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1. Introduction 

Shared water always and everywhere carries the seed of conflict. But it is also the very nature 

of this resource that makes it so amenable to sharing. As Wolf, Yoffe and Giordano (2003) 

write, “…international water may be as a resource whose characteristics tend to induce 

cooperation, and incite violence only in the exception.” Investigating historic water conflicts, 

Wolf (1999) finds that war over water doesn’t seem strategically rational, hydrographically 

effective or economically viable. The same sense resonates in Chokkakula (2014), who notes 

that in relation to a few interstate water disputes in India, there are more than 120 interstate 

water agreements.  

 

Conflict resolution sometimes follows formal processes of negotiation and any cooperative 

outcome, then, is explicitly attributed to this process. Wolf(1999) notes that such cooperative 

regimes established through treaty turn out to be quite resilient over time, even between 

otherwise hostile riparians who continue to spar over other issues. Sometimes, however, 

solutions to potentially intractable and messy water conflicts seem to appear seamlessly, in 

which case, one must look into the implicit driving mechanisms. We posit that this seemingly 

cooperative outcome of many water conflicts may simply be the result of a non-cooperative 

game with an efficient solution that plays out silently in the background. This paper tries to 

go into the heart of such a potential water conflict where the efficient solution obtains without 

negotiation or any explicit intervention in the form of either arbitration or political diktat and 

tries to locate water conflict within the larger scope of contest over limited resources. 

 

We track closely a setup straddling two areas of conflict literature, namely water as a source 

of conflict and the use of contest technology as a means of resolution, and explore the 

possibility of an efficient outcome. We note here that such a setup is used by Ansink and 

Weikard (2009) to show the inefficiency of contest over water. There are two riparian regions 

with fixed endowments and claims on as-of-yet unallocated water. We deal with the 

allocation of that water which is claimed by both and call it contested water. Their claims are 

not exogenous but contingent on the system capacity, or complementary infrastructure as we 

call it, that they have built prior to allocation. We make no distinction between system 

capacity and beneficial use in our model as we assume operation at full capacity. Also, 

following Johnson, Gisser and Werner (1981), we assume that property rights over water are 

to be defined in terms of consumptive use and not diversion.  
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The fact that a region has built system capacity or created avenues for beneficial use prior to 

water sharing makes its claims all the more credible. This legitimization of claims on the 

basis of built infrastructure, through a sharing rule that is common knowledge, introduces a 

semblance of appropriative property rights into our paradigm. Although it mimics the 

appropriative rights regime, it is still not a property right proper as we also allow our regions 

to invest part of their endowment towards a fighting input which they can use to secure the 

contested water. The share of water obtained through the process is modelled in terms of a 

Contest Success Function (CSF). We first consider a linear CSF, with a particular functional 

characterization, and then we extend the analysis to allow for a general CSF. This also allows 

us to vary the degree of mediation involved in the contest by first requiring anonymity and 

then, loosening the setup.  Under such a paradigm, using the particular functional form, we 

obtain a non-cooperative result which is the same as the cooperative game outcome where no 

resource is spent on fighting, and thus, is Pareto efficient. This outcome persists irrespective 

of whether regions are symmetric or not in their endowments and productivities. This 

efficient outcome is obtained for both simultaneous and sequential move games.  It is 

important to note that such an outcome obtains without any bargaining. We also obtain 

allocative efficiency under certain parametric conditions. Moreover, by treating water 

conflicts within the ambit of contest literature, our efficiency result is found to be more 

universal than many seminal works such as Skaperdas (1992) that explore the possibility of 

cooperation materializing through the use of conflict technology. With the more generalised 

forms of productive and contest technologies, we obtain conflict and cooperation to varying 

degrees. 

 

Burness and Quirk (1979) find that in the absence of a competitive market in water rights, the 

doctrine of prior appropriation leads to inefficient use of water. This is mainly due to the 

recognition of ‘seniority rights’ which leads to unequal risk sharing even between firms 

having identical production functions. They contend that equal sharing of water, which would 

remove this asymmetry of risk sharing, would lead to problems that are faced by common 

property resources and hence, would not comport with a competitive market. We find that for 

regions with identical production functions, the non-cooperative water sharing outcome is 

allocatively efficient, even when the claims are endogenized in some form akin to the 

appropriative doctrine. This is evidently due to the fact that in our model, initially, we 

recognize no seniority rights and water is shared between similarly placed but not necessarily 

identical agents. Later, when we introduce seniority rights in the form of an explicit first 



4 
 

mover advantage to the upstream region1, we still obtain efficiency in a range of cases where 

the downstream region is well endowed and able to match the former’s claims on water. But 

this framework yields outright or partial conflict,2 if the comparative advantage of the 

upstream region is too high, or if the endowment of the downstream region is not sufficiently 

high. This is borne out repeatedly in riparian conflicts around the world where the upstream 

region often pre-emptively undertakes hydraulic projects on the upper reaches of a river, 

evidently to secure a significant comparative advantage. In case of transboundary flows 

where the upper riparian happens to enjoy relatively greater economic, military and 

geopolitical clout, such acts of pre-emptive infrastructure-building on its part bestow it with a 

significant comparative advantage, leaving the lower riparian with a limited recourse of 

politico-legal contestation. Similar behaviour is observed within  federations, where upper 

riparians often initiate the pre-emptive diversion of water, to be followed by the lower 

riparian either matching such diversion or resorting to fighting through legal or political 

means, depending on the relative merits of its choices.   

 

In India, for example, where most of the surface water derives from interstate rivers, conflict 

between states over water shares invariably erupts with the upper riparian pre-emptively 

diverting water. Although India recognizes some form of riparian rights, it is more of a 

regulated riparianism3 that also blends elements of appropriation. So, states make claims to 

water on the basis of prior use so that investment in water infrastructure plays a crucial role. 

As Richards and Singh (2002) notice, states tend to deliberately delay the bargaining or 

adjudication process in order to build up capacity systems in the intervening period and thus, 

ratchet up their claims. In the notorious Cauvery water dispute, Karnataka, the upper riparian, 

had pre-emptively undertaken many hydraulic projects. In response, Tamil Nadu, the lower 

riparian, increased its irrigated acreage manifold and staked claim to a much greater share of 

water. It is crucial to note here that beneficial use, much like system capacity, can be trumped 

up to increase one’s claims to water. But it has to be noted that in the Cauvery case, despite 

 
1 We note here that there is nothing sacrosanct about the consideration that the upstream  riparian enjoys a 

comparative advantage. Salman (2010) notes that downstream riparians could harm upstream riparians by 

foreclosing their future uses by ramping up projects and claiming rights based on prior use. Recognising this 

possibility, the Helsinki Rules on international water law require both upstream and downstream riparians to 

inform their counterparts of proposed installations on the shared river basin. 

 
2 Partial conflict denoting complete investment in productive infrastructure by one region and at least partial 

investment in conflict technology by the other 
3 Joseph W. Dellapenna, “Owning Water in the Eastern United States,” 6 E. Min. L. Inst. 
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the veneer of implacable hostility due to the increasing politicization of the issue, there has 

been substantial cooperation between the two states, partly due to the fact that both are 

economically and politically powerful and there is no substantial first mover advantage. A 

similar dispute between the states of Chattisgarh and Odisha over the river Mahanadi has 

seen the former, which is the upper riparian, unilaterally building infrastructure which might 

serve to strengthen its bargaining position when the adjudicating tribunal decides the 

allocation. We note here that adjudication by a non-partisan tribunal roughly corresponds to a 

mediated contest where the rules and payoffs are common knowledge.  

 

Trade in water is accepted as an efficient way of getting around the intractable problem of 

water conflict. But as Sampath (1992) and Richards and Singh (2001) observe, trade in water 

is hindered by the absence of pure private property rights over water. Fisher (1995), in an 

application to the conflict over water in the Middle East, attempts to bypass the issue of 

property rights altogether by invoking the Coase theorem which gives conditions under which 

efficiency doesn’t depend upon the allocation of property rights. He suggests that since 

ownership of water is the same as a right to the monetary value of its use, it might be a good 

idea to look beyond the initial allocation of property rights and instead, allow the parties to 

trade in ‘non-water’ benefits. Richards and Singh (2001) observe that the Coase theorem 

holds only under certain conditions, namely, the absence of wealth effects and transaction 

costs, a condition not often met in the case of transnational water, which may prevent the 

separation of the issue of allocative efficiency of water from that of distribution of property 

rights. Also, since water markets must necessarily involve significant complementary 

investments in pipes and canals, the need for contract enforceability becomes all the more 

important as in its absence, such investments will not be undertaken. This paper allows for 

trade after having resolved the problem of initial allocation of property rights. We proceed 

from a situation where property rights over water are not defined, but the rules of the contest 

are known. This allows for rights to be defined through contest. The problem of 

enforceability is also taken care of in the mediated contest. Once such rights over water are 

defined, the regions are free to engage in trading and improve upon the game solution.  

 

So, our paper deals with two main questions- one pertaining to the efficiency of non-

cooperative games over water and another, to the effectiveness of contest technologies and 

their place in the larger contest literature.  
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Our paper follows in the lines of contest theory by assuming that players are locked in a state 

where property rights are absent or only half-baked and that players have an alternative 

recourse through a ‘conflict technology’ modelled using Contest Success Functions (CSFs). 

Hirshleifer (1998) explores the role of conflict technology in effecting cooperation when 

agents choose between production and appropriation as alternative means of generating 

income. Skaperdas (1992) finds similar results, with full cooperation, partial cooperation and 

conflict materializing under different levels of effectiveness of the conflict technology in 

operation.  

 

While Skaperdas (1992) uses a generalized CSF satisfying certain axioms, Baik (1998) 

generalizes a difference-form CSF which satisfies similar axioms to arrive at similar results. 

It is worth noting here that our paper finds complete cooperation as a more universal result 

than existing literature. We do not consider joint production like Skaperdas (1992), but deal 

with separate benefit functions. Moreover, while the good under contest in existing contest 

literature happens to be the one jointly produced, in our paper, we consider separate benefit 

functions which use the contested good as an input. Ansink and Weikard (2009) also use 

separate production functions. We believe such a model to be eminently suitable for the water 

sharing case where regions derive different economic benefits and have different 

productivities.  

 

The contest literature builds predominantly around the use of Contest Success Functions that 

give the probabilities of win or a sharing rule, given the efforts or inputs of contestants. 

Hirshleifer (1989) compares logistic and ratio CSFs and finds the former to possess certain 

characteristics that make it more suitable. Skaperdas (1996) characterizes a general CSF and 

finds that only the ratio and the logistic CSFs satisfy the related axioms. Skaperdas (1996) 

dismisses the Probit CSF used by Dixit (1987) as it doesn’t satisfy the ‘independence from 

irrelevant alternatives’ property. We use a 2-player linear CSF and then generalize it to a 

multi-player contest. We find that the linear CSF satisfies a particular characterization of  the 

consistency axiom in Skaperdas (1996). It is also shown to satisfy the ‘independence of 

irrelevant alternatives’ property. 

 

The rest of the paper is arranged in the following way. Section 2 delineates the model with 

the specific functional form and analyses the cooperative outcome. Section 3 generalises the 

productive and contest technologies and notes the spectrum of cooperation and conflict. 
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Section 4 explores cooperation in a situation with explicit comparative advantage and also 

shows that the linear CSF used by us cannot be dismissed as in Skaperdas (1996) as it 

satisfies ‘consistency’ and ‘independence of irrelevant alternatives’. Section 5 concludes. 

Proofs are presented in the appendix. 

 

2. A Simple Model 

There are two regions 1 and 2 with overlapping claims to water. Total water is normalized to 

1 (one). Since claims are overlapping, those add up to more than one and, so, water is 

contested. Region 𝑖 (= 1, 2) has endowment 𝑒𝑖 ∈ (0,1] of resources, which can be used for 

capacity-building complementary investment 𝑥𝑖 ∈ [0, 𝑒𝑖]  and /or as fighting input 𝑔𝑖 ∈

[0, 𝑒𝑖].  The endowment constraint of region 𝑖 can be written as follows. 

𝑒𝑖 = 𝑥𝑖 + 𝑔𝑖 , 𝑖 = 1, 2                                                                                                                           (1) 

The payoff of region  𝑖 (= 1,2)  is considered given by  

𝜋𝑖 = (𝑥𝑖𝑤𝑖)
𝛼𝑖 ;   0 < 𝛼𝑖 ≤ 1  𝑎𝑛𝑑  𝑖 = 1,2;                                                                                    (2)  

 

where 𝑤𝑖  ∈ [0,1] and  𝛼𝑖 denote, respectively, water share and productivity parameter of 

region 𝑖. Higher value of 𝛼𝑖 indicates higher productivity of 𝑤𝑖 and 𝑥𝑖. Note that (a) 

𝜋𝑖(0, 0) = 𝜋𝑖(𝑥𝑖, 0) = 𝜋𝑖(0, 𝑤𝑖) = 0 and 

(b)  
𝜕𝜋𝑖

𝜕𝑤𝑖
> 0,

𝜕𝜋𝑖

𝜕𝑥𝑖
> 0,

𝜕2𝜋𝑖

𝜕𝑤𝑖
2 ≤ 0,

𝜕2𝜋𝑖

𝜕𝑥𝑖
2 ≤ 0 𝑎𝑛𝑑 

𝜕2𝜋𝑖

𝜕𝑥𝑖 𝜕𝑤𝑖 
> 0, ∀  𝑥𝑖 , 𝑤𝑖 > 0, i.e. the payoff 

function is concave in its arguments and an increase in complementary investment by a 

region enhances marginal productivity of water in that region. 

  

Let 𝑝𝑖 ∈ [0,1]  be the probability of success of region 𝑖 in the case of fighting between 

regions, which is given by the following Contest Success Function (CSF).  

 𝑝𝑖 =
1

2
(1 + 𝑔𝑖 − 𝑔𝑗), 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                                                                                             (3)                                                                                                                                   

Note that (a)  0 ≤ 𝑝𝑖 ≤ 1, since  0 ≤ 𝑔𝑖 ≤ 𝑒𝑖 and (b)   
𝜕𝑝𝑖

𝜕𝑔𝑗
< 0 <

𝜕𝑝𝑖

𝜕𝑔𝑖
 ; ∀ 𝑖, 𝑗 = 1,2  𝑎𝑛𝑑 𝑖 ≠

𝑗. It is easy to verify that the CSF given by equation (3) is translation invariant, i.e. 𝑝𝑖 remains 
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unchanged due to equal increase/decrease in 𝑔𝑖 and 𝑔𝑗, and is well defined for all 𝑔𝑖, 𝑔𝑗 ≥ 0. 

In later sections of this paper we analyse the implications of more general forms of the CSF.4   

 

We mention here that contest success functions (CSFs) are used to model various scenarios of 

conflict.  There are two alternative interpretations of a CSF: (a) in terms of probability of 

success and (b) in terms of sharing rule. According to either of the two interpretations, the 

players can exert efforts to influence the expected outcome. In the first case, players exert 

efforts to improve their respective probabilities of win, while in the latter, they try to increase 

their shares in the common object. Either way, the choice of efforts is made strategically to 

maximize expected payoff. Only after the efforts are chosen strategically does the given CSF 

yield the winning probability or share deterministically. In our model, the CSF, of course, 

connotes a sharing rule based on the claims made by the two regions.   

 

Higher investment in capacity-building by a region makes that region’s bid for a higher share 

of water more credible, since higher capacity-building complementary investment leads to 

higher productivity of water. Competing regions may prefer to base their claims on a spree of 

investment activities that necessitate a higher amount of water for those investments to be 

productive. So, we consider claims to be an increasing function of complementary 

investment. For simplicity, we assume that the claim for water of region 𝑖 (= 1,2), 𝑐𝑖 , is 

given by 

 𝑐𝑖 = 𝑐𝑖(𝑥𝑖) =  𝑥𝑖  , 𝑖 = 1,2                                                                                                                  (4)                  

 

It follows that, in the event that both regions end up spending their entire endowments on 

complementary investments (i.e., 𝑥𝑖 = 𝑒𝑖, 𝑖 = 1,2) and are left with no fighting inputs (𝑔𝑖 =

0), the CSF (3) yields an equitable sharing rule over the contested water, i.e.,  𝑝1 = 𝑝2 =
1

2
.   

 

Regions’ endowment constraints, payoff functions, contest success functions and claims are 

assumed to be common knowledge and there is no uncertainty involved, i.e. information is 

 
4 The specific linear CSF given by equation (3) is anonymous as it yields the same share to regions for the same 

choice of efforts. So, such a CSF is eminently suitable for a contest where there is some semblance of 

mediation. This also helps explain why we get a ‘cooperative’ outcome as a result of the non-cooperative game. 

In Section 3, we extend the analysis by considering a generalized CSF 𝑝𝑖(𝑔𝑖 , 𝑔𝑗), which is not anonymous and 

which takes care of a region’s idiosyncrasies in determining its share.  
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assumed to be complete. We mention here that the above mentioned setup and functional 

forms, except for the form of the CSF, are in line with Ansink and Weikard (2009).5 

 

We consider two alternative sequential move games between the two regions, (i) 

simultaneous choice of complementary investments and (ii) sequential choice of 

complementary investments, stages of which are as follows.  

 

Game-1: Simultaneous choice of complementary investments 

Stage 1. Competing regions choose their respective complementary investments 

(𝑥1 𝑎𝑛𝑑 𝑥2), independently and simultaneously.  

Stage 2. Regions fight over the contested water  in order to secure their respective 

shares.  

Stage 3. Water is allocated and payoffs are realized.  

 

Game-2: Sequential choice of complementary investments 

Stage 1. Region 𝑖 decides its complementary investment 𝑥𝑖 and region j observes it; 

𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗.  

Stage 2. Region 𝑗 decides its complementary investment 𝑥𝑗.  

Stage 3. The two regions engage in fighting over the contested water  in order to secure 

their respective shares.  

Stage 4. Water is allocated and payoffs are realized.  

 

We solve these two games separately by backward-induction method and characterize the 

sub-game perfect Nash equilibrium (SPNE). Without any loss of generality, we consider that 

region 𝑖 decides its complementary investment before region 𝑗 in the case of Game-2.  

 

Note that once a region decides its capacity building complementary investment 𝑥𝑖 (= 1, 2), 

that region’s claim for water (𝑐𝑖)  and fighting input (𝑔𝑖)  are uniquely determined through the 

 
5 Ansink and Weikard (2009) and several other studies consider that the CSF is given by 𝑝𝑖 =

𝑔𝑖

𝑔𝑖+𝑔𝑗
 . Note that 

this CSF is not defined for 𝑔𝑖 = 𝑔𝑗 = 0 and, thus, cannot be considered in scenarios in which 𝑔𝑖 = 𝑔𝑗 = 0  is a 

possibility. While it satisfies scale-invariance property, it does not satisfy the translation-invariant property. 

Also note that the ratio CSF corresponds to ‘ideal combat’ where the player with zero effort loses all, while the 

difference form CSF corresponds to ‘frictional combat’ where the losing player can still obtain a share (see 

Hirshleifer, 2000).The CSF (3) is a particular characterization of the difference-form CSF in Che and Gale 

(2000). 
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claim function (4) and the endowment constraint (1) , respectively. Thus, given 𝑥𝑖, the claim 

of region 𝑖 is 𝑐𝑖 = 𝑥𝑖 and its fighting input is 𝑔𝑖 = 𝑒𝑖 − 𝑥𝑖, 𝑖 = 1, 2. It follows that the amount 

of contested water in Stage-2 of Game-1 (Stage-3 of Game-2) is given by (𝑐1 + 𝑐2 − 1) =

(𝑥1 + 𝑥2 − 1).  

  

Lemma 1: When the two regions’ claims over water resources of a shared river are 

endogenously determined, region 𝑖’s capacity building complementary investment ( 𝑥𝑖
∗),  

claim for water ( 𝑐𝑖
∗),  resource used as fighting input ( 𝑔𝑖

∗), share of water ( 𝑤𝑖
∗) and payoff 

(𝜋𝑖
∗) in the SPNE are given by.   𝑥𝑖

∗ =  𝑐𝑖
∗ = 𝑒𝑖 , 𝑔𝑖

∗ = 0,  𝑤𝑖
∗ =

1

2
(1 + 𝑒𝑖 − 𝑒𝑗) and 𝜋𝑖

∗ =

[
𝑒𝑖(1+𝑒𝑖−𝑒𝑗)

2
]
𝛼𝑖

, where 𝑒𝑖 ∈ (0,1] is the initial endowment of resources of region 𝑖; 𝑖, 𝑗 = 1, 2 

and 𝑖 ≠ 𝑗. This is true regardless of whether the two regions decide their respective capacity 

building complementary investments simultaneously (as in Game-1) or sequentially (as in 

Game-2).  

 

It is evident, from Lemma 1, that the equilibrium outcomes are not sensitive to the timing of 

moves by the regions. That is, regardless of whether the regions decide their complementary 

investments simultaneously or sequentially, the equilibrium outcomes remain the same. 

Further, note that the result of no expenditure on fighting by any of the regions holds true (i) 

for all 𝛼𝑖, 𝛼𝑗  ∈ (0,1] and (ii) all 𝑒𝑖, 𝑒𝑗  ∈ (0,1], 𝑖, 𝑗 = 1,2; i.e., regardless of whether regions 

are symmetric in terms of productivity and/or endowments or not.  Proposition 1 summarizes 

these results. 

 

Proposition 1: When the two regions’ claims over water resources of a shared river are 

endogenously determined, in the equilibrium no region spends any part of its endowment to 

fight, irrespective of 

i) whether regions are symmetric or asymmetric in terms of their resource 

endowment and/or productivities and 

ii) whether regions decide their respective claims over water resources 

simultaneously or sequentially. 
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There are two channels through which the complementary investment affects the water share 

of a region. First, an increase in complementary investment by a region reduces its fighting 

input, which reduces its probability of success and thus, has a negative effect on the 

proportion of water it receives for any given claims. Second, by increasing complementary 

investment, a region enhances its claim over water and reduces the rival’s assured water share 

and thus, tends to exert a favourable effect on its own share of water for any given probability 

of success. The positive effect of an increase in complementary investment of a region on its 

water share, which works via the second channel, dominates the corresponding negative 

effect of the first channel. As a result, a region gets a higher share of water by increasing its 

complementary investment. Further, note that the marginal productivity of water in a region 

is increasing in that region’s complementary investment. Since by increasing its claims, a 

region not only increases its water share but also the productivity of water, it has no incentive 

whatsoever to invest in fighting inputs. This leads the regions to an equilibrium where both 

fully utilize their endowments for complementary capacity-building. 

 

Remark 1: The equilibrium outcome of the non-cooperative game is Pareto efficient, i.e., no 

region can be made better off without making the other worse off. (See Appendix for proof) 

 

Remark 2:  If the two competing regions have the same amount of initial endowment and 

identical production functions, the non-cooperative equilibrium outcome is overall efficient, 

i.e. joint surplus of the two regions is maximized at the non-cooperative equilibrium. 

Otherwise, if regions are asymmetric, the non-cooperative equilibrium outcome may or may 

not be overall efficient. (See Appendix for proof) 

 

We have observed that in the SPNE no region spends resources to fight for water, instead 

each region spends the entire initial endowment for complementary capacity building. If 

competing regions have the same amount of initial endowment (𝑒1 = 𝑒2 = 𝑒) and the same 

productivity parameter (𝛼1 = 𝛼2 = 𝛼), and if none of the regions spends on fighting input 

(𝑔1 = 𝑔2 = 0), marginal productivity of water is the same for both regions, 
𝜕𝜋1

𝜕𝑤1
= 

𝜕𝜋2

𝜕𝑤2
 . 

Therefore, in such a scenario, joint surplus maximization calls for equal sharing of water 

𝑤1 = 𝑤2, which is achieved in the non-cooperative equilibrium. However, if regions are 

asymmetric, i.e. if either 𝑒1 ≠ 𝑒2 or 𝛼1 ≠ 𝛼2 or both, then SPNE water allocation is given by 
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𝑤𝑖
∗ =

1

2
(1 + 𝑒𝑖 − 𝑒𝑗), 𝑖, 𝑗 = 1, 2, 𝑖 ≠ 𝑗 , which can lead to joint surplus maximization, 

provided that at the SPNE marginal productivity of water is the same for each region, i.e., if  

𝜕𝜋1

𝜕𝑤1
= 

𝜕𝜋2

𝜕𝑤2
⇔

[
1

2
(1+𝑒𝑖−𝑒𝑗)]

𝛼𝑖−1

[
1

2
(1+𝑒𝑗−𝑒𝑖)]

𝛼𝑗−1 =
𝛼𝑗𝑒𝑗

𝛼𝑗

 𝛼𝑖𝑒𝑖
𝛼𝑖

  is satisfied at the SPNE. It follows that, if at SPNE 

𝜕𝜋1

𝜕𝑤1
≠ 

𝜕𝜋2

𝜕𝑤2
, each region can gain from engaging in trade of water.  That is, while the non-

cooperative equilibrium outcome does not involve any waste of resources in fighting and is 

Pareto efficient, regions may be able to improve further through trade in water after securing 

their own shares of water through non-cooperation, unless they are symmetric.  

 

2.1 Less effective linear contest success functions 

In this section we consider a more general functional form of contest success function (CSF) 

given by equation (5) in order to assess robustness of our results and compare the same with 

the findings of Skaperdas (1992). 

       𝑝𝑖 =
1

2
+ 𝛽(𝑔𝑖 − 𝑔𝑗), 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗, 0 ≤ 𝛽 ≤

1

2
                                                                (5)     

Clearly, CSF (5)  includes CSF (3) as a special case (𝛽 = 
1

2
). Note that, for all 𝛽 ∈ [0,

1

2
), the 

absolute values of the marginal effects of a region’s fighting input (𝑔𝑖) on its success 

probability and on its rival’s success probability are less compared to those in the case of  

𝛽 =  
1

2
 . 

Solving Game-1 and Game-2 by considering CSF (5), while keeping everything else same as 

before, we obtain the following. 

 

Proposition 2: Suppose that the Contest Success Function of region 𝑖 (= 1, 2) is given by 

(5). Then, Proposition 1 holds true for all 𝛽 ∈ [0,
1

2
]. 

 

Skaperdas (1992) analyses conflict between two players, with each having an exogenously 

given endowment that can be used for productive purpose or for fighting. However, unlike as 

in the present analysis, Skaperdas (1992), by considering that productive inputs of players are 

used to produce jointly and that the players fight to possess the final good,  shows that it is 

necessary to have a ‘sufficiently ineffective conflict technology’ in order to obtain ‘full 

cooperation’, i.e., ‘no fighting by any player’, as the equilibrium outcome. Hirshleifer (1988) 
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and Baik (1998) also demonstrate the same result6. If we consider the CSF (5) in Skaperdas’s 

(1992) setup, ceteris paribus, the necessary condition of ‘sufficiently ineffective conflict 

technology’ turns out to be equivalent to the condition 𝛽 ≤
1

4
 (see Appendix for Proof).  So, 

Proposition 2 demonstrates that, in the present context, ‘full cooperation’ is the equilibrium 

outcome even when the conflict technology is not ‘sufficiently ineffective’. In fact, we obtain 

a ‘full cooperation’ result for all possible values of 𝛽 ∈ (0,
1

2
].   

 

Also, Skaperdas (1992) obtains ‘full cooperation’ in a setting of symmetric players, while we 

show that ‘full cooperation’ emerges as the equilibrium outcome of the non-cooperative game 

even when competing regions are asymmetric in terms of their initial endowments and/or 

productivity parameters. Further, while Skaperdas (1992) considers only a simultaneous 

move game, we consider both simultaneous and sequential choice of complementary 

investments by competing regions.  

 

It can also be checked that (a) the SPNE outcome of non-cooperative games, Game-1 and 

Game-2, is Pareto efficient and (b) in case the regions are symmetric, the non-cooperative 

equilibrium strategies maximize the joint payoff.  

 

3. A Generalization 

Consider that region 𝑖’s payoff function and CSF are given by equations (6) and (7), 

respectively.   

  𝜋𝑖 = 𝑓𝑖(𝑥𝑖 , 𝑤𝑖(𝑥𝑖, 𝑥𝑗)) = 𝐹𝑖(𝑥𝑖 , 𝑥𝑗),                                                                                               (6) 

   𝑝𝑖 = 𝑝𝑖(𝑔𝑖, 𝑔𝑗),                                                                                                                                   (7) 

Where (a) 𝑓𝑖(0,0) = 0, 𝑓𝑥𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) > 0, 𝑓𝑤𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) > 0,  𝑓𝑥𝑖𝑥𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) ≤ 0 and 𝑓𝑤𝑖𝑤𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) ≤

0 , and (b) 
𝜕𝑝𝑖

𝜕𝑔𝑖
> 0,

𝜕𝑝𝑖

𝜕𝑔𝑗
< 0,

𝜕𝑝𝑖

𝜕𝑔𝑖
= −

𝜕𝑝𝑗

𝜕𝑔𝑖
, 𝑝𝑖(1,0) ≤ 1, 𝑝𝑖(0,1) ≥ 0, 𝑝𝑖(0,0) ≥ 0, and 

𝑝𝑖(𝑔𝑖, 𝑔𝑗) + 𝑝𝑗(𝑔𝑖, 𝑔𝑗) = 1; 𝑖, 𝑗 = 1, 2;   𝑖 ≠ 𝑗.  

 

 
6 Skaperdas (1992) considers  a set of axioms on the conflict technology, which can be characterized 

by a logistic function. Hirshleifer considers both a logistic and a ratio form CSF and finds the former 

to be better. Baik (1998) considers a generalized difference form CSF. 
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Note here that we do not assume that  𝑝1(0,0) = 𝑝2(0,0), i.e. competing regions are not 

necessarily anonymous. In other words, for the same level of fighting inputs, it is possible to 

have different success outcomes for different regions. This allows for the possibility of 

unmediated contests7 where each region uses its own contest technology. It is easy to observe 

that raw conflict over water sharing is better delineated by an unmediated contest than a 

mediated one, which corresponds better to a situation where atleast a framework for property 

rights exists ex-ante.                                                    

 

Proposition 3: Suppose that the competing regions decide their capacity building 

complementary investment simultaneously and independently. Then, a strong sufficiency 

condition to achieve full cooperation as the equilibrium outcome of the non-cooperative 

game is  𝜂𝑖 ≤ 
𝑒𝑖−𝑥𝑖

(𝑥𝑖+𝑥𝑗−1)
 ,  where 𝜂𝑖 = 

𝜕𝑝𝑖

𝜕𝑔𝑖
 
𝑔𝑖

𝑝𝑖
;  𝑖, 𝑗 = 1,2;  𝑖 ≠ 𝑗. 

 

Proposition 3 implies that, in the present context, when regions play Game-1, the ‘full 

cooperation’ result can be obtained for the class of contest success functions for which the 

elasticity of contest success function of a region (𝜂𝑖) with respect to its own fighting input is 

less than or equal to  
𝑒𝑖−𝑥𝑖

(𝑥𝑖+𝑥𝑗−1)
 . Otherwise, the ‘full cooperation’ result may or may not hold 

true. 

 

‘Full cooperation’ result holds true even if  𝜂𝑖 > 
𝑒𝑖−𝑥𝑖

(𝑥𝑖+𝑥𝑗−1)
 , provided that the following 

condition is satisfied.  

𝜕𝐹𝑖

𝜕𝑥𝑖
= 𝑓𝑥𝑖

𝑖 + 𝑓𝑤𝑖

𝑖  
𝜕𝑤𝑖

𝜕𝑥𝑖
> 0 ⇒ 

𝑓𝑥𝑖

𝑖

𝑓𝑤𝑖
𝑖

> − 
𝜕𝑤𝑖

𝜕𝑥𝑖
= (𝑥𝑖 + 𝑥𝑗 − 1)

𝜕𝑝𝑖

𝜕𝑔𝑖
− 𝑝𝑖(𝑔𝑖, 𝑔𝑗)                     (8) 

We refer to Condition (8) as the weak sufficiency condition.  It states that for full cooperation 

to be observed in the SPNE, marginal rate of technical substitution (MRTS) between 

complementary investment and water must be sufficiently high for region 𝑖 to not invest in 

fighting inputs. In other words, the region must gain relatively more from a unit addition of 

infrastructure than that of water for no-fighting to be the equilibrium outcome of Game-1.  

 
 

7 Rai and Sarin (2009) extend the axiomatization of Skaperdas (1996) to unmediated contests. 

According to them, the axiom of anonymity is better suited to mediated rather than unmediated 

contests. 
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Proposition 4: When the two regions’ claims over water resources of a shared river are 

endogenously determined through simultaneous choice of complementary investments, if one 

of the regions (say, 𝑖) cooperates, there will exist an equilibrium of ‘partial conflict’ such that 

the other region 𝑗 invests some of its endowment in fighting if the following sufficient 

condition is satisfied. 

𝜕𝜋𝑗(𝑥𝑗,𝑤𝑗(𝑒𝑖,𝑥𝑗)

𝜕𝑥𝑗
|
𝑥𝑗=0

> 0 and   
𝜕𝜋𝑗(𝑥𝑗,𝑤𝑗(𝑒𝑖,𝑥𝑗)

𝜕𝑥𝑗
|
𝑥𝑗=𝑒𝑗

< 0.  

 

Proposition 4 implies that there can exist a non-cooperative outcome, where one region 

invests entirely in complementary infrastructure, while the other invests, at least partly, in 

fighting. Assuming identical conflict technologies for both regions, such a ‘partial conflict’ 

equilibrium might arise in the context of upstream and downstream regions, where the 

marginal benefit from investment in capacity-building is sufficiently higher for the former 

than the latter. An upstream region stands to gain more from an extra unit of infrastructure 

relative to water than a downstream region. So, for identical conflict technology, there could 

exist an equilibrium such that the sufficient condition (8) holds for the upstream but not for 

the downstream region. 

 

So far, we have demonstrated that when regions choose capacity-building complementary 

investments simultaneously (Game-1), in the equilibrium, either both regions cooperate or 

one of the two cooperates or none cooperates, depending on parametric configurations. It can 

be checked that the same result holds true for the sequential choice of complementary 

investments (Game-2) as well.  

 

Proposition 5: When the two regions’ claims over water resources of a shared river are 

endogenously determined, any one of the following three possibilities emerges in the SPNE 

depending on relative magnitudes of marginal benefits from capacity-building investments 

and effectiveness of conflict technologies of competing regions, regardless of whether 

capacity-building investments are chosen simultaneously or sequentially.  

(i) None of the regions invests in fighting; 

(ii) Only one of the regions invests in fighting; 

(iii) Both regions invest in fighting. 
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We mention here that even with different conflict effectiveness, it is possible to have partial 

conflict in the equilibrium. It is interesting to observe that with 
𝜕𝑝𝑖

𝜕𝑔𝑖
>

𝜕𝑝𝑗

𝜕𝑔𝑗
, i.e., with region 𝑖 

having a more effective conflict technology than region 𝑗, an equilibrium entailing 

cooperation on part of 𝑖 (and fighting on part of 𝑗) is still possible (see the proof of 

Proposition 5). So, a region’s strategic choice eventually boils down to a calculus of the 

relative effectiveness of its own and its rival’s productive and contest abilities. 

 

Intuitively, while the CSF (3) can be best characterised by its anonymity condition and hence, 

as pertaining to a mediated contest where each region has recourse to the same contest 

technology, the CSF (7) delineates an unmediated contest where each region comes equipped 

with its own contest technology. The CSF (3), by virtue of being a mediated contest, imparts 

an element of negotiation to the game, leading to a Pareto efficient outcome. However, the 

CSF (7) allows for contest between asymmetric powers to come into full play and thus, opens 

up for the possibility of conflict.  

 

4. Additional Issues 

Comparative advantage of upstream: In this analysis we have assumed that none of the 

competing regions has any comparative advantage over the other. However, when a river 

flows between an upstream and a downstream region, the upstream region often enjoys a 

stronger position to ensure favourable outcome. To understand the implications of such 

comparative advantage on the equilibrium outcome, suppose that comparative advantage of 

the upstream region enables it to make a claim worth 𝜙𝑥𝑖 (> 𝑥𝑖) by investing 𝑥𝑖 amount in 

complementary capacity building, whereas the downstream region’s claim remains 𝑥𝑗 against 

an investment of 𝑥𝑗 amount in capacity building. It can be shown that ‘full cooperation’ can 

emerge in the equilibrium in such a scenario as well. To be specific, suppose that competing 

region’s CSF is given by equation (3). Then in the SPNE, none of the regions spends 

resources to fight, whenever the downstream region’s initial endowment (𝑒𝑗) is such that it 

can at least match the upstream region’s maximum possible claim (𝜙𝑒𝑖): 𝑒𝑗 ≥ 𝜙𝑒𝑖, regardless 

of whether regions choose their complementary investments simultaneously or  the upstream 

region moves first or the downstream region moves first (see Appendix for the proof). That 

is, if the downstream region’s initial endowment is more than that of the upstream region and 
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the upstream region’s comparative advantage over the downstream region is not very large, 

‘full cooperation’ emerges in the SPNE.  Intuitively, existence of comparative advantage of 

the upstream region in terms of a relatively higher claim for its capacity-building 

complementary investment provides it greater incentive for capacity-building. This, in turn, 

induces the downstream region to try to nullify the upstream region’s comparative advantage 

by investing in its own capacity-building, which is possible if the downstream region’s 

endowment is sufficiently high. However, if 𝑒𝑗 < 𝜙𝑒𝑖, ‘full cooperation’ need not necessarily 

occur in the equilibrium. In case the upstream region’s comparative advantage is sufficiently 

high, possibilities of all-out-fighting or partial conflict cannot be ruled out upfront, which 

remains open for future research.   

 

Multi-player linear CSF and consistency:  Skaperdas (1996) provides an axiomatic 

characterization of contest success functions and dismisses linear CSFs including (3), since 

linear CSFs do not satisfy the ‘consistency’ axiom: “If a nonempty subset of the players, 𝑀 ⊆

𝑁, were to break off from the other players and engage in a contest amongst themselves, what 

would be the probability of success of each player in that subset? Denote by 𝑝𝑚
𝑖 (𝑦) the ith 

player's probability of success who participates in a contest among the members of the subset 

M which we assume to have at least two elements. We assume this to be as follows: 

𝑝𝑚
𝑖  (𝑦) =  

 𝑝𝑖(𝑦)

[∑𝑗∈𝑀𝑝𝑗 (𝑦)]
 ∀ 𝑖 ∈ 𝑀 𝑎𝑛𝑑 ∀ 𝑀 ⊆ 𝑁 with at least two elements.”  While this may 

appear to be a valid criticism of CSF (3), the linear CSF satisfies the following alternative 

definition of ‘consistency’.  

 

Linear Consistency Axiom: First, note that the CSF (3) can be generalized to an N-player 

contest as follows.  

                                      𝑝𝑁
𝑖 =

1

𝑁

[
 
 
 
 

1 + (𝑁 − 1)𝑔𝑖 − ∑𝑔𝑗

𝑁

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

,                                                        (9) 

where  𝑝𝑁
𝑖  is the probability of winning of the ith player in an N-way contest. Next, define 

‘Linear Consistency’ as follows. 
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                                    𝑝𝑛
𝑖 =

1

𝑛

[
 
 
 
 

1 + (𝑛 − 1)𝑝𝑁
𝑖 − ∑𝑝𝑁

𝑗

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

  ,                                                            (10) 

where 𝑛 is the size of the subset of the grand coalition comprising 𝑁 players. 𝑝𝑛
𝑖  gives the 

probability of winning for player 𝑖 in the sub-contest amongst the 𝑛 players, while 𝑝𝑁
𝑖  gives 

the probability of winning for player  𝑖 in the grand contest amongst 𝑁.  

 

It can be shown that the linear CSF (9) satisfies the linear consistency property for all 𝑛 < 𝑁 

(see Appendix for proof). Note that the above generalized linear CSF also satisfies the 

‘independence of irrelevant alternatives’ as no outcome of any sub-contest is dependent on 

the inputs of players who are not part of the subset. 

 

5. Concluding remarks 

This paper tries to place conflict over shared water within the larger framework of contest 

literature. The primary raison d’être of the paper is to shed light on the driving mechanism 

behind manifest cooperation between water-sharing regions in the absence of formal 

cooperative arrangements. It is found that when the regions make claims to shared water on 

the basis of investment made prior to water sharing, in the anticipation that it would 

strengthen their respective positions, and when their respective shares are determined using a 

linear contest success function, the resulting outcome is Pareto efficient. This efficiency is 

obtained for both simultaneous and sequential move games and irrespective of whether the 

regions are symmetric or not in terms of their endowments and productivities. This result is 

more universal than that generally obtained in existing contest literature. One of the reasons 

for this is the assumption of different benefits to different regions, which is natural in the case 

of water sharing. Moreover, while literature like Skaperdas (1992) assume complete absence 

of property rights, our scheme of endogenized claims imparts a framework of property rights 

by granting a modicum of legitimacy to claims. This is especially true of the mediated contest 

which yields cooperation unequivocally. We see that the choice of contest success function 

doesn’t make a difference, because the Skaperdas (1992) result remains even with our 

function. At the same time, we present a case for the linear contest function and show that it 

cannot be dismissed as it is done in Skaperdas (1996). 
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When the production and contest success functions are generalised, the efficient solution 

remains still, but now we find an entire spectrum of outcomes with varying degrees of  

cooperation and conflict, depending on the calculus of relative productive and contest 

efficiencies. When we allow the upstream region to enjoy some amount of comparative 

advantage in so much as its claims are accorded more importance, the full cooperation result 

is still obtained, unless said comparative advantage is sufficiently large or equivalently, the 

endowment of the downstream region sufficiently small. 

 

The overall economic efficiency result obtains only under certain conditions. When regions 

are similar with respect to endowments and productivities, these conditions are met and the 

non-cooperative solution results in overall efficiency.  

 

A natural extension of our work would be to introduce informational asymmetry and check if 

the possibility of cooperation still remains in the context of water sharing. The existing 

literature holds that conflict is very likely to surface when players overestimate their 

probabilities of winning (Blainey, 1973). Such concerns can be addressed by introducing 

private information regarding the effectiveness of conflict technology. 
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Appendix 

A1. Proof of Lemma 1:  Let us first consider that the two competing regions decide their 

respective capacity building complementary investments simultaneously and independently, 

i.e. we begin with the Game-1.  In this case, given 𝑥1, 𝑥2, 𝑐1, 𝑐2, 𝑔1 𝑎𝑛𝑑 𝑔2,  in stage-3 the 

water share for region 𝑖  is given by 𝑤𝑖 = 1 − 𝑥𝑗 +
1

2
(1 + 𝑔𝑖 − 𝑔𝑗)(𝑥𝑖 + 𝑥𝑗 − 1);  𝑖, 𝑗 =

1, 2; 𝑖 ≠ 𝑗. Note that  1 − 𝑥𝑗  is the amount of water guaranteed to region 𝑖. 

 

It is easy to observe that in stage-2 region 𝑖’s optimum choice of fighting input is given 𝑔𝑖 =

𝑒𝑖 − 𝑥𝑖, 𝑖 = 1, 2. Thus, region 𝑖’s share of water is given by  

𝑤𝑖 = 1 − 𝑥𝑗 +
1

2
(1 − 𝑥𝑖 + 𝑥𝑗 + 𝑒𝑖 − 𝑒𝑗)(𝑥𝑖 + 𝑥𝑗 − 1), 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗.                             (𝐴. 1) 

Now, in stage-1, the problem of region 𝑖 can be written as follows. 

                                    𝑀𝑎𝑥𝑥𝑖
 𝜋𝑖(𝑥𝑖, 𝑤𝑖) ≡ 𝑀𝑎𝑥𝑥𝑖

 𝜋𝑖(𝑥𝑖 , 𝑥𝑗; 𝑒𝑖 , 𝑒𝑗 , 𝛼𝑖)      

                                                                                     𝑠. 𝑡     

                              𝑤𝑖  = 1 − 𝑥𝑗 +
1

2
(1 − 𝑥𝑖 + 𝑥𝑗 + 𝑒𝑖 − 𝑒𝑗)(𝑥𝑖 + 𝑥𝑗 − 1), 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗 

≡ 𝑀𝑎𝑥𝑥𝑖
 𝑧𝑖(𝑥𝑖, 𝑥𝑗)  

= 𝑀𝑎𝑥𝑥𝑖
[𝑥𝑖  {1 − 𝑥𝑗 +

1

2
(1 − 𝑥𝑖 + 𝑥𝑗 + 𝑒𝑖 − 𝑒𝑗)(𝑥𝑖 + 𝑥𝑗 − 1)}]

𝛼𝑖

, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗        (𝐴. 2)  

Now,  

 
𝜕𝑧𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
= (𝑤𝑖 + 𝑥𝑖

𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
 ) (𝑥𝑖  𝑤𝑖(𝑥𝑖, 𝑥𝑗))

𝛼𝑖−1 𝛼𝑖 , where 

  
𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
=

1

2
[(1 − 𝑥𝑖 + 𝑥𝑗 + 𝑒𝑖 − 𝑒𝑗) − (𝑥𝑖 + 𝑥𝑗 − 1)] =

1

2
[2 − 2𝑥𝑖 + 𝑒𝑖 − 𝑒𝑗] 

 =
1

2
[(1 − 𝑥𝑖) + (1 − 𝑒𝑗) + (𝑒𝑖 − 𝑥𝑖)] ≥ 0 , since 𝑒𝑖, 𝑒𝑗  ∈ (0,1] and 𝑥𝑖 ≤ 𝑒𝑖, which is 

satisfied with equality if 𝑥𝑖 = 𝑒𝑖 = 1 and 𝑒𝑗 = 1. 

Therefore, 
𝜕𝑧𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
 > 0 ∀ 𝑥𝑖  𝜖 [0, 𝑒𝑖], 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗. 
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Hence, the solution to problem (A.2) is  𝑥𝑖
∗ = 𝑒𝑖 , which implies  𝑔𝑖

∗ = 0 . Therefore, the 

equilibrium water share and payoff of region 𝑖 are, respectively, given by 𝑤𝑖
∗ =

1

2
(1 + 𝑒𝑖 −

𝑒𝑗) and 𝜋𝑖
∗ = [

𝑒𝑖

2
(1 + 𝑒𝑖 − 𝑒𝑗)]

𝛼𝑖, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗.                                                     

 

Game-2: 

The problem of the second mover region 𝑗 in stage 2 can be written as follows. 

                      𝑀𝑎𝑥𝑥𝑗    
𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖, 𝑥𝑗)); 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗,                                                        (𝐴. 3)   

where 𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖, 𝑥𝑗)) = [𝑥𝑗  {1 − 𝑥𝑖 +
1

2
(1 − 𝑥𝑗 + 𝑥𝑖 + 𝑒𝑗 − 𝑒𝑖)(𝑥𝑖 + 𝑥𝑗 − 1)}]𝛼𝑗 . Now, 

it is easy to check that, for any given 𝑥𝑖,  
𝑑𝜋𝑗

𝑑𝑥𝑗
=

𝜕𝜋𝑗

𝜕𝑥𝑗
+

𝜕𝜋𝑗

𝜕𝑤𝑗

𝜕𝑤𝑗

𝜕𝑥𝑗
> 0, since (a) 

𝜕𝜋𝑗

𝜕𝑥𝑗
> 0 and 

𝜕𝜋𝑗

𝜕𝑤𝑗
> 0 from (2) and (b) 

𝜕𝑤𝑗

𝜕𝑥𝑗
=

1

2
[(1 − 𝑥𝑗) + (1 − 𝑒𝑖) + (𝑒𝑗 − 𝑥𝑗)] ≥ 0 since 0 ≤  𝑥𝑗 ≤

  𝑒𝑗 ≤ 1; 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗. It implies that 𝑥𝑗 = 𝑒𝑗is the solution of problem (A.3).  

Now, in stage 1, player i’s problem can be written as follows. 

 𝑀𝑎𝑥𝑥𝑖 
𝜋𝑖 = [𝑥𝑖𝑤𝑖(𝑥𝑖, 𝑥𝑗)]

𝛼𝑖
, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗,                                                                            (𝐴. 4) 

where,  𝑤𝑖(𝑥𝑖, 𝑥𝑗) =  {1 − 𝑒𝑗 +
1

2
(1 − 𝑥𝑖 + 𝑒𝑖)(𝑥𝑖 + 𝑒𝑗 − 1)}.  

 

Now,  

𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
=

1

2
[(1 − 𝑥𝑖 + 𝑥𝑗 + 𝑒𝑖 − 𝑒𝑗) − (𝑥𝑖 + 𝑥𝑗 − 1)] =

1

2
[2 − 2𝑥𝑖 + 𝑒𝑖 − 𝑒𝑗] =

1

2
[(1 − 𝑥𝑖) + (1 − 𝑒𝑗) + (𝑒𝑖 − 𝑥𝑖)] ≥ 0 , since 𝑒𝑖, 𝑒𝑗  ∈ (0,1] and 𝑥𝑖 ≤ 𝑒𝑖. It follows that 𝑥𝑖 =

𝑒𝑖 is the solution of problem (8). 

Hence, the sub-game perfect Nash equilibrium (SPNE) of the sequential move game and 

corresponding payoffs are as in Lemma 2.                                                                              

[QED] 

 

 



24 
 

A2. Proof of Remark 1: Pareto Efficiency of the SPNE  

Definition  (Pareto Efficiency):  An outcome pair   {(𝑐𝑖
∗
, 𝑔𝑖

∗), (𝑐𝑗
∗
, 𝑔𝑗

∗)} is Pareto efficient if 

there exists no outcome pair {(𝑐𝑖, 𝑔𝑖), (𝑐𝑗, 𝑔𝑗)} ≠ {(𝑐𝑖
∗
, 𝑔𝑖

∗), (𝑐𝑗
∗
, 𝑔𝑗

∗)} such that 𝜋𝑖(𝑐𝑖,

𝑤𝑖(𝑐𝑖, 𝑔𝑖, 𝑐𝑗 , 𝑔𝑗)) ≥ 𝜋𝑖
∗(𝑐𝑖

∗,  𝑤𝑖
∗(𝑐𝑖

∗, 𝑔𝑖
∗, 𝑐𝑗

∗, 𝑔𝑗
∗ )) and 𝜋𝑗(𝑐𝑗, 𝑤𝑗(𝑐𝑖, 𝑔𝑖, 𝑐𝑗 , 𝑔𝑗)) ≥

𝜋𝑗
∗(𝑐𝑗

∗,  𝑤𝑗
∗(𝑐𝑖

∗, 𝑔𝑖
∗, 𝑐𝑗

∗, 𝑔𝑗
∗ )), with strict inequality for at least one of 𝑖, 𝑗; 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗. 

 

Now, to prove that the non-cooperative outcome is Pareto efficient, we need to show that it 

lies on the payoff possibility frontier for negotiated outcomes or is, in fact, the same as the 

cooperative outcome. The payoff possibility frontier maps all Pareto efficient combinations 

of payoffs. We, therefore, first characterize the payoff possibility frontier. In order to do so, 

we consider that, given the claims, the two regions engage in Nash bargaining over water 

sharing. In the Nash bargaining, the threat points of the two regions are given by their 

respective payoffs in the equilibrium of the non-cooperative game, which are 𝜋𝑖
∗ =

[
𝑒𝑖

2
(1 + 𝑒𝑖 − 𝑒𝑗)]

𝛼𝑖  and 𝜋𝑗
∗ = [

𝑒𝑗

2
(1 + 𝑒𝑗 − 𝑒𝑖)]

𝛼𝑗. Also note that, in the equilibrium of the 

non-cooperative play, we have (𝑥𝑖
∗, 𝑥𝑗

∗) = (𝑒𝑖, 𝑒𝑗). 

The bargaining problem can be written as follows. 

                𝑀𝑎𝑥𝑤𝑖
𝑍 =  [(𝑥𝑖𝑤𝑖)

𝛼𝑖 − 𝜋𝑖
∗][{𝑥𝑗(1 − 𝑤𝑖)}

𝛼𝑗 − 𝜋𝑗
∗]                                             (𝐴. 5) 

Let us denote the equilibrium payoffs under Nash bargaining by 𝜋𝑖 = (𝑥𝑖𝑤𝑖)
𝛼𝑖  𝑎𝑛𝑑 𝜋𝑗 =

 (𝑥𝑗𝑤𝑗)
𝛼𝑗. Then, the payoff possibility frontier is given by 

                                               𝜋𝑖 = [
𝑥𝑖(𝑥𝑗−𝜋𝑗

1
𝛼𝑗)

𝑥𝑗
]𝛼𝑖                                                                      (𝐴. 6) 

It is straightforward to observe that the payoff possibility frontier given by (A.6) is satisfied 

at (𝜋𝑖 , 𝜋𝑗) = (𝜋𝑖
∗, 𝜋𝑗

∗) and (𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
∗, 𝑥𝑗

∗).  So, the non-cooperative equilibrium point 

lies on the payoff possibility frontier and hence, is Pareto efficient. We can also show that the 

non-cooperative solution happens to be indeed the same as the Nash bargaining outcome. 

The First Order Condition (FOC) for the Nash bargaining exercise yields the following: 

𝛼𝑖𝑥𝑖
𝛼𝑖𝑤𝑖

𝛼𝑖−1[{𝑥𝑗(1 − 𝑤𝑖)}
𝛼𝑗 − 𝜋𝑗

∗] − 𝛼𝑗𝑥𝑗
𝛼𝑗(1 − 𝑤𝑖)

𝛼𝑗−1[(𝑥𝑖𝑤𝑖)
𝛼𝑖 − 𝜋𝑖

∗] = 0           (𝐴. 7) 
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It is evident that the above equation is satisfied when {𝑥𝑗(1 − 𝑤𝑖)}
𝛼𝑗 = 𝜋𝑗

∗ and (𝑥𝑖𝑤𝑖)
𝛼𝑖 =

𝜋𝑖
∗, 𝑖. 𝑒., the non-cooperative outcome satisfies the above equation. In other words, the non-

cooperative outcome is the same as the cooperative outcome.                                                                              

[QED] 

 

A3. Proof of Remark 2: Overall Efficiency 

Definition (Overall Efficiency); An outcome pair   {(𝑐𝑖
∗
, 𝑔𝑖

∗), (𝑐𝑗
∗
, 𝑔𝑗

∗)} is said to be overall 

efficient, if it maximizes the joint payoff, i.e. if the following is true.  

(𝑐𝑖
∗
, 𝑔𝑖

∗, 𝑐𝑗
∗, 𝑔𝑗

∗)  ∈ 𝐴𝑟𝑔𝑚𝑎𝑥
𝑐𝑖,𝑔𝑖,𝑐𝑗,𝑔𝑗

[𝜋𝑖 (𝑐𝑖, 𝑤𝑖(𝑐𝑖, 𝑔𝑖, 𝑐𝑗 , 𝑔𝑗)) + 𝜋𝑗 (𝑐𝑗, 𝑤𝑗(𝑐𝑖, 𝑔𝑖, 𝑐𝑗, 𝑔𝑗))]. 

 

Now, for any given 𝑥𝑖, 𝑥𝑗 , the problem of joint payoff maximization can be written as 

follows: 

𝑀𝑎𝑥{𝑤𝑖}
𝑍 =  (𝑥𝑖𝑤𝑖)

𝛼𝑖 + (𝑥𝑗(1 − 𝑤𝑖))
𝛼𝑗

, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                                                      (𝐴. 8) 

The FOC of the above problem is as follows: 

𝛼𝑖𝑥𝑖
𝛼𝑖𝑤𝑖

𝛼𝑖−1 − 𝛼𝑗𝑥𝑗
𝛼𝑗(1 − 𝑤𝑖)

𝛼𝑗−1 = 0, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                                                        (𝐴. 9) 

The second-order condition is satisfied since   
𝜕2𝑍

𝜕𝑤𝑖
2 ≤ 0, for all 𝛼𝑖 , 𝛼𝑗  ∈ (0,1]. 

Further, note that 
𝜕𝑍

𝜕𝑥𝑖
> 0 and 

𝜕𝑍

𝜕𝑥𝑗
> 0 for all 𝛼𝑖 , 𝛼𝑗  ∈ (0,1] and 𝑤𝑖 > 0, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗. It 

implies that 𝑥𝑖 = 𝑒𝑖, 𝑥𝑗 = 𝑒𝑗  and (A.9) together determine the equilibrium under joint surplus 

maximization. 

Now, in the equilibrium of the non-cooperative game, we have 

 𝑥𝑖
∗ = 𝑒𝑖, 𝑤𝑖

∗ =
1

2
(1 + 𝑒𝑖 − 𝑒𝑗), 𝑖, 𝑗 = 1,2. 𝑖 ≠ 𝑗 and it satisfies condition (14), if  

 𝛼𝑖𝑒𝑖
𝛼𝑖 [

1

2
(1 + 𝑒𝑖 − 𝑒𝑗)]

𝛼𝑖−1

− 𝛼𝑗𝑒𝑗
𝛼𝑗 [

1

2
(1 + 𝑒𝑗 − 𝑒𝑖)]

𝛼𝑗−1

= 0 

                                             ⇒
[
1

2
(1+𝑒𝑖−𝑒𝑗)]

𝛼𝑖−1

[
1

2
(1+𝑒𝑗−𝑒𝑖)]

𝛼𝑗−1 =
𝛼𝑗𝑒𝑗

𝛼𝑗

 𝛼𝑖𝑒𝑖
𝛼𝑖

                                                        (𝐴. 10) 



26 
 

 It is straightforward to observe that a sufficient condition for (A.10) to be satisfied is as 

follows. 𝛼𝑖 = 𝛼𝑗  𝑎𝑛𝑑 𝑒𝑖 = 𝑒𝑗 .                                [QED]                                        

 

 

A4. Proof of Proposition 2: We first show that Proposition 1 goes through when CSF (5) is 

considered.  We show it for the simultaneous and sequential move cases separately. 

Game-1: Simultaneous moves 

We can write region 𝑖(1,2)’s  problem in stage-1 as follows. 

 𝑀𝑎𝑥𝑥𝑖 
𝜋𝑖 (𝑥𝑖 , 𝑤𝑖(𝑥𝑖, 𝑥𝑗))  

≡ 𝑀𝑎𝑥𝑥𝑖
 𝑣𝑖(𝑥𝑖 , 𝑥𝑗) = [𝑥𝑖  {1 − 𝑥𝑗 + [

1

2
+ 𝛽(𝑒𝑖 − 𝑒𝑗 + 𝑥𝑗 − 𝑥𝑖)] (𝑥𝑖 + 𝑥𝑗 − 1)}]

𝛼𝑖

, 𝑖, 𝑗 =

1,2; 𝑖 ≠

𝑗                                                                                                                                                (𝐴. 11)            

To prove that the regions do not invest in fighting inputs, it is sufficient to prove that 

𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
≥ 0 ∀ 𝛽 ∈ [0,

1

2
) . If 

𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
≥ 0, then 

𝜕𝑣𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
> 0. 

𝜕𝑤𝑖(𝑥𝑖, 𝑥𝑗)

𝜕𝑥𝑖
= 

1

2
+ 𝛽(𝑒𝑖 − 𝑒𝑗 + 𝑥𝑗 − 𝑥𝑖) − 𝛽(𝑥𝑖 + 𝑥𝑗 − 1) =  

1

2
+ 𝛽(𝑒𝑖 − 𝑒𝑗 − 2𝑥𝑖 + 1) 

So, we have 

                                                                   
𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
≥ 0  

                                                 ⇔ 
1

2
+ 𝛽(𝑒𝑖 − 𝑒𝑗 − 2𝑥𝑖 + 1) ≥ 0                                      (𝐴. 12) 

Now, lowest possible value of  𝑒𝑖 − 𝑒𝑗 − 2𝑥𝑖 + 1= 𝑒𝑖 − 𝑒𝑗 − 2𝑒𝑖 + 1 =  1 − 𝑒𝑖 − 𝑒𝑗.  

If 1 − 𝑒𝑖 − 𝑒𝑗 ≥ 0, then (A.12) is satisfied. 

If 1 − 𝑒𝑖 − 𝑒𝑗 < 0 , then for (A.12) to hold, 
1

2
− 𝛽(𝑒𝑖 + 𝑒𝑗 − 1) ≥ 0 ⇒  𝛽(𝑒𝑖 + 𝑒𝑗 − 1) ≤  

1

2
 . 

Since maximum value of 𝑒𝑖 + 𝑒𝑗 − 1 = 1 (𝑎𝑡 𝑒𝑖 = 𝑒𝑗 = 1), (A.12) goes through for all  𝛽 ≤

 
1

2
 .  
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Game-2: Sequential moves 

We can write the problem of the second mover region 𝑗 (1,2) in stage 2 as follows: 

𝑀𝑎𝑥𝑥𝑗    
𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖 , 𝑥𝑗)) 

           ≡ 𝑀𝑎𝑥𝑥𝑗    
[𝑥𝑗  {1 − 𝑥𝑖

+ [
1

2
+ 𝛽(𝑒𝑗 − 𝑒𝑖 + 𝑥𝑖 − 𝑥𝑗)] (𝑥𝑖 + 𝑥𝑗 − 1)}]

𝛼𝑗

                     (𝐴. 13) 

 

We again use the sufficiency condition 
𝜕𝑤𝑗(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑗
≥ 0 ∀ 𝛽 ∈ [0,

1

2
) to prove that the second 

region never invests in fighting inputs. We need to prove the following: 

𝜕𝑤𝑗(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑗
=

1

2
+ 𝛽(𝑒𝑗 − 𝑒𝑖 + 𝑥𝑖 − 𝑥𝑗) − 𝛽(𝑥𝑖 + 𝑥𝑗 − 1) =  

1

2
+ 𝛽(𝑒𝑗 − 𝑒𝑖 − 2𝑥𝑗 + 1) ≥ 0. 

Following the preceding proof, it is clear that  
1

2
+ 𝛽(𝑒𝑗 − 𝑒𝑖 − 2𝑥𝑗 + 1) ≥ 0 ∀ 𝛽 ∈ [0,

1

2
) . 

So, 𝑥𝑗 = 𝑒𝑗  is the solution to problem (A.13). 

Player  𝑖’s problem in the first stage can now be written as follows: 

 𝑀𝑎𝑥𝑥𝑖 
𝜋𝑖 = [𝑥𝑖  {1 − 𝑒𝑗 + [

1

2
+ 𝛽(𝑒𝑖 − 𝑥𝑖)](𝑥𝑖 + 𝑒𝑗 − 1)}]

𝛼𝑖

                                             (𝐴. 14)                

Again, we require the following sufficiency condition: 

 
𝜕𝑤𝑖(𝑥𝑖,𝑥𝑗)

𝜕𝑥𝑖
=

1

2
+ 𝛽(𝑒𝑖 − 𝑥𝑖) − 𝛽(𝑥𝑖 + 𝑒𝑗 − 1) =  

1

2
+ 𝛽(𝑒𝑖 − 𝑒𝑗 − 2𝑥𝑖 + 1) ≥ 0,  

which always goes through for 𝛽 ∈ [0,
1

2
), by virtue of the preceding arguments. 

So, {𝑐𝑖
∗ = 𝑒𝑖 , 𝑔𝑖

∗ = 0} remains the solution to both simultaneous and sequential move 

games. Since the equilibrium outcome remains unchanged at {𝑐𝑖
∗ = 𝑒𝑖 , 𝑔𝑖

∗ = 0}, it is evident 

that Remark 1 and Remark 2 also remain valid.                                                                   

[QED] 
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A5. Proof of the necessary condition of ‘sufficiently ineffective conflict technology’ as 

defined in Skaperdas (1992) 

We now prove that the Full Cooperation result of Skaperdas (1992) (Proposition 1a(i)) 

doesn’t go through entirely if the CSF (22) is considered. For this purpose, consider the 

model set-up to be exactly same as in Skaperdas (1992), except that the conflict technology 

there is replaced by the CSF (22). Then, we have the following.                                            

                                 𝑉1(𝑔1, 𝑔2) = [
1

2
+ 𝛽(𝑔1 − 𝑔2)] 𝐶(1 − 𝑔1, 1 − 𝑔2)                                      

                                 𝑉2(𝑔1, 𝑔2) = [
1

2
+ 𝛽(𝑔2 − 𝑔1)]  𝐶(1 − 𝑔1, 1 − 𝑔2)                          (𝐴. 15)         

It is evident that 

  
𝜕2𝑉1(𝑔1,𝑔2)

𝜕𝑔1
2 = 𝑉11

1 = −2𝛽𝐶1 + [
1

2
+ 𝛽(𝑔1 − 𝑔2)] 𝐶11 < 0  and  

𝜕2𝑉2(𝑔1,𝑔2)

𝜕𝑔2
2 = 𝑉22

2 =

−2𝛽𝐶2 + [
1

2
+ 𝛽(𝑔2 − 𝑔1)]  𝐶22 < 0 ∀ 𝑔1, 𝑔2,  

where 𝐶𝑖 =
𝜕𝐶

𝜕𝑥𝑖
> 0 , 𝐶𝑖𝑖 = 

𝜕2𝐶

𝜕𝑥𝑖
2 < 0; 𝑥𝑖 = 1 − 𝑔𝑖. 

To prove that (𝑔1, 𝑔2) = (0,0)  is an equilibrium, the following is necessary and sufficient. 

                 
𝜕𝑉1(𝑔1,𝑔2)

𝜕𝑔1
= 𝑉1

1(0,0) ≤ 0 𝑎𝑛𝑑
𝜕𝑉2(𝑔1,𝑔2)

𝜕𝑔2
= 𝑉2

2(0,0) ≤ 0                                   (𝐴. 16)                                

                                         𝑉1
1( 𝑔1, 𝑔2) = 𝛽𝐶 − [

1

2
+ 𝛽(𝑔1 − 𝑔2)]𝐶1                                              

                                         𝑉2
2(𝑔1, 𝑔2) = 𝛽𝐶 − [

1

2
+ 𝛽(𝑔2 − 𝑔1)]𝐶2                                     (𝐴. 17)                                             

 Combining (A.16) and (A.17), we get 

                                𝑉1
1(0,0) =  𝛽𝐶(1,1) − [

1

2
+ 𝛽(𝑔1 − 𝑔2)]𝐶1(1,1) ≤ 0                                               

                                𝑉2
2(0,0) = 𝛽𝐶(1,1) − [

1

2
+ 𝛽(𝑔2 − 𝑔1)] 𝐶2(1,1) ≤ 0                        (𝐴. 18)                                  

Since 𝐶( .  ,   . ) is assumed to be homogeneous of degree 1, we have 

𝐶(1,1) =  𝐶1(1,1) + 𝐶2(1,1) 

So, we obtain (𝛽 −
1

2
) 𝐶1(1,1) + 𝛽𝐶2(1,1) ≤ 0 and (𝛽 −

1

2
)𝐶2(1,1) + 𝛽𝐶1(1,1) ≤ 0 

or,              
2𝛽

1−2𝛽
≤

𝐶1(1,1)

𝐶2(1,1)
≤

1−2𝛽

2𝛽
. 
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So, full cooperation in Skaperdas (1992) obtains only when 
2𝛽

1−2𝛽
≤

1−2𝛽

2𝛽
 or, 𝛽 ≤

1

4
.          

 

A6. Proof of Proposition 3: We have the following from (6): 

                                        
𝜕𝐹𝑖

𝜕𝑥𝑖
= 𝑓𝑥𝑖

𝑖 + 𝑓𝑤𝑖

𝑖  
𝜕𝑤𝑖

𝜕𝑥𝑖
                                                                       (𝐴. 19)  

To prove that 
𝜕𝐹𝑖

𝜕𝑥𝑖
> 0, it is sufficient to prove that 

𝜕𝑤𝑖

𝜕𝑥𝑖
≥ 0 since 𝑓𝑥𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) >

0 and  𝑓𝑤𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) > 0 by assumption. We have the following: 

      𝑤𝑖 = 1 − 𝑥𝑗 + 𝑝𝑖(𝑔𝑖 , 𝑔𝑗) [𝑥𝑖 + 𝑥𝑗 − 1] ≡   1 − 𝑥𝑗 + 𝑝𝑖(𝑒𝑖 − 𝑥𝑖, 𝑒𝑗 − 𝑥𝑗) [𝑥𝑖 + 𝑥𝑗 − 1]    

⇒
𝜕𝑤𝑖

𝜕𝑥𝑖
= 𝑝𝑖(𝑒𝑖 − 𝑥𝑖, 𝑒𝑗 − 𝑥𝑗) + (𝑥𝑖 + 𝑥𝑗 − 1)

𝜕𝑝𝑖

𝜕(𝑒𝑖 − 𝑥𝑖)
 (−1)

= 𝑝𝑖(𝑔𝑖, 𝑔𝑗) + (𝑥𝑖 + 𝑥𝑗 − 1)
𝜕𝑝𝑖

𝜕𝑔𝑖
 (−1) ≥ 0  

 ⇔  
𝜕𝑝𝑖(𝑔𝑖, 𝑔𝑗)

𝜕𝑔𝑖
  

1

𝑝𝑖(𝑔𝑖, 𝑔𝑗)
≤

1

(𝑥𝑖 + 𝑥𝑗 − 1)
 

                                    ≡  
𝜕𝑝𝑖(𝑔𝑖, 𝑔𝑗)

𝜕𝑔𝑖
  

𝑔𝑖

𝑝𝑖(𝑔𝑖, 𝑔𝑗)
= 𝜂𝑖 ≤

𝑒𝑖 − 𝑥𝑖

(𝑥𝑖 + 𝑥𝑗 − 1)
                                  [QED] 

 

 

 

A7. Proof of Proposition 4: Let either of the sufficiency conditions for ‘full cooperation’ 

hold for region 𝑖. So, region 𝑖 invests entirely in complementary infrastructure, i.e., 𝑥𝑖 = 𝑒𝑖. 

Now, region 𝑗’s reaction function is given by 𝑥𝑗(𝑥𝑖), which, in equilibrium, yields 𝑥𝑗(𝑒𝑖). 

To prove that region 𝑗 invests some amount in fighting, we need to prove 𝑥𝑗(𝑒𝑖) <  𝑒𝑗, i.e., 

there is an interior solution. 

Since 𝑓𝑥𝑖𝑥𝑖

𝑖 (𝑥𝑖, 𝑤𝑖) ≤ 0 by assumption, for an interior solution, the following is sufficient: 

𝜕𝜋𝑗(𝑥𝑗,𝑤𝑗(𝑒𝑖,𝑥𝑗)

𝜕𝑥𝑗
|
𝑥𝑗=0

> 0 and  
𝜕𝜋𝑗(𝑥𝑗,𝑤𝑗(𝑒𝑖,𝑥𝑗)

𝜕𝑥𝑗
|
𝑥𝑗=𝑒𝑗

< 0.                                                      [QED] 
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A8. Proof of Proposition 5: Sequential moves: 

Let region 𝑖 move first and region 𝑗 move second.  

In the second stage, region 𝑗’s problem is to choose 

                                        𝑥𝑗  ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑗
[𝜋𝑗(𝑥𝑗 , 𝑤𝑗)]                                                           (𝐴. 20) 

Now, 𝑥𝑗 = 𝑒𝑗 , if 𝜂𝑗 ≤ 
𝑒𝑗−𝑥𝑗

(𝑥𝑖+𝑥𝑗−1)
  or condition (8) holds.                                                       

(𝐴. 21) 

𝑥𝑗 < 𝑒𝑗 if 
𝜕𝜋𝑗(𝑥𝑗,𝑤𝑗(𝑥𝑖,𝑥𝑗))

𝜕𝑥𝑗
|
𝑥𝑗=0

> 0 and  
𝜕𝜋𝑗(𝑥𝑗,𝑤𝑗(𝑥𝑖,𝑥𝑗))

𝜕𝑥𝑗
|
𝑥𝑗=𝑒𝑗

< 0                                        (𝐴. 22)                                            

In the first stage, region 𝑖’s problem is to choose 

                                              𝑥𝑖  ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖
[𝜋𝑖 (𝑥𝑖, 𝑤𝑖 (𝑥𝑖 , 𝑥𝑗(𝑥𝑖)))]                           (𝐴. 23)  

 𝑥𝑖 = 𝑒𝑖if 𝜂𝑖 ≤ 
𝑒𝑖−𝑥𝑖

(𝑥𝑖+𝑥𝑗−1)
  or condition (8) holds.                                                                 (𝐴. 24) 

          

𝑥𝑖 < 𝑒𝑖 if  
𝜕𝜋𝑖(𝑥𝑖,𝑤𝑖(𝑥𝑖,𝑥𝑗(𝑥𝑖)))

𝜕𝑥𝑖
|

𝑥𝑖=0

> 0 and  
𝜕𝜋𝑖(𝑥𝑖,𝑤𝑖(𝑥𝑖,𝑥𝑗(𝑥𝑖)))

𝜕𝑥𝑖
|

𝑥𝑖=𝑒𝑖

< 0     (𝐴. 25) 

There will be  

(i) full cooperation if (𝐴. 21) and  (𝐴. 24) hold together; 

(ii) partial conflict if either (𝐴. 21) and (𝐴. 25) or (𝐴. 22) and (𝐴. 24) hold together; 

(iii) conflict if (𝐴. 22) and (𝐴. 25) hold together. 

It is straightaway observed that such an array of equilibria will also exist for the simultaneous 

move game.                                                                                                                                

[QED]               
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A9. Proof of the Sufficient Condition for Full Cooperation under Comparative 

Advantage of Upstream Region 

 To show that proposition 1 holds, we prove it for both simultaneous and sequential cases. 

Sequential Moves:  

(I) Let the upstream region 𝑖 move first. 

We can write the problem of the downstream region 𝑗 as follows:  

                                   𝑀𝑎𝑥𝑥𝑗    
𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖, 𝑥𝑗)); 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                                         (𝐴. 26)                                                              

where 𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖, 𝑥𝑗)) = [𝑥𝑗  {1 − 𝜙𝑥𝑖 +
1

2
(1 − 𝑥𝑗 + 𝑥𝑖 + 𝑒𝑗 − 𝑒𝑖)(𝜙𝑥𝑖 + 𝑥𝑗 − 1)}]𝛼𝑗  

In order to prove that region 𝑗 will not invest in fighting input, it is sufficient to prove that 

𝜕𝑤𝑗

𝜕𝑥𝑗
≥ 0 for 𝑥𝑗  ∈ [0, 𝑒𝑗]. We have 

𝜕𝑤𝑗

𝜕𝑥𝑗
=

1

2
[(2 − 2𝑥𝑗) + (𝑒𝑗 − 𝑒𝑖) − 𝑥𝑖(𝜙 − 1)] 

𝜕𝑤𝑗

𝜕𝑥𝑗
 is minimum at 𝑥𝑖 = 𝑒𝑖; so if  

𝜕𝑤𝑗

𝜕𝑥𝑗
 ≥ 0 at 𝑥𝑖 = 𝑒𝑖, then 

𝜕𝑤𝑗

𝜕𝑥𝑗
 ≥ 0 ∀𝑥𝑖 < 𝑒𝑖. 

Now, at 𝑥𝑖 = 𝑒𝑖,
𝜕𝑤𝑗

𝜕𝑥𝑗
= 

1

2
[(2 − 2𝑥𝑗) + (𝑒𝑗 − 𝜙𝑒𝑖)] ≥ 0 ⇔  𝜙 ≤  

𝑒𝑗

𝑒𝑖
 ⇒ 𝑒𝑗 ≥  𝜙𝑒𝑖 . 

So, the downstream region 𝑗 chooses 𝑥𝑗 = 𝑒𝑗 if its endowment is sufficiently large, i.e., 

greater than or equal to 𝜙𝑒𝑖.  

The problem of the upstream region is as follows: 

                                             𝑀𝑎𝑥𝑥𝑖 
𝜋𝑖 = [𝑥𝑖𝑤𝑖(𝑥𝑖, 𝑒𝑗)]

𝛼𝑖
, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                             (A. 27)              

where  𝑤𝑖(𝑥𝑖, 𝑒𝑗) =  {1 − 𝑒𝑗 +
1

2
(1 − 𝑥𝑖 + 𝑒𝑖)(𝜙𝑥𝑖 + 𝑒𝑗 − 1)}. 

Now,  

𝜕𝑤𝑖

𝜕𝑥𝑖
=

1

2
[(1 − 𝑒𝑗) + 𝜙(1 − 𝑥𝑖) + 𝜙(𝑒𝑖 − 𝑥𝑖)] ≥ 0 ∀ 𝑥𝑖 ∈ [0, 𝑒𝑖] 
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So, the first mover upstream region indeed chooses 𝑥𝑖 = 𝑒𝑖 in response to 𝑥𝑗 = 𝑒𝑗. So, for a 

small enough 𝜙 (≤  
𝑒𝑗

𝑒𝑖
 ), which materializes when 𝑒𝑗 is greater than or equal to 𝜙𝑒𝑖, ‘full 

cooperation’ obtains when the upstream region moves first. 

(II) Let the downstream region 𝑗 move first.                        

We can write the problem of the second mover upstream region 𝑖 as follows:  

                                   𝑀𝑎𝑥𝑥𝑖   
𝜋𝑖 (𝑥𝑖, 𝑤𝑖(𝑥𝑖, 𝑥𝑗)); 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                                             (𝐴. 28)                                                              

where 𝜋𝑖  (𝑥𝑖, 𝑤𝑖(𝑥𝑖, 𝑥𝑗)) = [𝑥𝑖  {1 − 𝑥𝑗 +
1

2
(1 − 𝑥𝑖 + 𝑥𝑗 + 𝑒𝑖 − 𝑒𝑗)(𝜙𝑥𝑖 + 𝑥𝑗 − 1)}]𝛼𝑖 

In order to prove that the upstream region will not invest in fighting input, it is sufficient to 

prove that 
𝜕𝑤𝑖

𝜕𝑥𝑖
≥ 0 for 𝑥𝑖  ∈ [0, 𝑒𝑖]. We have 

𝜕𝑤𝑖

𝜕𝑥𝑖
=

1

2
[(1 − 𝑥𝑗) + 𝜙(1 − 𝑒𝑗) + 𝜙(𝑒𝑖 − 𝑥𝑖) + 𝜙(𝑥𝑗 − 𝑥𝑖)] ≥ 0 if  𝑥𝑗 ≥ 𝑥𝑖 . 

So, upstream region chooses 𝑥𝑖 = 𝑒𝑖 if 𝑥𝑗 ≥ 𝑥𝑖 . 

The problem of the first mover downstream region is as follows: 

                                            𝑀𝑎𝑥𝑥𝑗 
𝜋𝑗 = [𝑥𝑗𝑤𝑗(𝑒𝑖, 𝑥𝑗)]

𝛼𝑗
, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                              (A. 29)              

where  𝑤𝑗(𝑒𝑖, 𝑥𝑗) =  1 − 𝜙𝑒𝑖 +
1

2
(1 − 𝑥𝑗 + 𝑒𝑗)(𝜙𝑒𝑖 + 𝑥𝑗 − 1). 

Now,  

𝜕𝑤𝑗

𝜕𝑥𝑗
=

1

2
[(2 − 2𝑥𝑗) + (𝑒𝑗 − 𝜙𝑒𝑖)] ≥ 0 ⇔  𝜙 ≤ 

𝑒𝑗

𝑒𝑖
 ⇒ 𝑒𝑗 ≥  𝜙𝑒𝑖 

Also, if 𝑒𝑗 ≥  𝜙𝑒𝑖  ⇒  𝑒𝑗 ≥ 𝑒𝑖 ⇒ 𝑒𝑗 ≥ 𝑥𝑖, which, in a ‘full cooperation’ equilibrium, , implies 

𝑥𝑗 ≥ 𝑥𝑖.  

So, for a small enough comparative advantage enjoyed by the upstream region, both the 

upstream and the downstream regions invest entirely in complementary investment, 

regardless of who moves first. 

Simultaneous moves:                           

We can write the problem of the downstream region 𝑗 as follows.  
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                                   𝑀𝑎𝑥𝑥𝑗    
𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖, 𝑥𝑗)); 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                                           (𝐴. 30)                                                              

where 𝜋𝑗  (𝑥𝑗 , 𝑤𝑗(𝑥𝑖, 𝑥𝑗)) = [𝑥𝑗  {1 − 𝜙𝑥𝑖 +
1

2
(1 − 𝑥𝑗 + 𝑥𝑖 + 𝑒𝑗 − 𝑒𝑖)(𝜙𝑥𝑖 + 𝑥𝑗 − 1)}]𝛼𝑗  

In order to prove that the downstream region will not invest in fighting input, it is sufficient 

to prove that 
𝜕𝑤𝑗

𝜕𝑥𝑗
≥ 0 for 𝑥𝑗  ∈ [0, 𝑒𝑗]. We have 

𝜕𝑤𝑗

𝜕𝑥𝑗
=

1

2
[(2 − 2𝑥𝑗) + (𝑒𝑗 − 𝑒𝑖) − 𝑥𝑖(𝜙 − 1)] 

𝜕𝑤𝑗

𝜕𝑥𝑗
 isminimumat 𝑥𝑖 = 𝑒𝑖. If 

𝜕𝑤𝑗

𝜕𝑥𝑗
≥ 0 at 𝑥𝑖 = 𝑒𝑖, then 

𝜕𝑤𝑗

𝜕𝑥𝑗
≥ 0 ∀ 𝑥𝑖 < 𝑒𝑖. 

Now, we have   
𝜕𝑤𝑗

𝜕𝑥𝑗
= 

1

2
[(2 − 2𝑥𝑗) + (𝑒𝑗 − 𝜙𝑒𝑖)] ≥ 0 ∀  𝑥𝑗  ∈ [0, 𝑒𝑗]  

if  𝜙 ≤  
𝑒𝑗

𝑒𝑖
 ⇒ 𝑒𝑗 ≥  𝜙𝑒𝑖. 

So, the downstream region 𝑗 chooses 𝑥𝑗 = 𝑒𝑗 if its endowment is sufficiently large, i.e., 

greater than or equal to 𝜙𝑒𝑖.  

The problem of the upstream region 𝑖 is as follows: 

                                             𝑀𝑎𝑥𝑥𝑖 
𝜋𝑖 = [𝑥𝑖𝑤𝑖(𝑥𝑖, 𝑥𝑗)]

𝛼𝑖
, 𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗                             (A. 31)              

where  𝑤𝑖(𝑥𝑖, 𝑥𝑗) =  {1 − 𝑥𝑗 +
1

2
(1 + 𝑒𝑖 − 𝑒𝑗 + 𝑥𝑗 − 𝑥𝑖)(𝜙𝑥𝑖 + 𝑥𝑗 − 1)}. 

Now, 
𝜕𝑤𝑖

𝜕𝑥𝑖
=

1

2
[(1 − 𝑥𝑗) + 𝜙(1 − 𝑒𝑗) + 𝜙(𝑒𝑖 − 𝑥𝑖) + 𝜙(𝑥𝑗 − 𝑥𝑖)] ≥ 0 if  𝑥𝑗 ≥ 𝑥𝑖. 

So, the upstream region also chooses 𝑥𝑖 = 𝑒𝑖 for 𝑥𝑗 ≥ 𝑥𝑖, which, in equilibrium, is always 

satisfied for 𝑒𝑗 > 𝑒𝑖. 

It is easily observed that propositions 2 and 3 also hold unless the comparative advantage 

enjoyed by the upstream region is sufficiently large.                                [QED] 
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A 10. Proof of Linear Consistency 

The probability of the 𝑖th player winning in an n-way sub-contest is given by the CSF (9) as 

follows: 

𝑝𝑛
𝑖 =

1

𝑛
[1 + (𝑛 − 1)𝑔𝑖 − ∑ 𝑔𝑗

𝑛
𝑗=1
𝑗≠𝑖

]  =
1

𝑛
[1 + 𝑛𝑔𝑖 − ∑ 𝑔𝑖

𝑛
𝑖=1 ]                                           (𝐴. 32)                      

We have to prove that the probability of winning in the sub-contest, as given by (A.32), is the 

same as that in (10). 

From (10), we have 

   𝑝𝑛
𝑖 =

1

𝑛

[
 
 
 
 

1 + (𝑛 − 1)𝑝𝑁
𝑖 − ∑𝑝𝑁

𝑗

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

 =
1

𝑛
[1 + 𝑛𝑝𝑁

𝑖 − ∑𝑝𝑁
𝑖

𝑛

𝑖=1

] 

  =   
1

𝑛
[1 + 𝑛 {

1

𝑁
(1 + 𝑁𝑔𝑖 − ∑𝑔𝑖

𝑁

𝑖=1

)} − {
1

𝑁
(𝑛 + 𝑁 ∑𝑔𝑖

𝑛

𝑖=1

− 𝑛 ∑ 𝑔𝑖)

𝑁

𝑖=1

}] 

=
1

𝑛
[1 + 𝑛𝑔𝑖 − (∑𝑔𝑖

𝑁

𝑖=1

) (
𝑛

𝑁
−

𝑛

𝑁
) − ∑𝑔𝑖

𝑛

𝑖=1

]     

 =
1

𝑛
[1 + 𝑛𝑔𝑖 − ∑𝑔𝑖

𝑛

𝑖=1

]                    

                                                     =
1

𝑛
[1 + (𝑛 − 1)𝑔𝑖 − ∑ 𝑔𝑗

𝑛
𝑗=1
𝑗≠𝑖

]                                       [QED] 

 

 

 

 

 


