and show that these are special cases of partially single-peaked domains.

Definition 4.1. A preference P is called multi-peaked if there are d0, p1, d1, p2, d2, . . . , dk−1, pk, dk

with a = d0 ≤ p1 < d1 < · · · < pk ≤ dk = b such that for all i = 0, . . . , k− 1 and all x, y ∈ [di, di+1],

[x < y ≤ pi+1 or pi+1 ≤ y < x] implies yPx. For such a preference P the alternatives p1, . . . , pk

are called its peaks.

We present a multi-peaked domain in Figure 2.

d0 = p1 d1 p2 d2 p3 d3 p4 d4 p5 d5 p6 d6

Figure 2: A multi-peaked preference

Definition 4.2. Let c1 and c2 be two alternatives such that c1 < c2 − δ. A domain D is called

multi-peaked with critical values c1, c2 if it is the union of a top-connected single-peaked domain

and the collection of all multi-peaked preferences having peaks in the interval [c1, c2].

It is easy to verify that a multi-peaked domain with critical values x and x is a [x, x]-partially

single-peaked domain. Thus, we have the following corollary.

Corollary 4.1. Let S be a multi-peaked domain with critical values x and x. Then, an SCF f : Sn → X

is unanimous and (group strategy-proof) strategy-proof if and only if it is a [x, x]-PDMMR.
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4.2 MULTIPLE SINGLE-PEAKED DOMAIN

In this subsection, we assume that X is finite and restrict our attention to strict preferences. We

consider a well-known class of multiple single-peaked domains and show that they are special

cases of partially single-peaked domains.

Definition 4.3. Let L = {≺1, . . . ,≺q}, where ≺k∈ L(X) for all 1 ≤ k ≤ q, be a set of q prior

orders over X. Then, a domain is called a multiple single-peaked domain with respect to L, denoted by

SL, if SL =
⋃

k∈{1,...,q}
S̄≺k , where S̄≺k is the domain of all single-peaked preferences with respect to

the prior order≺k. A multiple single-peaked domain with respect to L is called trivial if S̄≺ = S̄≺′

for all ≺,≺′∈ L.

For ease of presentation, for any multiple single-peaked domain with respect to L, we assume

without loss of generality that the integer ordering < is in the set L.

Definition 4.4. Let SL be a non-trivial multiple single-peaked domain with respect to a set of

prior orders L. Then, alternatives u, v ∈ X with u < v− 1 are called break-points of SL if

(i) for all preferences P ∈ SL and all c, d ∈ X \ (u, v),
[
d < c ≤ P(1) or P(1) ≤ c < d

]
implies

cPd, and

(ii) there exist P, P′ ∈ SL such that P(1) = u, P(2) ∈ (u+ 1, v], P′(1) = v, and P′(2) ∈ [u, v− 1).

REMARK 4.1. The break points, say u, v, of a non-trivial multiple single-peaked domain SL induce

the partition {XL, XM, XR} of X, where XL = [a, u), XM = [u, v], and XR = (v, b]. Reffgen (2015)

calls such a partition the maximal common decomposition of X and the sets XL, XM, and XR as the

left component, the middle component, and the right component of alternatives, respectively.

In the following, we illustrate the notion of break-points of a non-trivial multiple single-peaked

domain by means of an example.

Example 4.1. Let X = {x1, x2, x3, x4, x5, x6, x7} be the set of alternatives. Consider the set of prior

orders L = {<,≺1,≺2,≺3}, where <= x1x2x3x4x5x6x7,≺1= x1x2x3x5x4x6x7,≺2= x1x2x5x4x3x6

x7, and ≺3= x1x2x4x3x5x6x7. Let SL be the multiple single-peaked domain with respect to L.

Clearly, SL is non-trivial since S̄≺1 6= S̄≺2 . We claim u = x2 and v = x6 are the break points

of SL. It is easy to verify that SL satisfies Condition (i) in Definition 4.4. For Condition (ii),

note that we have preferences P, P′ ∈ S̄≺2 ⊆ SL where P(1) = x2, P(2) = x5, P′(1) = x6, and
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P′(2) = x3. Further, note that the maximal common decomposition of X is given by XL = {x1},

XM = {x2, x3, x4, x5, x6}, and XR = {x7}.

It can be easily verified that every non-trivial multiple single-peaked domain with break points

x and x is a [x, x]-partially single-peaked domain for δ = 1. Thus, we have the following corollary.

Corollary 4.2 (Reffgen (2015)). Let SL be a non-trivial multiple single-peaked domain with break-points

x and x. Then, an SCF f : Sn
L → X is unanimous and (group strategy-proof) strategy-proof if and only if

it is a [x, x]-PDMMR.

4.3 SINGLE-PEAKED DOMAINS ON GRAPHS

In this subsection, we assume that X is finite and introduce the notion of single-peaked domains

on graphs. We show that such a domain is partially single-peaked if the underlying graph satisfies

some condition.10 All the graphs we consider in this subsection are undirected.

A path in an undirected graph G = 〈X, E〉 from a node x to a node y, denoted by πG(x, y), is

defined as a sequence of distinct nodes (x1, . . . , xk) such that {xi, xi+1} ∈ E for all i = 1, . . . , k−

1.11 An undirected graph G = 〈X, E〉 is called connected if for all x, y ∈ X, there is a path from x to

y. An undirected graph G = 〈X, E〉 is called a tree if for every two distinct nodes x, y ∈ X, there

is a unique path from x to y. A spanning tree of an undirected connected graph G is defined as

a connected subgraph of G that is a tree. For an undirected connected graph G, we denote by

TG the set of all spanning trees of G. Let T = 〈X, E〉 be a tree. Then, a domain is called maximal

single-peaked with respect to T, denoted by ST, if for all R ∈ ST and all distinct x, y ∈ X,

[x ∈ πT(R(1), y)] =⇒ [xPy].

Definition 4.5. Let G = 〈X, E〉 be an undirected connected graph. Then, a domain is called

single-peaked with respect to G, denoted by SG, if SG = ∪T∈TGST.

Note that if T is the undirected line graph on X, then ST is the maximal single-peaked domain.

In Lemma 4.1, we show that if a domain is single-peaked with respect to an undirected partial line

graph with respect to x and x as defined in Definition E.2, then it is an [x, x]-partially single-peaked

domain with δ = 1.
10All the related graph theoretic notions are introduced in Appendix E.
11Note that a path is self-avoiding by definition.
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Lemma 4.1. Let G be an undirected partial line graph with respect to x and x. Then, SG is an [x, x]-

partially single-peaked domain with δ = 1.12

Combining Theorem 3.2 and Theorem 3.3 with Lemma 4.1, we obtain the following characteri-

zation of the unanimous and strategy-proof SCFs on a single-peaked domain with respect to an

undirected partial line graph.

Corollary 4.3. Let G = 〈X, E〉 be an undirected partial line graph with respect to x and x. Suppose SG is

the single-peaked domain with respect to G. Then, an SCF f : Sn
G → X is unanimous and strategy-proof

(or group strategy-proof) if and only if it is a [x, x]-PDMMR.

5. CONCLUSION

In this paper, we have considered non-single-peaked domains that arise in the literature of

economics and political science. We have modeled them as partially single-peaked domains and

have characterized all unanimous and (group strategy-proof) strategy-proof rules on those as

PDMMRs.

PDMMRs are special cases of min-max rules and thereby well-studied for welfare concerns

Gershkov et al. (2017). We have provided a necessary condition on a domain to ensure that every

unanimous and strategy-proof SCF on it is PDMMR, and partial single-peakedness itself is a

sufficient condition for the same. However, given the importance of min-max rules (and hence,

PDMMRs), it is an important problem to find more general sufficient condition. We leave it for

future research.

APPENDIX A. PROOF OF THEOREM 3.1

(If part) Note that a min-max rule is unanimous by definition (on any domain). We show that

such a rule is strategy-proof on Sn. For all i ∈ N, let S̄ be the set of all single-peaked preferences.

By Weymark (2011), a min-max rule is strategy-proof on S̄n. Since S ⊆ S̄ , a min-max rule must

be strategy-proof on Sn. This completes the proof of the if part.

(Only-if part) Let S be a generalized top-connected single-peaked domain and let f : Sn → X

be unanimous and strategy-proof. We complete the proof by means of the following lemmas.

12The proof of this lemma is rather straightforward and is left to the reader.
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For any non-empty T ⊆ N and a preference profile RN, we define Rmin
T = min{Ri(1) | i ∈ T}

and Rmax
T = max{Ri(1) | i ∈ T}. Note that since S is single-peaked, and SCF f : Sn → X is Pareto

optimal if and only if f (RN) ∈ [Rmin
N , Rmax

N ] for all RN ∈ Sn.

Lemma A.1. Every unanimous and strategy-proof SCF f : Sn → X satisfies Pareto optimality.

The proof of Lemma A.1 is rather straight-forward; we provide a proof for the sake of com-

pleteness.13 We use the following result in Barberà et al. (2010) to prove it.

Theorem A.1 (Barberà et al. (2010)). Every strategy-proof SCF on a single-peaked domain is group

strategy-proof.

Proof of Lemma A.1. By Theorem A.1, f must be group strategy-proof. Suppose that the lemma

does not hold. Without loss of generality, we assume that there is a profile RN ∈ Sn such that

R1(1) ≤ Rj(1) for all j ∈ N and f (RN) < R1(1). Let C = {i ∈ N | Ri(1) > R1(1)}. It must

be the case that C 6= ∅ as otherwise by unanimity, f (RN) = R1(1), a contradiction. Since

f (RN) < R1(1) < Rj(1) for all j ∈ C, by single-peakedness, we have R1(1)Pj f (RN) for all

j ∈ C. Let R̄N ∈ Sn be such that R̄j(1) = R1(1) if j ∈ C and R̄j = Rj otherwise. By unanimity,

f (R̄N) = R1(1). This implies agents in C manipulate f at RN via R̄C, a contradiction. This

completes the proof of Lemma A.1. �

Lemma A.2. The SCF f : Sn → X satisfies tops-onlyness.

Proof. It is enough to show that f (R1, RN\1) = f (R′1, RN\1) where R1(1) = R′1(1) = x for some

x ∈ X. Assume for contradiction that f (R1, RN\1) = y 6= y′ = f (R′1, RN\1). By strategy-proofness,

yR1y′ and y′R′1y. Since R1(1) = R′1(1) = x, both R1 and R′1 are single-peaked, and f is strategy-

proof, it must be that either y < x < y′ or y′ < x < y. Assume without loss of generality that

y < x < y′.

Let S = {i ∈ N | Ri(1) > x}. For each i ∈ S, let R̂i ∈ S be such that R̂i(1) = x. Consider

the preference profiles (R1, R̂S, RN\S∪1) and (R′1, R̂S, RN\S∪1). Note that by construction, the

top-ranked alternatives in both the profiles are less than or equal to x. So, by Lemma A.1, we

have f (R1, R̂S, RN\S∪1) ≤ x. By strategy-proofness of f , this, together with the fact both R1 and

R′1 are single-peaked with top-ranked alternative x, implies

f (R1, R̂S, RN\S∪1) = f (R′1, R̂S, RN\S∪1). (1)

13Achuthankutty and Roy (2018) proves this lemma (Corollary 1 in their paper) when the set of alternatives is
finite and only strict preferences are allowed. The proof presented here is similar to theirs.
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We complete the proof by contradicting (1).

Claim A.1. f (R1, RN\1) = y implies f (R1, R̂S, RN\S∪1) = y.

Proof of Claim A.1 Assume for contradiction f (R1, R̂S, RN\S∪1) 6= y. If f (R1, R̂S, RN\S∪1) < y

then agents in j ∈ S manipulate f at (R1, R̂S, RN\S∪1) via RS. On the other hand, if y <

f (R1, R̂S, RN\S∪1) ≤ x then agents in j ∈ S manipulate f at (R1, RN\1) via R̂S. Since f (R1, R̂S,

RN\S∪1 ≤ x, this implies f (R1, R̂S, RN\S∪1) = y completing the proof of Claim A.1. �

Claim A.2. f (R′1, RN\1) = y′ implies f (R′1, R̂S, RN\S∪1) 6= y.

Proof of Claim A.2 Let δ̂ = min{δ, x− y}. Let k ≥ 1 be the natural number such that f (R′1, RN\1) ∈(
x + (k− 1)δ̂, x + kδ̂

]
. Let S1 = {i ∈ N \ 1 | R1(1) ≥ x + (k− 1)δ̂}. Further, let R1

N\1 be such that

R1
i (1) = x + (k− 1)δ̂ and (x + kδ̂)P1

i (x + (k− 2)δ̂) for all i ∈ S1, and R1
i = Ri otherwise. Consider

the profile (R′1, R1
N\1). Since by construction, all the top-ranked alternatives in (R′1, R1

N\1) are less

than or equal to x + (k− 1)δ̂, we have by Lemma A.1, f (R′1, R1
N\1) ≤ x + (k− 1)δ̂. Moreover,

since (x + kδ̂)P1
i (x + (k− 2)δ̂) for all i ∈ S1, we have by group strategy-proofness f (R′1, R1

N\1) >

x + (k− 2)δ̂ as otherwise agents in S1 manipulate f at (R′1, R1
N\1) via RS1 . Combining all these

observations, we obtain f (R′1, R1
N\1) ∈ (x + (k− 2)δ̂, x + (k− 1)δ̂].

If k ≥ 2, then let S2 = {i ∈ N \ 1 | R1
i (1) ≥ x + (k − 2)δ̂} and let R2

N\1 be such that

R2
i (1) = x + (k− 2)δ̂ and (x + (k− 1)δ̂)P2

i (x + (k− 3)δ̂) for all i ∈ S2, and R2
i = R1

i otherwise.

By using similar arguments as in the preceding paragraph, we obtain f (R′1, R2
N\1) ∈ (x + (k−

3)δ̂, x + (k − 2)δ̂]. Continuing in this manner, we obtain a preference profile (R′1, Rk
N\1) such

that Rk
i (1) ≤ x, (x + δ̂)Pk

i (x − δ̂) for all i ∈ Sk, and f (R′1, Rk
N\1) ∈ (x − δ̂, x]. Note that by

construction of Rk
N\1, Rk

i = Ri if Ri(1) < x. Let S̄ = {i ∈ N \ 1 | Rk
i (1) = x}. Recall the set

S = {i ∈ N | Ri(1) > x}. Consider the preference profile (R′1, R̂S, RN\S∪1). By its definition, the

top-ranked alternative of each agent in S̄ in it is x. Therefore, only the agents in S̄ (might) change

their preferences from (R′1, Rk
N\1) to (R′1, R̂S, RN\S∪1) maintaining their top-ranked alternative as

x. Since f (R′1, Rk
N\1) ≤ x, by group strategy-proofness, we have f (R′1, Rk

N\1) = f (R′1, R̂S, RN\S∪1).

Since f (R′1, Rk
N\1) ∈ (x− δ̂, x] and y′ < x− δ̂, it follows that f (R′1, R̂S, RN\S∪1) 6= y′, completing

the proof of Claim A.2. �

Claim A.1 and Claim A.2 together contradict (1), which completes the proof of the lemma. �

Lemma A.3. The SCF f : Sn → X satisfies uncompromisingness.
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Proof. Let RN ∈ Sn, i ∈ N, and R′i ∈ S be such that f (RN) < Ri(1) and f (RN) ≤ R′i(1). It is

sufficient to show f (R′i, RN\i) = f (RN). Suppose Ri(1) = x, f (RN) = y, and f (R′i, RN\i) = y′.

Assume for contradiction that y 6= y′.

By strategy-proofness, we must have x < y′. This is because, if y′ ∈ (y, x], then agent i

manipulates at RN via R′i. On the other hand, if y′ < y, then by means of the fact that R′i(1) ≥ y,

agent i manipulates at (R′i, RN\i) via Ri.

Because x < y′, by means of strategy-proofness, we assume that R′i(1) = y′ and Rj(1) ≤ y′

for all j ∈ N \ {i}.14 Let T = {j ∈ N | Rj(1) ≥ x}. For j ∈ T, let R′j ∈ S be such that R′j(1) = x.

Starting from the preference profile (Ri, RN\i), by using similar arguments as in the proof of Claim

A.1 and Lemma A.2, we have f (R′T, RN\T) = y. Now, consider the preference profile (R′i, RN\i).

As in the proof of Claim A.2, let δ̂ = min{δ, x− y}. Starting from the preference profile (R′i, RN\i),

we can step by step converge to the preference profile (R̃T, RN\T) as we have done in the proof

of Claim A.2 and by additionally using Lemma A.2, such that R̃i(1) = x for all i ∈ T and

f (R̃T, RN\T) ∈ (x− δ̂, x]. Note that the preference profiles (R′T, RN\T) and (R̃T, RN\T) are tops-

equivalent. Therefore, by Lemma A.2, f (R′T, RN\T) = f (R̃T, RN\T), and hence, f (R′T, RN\T) ∈

(x− δ̂, x]. However, this contradicts the fact that f (R′T, RN\T) = y, completing the proof of the

lemma. �

Lemma A.4. The SCF f is a min-max rule.

Proof. For all S ⊆ N, let (Ra
S, Rb

N\S) ∈ S
n be such that Ra

i (1) = a for all i ∈ S and Rb
i (1) = b for

all i ∈ N \ S. Define βS = f (Ra
S, Rb

N\S) for all S ⊆ N. Clearly, βS ∈ X for all S ⊆ N. By unanimity,

β∅ = b and βN = a. Also, by strategy-proofness, βS ≤ βT for all T ⊆ S.

Take RN ∈ Sn. We show f (RN) = min
S⊆N
{max

i∈S
{Ri(1), βS}}. Suppose S1 = {i ∈ N | Ri(1) <

f (RN)}, S2 = {i ∈ N | f (RN) < Ri(1)}, and S3 = {i ∈ N | Ri(1) = f (RN)}. By strategy-

proofness and uncompromisingness, βS1∪S3 ≤ f (RN) ≤ βS1 . Consider the expression min
S⊆N
{max

i∈S
{Ri(1), βS}}. Take S ⊆ S1. Then, by Condition (iii) in Definition 2.8, βS1 ≤ βS. Since Ri(1) <

f (RN) for all i ∈ S and f (RN) ≤ βS1 ≤ βS, we have max
i∈S
{Ri(1), βS} = βS. Clearly, for all S ⊆ N

such that S ∩ S2 6= ∅, we have max
i∈S
{Ri(1), βS} > f (RN). Consider S ⊆ N such that S ∩ S2 = ∅

and S ∩ S3 6= ∅. Then, S ⊆ S1 ∪ S3, and hence βS1∪S3 ≤ βS. Therefore, max
i∈S
{Ri(1), βS} =

14Since f (R′i, RN\i) = y′, if R′i(1) 6= y′, then by strategy-proofness, f (R′′i , RN\i) = y′ for some R′′i ∈ S with
R′′i (1) = y′. Similarly, if Rj(1) < y′ for some j ∈ N \ i, then by strategy-proofness, f (R′i, R′j, RN\{i,j}) = y′ for some
R′j ∈ S with R′j(1) = y′.
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max{ f (RN), βS} ≥ max{ f (RN), βS1∪S3}. Since βS1∪S3 ≤ f (RN), we have max{ f (RN), βS1∪S3} =

f (RN). Combining all these, we have min
S⊆N
{max

i∈S
{Ri(1), βS}} = min{ f (RN), βS1}. Because

f (RN) ≤ βS1 , we have min{ f (RN), βS1} = f (RN). This completes the proof of the lemma. �

The proof of the only-if part of Theorem 3.1 follows from Lemmas A.1 - A.4.

APPENDIX B. PROOF OF THEOREM 3.2

(If part) Let S̃ be a partially single-peaked domain. Suppose f β be a PDMMR on S̃n. Then, f β

is unanimous by definition. The fact that f β is strategy-proof follows from Theorem 3.3. This

completes the proof of the if part.

(Only-if part) Let S̃ be a [x, x]-partially single-peaked domain. Suppose f : S̃n → X is a

unanimous and strategy-proof SCF. We show that f is a [x, x]-PDMMR. Let S be a generalized

top-connected single-peaked domain contained in S̃ . Such a domain must exist by Definition 2.5.

By Theorem 3.1, f restricted to Sn must be a min-max rule. We establish a few properties of f in

the following sequence of lemmas.

Lemma B.1. Let ∅ ( S ( N and let y ∈ X. Suppose (RS, RN\S) ∈ Sn and (R′S, RN\S) ∈ S̃n are two

tops-equivalent preference profiles such that Ri(1) = x for all i ∈ S and Rj(1) = y for all j ∈ N \ S.

Then, f (RS, RN\S) = y implies f (R′S, RN\S) = y.

Proof. Take S such that ∅ ( S ( N. We prove the lemma using induction on k. By unanimity,

the lemma holds for y = x. Assume y 6= x. We prove the lemma for the case where x < y, the

proof for the other case follows from similar arguments. Let δ̂ ≤ δ be such that y = x + kδ̂ for

some natural number k ∈ N and the numbers x + lδ̂ belong to the set of alternatives X for all

l ≤ k.15 We prove the lemma by using induction on k. Suppose the lemma holds for all y such

that y = x + lδ̂ for all l ≤ k and some k ∈N. We prove the lemma when y = x + (k + 1)δ̂.

Let (RS, R̂N\S) ∈ Sn be such that R̂j(1) = (x + kδ̂) and (x + (k + 1)δ̂)P̂j(x + (k − 1)δ̂) for

all j ∈ N \ S. Because f is a min-max rule on Sn and f (RS, RN\S) = x + (k + 1)δ̂, we have

f (RS, R̂N\S) = x + kδ̂. Since (RS, R̂N\S) and (R′S, R̂N\S) are tops-equivalent and R̂j(1) = x + kδ̂

for all j ∈ N \ S, we have by the induction hypothesis, f (R′S, R̂N\S) = x + kδ̂.

For all j ∈ N \ S, let R̄j ∈ S be such that R̄j(1) = x + (k + 1)δ̂ and (x + kδ̂)P̄j(x + (k + 2)δ̂).

Since the profile (RS, R̄N\S) is single-peaked and is tops-equivalent to the single-peaked profile

15If X is finite then δ̂ can be taken as 1, and if X is continuous then δ̂ can be any positive number less than δ
satisfying x + kδ̂ = y for some natural number k.
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(RS, RN\S), we have f (RS, R̄N\S) = x + (k + 1)δ̂. Moreover, since f (R′S, R̂N\S) = x + kδ̂, by

moving agents j ∈ N \ S from R̂j to R̄j one-by-one applying strategy-proofness at each step and

the construction of R̄N\S, we have f (R′S, R̄N\S) ∈ [x + kδ̂, x + (k + 2)δ̂). We claim f (R′S, R̄N\S) =

x + (k + 1)δ̂.

First, we show that f (R′S, R̄N\S) /∈ [x + kδ̂, x + (k + 1)δ̂). Recall that Ri is single-peaked for

all i ∈ S. Therefore, zPi(x + (k + 1)δ̂) for all i ∈ S and all z ∈ [x + kδ̂, x + (k + 1)δ̂). Because

f (RS, R̄N\S) = x + (k + 1)δ̂, if f (R′S, R̄N\S) ∈ [x + kδ̂, x + (k + 1)δ̂) then by moving agents in

S from Ri to R′i one-by-one applying strategy-proofness in each step, we have f (R′S, R̄N\S) /∈

[x + kδ̂, x + (k + 1)δ̂) .

Next, we show f (R′S, R̄N\S) /∈ (x+(k+ 1)δ̂, x+(k+ 2)δ̂). Assume for contradiction, f (R′S, R̄N\S)

= z ∈ (x + (k + 1)δ̂, x + (k + 2)δ̂). For all j ∈ N \ S, let ¯̄Rj ∈ S be such that ¯̄Rj(1) = (x + (k + 1)δ̂)

and (x + kδ̂) ¯̄Pjz. By using similar logic as we have used for the profile (R′S, R̄N\S), it follows that

f (R′S, ¯̄RN\S) ∈ [x + kδ̂, x + (k + 2)δ̂]. If f (R′S, ¯̄RN\S) = z, then, since f (R′S, R̂N\S) = x + kδ̂, agents

in N \ S manipulate at (R′S, ¯̄RN\S) via R̂N\S. On the other hand, if f (R′S, ¯̄RN\S) ∈ [x + (k + 1)δ̂, z),

then, since each preference in R̄N\S is single-peaked, agents in N \ S manipulate f at (R′S, R̄N\S)

via ¯̄RN\S. Finally, the fact that f (R′S, ¯̄RN\S) /∈ [x + kδ̂, x + (k + 1)δ̂) follows by using similar

arguments as for the case of the profile (R′S, R̄N\S). This proves f (R′S, R̄N\S) = x + (k + 1)δ̂ .

Since the top-ranked alternative in each preference in R̄N\S is x + (k + 1)δ̂ and f (R′S, R̄N\S) =

x + (k + 1)δ̂, it follows that the same happen for any profile N \ S as long as the top-ranked

alternatives are x + (k + 1)δ̂. This completes the proof of the lemma. �

Corollary B.1. Let ∅ ( S ( N and let c ∈ X. Suppose (RS, RN\S) ∈ Sn and (R′S, RN\S) ∈ S̃n are

two tops-equivalent preference profiles such that Ri(1) = x for all i ∈ S, and Rj(1) = c for all j ∈ N \ S.

Then, f (RS, RN\S) = c implies f (R′S, RN\S) = c.

Our next lemma shows that the outcome of f at a boundary preference profile cannot be strictly

in-between x and x.16

Lemma B.2. Let RN ∈ S̃n be such that Ri(1) ∈ {a, b} for all i ∈ N. Then, f (RN) /∈ (x, x).

Proof. Assume for contradiction that f (RN) = u ∈ (x, x) for some RN ∈ S̃n such that Ri(1) ∈

{a, b} for all i ∈ N. Let S = {i ∈ N | Ri(1) = a}. Then, it must be that ∅ ( S ( N as otherwise

we are done by unanimity. Since S̃ is partially single-peaked, there exists R̃, R̃′ ∈ S̃ such that

16A boundary preference profile is one where the top-ranked alternative of each agent is either a or b.
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R̃ = xy · · · and R̃′ = xz · · · . Further, since y > x + δ and z < x− δ, (x, y) 6= ∅ and (z, x) 6= ∅.

We distinguish three cases based on the relative positions of y, z, and u.

CASE 1. Suppose y, z ∈ (x, x) and u ∈ (x, z] ∪ [y, x).

We consider the case where u ∈ (x, z], the proof for the case where u ∈ [y, x) follows from a

symmetric argument. Let R′N ∈ Sn be such that R′i(1) = z for all i ∈ S, and R′j(1) = w for some

w ∈ [x − δ, x) such that xP′j z for all j ∈ N \ S. Since S is generalized top-connected, such a

single-peaked preference profile R′N exists in Sn. Further, let R̂N ∈ Sn be such that R̂i(1) = x for

all i ∈ S and R̂j(1) = v for some v ∈ (x, y) and v ≤ u. Because f is a min-max rule on Sn and

f (RN) = u, we have f (R′S, R′N\S) = z and f (R̂S, R̂N\S) = v. As f (R̂S, R̂N\S) = v, by Lemma B.1,

we have f (R̃S, R̂N\S) = v where R̃i = R̃ for all i ∈ S. Consider the preference profile (R̃′S, R′N\S),

where R̃′i = R̃ for all i ∈ S. Note that f (R′S, R′N\S) = z and R̃′ = xz · · · . Therefore, by moving

agents in i ∈ S from R′i to R̃′i one-by-one and using strategy-proofness at every step, we have

f (R̃′S, R′N\S) ∈ {x, z}. We claim f (R̃′S, R′N\S) = x. Assume for contradiction that f (R̃′S, R′N\S) = z.

Since xP′j z for all j ∈ N \ S, by moving agents j ∈ N \ S from R′j to R̃′j one-by-one and applying

strategy-proofness at every step, f (R̃′S, R̃′N\S) 6= x. However, this contradicts unanimity. So,

f (R̃′S, R′N\S) = x. For all i ∈ S, let R̄i ∈ S be such that R̄i(1) = x. By strategy-proofness,

f (R̄S, R′N\S) = x. Since f is a min-max rule of Sn, this means f (R̄S, R̂N\S) = x. For all i ∈ S, let

R̄′i ∈ S be such that R̄′i(1) = y. Because (R̄S, R̂N\S), (R̄′S, R̂N\S) ∈ Sn and f is a min-max rule

on Sn, f (R̄S, R̂N\S) = x implies f (R̄′S, R̂N\S) = y. Because f (R̄′S, R̂N\S) = y and R̃ = xy · · · , by

moving agents in i ∈ S from R̄′i to R̃i one-by-one and applying strategy-proofness at every step,

we have f (R̃S, R̂N\S) ∈ {x, y}. Since v 6= x, y by our assumption, this is a contradiction to our

earlier finding that f (R̃S, R̂N\S) = v. This completes the proof of the lemma for Case 1.

CASE 2. Suppose y, z ∈ (x, x), (z, y) 6= ∅ and u ∈ (z, y).

Let R′N, R̂N ∈ Sn be such that R′i(1) = y and R̂i(1) = x for all i ∈ S, and R′j(1) = x̄ and

R̂j(1) = z for all j ∈ N \ S. Because f is a min-max rule on Sn and f (RS, RN\S) = u, we

have f (R′S, R′N\S) = y and f (R̂S, R̂N\S) = z. As f (R̂S, R̂N\S) = z, by Lemma B.1, we have

f (R̃S, R̂N\S) = z, where R̃i = R̃ for all i ∈ S. Again, because f (R′S, R′N\S) = y, by Corollary

B.1, we have f (R′S, R̃′N\S) = y, where R̃′i = R̃′ for all j ∈ N \ S. Because f (R̃S, R̂N\S) = z and

R̃′ = xz · · · , by moving agents j ∈ N \ S from R̂j to R̃′ one-by-one and using strategy-proofness

at every step, we have f (R̃S, R̃′S) ∈ {x, z}. Again, f (R′S, R̃′N\S) = y and R̃ = xy · · · , by moving

agents i ∈ S from R′i to R̃ one-by-one and using strategy-proofness at every step, we have
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f (R̃S, R̃′S) = {x, y}. Since {x, y} ∩ {x, z} = ∅ by our assumption, this is a contradiction. This

completes the proof the lemma for Case 2.

CASE 3. Suppose y = x, z = x, and u ∈ (z, y).

Let R′N ∈ Sn be such that R′i(1) = x for all i ∈ S and R′j(1) = x for all j ∈ N \ S. Because

f is a min-max rule on Sn and f (RS, RN\S) = u, we have f (R′S, R′N\S) = u. Take i ∈ N and

consider the preference profile (R̃i, R′S\i, R′N\S), where R̃i = R̃. Since R′i(1) = R̃i(1) = x and

f (R′S, R′N\S) 6= x, by strategy-proofness, f (R̃i, R′S\i, R′N\S) 6= x. Continuing in this manner, it

follows that f (R̃S, R′N\S) 6= x, where R̃i = R̃ for all i ∈ S. Moreover, since R̃i = xx · · · for all i ∈ S

and R′j(1) = x for all j ∈ N \ S, by unanimity and strategy-proofness, f (R̃S, R′N\S) ∈ {x, x}. Since

f (R̃S, R′N\S) 6= x, this means f (R̃S, R′N\S) = x. Let R̃′j = R̃′ for all j ∈ N \ S. As f (R̃S, R′N\S) = x

and R′j(1) = x, by strategy-proofness, f (R̃S, R̃′N\S) = x. Now, if we first move agents j ∈ N \ S

from R′j to R̃′ and then move agents i ∈ S from R′i to R̃, then it follows from a similar argument that

f (R̃S, R̃′N\S) = x. Since x 6= x, this is a contradiction to our earlier findings that f (R̃S, R̃′N\S) = x.

This completes the proof of the lemma for Case 3.

Since Cases 1, 2 and 3 are exhaustive, this completes the proof of the lemma. �

Let (βS)S⊆N be the parameters of f restricted to Sn. In Lemma B.3 and Lemma B.4, we establish

a few properties of these parameters.

Lemma B.3. For all S ⊆ N, βS ∈ [a, x] if and only if βN\S ∈ [x, b].

Proof. Take S ⊆ N. It is enough to show that βS ∈ [a, x] implies βN\S ∈ [x, b]. Assume for

contradiction that βS, βN\S ∈ [a, x]. Let R̃′ = xz · · · ∈ S̃ be as given in Definition 2.4. Since

(z, x) 6= ∅, take u ∈ (z, x). Let (RS, RN\S) ∈ Sn be such that Ri(1) = a for all i ∈ S and Rj(1) = b

for all j ∈ N \ S. Since f restricted to Sn is a min-max rule, f (RS, RN\S) = βS ∈ [a, x]. Let

(R′S, R′N\S) ∈ S
n be such that R′i(1) = z for all i ∈ S and R′j(1) = u for all j ∈ N \ S. Since

f (RS, RN\S) ∈ [a, x], by uncompromisingness of f restricted to Sn, we have f (R′S, R′N\S) = z.

Because R̃′ = xz · · · , by moving agents i ∈ S one-by-one from R′i to R̃′ and applying strategy-

proofness at every step, we have f (R̃′S, R′N\S) ∈ {x, z}, where R̃′i = R̃′ for all i ∈ S.

Now, let (R̄S, R̄N\S) ∈ Sn be such that R̄i(1) = b for all i ∈ S and R̄j(1) = a for all j ∈ N \ S.

Again, since f restricted to Sn is a min-max rule, f (R̄S, R̄N\S) = βN\S ∈ [a, x]. Recall that

for j ∈ N \ S, R′j ∈ S with R′j(1) = u. Consider (R′′S , R′N\S) ∈ S
n such that R′′i (1) = x for

all i ∈ S. Since f (R̄S, R̄N\S) ∈ [a, x], by uncompromisingness of f restricted to Sn, we have
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f (R′′S , R′N\S) = u. Because R′′i (1) = x = R̃′(1) for all i ∈ S, by Corollary B.1, it follows that

f (R̃′S, R′N\S) = u. However, as u /∈ {x, z}, this is a contradiction to our earlier finding that

f (R̃′S, R′N\S) ∈ {x, z}. This completes the proof of the lemma. �

The following lemma says that there is exactly one agent i such that βi ∈ [a, x].

Lemma B.4. It must be that |{i ∈ N | βi ∈ [a, x]}| = 1.

Proof. Suppose there are i 6= j ∈ N such that βi, β j ∈ [a, x]. By Lemma B.3, βi ∈ [a, x] implies

βN\i ∈ [x, b]. Since j ∈ N \ i and βT ≤ βS for all S ⊆ T, βN\i ∈ [x, b] implies β j ∈ [x, b], a

contradiction. Hence, there can be at most one agent i ∈ N such that βi ∈ [a, x].

Now, suppose βi ∈ [x, b] for all i ∈ N. By Lemma B.3, this means βN\i ∈ [a, x] for all i ∈ N.

Therefore, there must be S ⊆ N such that βS ∈ [a, x] and for all S′ ( S, βS′ ∈ [x, b]. By unanimity,

S 6= ∅. If S is singleton, say {i} for some i ∈ N, then βi ∈ [a, x] and we are done. So assume that

there are j 6= k ∈ S.

Let R̃ = xy · · · ∈ S̃ be as given in Definition 2.4 and note that x + δ < y. Since (x, y) 6= ∅, take

u ∈ (x, x + δ]. Consider the preference profile RN ∈ Sn such that Rj(1) = u where xPj(x + δ)Pjy,

Ri(1) = y for all i /∈ S, and Ri(1) = x for all i ∈ S \ j. Since S is generalized top-connected, such a

single-peaked preference profile RN exists in Sn. Since βS ∈ [a, x] and βS′ ∈ [x, b] for all S′ ( S, it

follows from the definition of a min-max rule that f (RN) = u. Let R′k ∈ S be such that R′k(1) = y.

Since βS\k ∈ [x, b] and f restricted to Sn is a min-max rule, it follows that f (R′k, RN\k) = y.

Consider the preference profile (R̃k, RN\k), where R̃k = R̃. Because f (R′k, RN\k) = y and R̃k = xy,

by strategy-proofness, f (R̃k, RN\k) ∈ {x, y}. Suppose f (R̃k, RN\k) = x. Because f (RN) = u

and R̃k(1) = x, this means agent k manipulates at RN via R̃k. So, f (R̃k, RN\k) = y. Let R′j ∈ S

be such that R′j(1) = x. Since βS ∈ [a, x] and x is the top-ranked alternative of all agents

in S at preference profile (R′j, RN\j), we have f (R′j, RN\j) = x. As Rk(1) = R̃k(1) = x, this

means f (R′j, R̃k, RN\{j,k}) = x. Because f (R̃k, RN\k) = y and Rj(1) = u such that xPjy, agent j

manipulates at (R̃k, RN\k) via R′j. This completes the proof of the lemma. �

REMARK B.1. By Lemma B.3 and Lemma B.4, it follows that f restricted to Sn is a [x, x]-PDMMR.

Our next lemma establishes that f is uncompromising.17 First, we introduce few notations

that we use in the proof of the lemma. For RN ∈ S̃n, let Ñ(RN) = {i ∈ N | Ri /∈ S} be the

17Since every SCF satisfying uncompromisingness is tops-only, Lemma B.5 shows that a partially single-peaked
domain is a tops-only domain. It can be easily verified that partially single-peaked domains fail to satisfy the
sufficient conditions for a domain to be tops-only identified in Chatterji and Sen (2011) and Chatterji and Zeng (2018).
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set of agents who do not have single-peaked preferences at RN. Moreover, for 0 ≤ l ≤ n, let

S̃n
l = {RN ∈ S̃n | |Ñ(RN)| ≤ l} be the set of preference profiles where at most l agents have

non-single-peaked preferences. Note that S̃n
0 = Sn and S̃n

n = S̃n.

Lemma B.5. The SCF f is uncompromising.

Proof. Since S̃n
0 = Sn, f restricted to S̃n

0 is uncompromising. Suppose f restricted to S̃n
k is

uncompromising for some k < n. We show that f restricted to S̃n
k+1 is uncompromising. It is

enough to show that f restricted to S̃n
k+1 is tops-only. To see this, note that if f restricted to S̃n

k+1

is tops-only, then f is uniquely determined on S̃n
k+1 by its outcomes on Sn. Therefore, since f

restricted to Sn is uncompromising, f is uncompromising on S̃n
k+1.

Take RN ∈ S̃n
k+1 and j ∈ Ñ(RN). Let R̂j ∈ S be such that R̂j(1) = Rj(1). Then, RN and

(R̂j, RN\j) are tops-equivalent and (R̂j, RN\j) ∈ S̃n
k . It is sufficient to show that f (RN) =

f (R̂j, RN\j). Assume for contradiction that f (RN) 6= f (R̂j, RN\j). Assume, without loss of

generality, that the partial dictator of f restricted to Sn is agent 1. Then, by the induction hypoth-

esis, agent 1 is the partial dictator of f restricted to S̃n
k , i.e., for all RN ∈ S̃n

k , if R1(1) ∈ [a, x) then

f (PN) ∈ [a, x], if R1(1) ∈ (x, b] then f (RN) ∈ [x, b], and if R1(1) ∈ [x, x] then f (RN) = R1(1). We

distinguish two cases based on the position of the top-ranked alternative of agent 1.

CASE 1. Suppose R1(1) ∈ [a, x) ∪ (x, b].

We consider the case where R1(1) ∈ [a, x), the proof for the case where R1(1) ∈ (x, b] follows from

symmetric arguments. Since R1(1) ∈ [a, x), we have f (R̂j, RN\j) ∈ [a, x]. Because R̂j is single-

peaked, if f (R̂j, RN\j) < f (RN) ≤ R̂j(1) or R̂j(1) ≤ f (RN) < f (R̂j, RN\j), then agent j manipu-

lates at (R̂j, RN\j) via Rj. Moreover, since f (R̂j, RN\j) ∈ [a, x], if f (RN) < f (R̂j, RN\j) ≤ Rj(1) or

Rj(1) ≤ f (R̂j, RN\j) < f (RN), then by the definition of a partially single-peaked domain, agent j

manipulates at (Rj, RN\j) via R̂j. Now, suppose f (R̂j, RN\j) < R̂j(1) < f (RN). Let R̄j ∈ S be such

that R̄j(1) = f (RN). Since f restricted to S̃n
k is uncompromising and f (R̂j, RN\j) < R̂j(1) < R̄j(1),

we have f (R̄j, RN\j) = f (R̂j, RN\j). Because R̄j(1) = f (RN), it follows that agent j manipulates

at (R̄j, RN\j) via Rj. Using a similar argument, it can be shown that f (RN) < R̂j(1) < f (R̂j, RN\j)

leads to a manipulation by agent j. Therefore, f (RN) = f (R̂j, RN\j) when R1(1) ∈ [a, x). This

completes the proof of the lemma for Case 1.

CASE 2. Suppose R1(1) ∈ [x, x].

Since agent 1 is the partial dictator, f (R̂j, RN\j) = R1(1). Consider R̄j ∈ S such that R̄j(1) =
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f (RN). Since (R̄j, RN\j) ∈ S̃n
k , by the induction hypothesis, we have f (R̄j, RN\j) = R1(1). Be-

cause R̄j(1) = f (RN) and f (R̄j, RN\j) = R1(1) 6= f (RN), agent j manipulates at (R̄j, RN\j) via Rj.

Therefore, f (RN) = f (R̂j, RN\j) when R1(1) ∈ [x, x]. This completes the proof of the lemma for

Case 2.

Since Cases 1 and 2 are exhaustive, this completes the proof of the lemma by induction. �

APPENDIX C. PROOF OF THEOREM 3.3

Let S̃ be a [x, x]-partially single-peaked domain. Suppose f : S̃n → X is a [x, x]-PDMMR where

agent d is the partial dictator. It is enough to show that f is group strategy-proof. Clearly, no group

can manipulate f at a preference profile RN ∈ S̃n where Rd(1) ∈ [x, x]. Consider a preference

profile RN ∈ S̃n such that Rd(1) ∈ [a, x). We show that f is group strategy-proof at RN. Since

Rd(1) ∈ [a, x), by Lemma 2.1, f (RN) ∈ [a, x]. Let C′ = {i ∈ N | Ri(1) ≤ f (RN)} and let C′′ =

{i ∈ N | Ri(1) > f (RN)}. Suppose a coalition C manipulates f at RN. Then, there is R′C ∈ S̃ |C|

such that f (R′C, RN\C)Pi f (RN) for all i ∈ C. If f (R′C, RN\C) < f (RN), then by the definition of S̃ ,

we have C ∩ C′′ = ∅. However, by the definition of [x, x]-PDMMR, f (R′C, RN\C) ≥ f (RN) for all

C ⊆ C′ and all R′C ∈ S̃ |C|, a contradiction. Again, if f (R′C, PN\C) > f (RN), then by the definition

of S̃ , we have C ∩ C′ = ∅. However, by the definition of [x, x]-PDMMR, f (R′C, RN\C) ≤ f (RN)

for all C ⊆ C′′ and all R′C ∈ S̃ |C|, a contradiction. The proof of the same for the case where

Rd(1) ∈ (x, b] follows from a symmetric argument. This shows f is group strategy-proof, and

hence completes the proof of the theorem.

APPENDIX D. PROOF OF THEOREM 3.4

Let S̃ be a [x, x]-partially single-peaked domain. By Theorem 3.2, it is known that an SCF defined

on S̃n is unanimous and strategy-proof if and only if it is an [x, x]-PDMMR. This means that

every most anonymous SCF defined on S̃n satisfies unanimity and strategy-proofness must be an

[x, x]-PDMMR.

Consider the [x, x]-PDMMR f with respect to parameters (βS)S⊆N such that for all non-empty

S ⊆ N, βS = x if d ∈ S and βS = x if d /∈ S where d is the partial dictator of f and show that f

minimizes ∆(g, RN) for all other [x, x]-PDMMRs g defined on S̃n and for all RN ∈ S̃n.

Consider a PDMMR g and a profile RN . Note that by definition, ∆( f , RN) does not depend on

who the partial dictator of f is. In view of this, let us assume that both f and g have the same
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partial dictator d. We complete the proof by distinguishing the following cases. Let us use the

following notations: Rmax
N = max{Ri(1) | i ∈ N} and Rmin

N = min{Ri(1) | i ∈ N}.

Case 1. Suppose Rmax
N ≤ x or Rmin

N ≥ x.

If Rmax
N ≤ x, by the definition of f , f (RN) = Rmax

N meaning that f is anonymous on such a profile.

More formally, f (RN) = f (Rπ
N) for all permutations π of N, and hence, ∆( f , RN) = 0. Similarly,

if Rmin
N ≥ x, then f (RN) = Rmin

N , and hence, ∆( f , RN) = 0. Since ∆(g, RN) ≥ 0 by definition, we

have ∆( f , RN) ≤ ∆(g, RN) for all such profiles.

Case 2. Suppose Rmin
N , Rmax

N ∈ [x, x].

By definition, f (RN) = g(RN) = Rd(1) and f (Rπ
N) = g(Rπ

N) = Rπ
d (1) for all permutations π.

Therefore, ∆( f , RN) = ∆(g, RN).

Case 3. Suppose [Rmax
N ∈ [x, x] and Rmin

N < x] or [ Rmin
N ∈ [x, x] and Rmax

N > x].

If Rmax
N ∈ [x, x] and Rmin

N < x, then the maximum values of both f (Rπ
N) and g(Rπ

N) are achieved

when Rd(1) = Rmax
N and equals Rmax

N . However, the minimum value of f (Rπ
N) is x, whereas that

of g(Rπ
N) is less than or equal to x. Therefore, ∆( f , RN) = Rmax

N − x ≤ ∆(g, RN). The proof of this

when Rmin
N ∈ [x, x] and Rmax

N > x follows symmetrically.

Case 4. Suppose Rmin
N < x < x < Rmax

N .

By the definition of f , the maximum value of f (Rπ
N) is x and the minimum value of it is x, whereas

the maximum value of g(Rπ
N) is greater than or equal to x and the minimum value of it is less

than or equal to x. Thus, ∆( f , RN) = x− x ≤ ∆(g, RN).

APPENDIX E. GRAPH THEORETIC NOTIONS

In this subsection, we introduce a few graph theoretic notions used in this paper. An undirected

graph G is defined as a pair 〈V, E〉, where V is the set of nodes and E ⊆ {{u, v} | u, v ∈ V and u 6=

v} is the set of edges. For a graph G = 〈V, E〉, a subgraph G′ of G is defined as a graph G′ = 〈V, E′〉,

where E′ ⊆ E. For two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, the graph G1 ∪ G2 is defined as

G1 ∪ G2 = 〈V1 ∪V2, E1 ∪ E2〉.

All the graphs we consider in this paper are of the kind G = 〈X, E〉, i.e., the set of nodes is the

set of alternatives.

Definition E.1. An undirected graph G = 〈X, E〉 is called the undirected line graph on X if (x, y) ∈ E

({x, y} ∈ E) if and only if |x− y| = 1.
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Definition E.2. A graph G is called an undirected partial line graph with respect to x and x if G can be

expressed as G1 ∪ G2, where G1 = 〈X, E1〉 is the undirected line graph on X and G2 = 〈[x, x], E2〉

is an undirected graph such that {x, y}, {x, z} ∈ E2 for some y ∈ (x + 1, x] and z ∈ [x, x− 1).

In Figure 3, we present an undirected partial line graph on X = {x1, x2, x3, x4, x5, x6, x7} where

x = x3 and x = x6.

x1 x2 x3 x4 x5 x6 x7

Figure 3: An undirected partial line graph
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