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1. Introduction 

Shared water, almost everywhere, remains a source of conflict, which becomes notoriously 

intractable under arid conditions. It is well argued that, under conditions of pure conflict, a 

negotiated solution is not possible as the initial allocation of rights itself is at stake (Richards and 

Singh, 2002). In the absence of negotiation between disputing parties, third party intervention 

seems to be the most immediate way out, particularly in case of within-country water disputes.1  

Allocation of water by a central authority remains a frequently used means of assigning disputed 

water, especially in developing countries that face difficulties in allowing the free market to take 

over. This is because high transaction costs and the lack of contract enforcement obstruct the 

bargaining process over water (Richards and Singh, 2001). Further, for water to be efficiently 

allocated by the free market, there has to be a system of pure private property rights, which is 

largely absent from the character of any of the water doctrines followed around the world, namely, 

riparian rights, public allocation and  prior allocation (Sampath, 1992). In the absence of any 

possibility of a negotiated solution or the institutional framework necessary for water markets, an 

enforceable public allocation system appears to be the most plausible way of water sharing under 

pure conflict within a country.  

 

In this paper, we analyse the issue of water sharing between an upstream region and its downstream 

counterpart in a federal arrangement considering that dispute resolution by a central planner is 

binding upon the parties involved.  The legal provisions in various federations show that the 

necessary institutional framework exists to render binding any centralized third party intervention 

in case of interstate conflicts. For example,  there are three ways of resolving interstate conflicts 

in the USA – by congressional act, by the formation of an interstate compact approved by the 

congress, or by an ‘equitable apportionment’ by the Supreme Court (Bennett, Howe and Shope, 

2000). The constitution of India, via entry 56 in the Union List and article 262, enables the federal 

government to legislate and intervene effectively in case of interstate disputes and gives it primacy 

over the Supreme Court, even though water issues fall within the jurisdiction of the states as in the 

USA (Richards and Singh, 2002). The Interstate River Water Disputes Act of 1956 in India 

                                                           
1 We note here that, in case of trans-boundary water flows, third party interventions may not be very effective due to 

lack of enforceability and it may also lead to inefficiency by jeopardizing the possibilities of cooperation (Ansink and 

Weikard, 2009).  
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provides for the establishment of tribunals by the central government in the event of negotiations 

failing. Such tribunals are often considered to be an extension of the federal government and are 

not beyond influence, political or otherwise, and corruption (Katz and Moore, 2011; Richards and 

Singh, 2002). However, to the best of our knowledge, the issue of influence and corruption has not 

received much attention in the existing theoretical literature on water disputes. This paper makes 

a modest attempt to fill this gap.2   

 

This paper considers a situation in which water flow in a river is uncertain and two regions, an 

upstream region and a downstream region, of a country have dispute concerning water rights.  The 

conflict between the two regions is defined over the entire range of water flow, so that flooding is 

as problematic as scarcity. The demand for water could be driven by a host of exogenous factors 

like historical use or complementary investment in infrastructure. To keep the analysis focused, it 

is assumed that ancillary investments have already been undertaken, determining the contours of 

the conflict ex-ante.  The dispute over water sharing between the two regions is resolved through 

intervention by a third party (henceforth, the central planner or planner).  

 

The central planner is considered to be corruptible and both upstream and downstream regions try 

to influence the planner's choice of water allocation through contributions. The contributions can 

be thought of as encompassing a gamut of political influence-building tactics (monetary or 

otherwise) undertaken by the disputing regions. The central planner favours one region over the 

other region, if the former contributes more than the latter; otherwise, the central planner’s water 

allocation decision is free from any bias.  Each region is interested in maximizing its own benefit 

from water usage net of its cost of contribution, while the central planner’s objective is to maximize 

total contribution. It is assumed that preferences of each of the three players, i.e. of the central 

planner and the two disputing regions, and the implication of contributions by region(s) are 

exogenously determined and are common knowledge. 

                                                           
2 It is observed that parties involved in disputes over water rights do not comply with the water sharing agreements in 

some cases, despite the agreement being legally binding. Bennett and Howe (1998) examine factors behind non-

compliance in interstate river compacts. Ambec, Dinar and McKinney (2013) explore conditions for water sharing 

agreements to be sustainable to reduced flows. Richards and Singh (2002) argue that noncompliance might stem from 

a perverse combination of political affiliations that is not compatible with the states’ incentives and centre-state politics 

play crucial role in this regard. This paper, however, sidesteps the issue of compliance for simplicity.  
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This paper considers a three stage sequential move game. In the first stage of the game, the central 

planner chooses one of the two most frequently used water allocation rules – fixed allocation or 

proportional allocation.  Next, in the second stage, the upstream region and the downstream region 

simultaneously and independently decide their respective contribution levels. Finally, in the third 

stage, the central planner decides the fixed amount or the proportion of total water flow to be 

allocated to the downstream region depending on the allocation rule decided in the first stage, 

before uncertainty regarding total water flow is resolved. Considering the sub-game perfect Nash 

equilibrium water allocation of this game to be legally binding and enforceable, this paper 

demonstrates the following.  

 

It shows that the proportional allocation rule leads to higher total benefits from water usage by the 

two regions and, thus, is more efficient than the fixed allocation rule, under uncertainty. A 

benevolent central planer always chooses the efficient allocation rule.  Interestingly, corruption 

does not necessarily lead to inefficiency. The corrupt central planner chooses the more (less) 

efficient allocation rule, i.e. proportional (fixed) allocation rule, if at the average level of water 

flow the problem of severe water scarcity does not (does) occur. This is because each region 

contributes more in the equilibrium under proportional allocation rule compared to that under fixed 

allocation rule, if expected flow of water is sufficiently large; otherwise, the opposite occurs. It 

implies that whether efficiency will be compromised in case of corruption or not depends on the 

state of nature. However, note that the corrupt central planner never aims to achieve efficiency, it 

occurs in some cases as mere coincidence.  

 

We note here that this paper is closely related to Bennett, Howe and Shope (2000). Considering 

fixed and proportional water allocation rules, they compare efficiency of interstate water compacts 

based on two alternative allocation rules and evaluate their sensitivities to mean water flow and 

variance. While they also allow for the central planner to be biased towards one of the two regions, 

in their model the extent of bias is exogenously determined. On the contrary, in this paper, possible 

bias of the central planner is endogenously determined. Further, unlike Bennett, Howe and Shope 

(2000), this paper assesses implications of alternative allocation rules on corruption and the effect 

of corruption on equilibrium allocation.  
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This paper presents a simple model of behaviour often found in the actions of agents bound up in 

a tangle of political necessities and reciprocities. The planner here is as much a rational agent as 

the rest of the players and so, it is futile to expect him not to take care of his own interests. This 

sort of scenario fits quite well into the landscape of federal politics where the central government 

invariably seeks out support from lower levels of government and in return, bestows upon them 

favourable verdicts. The eventual nature of alignments or coalitions is determined through nothing 

else but the calculus of relative benefits drawn from various partners.  

 

The rest of the paper is organized as follows. Section 2 presents the model, characterizes 

equilibrium outcomes under alternative rules of water allocation (Section 2.1 and Section 2.2), and 

analyses the corrupt planner’s optimal choice of the rule (Section 2.3). Analysis of the efficient 

allocation rule and its comparison with the corrupt planner’s optimal choice is presented in Section 

3. Section 4 concludes. Proofs are presented in the Appendix.  

 

2. The Setup 

There are two regions, upstream (𝑈) and downstream (𝐿), with conflicting interests over a shared 

river. These two regions and the river are located within the boundary of a single country, which 

has a federal setup. We mention here that regions in this model could be interpreted as firms or 

any productive entities with claims to a shared river. Water flow, 𝑊 (≥ 0),  in the river is random 

and is assumed to have the following distribution 

                                 𝑊 = {
𝑊ℎ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜌 ∈ (𝑜, 1)
𝑊𝑙 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑖𝑦 1 − 𝜌       

                                                          (1) 

Region 𝑖’s benefit from water usage is given by 𝐵𝑖(𝑊𝑖), where 𝑊𝑖(≥ 0) denotes the amount of 

water used by region 𝑖; 𝐵𝑖(0) = 0, 𝐵𝑖
′(𝑊𝑖) ⋛ 0 if 𝑊𝑖 ⋚ 𝑊𝑖

∗
, and 𝐵𝑖

′′(𝑊𝑖) < 0  ∀ 𝑊𝑖 ≥ 0; 𝑖 = 𝑈,

𝐿. Johnson, Gisser and Werner (1981) argue that for efficient allocation of water, property rights 

must be defined in terms of consumptive use and not diversion. Following this argument, we 

assume that the entire water allocation is used for consumptive purposes.   

 

Since 𝐵𝑖(𝑊𝑖) is strictly concave in 𝑊𝑖, it has a unique maximum.  Let 𝐵𝑖(𝑊𝑖) attains its maximum 

at 𝑊𝑖 = 𝑊𝑖
∗, 𝑖 = 𝑈, 𝐿. Now, if  𝑊𝑙 < 𝑊𝑖

∗ < 𝑊ℎ, 𝑖 = 𝑈, 𝐷,  the probability of  the event of water 
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scarcity and  the probability of the event of flood are both strictly positive for each region in case 

that region receives the entire water flow (𝑊). Further note that, if  𝑊 < 𝑊𝑈
∗ + 𝑊𝐿

∗, there is the 

problem of scarcity. Alternatively, if total water flow 𝑊 > 𝑊𝑈
∗ + 𝑊𝐿

∗, there is the problem of 

flooding.  

 

We assume (a) 𝑊𝑙 < 𝑊𝑖
∗ < 𝐸(𝑊), 𝑖 = 𝑈, 𝐿 and (b) 𝑊𝑈

∗ + 𝑊𝐿
∗ < 𝑊ℎ, which implies that each 

of the two situations – water scarcity and flooding – occurs with positive probability, regardless 

of whether water is shared between the two regions or only one region receives the entire flow. In 

either of the two situations, scarcity or flooding, there are disputes between the two regions over 

water sharing, which they fail to resolve by themselves through cooperation. The central planner, 

who is a third party, intervenes in the process of dispute settlement and resolves the dispute for 

once and for all. Allocation of water prescribed by the central planner is considered to be legally 

binding and enforceable. 

 

In order to resolve the dispute, the central planner first chooses the allocation rule, which can be 

either a fixed allocation rule or a proportional allocation rule. In case of fixed allocation rule, the 

central planner chooses a fixed amount of water 𝑊0  ∈ (0, 𝑊ℎ) such that the downstream region 

will receive (a) 𝑊0 amount of water, if 𝑊0 < 𝑊, or (b) the entire water 𝑊, if  𝑊0  ≥ 𝑊, and the 

upstream region will receive the remaining water, if any. On the other hand, in case of proportional 

allocation rule, the central planner decides the proportion  𝛽 ∈ (0, 1)  of total water flow 𝑊 to be 

allocated to the downstream region, which implies that the upstream region will receive (1 − 𝛽)𝑊 

amount of water.  The central planner chooses 𝑊0 ∈ (0, 𝑊ℎ)  or 𝛽 ∈ (0, 1), depending on the 

predefined allocation rule, so that the expected value of a weighted sum of regions’ benefits from 

water usage is maximum, which is as follows.   

                                         𝐸[𝑍] = 𝐸[𝐵𝑈(𝑊𝑈) +  𝜆 𝐵𝐿(𝑊𝐿)],                                                           (2)                                 

where  𝜆(≥ 0) is the weight assigned by the central planner to the downstream region’s benefit a 

la Bennett, Howe and Shope (2000). The weight parameter 𝜆 measures the bias of the central 

planner. The central planner is said to be biased towards the downstream (upstream) region, if 𝜆 >

1 (𝜆 < 1). However, unlike Bennett, Howe and Shope (2000), this paper endogenously determines 

the central planner’s bias 𝜆. Let us consider that the central planner’s relative bias depends on the 
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contributions made by both regions. It is reasonable to assume that if the downstream region’s 

contribution 𝐶𝐿  ∈ [0, 1] is greater than the upstream region’s contribution 𝐶𝑈  ∈ [0, 1], i.e. if 𝐶𝐿 >

𝐶𝑈, the central planner will be biased towards the downstream region (𝜆 > 1); while the opposite 

occurs, if 𝐶𝐿 < 𝐶𝑈. It is assumed that the central player’s bias is given by 𝜆 = 𝜆 (𝐶𝐿 , 𝐶𝑈), where 

𝜆 (0, 0) = 1,  
𝜕λ

𝜕𝐶𝑈
< 0,

𝜕λ

𝜕𝐶𝐿
> 0. Both 𝜆 (𝐶𝐿 , 𝐶𝑈) and 𝑍 are assumed to be common knowledge.3  

 

Each region incurs cost to make contribution. Let region 𝑖’s cost to contribute 𝐶𝑖 be given by 
𝜓𝐶𝑖

2

2
, 

where 𝜓 > 0 is the cost parameter;  𝑖 = 𝑈, 𝐿.  

There are three stages of the game as follows.  

Stage 1: The central planner chooses the water allocation rule, fixed allocation vs. 

proportional allocation, which maximizes the sum of the contributions from the two 

regions 𝑂 = 𝐶𝐿 + 𝐶𝑈.  

Stage 2: The two regions decide their respective levels of contribution they make to 

the planner, simultaneously and independently. 

Stage 3: The central planner decides the fixed amount (𝑊0) or the proportion (𝛽), 

depending on the allocation rule decided in the first stage, of water to be allocated 

to the downstream region, such that the expected weighted benefit 𝐸[𝑍] is 

maximized.  

We solve this game by backward induction by considering that 𝐵𝑖(𝑊𝑖) = 𝑎𝑊𝑖 −
𝑏

2
 𝑊𝑖

2 and  𝜆 =

𝜆 (𝐶𝐿 , 𝐶𝑈) = 1 + 𝐶𝐿 − 𝐶𝑈,  for simplicity, where 𝑎 (> 0) and 𝑏 (> 0) are benefit parameters; 𝑖 =

𝑈, 𝐿.  We assume that ψ ≥ 𝑀𝑎𝑥[
(2𝑎−𝑏𝑊)̅̅ ̅̅ 2

8𝑏
,
(2𝑎�̅�−𝑏𝐸(𝑊2))2

8𝑏𝐸(𝑊2)
] and �̅� >

𝑎

𝑏
, which ensures existence 

of unique interior equilibrium and stability of the equilibrium in each of the two cases, fixed and 

proportional, considered in this paper. We first solve stage 3 and then stage 2, by considering fixed 

allocation rule and proportional allocation rule separately.  

 

                                                           
3 The central planner’s bias may be his private information and different regions may have different beliefs about it. 

In case each region has the same belief regarding the form of the bias function 𝜆 (𝐶𝐿 , 𝐶𝑈),  the qualitative results of 

this paper go through.  
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2.1 Fixed Allocation Rule 

Let us first consider that fixed allocation rule has been chosen by the central planner in the first 

stage of the game. In this case, the central planner decides the fixed amount of water 𝑊𝑜 ∈ (0,

𝑊ℎ) in stage 3, which implies that water flows in the downstream region and in the upstream 

region are, respectively, as follows.  

𝑊𝐿 = {
𝑊0,   𝑖𝑓  𝑊0 < 𝑊 
𝑊,   𝑖𝑓  𝑊0 ≥ 𝑊  

  and   𝑊𝑈 = {
𝑊 −𝑊0,   𝑖𝑓  𝑊0 < 𝑊 
0,   𝑖𝑓  𝑊0 ≥ 𝑊             

                                                (3) 

 

Note that, since 𝑊𝑜 ∈ (0, 𝑊ℎ),  𝑃𝑟𝑜𝑏(𝑊0 < 𝑊) = 𝜈 = {
1,   𝑖𝑓  𝑊0 < 𝑊𝑙             
𝜌,   𝑖𝑓  𝑊𝑙 ≤ 𝑊0 < 𝑊ℎ 

and 𝑃𝑟𝑜𝑏(𝑊0 ≥

𝑊) = 1 − 𝜈. Therefore, expected weighted benefits from water usage by the two regions under 

fixed allocation rule is as follows, where subscript 𝐹 indicates fixed allocation rule. 

𝐸[𝑍]𝐹 = 𝐸[𝐵𝑈(𝑊𝑈) +  𝜆 𝐵𝐿(𝑊𝐿)]𝐹   

           = 𝜈𝐸 [{𝑎(𝑊 −𝑊𝑜) −
𝑏

2
(𝑊 −𝑊𝑜)

2} + 𝜆 {𝑎𝑊𝑜 −
𝑏

2
 𝑊𝑜

2}] + (1 − 𝜈)𝐸[𝜆 {𝑎𝑊 −
𝑏

2
 𝑊2}]         (4) 

 

Solving the problem of the central planner in stage 3, max
𝑊𝑜∈(0,𝑊ℎ)

𝐸[𝑍]𝐹, we obtain the following.  

  

Lemma 1:  Suppose that the fixed allocation rule is in force. Then, for any given bias of the central 

planner 𝜆 (≥ 0), the central planner’s optimal choice of the fixed amount of water is given by 

𝑊𝑜(𝜆) =
𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
 ∈ (0,𝑊ℎ) and the corresponding equilibrium gross benefits from water 

usage of the downstream region and the upstream region are, respectively, as follows.  

           𝐸[𝐵𝐿(𝑊) |𝑊𝑜 = 𝑊𝑜(𝜆)] =  𝜈 𝐵𝐿(𝑊𝑜(𝜆)) + (1 − 𝜈)𝐸[𝐵𝐿(𝑊)],  and 

           𝐸[𝐵𝑈(𝑊) |𝑊𝑜 = 𝑊𝑜(𝜆)] =  𝜈 𝐸𝐵𝑈(𝑊 −𝑊𝑜(𝜆))], where 𝜈 = {
1,   𝑖𝑓  𝑊𝑜(𝜆) < 𝑊𝑙             
𝜌,   𝑖𝑓  𝑊𝑙 ≤ 𝑊0(𝜆) < 𝑊ℎ 

. 

Proof: See Appendix. 

 

It is easy to check that  

 
𝜕𝑊𝑜(𝜆)

𝜕𝜆
= −

𝜕(W̅̅̅−Wo(𝜆))

𝜕𝜆
=

2𝑎−𝑏�̅�

𝑏(1+𝜆)2
> (<)0, if  �̅� < (>)

2𝑎

𝑏
;                                                     (5a) 

𝜕𝑊𝑜(𝜆)

𝜕W̅̅̅
= 

1

1+𝜆
> 0  𝑎𝑛𝑑   

𝜕(W̅̅̅−Wo(𝜆))

𝜕W̅̅̅
= 

𝜆

1+𝜆
≥  0, ∀ 𝜆 ≥ 0                                                              (5𝑏)  
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So, the fixed allocation to the downstream region is increasing in the weight 𝜆, if �̅� <
2𝑎

𝑏
 ; while 

it decreases with 𝜆, if  �̅� >
2𝑎

𝑏
 . Further, if  �̅� <

2𝑎

𝑏
, Wo < 

𝑎

𝑏
 and (W̅ −Wo) <  

𝑎

𝑏
 . So, if the 

planner’s bias towards the downstream region is more, he allocates more water to the downstream 

region in case water scarcity is expected (�̅� <
2𝑎

𝑏
), while he allocates less water to the downstream 

region in case flood is expected to occur (�̅� >
2𝑎

𝑏
).  Further, from (5b) it follows that each region 

gets more water when the expected water flow is higher, but the positive effect of expected flow 

on downstream (upstream) region’s share decreases (increases) with the increase in central 

planner’s bias towards the downstream region. It implies that the central planner serves the interest 

of the downstream region (by tempering the award in a situation of overabundance), at the expense 

of the upstream region, when he is biased towards the downstream region.     

 

Under fixed allocation rule, efficient fixed allocation (𝑊0
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

) maximizes the total benefit from 

water usage by the two regions and, thus, Wo = 𝑊0
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

 equates downstream region's expected 

marginal benefits from water usage to that of upstream region:  
𝜕𝐸[𝐵𝐿(𝑊𝑜)]

𝜕 𝑊𝑜
=
𝜕𝐸[𝐵𝑈(𝑊−𝑊𝑜)]

𝜕 (𝑊−𝑊𝑜)
. In 

contrast, in the present scenario the central planner's optimal choice of Wo is given by 

𝜆
𝜕𝐸[𝐵𝐿(𝑊𝑜)]

𝜕 𝑊𝑜
=
𝜕𝐸[𝐵𝑈(𝑊−𝑊𝑜)]

𝜕 (𝑊−𝑊𝑜)
, i.e. at the central planner's optimal choice, the upstream region's 

expected marginal benefit is less (greater) than the downstream region's marginal benefit when the 

central planner is biased towards (against) the upstream region, i.e. when 𝜆 < 1 (𝜆 > 1). It follows 

that, if the central planner is biased towards (against)  the upstream region, its optimal choice of 

the fixed amount of water for the downstream region is less (more) than the efficient level.  

 

Let  𝐸[𝐺𝑖,𝐹] denote the expected net benefit from water usage of region 𝑖 (= 𝑈, 𝐿) under fixed 

allocation rule, i.e.  𝐸[𝐺𝑖,𝐹] = 𝐸(𝐵𝑖)𝐹 −
𝜓𝐶𝑖

2

2
, 𝑖 = 𝑈, 𝐿; where 𝐸(𝐵𝑖)𝐹 = 𝐸[𝐵𝑖(𝑊) |𝑊𝑜 = 𝑊𝑜(𝜆)]. 

It is easy to observe the following.  

𝜕𝐸[𝐺𝐿,𝐹] 

𝜕𝐶𝐿
|
𝐶𝐿=0

= [ 
𝜕𝐸(𝐵𝐿)𝐹
𝜕Wo⏟      
(+/−)

 
𝜕Wo
𝜕λ⏟
(+/−)

 
𝜕λ

𝜕𝐶𝐿⏟
(+)

]

𝐶𝐿=0

> 0 and                                                                   (6𝑎)  
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𝜕𝐸[𝐺𝑈,𝐹] 

𝜕𝐶𝑈
|
𝐶𝑈=0

=

[
 
 
 
 
𝜕𝐸(𝐵𝑈)𝐹

𝜕(�̅� −Wo)⏟        
(+/−)

  
𝜕(�̅� −Wo)

𝜕λ⏟        
(−/+)

 
𝜕λ

𝜕𝐶𝑈⏟
(−) ]
 
 
 

𝐶𝑈=0

> 0                                                       (6𝑏)  

 

From (6a) and (6b), it follows that it is optimal for each of the two regions to make positive 

contributions to the central planner. The reason is as follows.  Note that the central planner's bias 

towards the downstream region is increasing (decreasing) in downstream (upstream) region's 

contribution: 
𝜕 λ

𝜕𝐶𝐿
> 0  and  

𝜕 λ

𝜕𝐶𝑈
< 0, ∀ 𝐶𝐿 , 𝐶𝑈 ∈ [0, 1] .  Further, if mean of total water flow is less 

than a critical level, (a) the central planner allocates higher (lower) amount of water to the 

downstream (upstream) region in case he is more biased towards the downstream region and (b) a 

region's expected gross benefit from water usage is increasing in expected water flow in that 

region; otherwise, opposites are true.4 

 

Lemma 2: In the case of fixed allocation rule under uncertainty, the following hold. 

a) The downstream region perceives that its own contribution and its rival’s contribution 

are strategic complements. 

b) The upstream region perceives that the two regions’ contributions are strategic 

complements (substitutes), if 𝐶𝑈 > 𝐶𝐿 +
1

2
    ( 𝐶𝑈 < 𝐶𝐿 +

1

2
 ). 

Proof: See Appendix. 

 

Lemma 2 implies that it is always optimal for the downstream region to increases its contribution 

in response to an increase in the upstream region’s contribution, i.e. the downstream region’s 

contribution-reaction function is always upward sloping in the 𝐶𝐿𝐶𝑈 plane. However, 

corresponding to an increase in the downstream region’s contribution, the upstream region’s best 

response is to reduce its contribution unless the downstream region’s contribution is sufficiently 

low, as depicted in Figure 1.     

                                                           
4 If �̅� <

2𝑎

𝑏
, we have 

𝜕Wo

𝜕λ
> 0, 

𝜕(�̅�−Wo)

𝜕λ
< 0, 

𝜕𝐸(𝐵𝐿)𝐹

𝜕Wo
> 0 and 

𝜕𝐸(𝐵𝑈)𝐹

𝜕(�̅�−Wo)
> 0, since �̅� <

2𝑎

𝑏
⇒ Wo < 

𝑎

𝑏
 and (5a) holds. 

Otherwise, if �̅� >
2𝑎

𝑏
, we have 

𝜕Wo

𝜕λ
< 0, 

𝜕(�̅�−Wo)

𝜕λ
> 0, 

𝜕𝐸(𝐵𝐿)𝐹

𝜕Wo
< 0 and 

𝜕𝐸(𝐵𝑈)𝐹

𝜕(�̅�−Wo)
< 0. 
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In stage 2, problems of region 𝑖 is max
𝐶𝑖∈[0,1]

𝐸[𝐺𝑖,𝐹], 𝑖 = 𝑈, 𝐿. Solving these two problems 

simultaneously we obtain the following.  

    

Lemma 3: In the case of fixed allocation rule under uncertainty, the downstream region and the 

upstream region contribute equally in order to align with the central planner in the equilibrium 

and the equilibrium contribution of each region is equal to 𝐶𝑓𝑖𝑥𝑒𝑑 = 𝐶𝑈,𝐹 = 𝐶𝐿,𝐹 = 𝜈
(2𝑎−𝑏�̅�)2

8𝑏𝜓
>

0.  

Proof: See Appendix.  

  

Each region contributes a positive amount to influence the central planner’s allocation decision in 

the equilibrium, although it incurs a sufficiently high cost in doing so. Further, since each region 

contributes the same amount, the central planner remains unbiased in the equilibrium: 

 λ𝑓𝑖𝑥𝑒𝑑 = 1 + 𝐶𝐿,𝐹 − 𝐶𝑈,𝐹 = 1. It implies that each region is worse off in the equilibrium when the 

𝐶𝑈  

𝐶𝑈
=
𝐶 𝐿

+
1

2
 

𝐶
𝑈 = 𝑅𝐹

𝑈 (𝐶
𝐿 ) 

𝐶
𝐿

=
𝑅
𝐹 𝐿

(𝐶
𝑈

) 

450 

O 

𝐸 

Figure 1: Contribution-Reaction-Functions (RFs) and the Equilibrium (E)  

𝐶𝐿 
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central planner is corrupt compared to the scenario in which the central planner is not corruptible. 

Nonetheless, since contributions are transfers without leakage within the economy, total surplus 

remains the same, regardless of whether there is corruption or not, given that the fixed allocation 

rule is in force.     

 

From Lemma 1 and Lemma 3, we obtain Lemma 4.  

 

Lemma 4: Under the fixed allocation rule, the sub-game perfect Nash equilibrium (SPNE) fixed 

amount chosen by the central planner (𝑊0
∗) , expected water flow 𝐸[𝑊𝑖,𝐹]

∗ to region 𝑖 (= 𝐿, 𝑈) 

and the corrupt central planner’s payoff  𝑂𝐹
∗  are, respectively, as follows. 

(i) 𝑊0
∗ =

�̅�

2
 

(ii) 𝐸[𝑊𝐿,𝐹]
∗ = �̅�(1 −

𝜈

2
) and  𝐸[𝑊𝑈,𝐹]

∗ = 𝜈
�̅�

2
. 

(iii) 𝑂𝐹
∗ =  2 𝐶𝑓𝑖𝑥𝑒𝑑 = 𝜈

 (2𝑎−𝑏�̅�)2

4𝑏𝜓
. 

 

2.2  Proportional Allocation Rule 

We now turn to analyse the equilibrium under proportional allocation rule. When proportional 

allocation rule is in force, in stage 2 of the game the central planner decides the proportion, 𝛽 ∈

(0, 1), of water flow to be allocated to the downstream region. It implies that the downstream 

region will receive 𝑊𝐿 = 𝛽 𝑊 amount of water, while the upstream region will receive 𝑊𝑈 = (1 −

𝛽) 𝑊 amount of water, where 𝑊 denotes the total flow of water in the river. Thus, expected 

benefits from water usage of the downstream region and the upstream region are, respectively, as 

follows.       

              𝐸[𝐵𝐿(𝛽𝑊)] = 𝐸 [𝑎𝛽𝑊 −
𝑏

2
 (𝛽𝑊)2]                                                                                    (7𝑎) 

             𝐸[𝐵𝑈{(1 − 𝛽)𝑊}] = 𝐸[𝑎(1 − 𝛽)𝑊 −
𝑏

2
{(1 − 𝛽)𝑊}2]                                                    (7𝑏) 

Therefore, expected weighted benefits from water usage by the two regions under proportional 

allocation rule is given by  

          𝐸[𝑍]𝑃 = 𝐸[𝐵𝑈{(1 − 𝛽)𝑊}] +  𝜆 𝐸[𝐵𝐿(𝛽𝑊)],                                                                           (8) 

where 𝐸[𝐵𝑈{(1 − 𝛽)𝑊}] and 𝐸[𝐵𝐿(𝛽𝑊)]  are given by (7b) and (7a), respectively, and subscript 

𝑃 denotes proportional allocation rule 
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Now, solving the central planner’s problem in stage 3, max
𝛽∈(0,1)

𝐸[𝑍]𝑃, we get the equilibrium 

proportions of total water flow for the two regions, given their contributions, as in Lemma 5.  

 

Lemma 5: Suppose that proportional allocation rule is in place for water allocation. Then, given 

the central planner’s bias (𝜆), in the equilibrium the proportion of water accruing to the 

downstream region is given by 𝛽∗ = 𝛽(𝜆) =
𝑏𝐸(𝑊2)−𝑎(1−𝜆)�̅�

𝑏(1+𝜆)𝐸(𝑊2)
 and that to the upstream region by 

(1 − 𝛽∗) = [1 − 𝛽(𝜆)] =  
𝑎(1−𝜆)�̅�+𝑏𝜆𝐸(𝑊2)

𝑏(1+𝜆)𝐸(𝑊2)
, whenever 𝛽(𝜆) ∈ (0, 1); otherwise, (a) if 𝛽(𝜆) ≥

1, 𝛽∗ = 1 − 𝜖, and (b) if 𝛽(𝜆) ≤ 0, 𝛽∗ = 𝜖, where 𝜖 is a small positive number.  

Proof: See Appendix 

 

It is easy to check the following. 

𝜕𝛽(𝜆)

𝜕𝜆
= −

𝜕(1−𝛽(𝜆))

𝜕𝜆
=
[2𝑎�̅�−𝑏𝐸(𝑊2)]

𝑏𝐸(𝑊2)(1+𝜆)2
> 0 ⇔ 𝜎2 <

�̅�

𝑏
 [2𝑎 − 𝑏�̅�],                                                 (9𝑎)  

where 𝜎2 = 𝐸[(𝑊 − �̅�)2] = 𝐸[𝑊2] − �̅�2.  

 
𝜕𝛽(𝜆)

𝜕�̅�
= −

𝜕(1−𝛽(𝜆))

𝜕�̅�
=
𝑎(1−𝜆)(�̅�2−𝜎2)

𝑏(1+𝜆)[𝐸(𝑊2)]2
> 0 ⇔ 

�̅�

𝜎
> 1and 𝜆 < 1                                                    (9𝑏) 

Assuming that 𝛽(𝜆) ∈ (0, 1), from (9a) we can state the following. An increase in the central 

planner's bias towards the downstream region, i.e. an increase in 𝜆, never leads to greater 

proportion of water accruing to the downstream  region, if �̅� ≥
2𝑎

𝑏
 or 𝜎2 is greater than a critical 

level in case �̅� <
2𝑎

𝑏
, i.e. if there water abundance at the mean flow or if variation in water flow 

is sufficiently large. In other words, greater bias of the central planner towards the downstream 

region serves the downstream region's interests to a greater extent at the expense of the upstream 

region. Further, condition (9b) implies that the proportion of water allocated to the downstream 

region rises, while that to the upstream region falls, with increase in mean water flow when the 

coefficient of variation is higher than 1 and the planner cares less for the downstream region. When 

the mean water flow falls, ceteris paribus, the proportion allocated to the downstream region falls 

and that to the upstream rises. This essentially means that the planner, when he cares less about 
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the downstream region, makes it bear a greater amount of risk in the face of highly variable water 

flow by reducing the downstream proportion with fall in mean flow. 

 

Note that the central planner optimal choice of 𝛽 is given by 𝜆
𝜕𝐸[𝐵𝐿(𝛽𝑊)]

𝜕 𝛽
=
𝜕𝐸[𝐵𝑈(𝑊−𝛽𝑊)]

𝜕 (1−𝛽)
; whereas 

efficient level of 𝛽 (which maximizes joint benefit of water usage by the two regions) satisfies the 

condition of marginal benefit equalization across regions, 
𝜕𝐸[𝐵𝐿(𝛽𝑊)]

𝜕 𝛽
=
𝜕𝐸[𝐵𝑈(𝑊−𝛽𝑊)]

𝜕 (1−𝛽)
.  Clearly,  

the corrupt central planner's (𝜆) optimal choice 𝛽∗ is not efficient. If the central planner is biased 

towards the downstream region (𝜆 > 1), the downstream (upstream) regions marginal benefit from 

water usage is over (under) emphasised by the central planner.    

 

Let  𝐸[𝐺𝑖,𝑃] denote the expected net benefit from water usage of region 𝑖 (= 𝑈, 𝐿) under 

proportional allocation rule, i.e.  𝐸[𝐺𝑖,𝑃] = 𝐸(𝐵𝑖)𝑃 −
𝜓𝐶𝑖

2

2
, 𝑖 = 𝑈, 𝐿; where 𝐸(𝐵𝑖)𝑃 =

𝐸[𝐵𝑖(𝑊) |𝛽 = 𝛽(𝜆)] (assuming interior solution).  Then, we have the following.5  

𝜕𝐸[𝐺𝐿,𝑃] 

𝜕𝐶𝐿
|
𝐶𝐿=0

= [ 
𝜕𝐸(𝐵𝐿)𝑃
𝜕β⏟      

(+/−)

 
𝜕β

𝜕λ⏟
(+/−)

 
𝜕λ

𝜕𝐶𝐿⏟
(+)

]

𝐶𝐿=0

> 0                                                                         (10𝑎)  

𝜕𝐸[𝐺𝑈,𝑃] 

𝜕𝐶𝑈
|
𝐶𝑈=0

= [ 
𝜕𝐸(𝐵𝑈)𝑃
𝜕(1 − 𝛽)⏟      
(+/−)

  
𝜕(1 − 𝛽)

𝜕λ⏟      
(+/−)

 
𝜕λ

𝜕𝐶𝑈⏟
(−)

]

𝐶𝑈=0

> 0                                                             (10𝑏)  

Clearly, from (10a) and (10b) it follows that (i) a region can induce the corrupt central planner to 

be biased in its favour by making contributions and (ii) each region would make positive 

contribution in the equilibrium under proportional allocation rule, as observed in the case of fixed 

allocation rule.  

 

By examining how a region's marginal net benefit of its own contribution varies with its rival 

region's contribution, we obtain the following.  

 

                                                           
5 It can be checked that either both  

𝜕𝐸(𝐵𝐿)𝑃

𝜕β
 and 

𝜕𝛽(𝜆)

𝜕𝜆
 are positive, or both are negative. On the other hand 

𝜕𝐸(𝐵𝑈)𝑃

𝜕(1−𝛽)
 and 

𝜕(1−𝛽)

𝜕λ
 cannot be of the same sign.  
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Lemma 6: In the case of proportional allocation rule under uncertainty, the following hold. 

a) The downstream region perceives that the contributions of the two regions are strategic 

complements. 

b) The upstream region perceives that the contributions are strategic complements 

(substitutes) if 𝐶𝑈 > 𝐶𝐿 +
1

2
 (𝐶𝑈 < 𝐶𝐿 +

1

2
 ). 

Proof: See Appendix. 

 

Interestingly, Lemma 2 and Lemma 6 together imply that regions’ perceptions about strategic 

nature of their contributions do not depend on the rule of allocation, fixed or proportional.  Thus, 

the implications of strategic natures of contributions as perceived by the two regions through their 

respective contribution-reaction functions and the equilibrium in the case of proportional 

allocation rule will be the same as in the case of fixed allocation rule.  Now, solving the two 

regions’ problems in stage 2, max
𝐶𝑖∈[0,1]

𝐸[𝐺𝑖,𝑃], 𝑖 = 𝑈, 𝐿, simultaneously, we derive the equilibrium 

contribution of each region under proportional allocation rule.  

  

Lemma 7: Suppose that the corrupt central planner allocates water between the two regions 

according to the proportional allocation rule. Then, it is optimal for each region to contribute the 

amount 𝐶𝑝𝑟𝑜 to influence the central planner’s choice of proportions, where 𝐶𝑝𝑟𝑜 =
[2𝑎�̅�−𝑏𝐸(𝑊2)]2

8𝑏𝜓𝐸(𝑊2)
.   

Proof: See Appendix 

 

Lemma 7 states that each region contributes equally to the central planner in the equilibrium under 

proportional allocation rule, as under fixed allocation rule (Lemma 3). It follows that in the 

equilibrium, the central planner gives equal weight to each region’s expected benefit from water 

usage (λ∗ = 1) regardless of the rule of allocation.   

 

From Lemma 5 and Lemma 7, we get the expected water flow in each region and the central 

planner’s payoff in the equilibrium under proportional allocation rule.  
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Lemma 8: Under the proportional allocation rule, the SPNE proportion of total water flow 

allocated to the downstream region (𝛽∗),  expected water flow  𝐸[𝑊𝑖,𝑃]
∗ to region 𝑖 (= 𝐿, 𝑈) and 

the corrupt central planner’s payoff  𝑂𝑃
∗  are, respectively, as follows. 

(i) 𝛽∗ =
1

2
 

(ii) 𝐸[𝑊𝐿,𝑃]
∗ = 𝐸[𝑊𝑈,𝑃]

∗ =
�̅�

2
 

(iii)  𝑂𝑃
∗ = 2𝐶𝑝𝑟𝑜 =

[2𝑎�̅�−𝑏𝐸(𝑊2)]2

4𝑏𝜓𝐸(𝑊2)
  

 

2.3 Corrupt Planner’s Choice of Allocation Rule: Fixed vs. Proportional 

Now the question is: what is the corrupt central planner’s optimal choice of water allocation rule 

– fixed or proportional, in stage 1 of the game?  Comparing the central planner’s equilibrium 

payoff, which is given by total contribution received by the central planer from the two regions in 

the equilibrium, under the fixed allocation rule with that under the proportional allocation rule, we 

obtain the following.   

 

Proposition 1: In the sub-game perfect Nash equilibrium, the corrupt central planner’s choice of 

water allocation rule under uncertainty is as follows.  

 It is optimal for the corrupt central planner to choose the fixed allocation rule, if severe 

water scarcity is expected, i.e. if �̅� ∈ (𝑊𝑙,𝑊  ), where  𝑊 ≤ √
4𝑎2

𝑏2
− 𝜎2 . 

 The corrupt social planner prefers the proportional allocation rule over the fixed 

allocation rule, if expected water flow in the river is either excessive (�̅� >
 2𝑎

𝑏
) or optimal 

(�̅� =
 2𝑎

𝑏
)  or moderately scarce, i.e. �̅� ∈  [𝑊,

 2𝑎

𝑏
). 

Proof: See Appendix. 

 

Note that in the absence of uncertainty in water flow, the proportional allocation rule is 

synonymous with the fixed allocation rule and, thus, regions contribute the same amount under 

alternative allocation rules. To illustrate it further, note that, whenever 𝜎 = 0, we must have 𝑊𝑙 =
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𝑊ℎ = �̅� and 𝑂𝑃
∗ = 𝑂𝐹

∗ =
[2𝑎−𝑏�̅�]2

4𝑏𝜓
, by Lemma 4 and Lemma 8.  Therefore, the corrupt social 

planner is indifferent between the two allocation rules in case water flow is certain, regardless of 

whether there is water scarcity or water abundance. This together with Proposition 1 implies that 

existence of uncertainty in water flow has a significant bearing on the corrupt social planer's 

equilibrium choice of the allocation rule.     

 

3. Efficient Allocation Rule: Honest Social Planner 

An allocation rule is said to be efficient, if that allocation rule results in maximum total expected 

benefit from water usage by the two regions. If the social planner is honest (i.e. not corruptible), 

he always strictly prefers the more efficient allocation rule. That is, the honest social planner will 

prefer the fixed allocation rule over the proportional allocation rule, if the sum of expected benefits 

from water usage, 𝐸[𝐵𝑈(𝑊𝑈)] + 𝐸[𝐵𝐿(𝑊𝐿)], is greater under fixed allocation rule compared to 

that under proportional allocation rule. In such a scenario, the possibility of influencing the social 

planner’s decisions through contributions does not exist, and thus 𝜆 = 1 holds true always.   

 

Now, under the fixed allocation rule, the honest social planner chooses the fixed amount 𝑊𝑜 by 

solving the following problem 

max
Wo∈(0,Wh)

E[Z]F,λ=1 =  νE [{a(W −Wo) −
b

2
(W −Wo)

2} + {aWo −
b

2
 Wo

2}] 

+(1 − ν)E[0 + {aW −
b

2
 W2}] 

Solving the above problem, we get Wo =
W̅̅̅

2
= Wo  

∗∗.  It implies that  

E[Z]F,λ=1
∗∗
= ν [

aW̅

2
+
3bW̅2

8
−
bE(W2)

2
] + ν [

aW̅

2
−
bW̅2

8
]  + (1 − ν) [aW̅ −

bE(W2)

2
]

= aW̅ −
bE(W2)

2
+ ν

bW̅2

4
 

 

On the other hand, under proportional allocation rule, the honest social planner chooses the 

proportion β by solving the following problem.  



18 
 

max
β∈(0,1) 

E[Z]P,λ=1 = E[a(1 − β)W−
b

2
{(1 − β)W}2] +  E [aβW−

b

2
 (βW)2].  

Solving the above problem we get β =
1

2
= β∗∗.  Thus,  

E[Z]P,λ=1
∗∗
= [
aW̅

2
−
bE(W2)λ2

8
] + [

aW̅

2
−
bE(W2)

8
] = aW̅ −

bE(W2)

4
. 

Note that  

E[Z]P,λ=1
∗∗
− E[Z]F,λ=1

∗∗
=
bE(W2)

4
− ν

bW̅2

4
=
b

4
[W̅2(1 − ν) + σ2] > 0. 

 

Proposition 2:  The honest social planner always chooses the proportional allocation rule to 

allocate water under uncertainty, i.e. the proportional allocation rule is more efficient than the 

fixed allocation rule. 

Proof:  Follows directly from the above discussion.  

 

The intuition behind Proposition 2 is as follows. Note that lim
𝜎→0

𝜈 = lim
𝜎→0

𝑃𝑟𝑜𝑏(𝑊 >𝑊0) = 1 and 

thus lim
𝜎→0

(𝐸[𝑍]𝑃,𝝀=𝟏
∗∗
− 𝐸[𝑍]𝐹,𝝀=𝟏

∗∗
) = 0 . It implies that in absence of uncertainty, the fixed 

allocation rule and the proportional allocation rule are equally efficient. Under uncertainty, the two 

disputing regions equally share the risk involved in the case of proportional allocation rule, 

whereas one of the two regions (the upstream region in the present analysis) bears 

disproportionately greater share of the risk in the case of fixed allocation rule. Since regions' 

benefit functions are considered to be the same, risk sharing is more efficient in the case of 

proportional allocation rule compared to that in the case of fixed allocation rule. Thus, when there 

is uncertainty in water flow, the proportional allocation rule turns out to be more efficient than the 

fixed allocation rule.    

  

From Proposition 1 and Proposition 2, the following result is immediate.  
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Proposition 3: When there is uncertainty in water flow, the corrupt social planner chooses the 

inefficient rule of water allocation only if severe water scarcity is expected to occur (𝑊𝑙 < �̅� <

𝑊); otherwise, the SPNE under corruption is efficient. 

 

It is interesting to observe that while both water scarcity and excessive water flow are undesirable 

to each of the two regions, corruption leads to inefficiency in allocation only if the problem of 

severe water scarcity occurs at the average water flow.  

 

4. Conclusion 

In this paper we have developed a simple model to understand the implications of corruption on 

efficiency in water allocation between two conflicting regions by a third party (central planner) in 

a federal arrangement.  Considering that the conflicting regions are symmetric, we have shown 

that, given the rule of water allocation – fixed or proportional, even under uncertainty the corrupt 

planner opts for efficient allocation of water between conflicting regions in the equilibrium. 

However, corruption has significant distortionary effects on the planner’s choice of the rule of 

allocation when water flow is uncertain, unlike as in the case of certain water flow. In the 

equilibrium, the corrupt planner opts for inefficient rule of allocation in a scenario in which severe 

water scarcity occurs on an average. In other words, a corrupt planner compromises with efficiency 

for his own private benefit when severe water scarcity is expected to occur.  In broader terms, this 

result seems to suggest that while corruption may not portend inefficiency in resource rich nations, 

prevalence of corruption does hurt efficiency of resource poor nations.  

 

In this analysis we have assumed that conflicting regions are symmetric, which helps to clearly 

identify the effects of uncertainty in water flow and corruption. Intuitively we can say that the 

distortionary effect of corruption will be more pronounced in case conflicting regions are 

asymmetric in terms of their benefits from water usages and/or costs of engaging in corrupt 

activities. This is because, in case of asymmetric regions, for any given rule of allocation, 

equilibrium contributions made by the two conflicting regions are likely to be different from each 

other, which will induce the corrupt planner to deviate from efficient allocation of water. Thus, in 

the case of asymmetric regions, the corrupt planner’s choice of both (a) the rule of allocation and 
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(b) given the rule of allocation, levels of waters allocated to different regions are likely to be 

distorted. Nonetheless, it seems to be interesting to characterize the equilibrium in the case of 

asymmetric regions. It also seems to be interesting to extend the analysis by considering a dynamic 

game.  
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Appendix: 

 

A1. Proof of Lemma 1 

In stage 3, the problem of the central planer can be written as follows.  

max
𝑊𝑜∈(0,𝑊ℎ)

𝐸[𝑍]𝐹 =  𝜈𝐸 [{𝑎(𝑊 −𝑊𝑜) −
𝑏

2
(𝑊 −𝑊𝑜)

2} + 𝜆 {𝑎𝑊𝑜 −
𝑏

2
 𝑊𝑜

2}] 

+(1 − 𝜈)𝐸[0 + 𝜆 {𝑎𝑊 −
𝑏

2
 𝑊2}] 

Ignoring the boundary restrictions on 𝑊𝑜, the first order condition of the above problem yields 

𝑊𝑜 =
𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
.  Further, 

𝜕2𝐸(𝑍)𝐹

𝜕𝑊𝑜
2 = −𝑏 (1 + 𝜆) < 0, which implies that the second order 

condition for maximization is satisfied. Note that (i)  
𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
> 0 ⇔ 𝑏 �̅� > 𝑎 (1 − 𝜆), which 

is true since 𝜆 ≥ 0 and  �̅� >
𝑎

𝑏
 ; and (ii) 

𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
< 𝑊ℎ  ⇔ 𝑏(𝑊ℎ − �̅�) +  𝜆 (𝑏 𝑊ℎ − 𝑎) +

𝑎 > 0, which is always true, since 𝑊ℎ > �̅� and 𝑊ℎ >
𝑎

𝑏
.  It follows from (i) and (ii) that  

𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
 ∈ (0, 𝑊ℎ). Therefore, the solution of the above problem is given by 𝑊𝑜 =

𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
= 𝑊𝑜(𝜆).   

 

Now, since 𝑊𝑜 = 𝑊𝑜(𝜆), we have  

𝑊𝐿 = {
𝑊𝑜(𝜆),    𝑖𝑓  𝑊𝑜(𝜆), < 𝑊 
𝑊,   𝑖𝑓  𝑊𝑜(𝜆),≥ 𝑊         

  and   𝑊𝑈 = {
𝑊 −𝑊𝑜(𝜆) ,   𝑖𝑓  𝑊𝑜(𝜆), < 𝑊 
0,   𝑖𝑓  𝑊𝑜(𝜆),≥ 𝑊                   

 (from (3)),  and 

𝑃𝑟𝑜𝑏(𝑊0(𝜆) < 𝑊) = 𝜈 = {
1,   𝑖𝑓 𝑊𝑜(𝜆) < 𝑊𝑙             

𝜌,   𝑖𝑓  𝑊𝑙 ≤ 𝑊0(𝜆) < 𝑊ℎ 
.  It follows that            𝐸[𝐵𝐿(𝑊) |𝑊𝑜 =

𝑊𝑜(𝜆)] =  𝜈 𝐵𝐿(𝑊𝑜(𝜆)) + (1 − 𝜈)𝐸[𝐵𝐿(𝑊)],  and  𝐸[𝐵𝑈(𝑊) |𝑊𝑜 = 𝑊𝑜(𝜆)] =  𝜈 𝐸𝐵𝑈(𝑊 −

𝑊𝑜(𝜆))].  

[QED] 

 

A2. Proof of Lemma 2 

Given a fixed allocation rule, in the second stage the objective functions of the upstream region 

and the downstream region, respectively, can be written as follows.  
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𝐸[𝐺𝑈,𝐹] = 𝜈 [
2𝑎�̅�λ2

(1+λ)2
+
𝑏(1+2λ)�̅�2

2(1+λ)2
+
𝑎2(1−λ)

𝑏(1+λ)
−
𝑎2(1−λ)2

2𝑏(1+λ)2
−
𝑏𝐸(𝑊2)

2
] − 𝜓

𝐶𝑈
2

2
  and 

𝐸[𝐺𝐿,𝐹] = 𝜈 [
2𝑎�̅�

(1+λ)2
−
𝑎2(1−λ)(3+λ)

2𝑏(1+λ)2
−

𝑏�̅�2

2(1+λ)2
]  +  (1 − 𝜈) [𝑎�̅� −

𝑏𝐸(𝑊2)

2
] − 𝜓

𝐶𝐿
2

2
,  

where λ = 1 + 𝐶𝐿 − 𝐶𝑈.  

 

Therefore, 
𝜕𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
=  𝜈

λ(2𝑎−𝑏�̅�)2

𝑏(1+λ)3
−  𝜓𝐶𝑈,  

𝜕

𝜕𝐶𝐿
[
𝜕𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
] =  𝜈

(1−2λ)(2𝑎−𝑏𝑊)̅̅ ̅̅ 2

𝑏(1+λ)4
, 
𝜕𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
=

𝜈 (2𝑎−𝑏�̅�)2

𝑏(1+λ)3
−

𝜓𝐶𝐿 and 
𝜕

𝜕𝐶𝑈
[
𝜕𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
] = 𝜈

3(2𝑎−𝑏𝑊)̅̅ ̅̅ 2

𝑏(1+λ)4
.  It follows that  

a)  
𝜕

𝜕𝐶𝐿
[
𝜕𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
] 

{
 
 

 
 > 0,   𝑖𝑓 λ <

1

2
⇔ CU > CL +

1

2

< 0,   𝑖𝑓 λ >
1

2
⇔ CU < CL +

1

2
 

= 0,   𝑖𝑓 λ =
1

2
⇔ CU = CL +

1

2

  and 

b) 
𝜕

𝜕𝐶𝑈
[
𝜕𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
] > 0 always holds true, since 𝜈 = {1, 𝜌} and 𝜌 ∈ (0, 1).  

[QED] 

 

A3. Proof of Lemma 3 

The problem of region 𝑖 is max
𝐶𝑖∈[0,1]

𝐸[𝐺𝑖,𝐹], 𝑖 = 𝑈, 𝐿.  First order conditions of these two 

maximization problems are as follows.   

 

Upstream Region: 
𝜕𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
=  𝜈

λ(2𝑎−𝑏�̅�)2

𝑏(1+λ)3
−  𝜓𝐶𝑈 = 0,  

Downstream Region: 
𝜕𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
=

𝜈 (2𝑎−𝑏�̅�)2

𝑏(1+λ)3
− 𝜓𝐶𝐿 = 0, where λ = 1 + 𝐶𝐿 − 𝐶𝑈.  

 

Solving the above first order conditions, we get 𝐶𝑈 = 𝐶𝐿 = 𝜈
(2𝑎−𝑏�̅�)2

8𝑏𝜓
.  

 

Next, it is easy to check that (a) 
𝜕2𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
2 |

𝐶𝑈=𝐶𝐿

= 𝜈
(2a−bW̅̅̅)2

16b
−  𝜓 < 0 ⇔  𝜓 > 𝜈 

(2a−bW̅̅̅)2

16b
 , which 

is true by construction since 𝜈 ∈ (0, 1], and (b) 
𝜕2𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
2 = 𝜈

−3(2a−bW̅̅̅)2

b(1+λ)4
−  𝜓 < 0 ∀ λ ≥ 0. 

Therefore, second order conditions for maximization are satisfied.  
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Further, we have 
𝜕

𝜕𝐶𝑈
[
𝜕𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
] = 𝜈

3(2𝑎−𝑏𝑊)̅̅ ̅̅ 2

𝑏(1+λ)4
> 0  and 

𝜕

𝜕𝐶𝐿
[
𝜕𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
]|
𝐶𝑈=𝐶𝐿

=

𝜈 
(1−2λ)(2𝑎−𝑏𝑊)̅̅ ̅̅ 2

𝑏(1+λ)4
|
𝐶𝑈=𝐶𝐿

= −𝜈
(2a−bW̅̅̅)2

16b
<  0. Thus, at 𝐶𝑈 = 𝐶𝐿, |𝐻| =

 |

𝜕2𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
2

𝜕

𝜕𝐶𝐿
(
𝜕𝐸[𝐺𝑈,𝐹]

𝜕𝐶𝑈
)

𝜕

𝜕𝐶𝑈
(
𝜕𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
)

𝜕2𝐸[𝐺𝐿,𝐹]

𝜕𝐶𝐿
2

  |   > 0  holds true. It implies that the equilibrium is stable.  

[QED] 

 

A4. Proof of Lemma 4 

We have 𝐶𝑓𝑖𝑥𝑒𝑑 = 𝐶𝑈 = 𝐶𝐿 =  𝜈
(2𝑎−𝑏�̅�)2

8𝑏𝜓
 . Thus, λ = 1 + 𝐶𝐿 − 𝐶𝑈 = 1. Now,  

𝑊𝑜|𝜆=1 =
𝑏 �̅�−𝑎 (1−𝜆)

𝑏 (1+𝜆)
|
𝜆=1

=
 �̅�

2
 .  Clearly, 𝑊0

∗ =
�̅�

2
.  

It follows that, at the SPNE, expected water flow to the downstream region is given by  𝐸[𝑊𝐿,𝐹]
∗ =

𝜈𝑊𝑜|𝜆=1 + (1 − 𝑣)�̅� = �̅�(1 −
𝜈

2
) and expected water share of the upstream region is given by 

 𝐸[𝑊𝑈,𝐹]
∗ = 𝜈[�̅� −𝑊𝑜|𝜆=1] + (1 − 𝑣)0 = 𝜈

�̅�

2
. The central planner’s SPNE payoff is given by 

𝑂𝐹
∗ = 2𝐶𝑓𝑖𝑥𝑒𝑑 = 𝜈

(2𝑎−𝑏�̅�)2

4𝑏𝜓
.  

[QED] 

 

A5. Proof of Lemma 5 

Under the proportional allocation rule, the planner’s problem in stage 3 is given by  max
𝛽∈(0,1)

𝐸[𝑍]𝑃, 

where  

𝐸[𝑍]𝑃 = 𝐸[𝐵𝑈{(1 − 𝛽)𝑊}] +  𝜆 𝐸[𝐵𝐿(𝛽𝑊)]                                                

           = 𝐸[𝑎(1 − 𝛽)𝑊 −
𝑏

2
{(1 − 𝛽)𝑊}2] + 𝜆 𝐸 [𝑎𝛽𝑊 −

𝑏

2
 (𝛽𝑊)2].  

The first order condition of the central planner’s stage 3 problem is  

𝜕𝐸[𝑍]𝑃

𝜕𝛽
= −𝑎�̅� + 𝑏(1 − 𝛽)𝐸(𝑊2) +  𝜆 [𝑎�̅� − 𝑏𝛽𝐸(𝑊2) ] = 0 ⇒ 𝛽 =

𝑏𝐸(𝑊2)−𝑎(1−𝜆)�̅�

𝑏(1+𝜆)𝐸(𝑊2)
= 𝛽(𝜆).   
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Now, 
𝜕2𝐸(𝑍)𝑃

𝜕𝛽2
= −𝑏(1 + 𝜆)𝐸(𝑊2) < 0, which implies that the second order condition for maximization 

is satisfied. It follows that  𝐸[𝑍]𝑃 is strictly concave in 𝛽 and has a unique maximum at 𝛽 = 𝛽(𝜆).  

 

Now, 𝛽(𝜆) ≥ 1 ⇔
𝑏𝐸(𝑊2)−𝑎(1−𝜆)�̅�

𝑏(1+𝜆)𝐸(𝑊2)
≥ 1 ⇔ 𝜆[𝑎�̅� −  𝑏𝐸(𝑊2)] ≥ 𝑎�̅� , which is possible to hold 

only if 𝑎�̅� −  𝑏𝐸(𝑊2) > 0,  since 𝑎 > 0, �̅� > 0 and 𝜆 ≥ 0.  If [𝑎�̅� −  𝑏𝐸(𝑊2)] > 0, 𝛽(𝜆) ≥

1 ⇔ 𝜆 ≥
𝑎�̅�

[𝑎�̅�− 𝑏𝐸(𝑊2)]
= �̅� .  

 

Next, 𝛽(𝜆) ≤ 0 ⇔
𝑏𝐸(𝑊2)−𝑎(1−𝜆)�̅�

𝑏(1+𝜆)𝐸(𝑊2)
≤ 0 ⇔ 𝜆[𝑎�̅�] ≤ 𝑎�̅� −  𝑏𝐸(𝑊2) , which is possible to hold 

only if 𝑎�̅� −  𝑏𝐸(𝑊2) > 0,  since 𝑎 > 0, �̅� > 0 and 𝜆 ≥ 0.  If [𝑎�̅� −  𝑏𝐸(𝑊2)] > 0, 𝛽(𝜆) ≤

0 ⇔ 𝜆 ≤
[𝑎�̅�− 𝑏𝐸(𝑊2)]

𝑎�̅�
= 𝜆 .  

 

So, we have the following.  

(a) If [𝑎�̅� −  𝑏𝐸(𝑊2)] ≤ 0, 0 < 𝛽(𝜆) < 1 and, thus,  𝛽∗ = 𝛽(𝜆).   

(b)  If [𝑎�̅� −  𝑏𝐸(𝑊2)] > 0 and 𝜆 < 𝜆 < �̅�, 0 < 𝛽(𝜆) < 1 and, thus,  𝛽∗ = 𝛽(𝜆).   

(c)  If [𝑎�̅� −  𝑏𝐸(𝑊2)] > 0 and 𝜆 ≥ 𝜆, 𝛽(𝜆) ≤ 0, which implies that 𝛽∗ = 𝜖, where 𝜖 is a very 

small positive number.  

(d) If [𝑎�̅� −  𝑏𝐸(𝑊2)] > 0 and 𝜆 ≥ �̅�, 𝛽(𝜆) ≥ 1, which implies that 𝛽∗ = 1 − 𝜖.  

[QED] 

 

A6. Proof of Lemma 6 

Objective functions of upstream and downstream regions in stage 2 of the game under proportional 

allocation rule can be written as follows, where λ = 1 + 𝐶𝐿 − 𝐶𝑈.  

Upstream Region:         𝐸[𝐺𝑈,𝑃] =
2𝑎�̅�λ2

(1+λ)2
+
𝑎2(1−λ)(3𝜆+1)�̅�2

2𝑏(1+λ)2𝐸(𝑊2)
−
𝑏𝐸(𝑊2)𝜆2

2(1+𝜆)2
−𝜓

𝐶𝑈
2

2
  

Downstream Region:    𝐸[𝐺𝐿,𝑃] =
2𝑎�̅�

(1+λ)2
−
𝑎2(1−λ)(3+λ)�̅�2

2𝑏(1+λ)2𝐸(𝑊2)
−
𝑏𝐸(𝑊2)

2(1+λ)2
− 𝜓

𝐶𝐿
2

2
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It is easy to check that 
𝜕𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
= 

λ(2𝑎�̅�−𝑏𝐸(𝑊2))2

𝑏(1+λ)3 𝐸(𝑊2)
−  𝜓𝐶𝑈, 

𝜕

𝜕𝐶𝐿
[
𝜕𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
] =  

(1−2λ)(2𝑎�̅�−𝑏𝐸(𝑊2))2

𝑏(1+λ)4𝐸(𝑊2)
,  

𝜕𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
=
(2𝑎�̅�−𝑏𝐸(𝑊2)2

𝑏(1+λ)3
− 𝜓𝐶𝐿 and 

𝜕

𝜕𝐶𝑈
[
𝜕𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
] =

3(2𝑎�̅�−𝑏𝐸(𝑊2))2

𝑏(1+λ)4
.  Clearly,  

(a) 
𝜕

𝜕𝐶𝑈
[
𝜕𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
] > 0 always holds true, but 

(b) 
𝜕

𝜕𝐶𝐿
[
𝜕𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
] 

{
 
 

 
 > 0,   𝑖𝑓 λ <

1

2
⇔ CU > CL +

1

2

< 0,   𝑖𝑓 λ >
1

2
⇔ CU < CL +

1

2
 

= 0,   𝑖𝑓 λ =
1

2
⇔ CU = CL +

1

2

. 

[QED] 

 

A7. Proof of Lemma 7 

The problem of region 𝑖 in stage 2 of the game can be written as follows.   

max
𝐶𝑖∈[0,1]

𝐸[𝐺𝑖,𝑃] , 𝑖 = 𝑈, 𝐿; 

where 𝐸[𝐺𝑈,𝑃] =
2𝑎�̅�λ2

(1+λ)2
+
𝑎2(1−λ)(3𝜆+1)�̅�2

2𝑏(1+λ)2𝐸(𝑊2)
−
𝑏𝐸(𝑊2)𝜆2

2(1+𝜆)2
− 𝜓

𝐶𝑈
2

2
, 

𝐸[𝐺𝐿,𝑃] =
2𝑎�̅�

(1+λ)2
−
𝑎2(1−λ)(3+λ)�̅�2

2𝑏(1+λ)2𝐸(𝑊2)
−
𝑏𝐸(�̅�2)

2(1+λ)2
− 𝜓

𝐶𝐿
2

2
  and λ = 1 + 𝐶𝐿 − 𝐶𝑈.   

Thus, first order conditions of upstream and downstream regions maximization problems are, 

respectively, given by  

  
𝜕𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
= 

λ(2𝑎�̅�−𝑏𝐸(𝑊2))2

𝑏(1+λ)3 𝐸(𝑊2)
−  𝜓𝐶𝑈 = 0  and  

𝜕𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
=
(2𝑎�̅�−𝑏𝐸(𝑊2)2

𝑏(1+λ)3
− 𝜓𝐶𝐿; where λ = 1 +

𝐶𝐿 − 𝐶𝑈.  Solving these two first order conditions we get 𝐶𝐿 = 𝐶𝑈 =
[2𝑎�̅�−𝑏𝐸(𝑊2)]2

8𝑏𝜓𝐸(𝑊2)
= 𝐶𝑝𝑟𝑜, say. 

 

Next, it is easy to check that   

(a) 
𝜕2𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
2 =

−3(2𝑎�̅�−𝑏�̅�)2

𝑏(1+𝜆)4
−  𝜓 < 0 

(b) 
𝜕2𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
2 |

𝐶𝑈=𝐶𝐿

=
(2𝑎�̅�−𝑏𝐸(𝑊2))2

16𝑏𝐸(𝑊2)
−  𝜓 < 0, since 𝜓 ≥

(2𝑎�̅�−𝑏𝐸(𝑊2))2

8𝑏𝐸(𝑊2)
  by Assumption. 
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(c) Whenever 𝐶𝑈 = 𝐶𝐿 is satisfied, |𝐻/| =  |

𝜕2𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
2

𝜕

𝜕𝐶𝐿
(
𝜕𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
)

𝜕

𝜕𝐶𝑈
(
𝜕𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
)

𝜕2𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
2

  |   > 0; since 

[
𝜕

𝜕𝐶𝐿
(
𝜕𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
)]
𝐶𝑈=𝐶𝐿

= 
(1−2λ)(2𝑎W̅̅̅−𝑏𝐸(𝑊2))2

𝑏𝐸(𝑊2)(1+λ)4
|
𝐶𝑈=𝐶𝐿

= −
(2aW̅̅̅−b𝐸(𝑊2))

2

16b𝐸(𝑊2)
<  0, 

[
𝜕

𝜕𝐶𝑈
(
𝜕𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
)] =

3(2𝑎W̅̅̅−𝑏𝐸(𝑊2))2

𝑏(1+λ)4
> 0, 

𝜕2𝐸[𝐺𝐿,𝑃]

𝜕𝐶𝐿
2 < 0 and 

𝜕2𝐸[𝐺𝑈,𝑃]

𝜕𝐶𝑈
2 |

𝐶𝑈=𝐶𝐿

< 0.  

 

It follows from (a), (b) and (c) that second order conditions for maximization are satisfied and the 

equilibrium is stable. Thus, the equilibrium contributions made by regions are given by 𝐶𝐿,𝑃 =

𝐶𝑈,𝑃 =
[2𝑎�̅�−𝑏𝐸(𝑊2)]2

8𝑏𝜓𝐸(𝑊2)
= 𝐶𝑝𝑟𝑜.  

[QED] 

 

A8. Proof of Lemma 8 

From Lemma 7, 𝐶𝐿 = 𝐶𝑈 =
[2𝑎�̅�−𝑏𝐸(𝑊2)]2

8𝑏𝜓𝐸(𝑊2)
= 𝐶𝑝𝑟𝑜, which implies that 𝜆 = 𝜆∗ = 1. Substituting 

𝜆 = 1 in the expression for β(λ) in Lemma 5, we get 𝛽(𝜆)|𝜆=1 =
1

2
. Therefore, 𝛽 =

1

2
= 𝛽∗ is the 

SPNE proportion of water for the downstream region.  

 

It follows that  𝐸[𝑊𝐿,𝑃]
∗ = 𝛽∗𝐸[𝑊] =

�̅�

2
  and 𝐸[𝑊𝑈,𝑃]

∗ = (1 − 𝛽∗)𝐸[𝑊] =
�̅�

2
.  

 

Now, since 𝑂𝑃 = 𝐶𝐿 + 𝐶𝑈 and in the SPNE 𝐶𝐿 = 𝐶𝑈 =
[2𝑎�̅�−𝑏𝐸(𝑊2)]2

8𝑏𝜓𝐸(𝑊2)
= 𝐶𝑝𝑟𝑜, we have 𝑂𝑃

∗ =

2𝐶𝑝𝑟𝑜 =
[2𝑎�̅�−𝑏𝐸(𝑊2)]2

4𝑏𝜓𝐸(𝑊2)
.  

[QED] 

 

A9. Proof of Proposition 1 

We have the following.  

𝑂𝐹
∗ =  2 𝐶𝑓𝑖𝑥𝑒𝑑 = 𝜈

 (2𝑎−𝑏�̅�)2

4𝑏𝜓
   (from Lemma 4) and  
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𝑂𝑃
∗ = 2𝐶𝑝𝑟𝑜 =

[2𝑎�̅�−𝑏𝐸(𝑊2)]2

4𝑏𝜓𝐸(𝑊2)
  (from Lemma 8).  

Note that the central planner chooses the fixed allocation rule if and only if 𝑂𝐹
∗ > 𝑂𝑃

∗ . Otherwise, 

if 𝑂𝐹
∗ < 𝑂𝑃

∗ , the proportional allocation rule is the central planner’s optimal choice.  

Now,  

            𝑂𝐹
∗ − 𝑂𝑃

∗ > 0 ⇔  𝜈 >   
[2𝑎�̅� − 𝑏𝐸(𝑊2)]2

(2𝑎 − 𝑏�̅�)2 𝐸(𝑊2)
= �̂�                                                      (𝐴1) 

 

Clearly, �̂� > 0.  The following is immediate from (A1).  

i) If �̂� > 1,  condition (A1) can never be satisfied, since 𝜈 ∈ {1, 𝜌} and 𝜌 ∈ (0, 1). In other 

words, if �̂� > 1, we must have 𝑂𝐹
∗ < 𝑂𝑃

∗ .   

ii) If �̂� < 1, then the following is true.  

a) 𝑂𝐹
∗ > 𝑂𝑃

∗  when 𝜈 > �̂�. 

b) 𝑂𝐹
∗ < 𝑂𝑃

∗  when 𝜈 < �̂�.  

 

Now, it is easy to check that  

�̂� < 1 ⇔
[2𝑎�̅�−𝑏𝐸(𝑊2)]

2

𝐸(𝑊2)
< (2𝑎 − 𝑏�̅�)2  ⇔

4𝑎2

𝑏2
> 𝐸(𝑊2) = �̅�2 + 𝜎2   and  

�̂� > 1 ⇔
4𝑎2

𝑏2
< �̅�2 + 𝜎2 .  

 

Water Abundance (�̅� ≥
 2𝑎

𝑏
) 

It is evident that, if �̅� ≥
 2𝑎

𝑏
,   
4𝑎2

𝑏2
< �̅�2 + 𝜎2 always holds true.  Therefore, �̂� > 1. It implies that, 

if �̅� ≥
 2𝑎

𝑏
, we must have  𝑂𝐹

∗ < 𝑂𝑃
∗ . Thus, in the case of water abundance, the corrupt central 

planner strictly prefers the proportional allocation rule over the fixed allocation rule.  

 

Severe and Moderate Water Scarcity (�̅� <
 2𝑎

𝑏
) 
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When �̅� <
 2𝑎

𝑏
,  �̂�  ⋛ 1 depending on the magnitude of �̅� for given values of 𝑎, 𝑏 and 𝜎2. Now, 

�̂� > 1 ⇔
4𝑎2

𝑏2
< �̅�2 + 𝜎2 ⇔ �̅� > √

4𝑎2

𝑏2
− 𝜎2 = �̃�, say. Therefore,  if  �̃� < �̅� <

 2𝑎

𝑏
, 𝑂𝐹

∗ < 𝑂𝑃
∗  

holds true.  

 

It follows that (a)  �̂� < 1 ⇔ �̅� < �̃� and (b)  �̂� = 1 ⇔ �̅� = �̃�.   

 

Note that [𝜈 = 1] ⇔ [𝑃𝑟𝑜𝑏(𝑊 > 𝑊0) = 1] ⇔ [𝑊0 < 𝑊𝑙].  That is, if (a) the central planner sets 

the fixed amount 𝑊0 such that 𝑊0 < 𝑊𝑙  and (b) �̅� = �̃�, then the corrupt planner is indifferent 

between the two rules of allocation, i.e. 𝑂𝐹
∗ = 𝑂𝑃

∗ . Next, under fixed allocation rule the central 

planner's equilibrium choice of 𝑊0 is given by 𝑊0 =
 �̅�

2
. It follows that 𝑂𝐹

∗ = 𝑂𝑃
∗  holds only if  

�̅� = �̃� < 2𝑊𝑙; otherwise, at �̅� = �̃�, we have 𝑂𝐹
∗ < 𝑂𝑃

∗ .  

 

Since 𝑊0 =
 �̅�

2
 in the equilibrium under fixed allocation rule, 𝜈 = 𝑃𝑟𝑜𝑏(𝑊 > 𝑊0) =

𝑃𝑟𝑜𝑏(�̅� < 2𝑊) = 1 in the equilibrium, iff �̅� < 2 𝑊𝑙.  Note that we have 2 𝑊𝑙 <
 2𝑎

𝑏
, by 

construction.  

 

 𝐶𝑎𝑠𝑒 𝐼: 𝟐𝑾𝒍 > �̃� 

(a) If 2𝑊𝑙 > �̃�, then for all �̅� ∈ ( �̃�, 2 𝑊𝑙)  (i) 𝜈 = 1, since 𝑊0 =
 �̅�

2
< 𝑊𝑙, and (ii) �̂� > 1, 

since �̅� > �̃�. Thus, 𝑣 < �̂� holds true. 

(b) If �̅� = 2 𝑊𝑙, 𝑊0 =
 �̅�

2
= 𝑊𝑙 and 𝜈 = 𝑃𝑟𝑜𝑏(𝑊 > 𝑊0) = 𝑃𝑟𝑜𝑏(𝑊 = 𝑊ℎ) = 𝜌 < 1. But 

we must have �̂� > 1 since �̅� > �̃�. Thus, 𝑣 < �̂� holds true. 

From (a) and (b), we have ∀ �̅� ∈ ( �̃�,
 2𝑎

𝑏
), 𝑂𝐹

∗ < 𝑂𝑃
∗ , since 𝑣 < �̂� holds true.  

 Now, if �̅� = �̃�, then 𝑂𝐹
∗ = 𝑂𝑃

∗  since �̅� = �̃� < 2𝑊𝑙 .  

And, finally, if �̅� < �̃�, we still have 𝜈 = 1, since 𝑊0 =
 �̅�

2
< 𝑊𝑙, but �̂� < 1, since �̅� < �̃�. So, 

∀ �̅� ∈ ( 𝑊𝑙, �̃�), 𝑂𝐹
∗ > 𝑂𝑃

∗  . 
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                                                                 𝑂𝐹
∗ < 𝑂𝑃

∗   (water abundance and moderate scarcity) 

                     𝑂𝐹
∗ = 𝑂𝑃

∗   

                                                       

      𝑊𝑙            �̃�          2𝑊𝑙                 
 2𝑎

𝑏
                                                            𝑊ℎ 

                                

    

         𝑂𝐹
∗ > 𝑂𝑃

∗   (severe scarcity) 

 

 

Overall, we get the following.  

1. 𝑂𝐹
∗ > 𝑂𝑃

∗ , ∀ �̅� ∈ (𝑊𝑙, �̃�),  

2. 𝑂𝐹
∗ < 𝑂𝑃

∗  , ∀ �̅� ∈ (�̃�,
 2𝑎

𝑏
), and  

3. 𝑂𝐹
∗ = 𝑂𝑃

∗ , if  �̅� = �̂�,  where  �̃� < 2𝑊𝑙 <
 2𝑎

𝑏
 

 

 

 

𝐶𝑎𝑠𝑒 𝐼𝐼: 𝟐𝑾𝒍 < �̃� 

                                                                            𝑂𝐹
∗ < 𝑂𝑃

∗  (water abundance and moderate scarcity) 

 

 

                             �̂�   

      𝑊𝑙            2𝑊𝑙          �̃�                 
 2𝑎

𝑏
                                                            𝑊ℎ 

 

 

                𝑂𝐹
∗ > 𝑂𝑃

∗   (severe scarcity) 
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Now, we have to prove the following claim: 

Claim: There exists a unique �̂�  ∈  (2𝑊𝑙, �̃�), such at (a) ∀ �̅� ∈ (2𝑊𝑙, �̂�),  𝜈 > �̂�, and (b) 𝜈 <

�̂� ∀ �̅� ∈ (�̂�, �̃�).  
Proof: 

 We have the following.   

i) 𝜈 = 𝜌 ∈ (0, 1), ∀ �̅�  ∈  (2𝑊𝑙, �̃�]. This is because, 𝜈 =

𝑃𝑟𝑜𝑏(𝑊 > 𝑊0) = 𝑃𝑟𝑜𝑏(𝑊 = 𝑊ℎ) = 𝜌, �̃� <
 2𝑎

𝑏
< 2𝑊ℎ,  and in 

the equilibrium under fixed allocation rule 𝑊0 =
 �̅�

2
 . 

ii) �̂� = 1, if �̅� = �̃�.  

 

It can be checked that 

�̂� < (=)𝜌 ⇔ �̅�2 < (=) [
𝜌𝜎2

1 − 𝜌 +
𝜎2𝑏2

(2𝑎 − 𝑏�̅�)2 

] = [�̅�(𝜌)]2 

It is evident that �̅�(𝜌) < �̅�(1). It follows that �̂� is increasing in �̅�for any given 

𝜎2. 

Clearly, there exists a unique �̂�  ∈  (2𝑊𝑙, �̃�), such that (a)  �̂� = 𝜌 = 𝜈 when �̅� =

�̂�, (b)  𝜈 > �̂� ∀ �̅� ∈ (2𝑊𝑙, �̂�) and (c) 𝜈 < �̂� ∀ �̅� ∈ (�̂�, �̃�).  
 

Overall, we get the following.  

1. 𝑂𝐹
∗ > 𝑂𝑃

∗ , ∀ �̅� ∈ (𝑊𝑙, �̂�),  

2. 𝑂𝐹
∗ < 𝑂𝑃

∗  , ∀ �̅� ∈ (�̂�,
 2𝑎

𝑏
), and  

3. 𝑂𝐹
∗ = 𝑂𝑃

∗ , if  �̅� = �̂�,  where  2𝑊𝑙 < �̂� < �̃� <
 2𝑎

𝑏
 

 

 

𝐶𝑎𝑠𝑒 𝐼𝐼𝐼: 𝟐𝑾𝒍 = �̃� 

 

If �̅� = �̃� = 2 𝑊𝑙, 𝑊0 =
 �̅�

2
= 𝑊𝑙 and 𝜈 = 𝑃𝑟𝑜𝑏(𝑊 > 𝑊0) = 𝑃𝑟𝑜𝑏(𝑊 = 𝑊ℎ) = 𝜌 < 1. 

But we must have �̂� = 1 since �̅� = �̃�. Thus, 𝑣 < �̂� holds true. 

So, we have for �̅� = �̃� = 2 𝑊𝑙, 𝑂𝐹
∗ < 𝑂𝑃

∗ , since 𝑣 < �̂�. 

For �̅� > �̃� = 2 𝑊𝑙, we have 𝑂𝐹
∗ < 𝑂𝑃

∗  as  𝑣 < �̂� , since 𝜈 = 𝑃𝑟𝑜𝑏(𝑊 > 𝑊0) =

𝑃𝑟𝑜𝑏(𝑊 = 𝑊ℎ) = 𝜌 < 1 and �̂� > 1. 
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For �̅� < �̃� = 2 𝑊𝑙, we have 𝑂𝐹
∗ > 𝑂𝑃

∗  as  𝑣 > �̂� , since 𝜈 = 1 and �̂� < 1. 

 

 

 

                                                                 𝑂𝐹
∗ < 𝑂𝑃

∗   (water abundance and moderate scarcity) 

                    

                                                    

      𝑊𝑙                      2𝑊𝑙 = �̃�                 
 2𝑎

𝑏
                                                            𝑊ℎ 

                                

    

         𝑂𝐹
∗ > 𝑂𝑃

∗   (severe scarcity) 

 

Therefore, we can state the following.  

It is optimal for the corrupt central planner to choose the fixed allocation rule, if either of the 

following is true. 

Case I: �̅� ∈ (𝑊𝑙, �̃�  ), where 𝑊𝑙 < �̃� < 2𝑊𝑙 

Case II: �̅� ∈ (𝑊𝑙, �̂�), where 2𝑊𝑙 < �̂� < √
4𝑎2

𝑏2
− 𝜎2  = �̃�  

Case III: �̅� ∈ [𝑊𝑙 , 2𝑊𝑙 = �̃�), where �̅� = �̃� = 2 𝑊𝑙 . 

 

It implies that there exists a 𝑊 = 𝑊, where  𝑊 ≤ �̃� = √
4𝑎2

𝑏2
− 𝜎2, such that if �̅� ∈ (𝑊𝑙,𝑊  ), it   

is optimal for the corrupt central planner to choose the fixed allocation rule.  Otherwise, if �̅� ≥

 2𝑎

𝑏
  or  �̅� ∈  [𝑊,

 2𝑎

𝑏
), it is optimal for the corrupt social planner to choose the proportional 

allocation rule.  

 

 [QED] 
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