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1 Introduction

The paper investigates Von Neumann–Morgenstern stable solutions in market economies

that allow agents to buy club memberships along with the trade in private goods. In

their seminal work, Von-Neumann and Morgenstern [19] identify stable patterns of

social organisations (or coalitions) that form in a society. These help analyse how a

∗The author is immensely grateful to Mridu Prabal Goswami, Shubro Sarkar, Anuj Bhowmik and

Rupayan Pal for their advice, suggestions and comments.
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group of agents would form alliances among themselves. While a vast majority of au-

thors use stable sets to predict ‘human behaviour’ in the context of cooperative games1,

matching models or voting theory, these have also been used to study stable alloca-

tions and coalitions that agents arrive at, in Walrasian exchange economies. In an

exchange economy, stable set of allocations is a set V such that i) no allocation inside

V is blocked by an allocation belonging to V (internal stability) and ii) any allocation

not inside V is blocked by an allocation belonging to V (external stability). Therefore

the set is stable because once an agent arrives at an allocation in the set he does not

have an incentive to deviate to any other allocation. Also allocations outside the set

are unstable as the agent would always want to deviate to an allocation within the

set. How are stable sets related to core allocations? Note that core allocations satisfy

the property of internal stability. With reference to external stability, note that core

allocations remain non dominated by any allocation including the one which in turn

can be dominated. Stable sets have arisen owing to this fundamental inadequacy of

core allocations. However there do not exist any general results with regard to stable

sets. This is because, in contrary to core allocations stable sets might not be unique.

Nevertheless, stable sets might be more instructive in comparison to core in scenarios

where the latter is empty.

The literature related to stable sets in Walrasian economies mainly focuses on the

correspondence between stable sets in the continuum economy with those that form in

the finite economy and whether they are unique in nature. Einy and Shitovitz [5] for

instance, study existence and uniqueness of stable sets in a finite exchange economy.

They show that if each type is initially endowed with a unique commodity and if

every type contains the same number of agents, then the set of all symmetric Pareto-

optimal allocations comprise the von Neumann-Morgenstern stable sets. Greenberg

et al. [9] observe that, in contrary to the similarity seen between core allocations

and core payoffs, stable sets in the allocation space are different from those that form

in the utility space. Therefore they adopt the concept of ‘sophisticated stable sets’

pioneered by Harsanyi [10] and establish an equivalence between sophisticated stable

sets in allocation space with those that form in the utility space. Hart [11] extends the

notion of Von Neumann-Morgensetern solutions to a Walrasian pure exchange economy

with private goods and studies the relation between stable sets in a continuum economy

with finitely many types and those that form in a corresponding finite economy. The

problem essentially reduces to studying interaction between agents of different types.

This is because agents belonging to the same type seem to form a cartel; each agent

1For example see [12], [17], [?], [4]
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in the finite economy can be thought of as representing the continuum of agents of a

given type in the atomless economy.

Further, how stable sets look like in economies with public goods is another strand

of research that has interested scholars (for instance see [8]). This is because indi-

viduals in everyday life not only buy private goods, but need to apportion resources

among a spectrum of goods ranging from pure private goods, to club goods and to

pure public goods. Similar to Hart’s [11] characterisation, Graziano and Romaniello

[8], find an association between stable sets of a continuum economy alongside public

goods with those that form in a finite public goods’ economy. We extend this line

of research and study whether the same correspondence holds in the presence of club

goods. Club economies merit attention because agents in real life are often confronted

with situations where they need to share the benefits of the good and its provision

cost with other agents. A group of individuals consume these goods collectively. There

goods are excludable and non-rivalrous in nature. I.e., there exists a membership fee

and agents who only pay this fee are entitled to the benefits of the good; and second,

the benefits enjoyed by any one member does not prevent some other member to reap

the same benefits. An individual obtains utility by dividing the provision cost among

other members, however the size of the sharing group results in disutility. Examples

of a club include a reading club, a football club, a library club and so on.

An overwhelming majority of studies on club goods consider economies comprising

a finite number of individuals 2. However finite economies are insufficient in charac-

terising a club economy marked by competition. Individuals generally wield market

power in a finite economy. Hence considering these economies as perfectly competitive

looks to be counter-intuitive.

Ellickson et al., [6] use a framework that effectively addresses these limitations.

They construct a market economy with club goods along the lines of Aumann [1]. The

economy comprises a continuum of agents and considers a decentralised notion of price

taking equilibrium where club memberships are treated just like private commodities -

as articles that can be chosen/bought. Along with the trade in private goods, individ-

uals can buy multiple memberships across various clubs. While each club comprises a

finite number individuals, the economy allows for formation of an infinite number of

clubs. Thus a given club is large sized from an individual’s view point, but is small

sized when considering the whole economy. Further, a club is defined based on the

number and characteristics of its members. For instance, marriage is a club which

offers 1 male membership and 1 female membership. A female (male) can only buy the

membership reserved for females (males).

2For example see [14], [16], and [20], etc.
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The first part of the paper analyses whether a correspondence exists between stable

sets in a continuum club economy consisting of a finite type of individuals and those

that form in the associated club economy containing a finite number of individuals. The

second part studies stable sets in club economies using the “sophisticated” approach

pioneered by Harsanyi [10].

The paper is arranged as follows. Section 2 describes the club economy, section

3 provides solution concepts, in section 4 we present our main results, and section 5

concludes.

2 Model

Buying a club membership in Ellickson et al.’s [6] framework is similar to buying a

private good. Each club specifies the following - the aggregate number of individuals

allowed inside the club, their characteristics, and the undertaking in which the club is

involved. For instance, a football club can specify that it allows membership to say 17

individuals, 10 of whom should be female and 7 male. Thus the model assumes that

the only characteristic which sets apart individuals from one another is their gender.

Another football club allowing a maximum of say 41 members (say 20 male and 21

female) is different from the previous one, as the maximum number of individuals of

each characteristic vary across the two clubs that we consider.

2.1 Private Goods

There are L private goods in the economy and these belong to RL. Hence these are

perfectly divisible. For two bundles of private goods, z, g ∈ RL
+, z ≥ g implies that

zi ≥ gi for every i, z > g implies that z ≥ g but z ̸= g, and z ≫ g implies that zi > gi
for every i. Further, ∥z∥1 :=

∑L
l=1 |zl|.

2.2 Clubs

Inspired by Ellickson et al. [6], a club in our economy is defined by its club type. A

club type specifies the total number of members allowed in the club, their characteristics

and the project (or the activity) that club members undertake. Ω denotes the set of

characteristics. We assume it to be a finite set. Every element η ∈ Ω is description

of the relevant characteristics that are needed for club formation. For instance, a

swimming pool could specify that it offers memberships to two kind of people - males
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aged below 10 and females aged above 30. Therefore ’a male aged below 10’ is an

element in Ω.

An ‘activity’ in which a club is engaged allows for various interpretations. It could

either be a physical activity like playing golf, or could be an ideology that members of

the club hold, or could be a code of conduct that the members adhere to and so on.

Following Mas-Colell [13], we assume the set of all activities to be a finite abstract set.

We denote it by Γ. γ ∈ Γ is an element of Γ.

The pair (π, γ) denotes the club type where π denotes the club profile and γ

stands for club activity. π or club profile is a mapping π : Ω → Z+ = {0, 1, · · · }.
It defines the characteristics of individuals who are allowed to take membership in the

club. If a club only allows individuals with characteristics η and say η′, then individuals

with characteristic η′′′ cannot buy membership in the club. A club membership or

an opening inside a club is characterised by a triple {η, π, γ}. Given a club type (π, γ),

an individual with characteristic η′ can only become a part of this club if it offers

memberships of the type (η′, π, γ). We use M to denote the set of all possible club

memberships. There is an upper limit on the number of memberships an individual

can procure, which is fixed endogenously.

A list is a map that specifies the number of memberships of each type bought by

an agent. I.e.list is a function l : M → {0, 1, ...} where l(η, π, γ) specifies the number

of memberships of type (η, π, γ). Further,

Lists := {l : l is a list}

to denotes the set of lists. Thus Lists is a set of functions from M to {0, 1, ...}. Note
that Lists ⊂ RM. An individual can belong to a club only if it offers memberships to

agents with characteristics same as hers. This implies that l(η, π, γ) = 0 if l ∈ Listst,

(η, π, γ) ∈ M and η ̸= ηt.

2.3 Agents

We use a nonatomic finite measure space (I,Σ, µ) to define the agents in the economy.

The set of agents is denoted by I, Σ stands for a σ-algebra of subsets of I, and µ

stands for a nonatomic measure on Σ with µ(I) < ∞. A club economy E is defined

as a mapping t 7→ (ηt, Xt, ωt, ut) where ηt denotes the external characteristics of agent

t, Xt ⊂ RL × Lists denotes her choice set, ωt denotes the initial bundle of private

commodities with which she enters the economy and ut denotes her utility function

ut : Xt → R.
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2.4 Feasible Allocations

An allocation is a measurable mapping (f, l): I → RL
+ × RM specifying private good

choices and club membership choices made by every agent. Next following Ellickson et

al. [6] we introduce a consistency condition on various clubs of each type that form in

the economy. A club membership vector δ ∈ RM is termed as consistent if for each

club type (π, γ) ∈ Clubs, we can find a real number α(π, γ) such that

δ(η, π, γ) = α(π, γ)π(η)

for each η ∈ Ω. (This coefficient α(π, γ) denotes the number of clubs of the type (π, γ)

held by δ.)

A coalition S is a measurable subset of I with a positive measure. A member-

ship choice function δ : S → List is termed as consistent for the coalition S if the

corresponding aggregate membership vector δ =
∫
S
δtdµ(t) ∈ RM is consistent. Let

Cons := {δ ∈ RM : δ is consistent}.

Note that C ons is a subspace of RM .

Definition 2.1. An allocation (f, l) is said to be feasible for a coalition B if it

satisfies the following:

1. Individual Feasibility: (ft, lt) ∈ Xt for each t ∈ B.

2. Material Balance:∫
B

ftdµ(t) +

∫
B

∑
(η,π,γ)∈M

1

∥π∥1
inp(π, γ)lt(η, π, γ)dµ(t) =

∫
B

ωtdµ(t).

3. Consistency:
∫
B
ltdµ(t) ∈ C ons .

For B = I, we simply term it to be feasible.

Letting the cardinality of Ω to bem, our club economy E is marked by another assump-

tion. We assume that the economy consists of n (n ≤ m) type of agents where agents

of a given type posses identical external characteristics, are endowed with identical en-

dowment of private commodities wi and share an identical utility function ui. I, the set

of individuals can be disintegrated as I = ∪n
i=1Ii, with the length of each interval being

normalised to 1, i.e. µ(Ii) = 1, and Ii = [i − 1, i[, i = 1, ..., n − 1 and In = [n − 1, n].

An allocation (f, l) of the club economy E is called an equal treatment allocation

if f takes a constant value xi and l is a constant li over each set Ii. An allocation (f, l)

is termed as symmetric if it assigns indifferent bundles to individuals belonging to
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the same type, i.e. t −→ ut(f(t), l(t)) takes a constant value ui for every Ii. Given the

economy E , we define an economy EF canonically associated with E as comprising a

finite set 1, ..., n of n individuals which we denote by N. Agent i’s initial endowment is

denoted by ωi and utility function is denoted by ui. An allocation (x1, ..., xn, l1, ..., ln)

can be interpreted as an equal treatment allocation (f, λ) in E , where f is the function

defined as f(t) = xi and λ(t) = li if t ∈ Ii. Conversely, an allocation (f, λ) in E , can be

thought of as an allocation (x1, ..., xn, l1, ..., ln) in EF with xi =
∫
Ii
fdµ and li =

∫
Ii
λdµ.

A state (x1, ..., xn, l1, ..., ln) in the finite economy EF with xi ∈ RM and li ∈ Listsi,

i = 1, ..., n is feasible for a subset B ⊂ N if it satisfies the following:

1. Individual Feasibility : (xi, li) ∈ Xi for each i ∈ N

2. Material Balance:
∑

i∈B xi+
∑

i∈B
∑

(η,π,γ)∈M
1
|π|inp(π, γ)li(η, π, γ) =

∑
i∈B ωi

3. Integer consistency : l is integer consistent for B

A function µ : B −→ Lists is integer consistent for B if for each (π, γ) ∈ M there

is a non negative integer α(π, γ) such that
∑

B µi = α(π, γ)π(η).

The following assumptions have been introduced on preference relations and endow-

ments.

A.1 The external characteristics mapping t 7→ ωt is a measurable function;

A.2 The endowment mapping t 7→ et is an integrable function;

A.3 We define a quasiconcave utility function over our consumption space X =

RL × ZM as follows. A utility function u is said to be strictly quasiconcave if u(αx +

(1− α)y) > min{u(x), u(y)} for all α ∈ (0, 1) for which αx+ (1− α)y) ∈ RL × ZM.

Note that the linear combination might not belong to the consumption space for

all values of α. Hence we assume the utility function to satisfy the properties of

quasiconcavity for only those values of α for which the linear combination belongs to

the consumption space. The following example illustrates. Let X = R × Z and let

u : X −→ R. Consider two bundles x1 = (1.5, 2) and x2 = (3.5, 4) in X. Note that

a linear combination will only be defined for 3 values of α, i.e. when α = {0, 1, 1
2
}

as for all other values of α, the membership choices might not be discrete. When 1
2
,

(αx1 + (1− α)x2) =
(
1
2
(1.5 + 3.5) + 1

2
(4 + 2)

)
= (2.5, 3). Therefore the utility function

will be strictly quasiconcave in our framework if u(2.5, 3) > min{(1.5, 2), (3.5, 4)}.
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A.4 Let λ : I −→ ZM, where I = ∪n
i=1Ii. Let Si ⊂ Ii such that λ(t) ̸= c

for all t ∈ Si, then there exists A ⊂ Si such that 1
µ(A)

∫
A
λ(t)dµ(t) ∈ ZM and

1
µ(Ii−A)

∫
(Ii−A)

λ(t)dµ(t) ∈ ZM. Note that since M is an upper bound on the number of

memberships an individual may choose, therefore λ : I −→ ZM will only take finitely

many values. Hence 1
µ(A)

∫
A
λ(t)dµ(t) can be written as 1

µ(A)

[
µ(A1)a1 + µ(A2)a2 + ...+

µ(An)an
]
where A = ∪n

i=1Ai. Therefore 1
µ(A)

∫
A
λ(t)dµ(t) will belong to ZM if µ(Ai)

µ(A)
is

a common factor of all elements of ai.

A.5 An economy E if called a glove economy with club goods if the sets Wi =

{k|ωk
i > 0} for all 0 ≤ i ≤ 1 are disjoint. This implies that each commodity initially

lies with only a single type of agent. Each type owns a distinct commodity.

A.6 The consumption set correspondence t⇒ Xt is a measurable correspondence;

A.7 The utility function ut : Xt → R is continuous and strongly monotone in

private goods consumption;

A.8 The utility mapping (t, x, l) 7→ ut(x, l) is jointly measurable; and

A.9 The total initial endowment
∫
I
ωtdµ(t) is greater than 0.

A.10 Endowments are said to be desrirable if for every individual t and every

l ∈ Lists(t), ut(0, ν) ≤ ut(f, µ).

3 Solution Concepts

Definition 3.1. An allocation (f, ν) of the club economy E is said to be individually

rational (i.r.) if ut(ft, νt) ≥ ut(ωt, 0) for µ a.e t ∈ I. Let the set of individually rational

allocations be denoted by IR.

3.1 Stable sets in E
Definition 3.2. Let there be two allocations (f, ν) and (g, l) in E and a coalition

S ∈ Σ. (f, ν) is said to dominate (g, l) on S if

1. ut(ft, νt) > ut(gt, lt) for each agent in S

2. (ft, νt) ∈ Xt for each agent in S

3.
∫
S
ftdµ(t) +

∫
S

∑
(η,π,γ)

1
|π|inp(π, γ)νt(η, π, γ)dµ(t) =

∫
S
ωtdµ(t)

4.
∫
S
νtdµ(t) is consistent.
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(f, ν) is said to dominate (g, l), if there exists a coalition B such that (f, ν) dominates

(g, l) on B.

Let the set of nonempty family of coalitions contained in Σ be denoted by S.

Definition 3.3. A von Neumann-Morgenstern stable set V(S) of E with reference to

S, is a non-null subset of IR such that:

1. V(S) is internally consistent, i.e. no two allocations of V(S) dominate one another

on a coalition of S;
2. V(S) is externally consistent, i.e. every i.r. allocation not belonging to V(S) is

dominated by some allocation inside V(S) on a coalition within S. When S overlaps

with Σ, we denote the vNM stable set by V .

3.2 Stable sets in EF

Similar definitions hold for the finite economy.

Definition 3.4. An allocation (g1, ..., gn, l1, ..., ln) dominates (x1, ..., xn, ν1, ..., νn) on a

coalition S ⊆ N if∑
i∈S

gi +
∑
i∈S

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)li(η, π, γ) ≤

∑
i∈S

ωi

∑
i∈S

li is consistent

and

ui(gi, li) > ui(xi, νi) ∀ i ∈ S

Definition 3.5. A stable set of EF with reference to S is a non-null set VF (S) of IR
such that:

1. VF (S) is internally consistent, i.e. no two allocations inside V(S) dominate one

another on a coalition belonging S;
2. VF (S) is externally consistent, i.e. every i.r. allocation not inside VF (S) is domi-

nated by some allocation belonging to VF (S) on a coalition within S.

When S overlaps with N , we just term it as a stable set and denote it by VF .

Definition 3.6. As in Hart [11], we use the term permutation in a nonatomic economy

to define a one-to-one measure preserving function π from I to I, measurable both ways

9



such that for all t ∈ I, t and πt are individuals belonging to the same type, i.e both lie

in Ii for the same i.

We term a set V of allocations as symmetric if for each permutation, π of E and

every (f, λ) ∈ V , the allocations (πf, πλ), where π(f, λ)(t) = f(πt), λ(πt) also lie inside

V .

Lemma 3.7. Let (z, ν) and (x, ν ′) be two allocations of E such that (xt, ν
′
t) ≻t (zt, νt) µ-

a.e. on H for some coalition H. Then given any 0 < α < 1 there is an allocation (j, ν ′′)

such that

(i) (jt, ν
′′
t ) ≻t (zt, νt) µ-a.e. on H;

(ii)
∫
H
jtdµ(t) =

∫
S
(αxt + (1− α)zt)dµ(t); and

(iii)
∫
H
ν ′′t dµ(t) =

∫
S
(αν ′t + (1− α)νt)dµ(t).

Proof. Proof follows from Lemma 3.1, Bhowmik and Kaur [2].

Proposition 3.8. Let (f, l) be a feasible allocation in E, let S ⊂ I and 0 ≤ α ≤ 1.

Then there exists Sα ⊂ S such that µ(Sα) = αµ(S) and
∫
Sα

(
f(t)+ τ(lt)−ω(t))dµ(t) =

α
∫
S

(
f(t) + τ(lt)− ω(t))dµ(t).

Consequently, if (f, l) dominates a feasible state (g, l′) on S, for each β ∈ (0, µ(S)), ∃
a coalition Sβ ⊂ S such that µ(Sβ) = β and (f, l) dominates (g, l′) on Sβ.

Proof. Proof follows from Theorem 4.1, Bhowmik and Saha [3].

Proposition 3.9. Let (f, λ) and (g, λ′) be equal treatment feasible allocations in the

economy E, with f(t) = xi, λ(t) = li and g(t) = gi and λ′(t) = l′i for almost all

t ∈ Ii. If (g, λ′) is dominated by (f, λ) in E, then (g1, ..., gn, l
′
1, ..., l

′
n) is dominated by

(x1, ..., xn, l1, ..., ln) in EF .

Proof. As (g, λ′) is dominated by (f, λ) in the economy E , this implies the existence of

a coalition S ′ such that∫
S′
ftdµ(t) +

∫
S′

∑
(η,π,γ)

1

| π |
inp(π, γ)λt(η, π, γ)dµ(t) =

∫
S′
ωtdµ(t) (3.1)

∫
S′
λ(t)dµ(t) is consistent (3.2)

and

ut(f(t), λ(t)) > ut(g(t), λ
′(t)) ∀t ∈ S ′ (3.3)
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Let S = {i| S ′∩Ii ̸= ϕ}. Note that S is non empty and ui(xi, li) > ui(gi, l
′
i) ∀ i ∈ S.

⇒
∑
i∈S

xiµ(S
′ ∩ Ii) +

∑
i∈S

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)li(η, π, γ)µ(S

′ ∩ Ii) =
∑
i∈S

ωiµ(S
′ ∩ Ii)

(3.4)

So for any k = 1, ..., l∑
i∈S

µ(S ′ ∩ Ii)
(
xki +

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)lki (η, π, γ)

)
=

∑
i∈S

ωk
i µ(S

′ ∩ Ii) (3.5)

In case k /∈ ∪i∈SWi, then
∑

i∈S ω
k
i µ(S

′∩Ii) = 0 so xki+
∑

(η,π,γ)∈M
1
|π|inp(π, γ)l

k
i (η, π, γ) =

0 ∀i ∈ S. Otherwise
∑

i∈S ω
k
i =

∑N
i=1 ω

k
i , and since (x1, ..., xn, l1, ..., ln) satisfies the

material balance condition, it results

∑
i∈S

xki+
∑
i∈S

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)lki (η, π, γ) ≤

N∑
i=1

(
xki+

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)lki (η, π, γ)

)

=
N∑
i=1

ωk
i =

∑
i∈S

ωk
i

Thus
∑

i∈S xi +
∑

i∈S
∑

(η,π,γ)∈M
1
|π|inp(π, γ)li(η, π, γ) ≤

∑
i∈S ωi and

ui(x1, ..., xn, l1, ..., ln) > ui(g1, ..., gn, l
′
1, ..., l

′
n) ∀i ∈ S.

Claim If
∫
S
ltdµ(t) is consistent, then

∑
i∈S li is also consistent.

Proof : Let |M| = k. Since lt is equal treatment and there are as many types of agents as

the number of characteristics, therefore
∫
S′ ltdµ(t) =

[
µ(I1∩S ′)l1(ω1, π, γ), ...,0, ..., µ(In∩

S ′)lk(ωn, π
′, γ′)

]
∈ Cons, where 0 ∈ Z|k1| and K1 = {i|S ′ ∩ Ii = ϕ}. Since Cons is a

subspace, therefore, α
∫
S
ltdµ(t) ∈ Cons, where α ∈ Rk.

αi :=

{
1

µ(Ii∩S′)
, if i ∈ S ;

0, if i ∈ k1 ,

Note that α
∫
S
ltdµ(t) =

∑
i∈S li. Since Cons is a subspace, therefore,

∑
i∈S li ∈ Cons.

Proposition 3.10. Let (f, λ) : I −→ RL
+ ×ZM. Let (f, λ) be an individually rational,

feasible allocation of the club economy E such that for type i0, one of the following sets

Si0 =

{
t ∈ Ii0|f(t) ̸= ξi0 =

∫
Ii0

fdµ and λ(t) ̸= li0 =

∫
Ii0

λdµ

}
11



Pi0 =

{
t ∈ Ii0|f(t) ̸= ξi0 =

∫
Ii0

fdµ and λ(t) = li0 =

∫
Ii0

λdµ

}
Qi0 =

{
t ∈ Ii0|f(t) = ξi0 =

∫
Ii0

fdµ and λ(t) ̸= li0 =

∫
Ii0

λdµ

}
has positive measure. Then there exists ηi0 ≤ ξi0 such that the set

Ui0 =

{
t ∈ Ii0 | ui0(f(t), λ(t)) < ui0(ηi0, li0)

}
has positive measure and ui0(ηi0 , li0) > ui0(ωt, 0) on a subset of Ii0 having positive

measure.

Proof. As (f, λ) is an i.r. feasible allocation, therefore∫
I

ftdµ(t) +

∫
I

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)λt(η, π, γ)dµ(t) =

∫
I

ωtdµ(t)

∫
I

λ(t)dµ(t) is consistent and ut(ft, λt) ≥ ut(ωt, 0)

Consider the set

Vi0 =

{
t ∈ Ii0|ui0(ft, λt) < ui0(ξi0 , li0)

}
If µ(Vi0) = 0, then ui0(ft, λt) ≥ ui0(ξi0 , li0) for µ a.e. t ∈ Ii0 . We will consider three

cases:

Case 1) When Si0 > 0. Assumptions on the set Si0 and from A.4 we get that there

exists A ⊆ Si0 such that

(a, la) =

(
1

µ(A)

∫
A

fdµ,
1

µ(A)

∫
A

λdµ

)
̸= (ξi0 , li0)

(b, lb) =

(
1

µ(Ii0 \ A)

∫
Ii0\A

fdµ,
1

µ(Ii0 \ A)

∫
Ii0\A

λdµ

)
̸= (ξi0 , li0)

A.6 ensures the existence of such (a, la) and (b, lb). Let C = {(f, l) ∈ RL
+×ZM | ui0(f, l) ≥

ui0(ξi0 , li0)}. Note that (a, la) and (b, lb) belong to C and ui0(a, la) ≥ ui0(ξi0 , li0) and

ui0(b, lb) ≥ ui0(ξi0 , li0). This is not possible as ui0(µ(A)a+ µ(Ii0 \ A)b, µ(A)la + µ(Ii0 \
A)lb) = (ξi0 , li0). However since the utility function is strictly quasiconcave, (from A.5)

we arrive at the contradiction ui0(µ(A)a+µ(Ii0\A)b, (µ(A)la+µ(Ii0\A)lb) > ui0(ξi0 , li0).

12



Thus µ(Vi0) > 0. Analogously, we will proceed with other cases also. Next consider the

following:

i) If (ξi0 , li0) = (0, 0), then (ft, λt) = (0, 0) a.e on Ii0 and µ(Si0) = 0. Therefore

(ξi0 , li0) ≥ 0.

ii) If ξi0 = 0, li0 ≥ 0, then ft = 0. By the desirability condition agents will prefer to

consume their initial endowments which will give them higher utility than engaging in

club formation. Therefore in this case, agents will not form clubs at all.

iii) If ξi0 ≥ 0, li0 = 0, the case reduces to a standard private goods economy and can

be handled as per Hart [11].

Thus ξi0 ≥ 0, li0 ≥ 0. Since ξi0 ≥ 0, there exists a component k for which ξki0 > 0.

Since the utility function is continuous in private goods, we can find ϵ > 0 such that if

ηi0 = xii0 − ϵek then the set

Vi0 =
{
t ∈ Ii0 |ui0(ft, λt) < ui0(ηi0 , li0)

}
has positive measure, and ui0(ηi0 , li0) > ui0(ft, λt) ≥ ui0(ωt, 0) ∀ t ∈ Vi0 .

Proposition 3.11. Let V be a symmetric stable set of the club economy E. Then every

feasible state (f, λ) in V where (f, λ) : I −→ RN × ZM is an equal treatment state.

Proof. Let (f, λ) ∈ V not be an equal treatment allocation. This implies the existence

of some i0 such that one of the following sets is non null.

Si0 =

{
t ∈ Ii0|f(t) ̸= ξi =

∫
Ii0

fdµ and λ(t) ̸= li =

∫
Ii0

ldµ

}

Pi0 =

{
t ∈ Ii0|f(t) ̸= ξi =

∫
Ii0

fdµ and λ(t) = li =

∫
Ii0

ldµ

}

Qi0 =

{
t ∈ Ii0|f(t) = ξi =

∫
Ii0

fdµ and λ(t) ̸= li =

∫
Ii0

ldµ

}
Proposition 3.10 allows us to choose for this i0, ηi0 < ξi0 such that the set

Ui0 =
{
t ∈ Ii0 |ut(f(t), λ(t)) < ut(ηi0 , li0)

}
has a positive measure and ut(ηi0 , li0) > ut(ωi0, 0) for µ a.e t ∈ Ui0 . Let δ = ξi0 − ηi0 ,

and δ = µ(Ui0). Define an i.r. allocation (g, ν) by

13



(g(t), ν(t)) :=

{
(f(t) + δ

n−1
, li), if t ∈ Ii with i ̸= i0

(ηi0 , li0), if t ∈ Ii0 .

Note that
∫
I
gdµ =

∫
∪i ̸=i0

Ii
gdµ+

∫
Ii0
gdµ

=
∫
∪i ̸=i0

Ii
fdµ+

ξi0−ηi0
n−1

n−1
1

+ ηi0 =
∫
I
fdµ

So far, inputs to club projects have been imputed to agents by a general allocation

rule. For agents belonging to Ii0 , we define a rule ϕ(., ., γ) for each γ ∈ Γ such that∫
Ii0

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)λt(η, π, γ)dµ =

∫
Ii0

∑
(η,π,γ)∈M

ϕ(., ., γ)li0dµ

Therefore∫
I

gdµ =

∫
I

ωdµ−
∫
Ii,i ̸=i0

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)νt(η, π, γ)dµ

−
∫
Ii0

∑
(η,π,γ)

ϕ(., ., γ)li0dµ

Using Proposition 3.8, we can find a coalition S = ∪n
i=1Si where Si ⊂ Ii and µ(Si) =

δµ(Ii) such that
∫
S
gdµ =

∫
S
ωdµ−

∫
Si,i ̸=i0

τ(li)−
∫
Si0

∑
(η,π,γ) ϕ(., ., γ)li0dµ and

∫
S
νdµ

is consistent. Note that since (g(t), ν(t)) is a constant function over the set Ii0 , hence

we define the coalition S such that the set of agents belonging to Ui0 belong to S. Thus

we have arrived at an allocation (g, ν) that blocks (f, λ) via the coalition S.

Therefore (g, ν) does not belong to V and is thus dominated by some (h, ν ′) ∈ V
on a coalition U that is non null. Without loss of generality, we can suppose that

µ(U ∩ Ii0) ≤ µ(Ui0). If µ(U ∩ Ii0) = 0, then (f, λ) is dominated by (h, ν) through U . If

µ(U ∩ Ii0) > 0, we can assume the existence of Vi0 ⊂ Ui0 such that µ(U ∩ Ii0) = µ(Vi0)

and introduce a permutation π that interchanges Vi0 with U ∩ Ii0 , and equals identity

elsewhere. Then π(f, λ) = (πf, πλ) also belongs to V , as V is symmetric and π(f, λ)

is dominated by (h, ν) through U . We thus arrive at a contradiction as V is internally

consistent.

Theorem 3.12. Let VF be a stable set of EF . Let V denote the set of equal treatment

allocations of the economy E that is set up corresponding to elements in VF . Then V
is a symmetric stable set of E . Let V denote a symmetric stable set of E. The set VF

of allocations of EF set up corresponding to elements in V is a stable set of EF .
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Proof. Note that V is a symmetric set by construction. By 3.11, it is internally consis-

tent. Also clearly, its elements are i.r. We need to show extradominance.

Claim : Let (f, l) denote an i.r. allocation not belonging to V . Then (f, l) is dominated

by an allocation (h, z) that belongs to V .

Proof of the claim: Let (f, λ) be an i.r. allocation not in V . If (f, λ) is equal treatment

then f(t) = xi and λ(t) = li for µ a.e. t ∈ Ii, for all i = 1, ..., n. Evidently, the

allocation (x1, ..., xn, l1, ..., ln) is not inside VF , therefore we can find an allocation

(g′1, ..., g
′
n, l

′
1, ..., l

′
n) ∈ VF , and a coalition S such that∑
i∈S

g′i +
∑
i∈S

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)l′i(η, π, γ) =

∑
i∈S

ωi (3.6)

∑
i∈S

l′i is consistent (3.7)

ui(g
′
i, l

′
i) > ui(xi, li) (3.8)

Let S ′ = ∪i∈SIi, g(t) = g′i and λ
′(t) = l′i if t ∈ Ii. Then equations (3.8) and (3.10)

can be rewritten as∫
S′
gdµ+

∫
S′

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)λ′(η, π, γ) =

∫
S′
ωdµ

and

ut(g(t), λ
′(t)) > ut(f(t), λ(t))

for almost all t ∈ S ′. Since
∑

i∈S l
′
i is consistent, therefore,

∫
S′ λ

′(t)dµ(t) =
∑

i∈S l
′
i is

also consistent.

If (f, λ) is not an equal treatment allocation, then for all i ∈ 1, ..., n define the

following sets.

Si =

{
t ∈ Ii|f(t) ̸= ξi =

∫
Ii

fdµ and λ(t) ̸= li =

∫
Ii

λdµ

}

Pi =

{
t ∈ Ii|f(t) ̸= ξi =

∫
Ii

fdµ and λ(t) = li =

∫
Ii

λdµ

}

Qi =

{
t ∈ Ii|f(t) = ξi =

∫
Ii

fdµ and λ(t) ̸= li =

∫
Ii

λdµ

}
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Let S = {j ∈ 1, ..., n|µ(Sj) > 0}, P = {j ∈ 1, ..., n|µ(Pj) > 0} and

Q = {j ∈ 1, ..., n|µ(Qj) > 0}. Clearly, one of the three sets P,Q or S will be non

empty and from proposition 3.10, whenever either of the three sets P,Q or S is non

empty, there exists ηi < ξi such that the set

Ui =
{
t ∈ Ii|ut(f(t), λ(t)) < ut(ηi, li)

}
has a positive measure and ut(ηi, li) > ut(ωt, 0) on Ui for all i ∈ P,Q or S.

Let us consider the case when P ̸= ϕ. Let δ =
∑

i∈P (ξi − ηi) > 0. Now define the

allocation (η1, ...ηn, l1, ...ln) where

(ηi, li) =

{
ξi +

δ
n−|P | , li if i /∈ P

ηi, li if i ∈ P

Then (η1, ..., ηn, l1, ..., ln) is i.r. and feasible as immediately follows from the in-

equalities

∑n
i=1 ηi =

∑
i∈P ηi +

∑
i/∈P ηi =

∑
i∈P ηi +

∑
i/∈P

(
ξi +

δ
n−|P |

)
=

∑
i∈P ηi +

∑
i/∈P ξi +

n−|P |
n−|P |

∑
i∈P (ξi − ηi) =

∑n
i=1 ξi =

∫
I
fdµ(t) ≤∫

I
ω(t)dµ(t)−

∫
I

∑
(η,π,γ)∈M

1
|π|inp(π, γ)λt(η, π, γ)dµ(t)

=
∑n

i=1 ωi −
∑n

i=1

∑
(η,π,γ)∈M

1
|π|inp(π, γ)li(η, π, γ)

Define

Di =

{
Ui if i ∈ P

Ii if i /∈ P

Let α = mini∈Pµ(Ui) and Vi ⊂ Di with µ(Vi) = α.

If (η1, ..., ηn, l1, ..., ln) ∈ VF then the allocation (g, l) : I −→ RN × ZM with

(g(t), l(t)) = (ηi, li) if t ∈ Ii belongs to V . From proposition 1, (g, l) dominates (f, λ)

on the coalition ∪n
i=1Vi. If (η1, ..., ηn, l1, ..., ln) /∈ VF , then there exists an allocation

(h1, ..., hn, l
′
1, ..., l

′
n) ∈ VF such that

n∑
i=1

hi +
n∑

i=1

τ(l′i) ≤
n∑

i=1

ωi
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ui(hi, l
′
i) > ui(ηi, li) ∀i ∈ N, and

n∑
i=1

l′i is consistent

Now, define an allocation (h, l′) : I −→ RN × ZM with (h(t), l′(t)) = (hi, l
′
i) for all

t ∈ I. Consider any α ∈ [0, 1]. From proposition 1, we can find a coalition B ⊂ I

where B = ∪n
i=1Bi and µ(Bi) = αµ(Ii) such that∫

B

hdµ+

∫
B

τ(l′)dµ ≤
∫
B

ωdµ, and

∫
B

l′dµ is consistent.

Note that the assignment (h, l′) is feasible for coalition B. Therefore (h, l′) domi-

nates (f, λ) on the coalition B. Hence the conclusion follows.

4 Sophisticated stable sets in payoff and allocation

space

4.1 Sophisticated stable sets in E
For a coalition P of S let J 1(P,RL

+ × Listst) and J 1(P,R+) respectively denote the

set of all nonnegative, vector valued, integrable and real functions on P . Let A be

the set of feasible allocations of the club economy E . Given a subset J ⊂ A, let u(J)

denote the set of payoffs

u(J) ≡
{
ψ ∈ J 1(I,R+)|ψ(t) = ut(xt, λt) for µ a.e.t ∈ I where(x, λ) ∈ P

}
Let the set of feasible payoffs be denoted by P = u(A). For a coalition P , a function

η ∈ P and an allocation (x, λ) ∈ A, we denote by (xP , λP ) and ξP the restrictions of

(x, λ) and η on P , respectively.

Given any coalition P , the set of P-feasible allocations is as follows

A(P ) =

{
(x, λ) where x ∈ J 1(P,RL

+) and λ ∈ J 1(P,ZM)|∫
P

xdµ+

∫
P

∑
(η,π,γ)∈M

1

| π |
inp(π, γ)λ(η, π, γ) ≤ ωdµ and

∫
P

λ(t)dµ(t) is consistent

}
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and the set of P-feasible payoffs looks as follows

P(P ) =

{
ψ ∈ J 1(I,R+) | ∃(x, λ) ∈ A(P ) such that

ψ(t) = ut(xt, λt) for µ a.e. t ∈ P

}
Analogously, payoff core Cp denotes the set of all payoffs z ∈ P such that there does

not exist a coalition P with measure non-empty and a payoff y ∈ P(P ) such that

y(t) > z(t) for µ a.e. t ∈ P . Therefore the payoff core denotes all payoffs inside P that

remain non-dominated. Further the following can easily be shown

Cp = {ψ ∈ P|ψ(t) = ut(x(t), λ(t)) for µ a.e. t ∈ I and (x, λ) ∈ C}.

This implies that there exists a correspondence between core payoffs and core alloca-

tions. One might expect a similar equivalence to hold for stable sets; however such

findings do not hold true for vNM stable sets [see Greenberg et al., (section 6) [9]].

Further, agents’‘farsighted’ behaviour acts as a limitation. This behaviour is ex-

plained as follows. Consider an allocation (f, λ) that dominates an allocation (g, ν)

belonging to a stable set V. Owing to the property of internal stability, agents inside

S would not wish to deviate to (f, λ). This happens because agents realise that since

(f, λ) does not belong to V, therefore it must be the case that it is dominated by an-

other allocation (h, ν ′) on a coalition S. Owing to this foresight, agents propose (f, λ)

only when they prefer (h, ν ′) over the original allocation (g, ν). To overcome this lim-

itation, Harsanyi [10] proposed the notion of sophisticated stability. Interestingly, the

concept of sophisticated stability also ensures an equivalence between stable sets in

the allocation space with those in the payoff space. In what follows we introduce this

concept in the club goods framework.

Definition 4.1. Consider two allocations (x, λ) and (z, ν) belonging to A. (z, ν) is

termed as indirectly dominating (x, λ) if there exists a sequence of coalitions of non-null

size and feasible allocations{
{(xδ, λδ)kδ=0, {Sδ}kδ=1

}
such that (x0, λ0) = (x, λ), (xk, λk) = (z, ν) and for c =

1, ..., k and for µ a.e. t ∈ Sc the following conditions are fulfilled:

(xc,S
c

, λc) ∈ A(Sc), ut(f
c−1(t), λc−1(t)) < ut(x

c(t), λc(t)), ut(x
c−1(t), λc−1(t)) < ut(x

k(t), λk(t))

(4.1)

If an allocation (z, ν) indirectly dominates another allocation (x, λ) we denote it by

(z, ν) ≻≻ (x, λ).
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Definition 4.2. Consider a set of feasible allocations GA ⊂ A. GA is said to be

allocation sophisticated stable set if it is externally and internally consistent as

per the foregoing definition of indirect domination.

For the payoff space these definitions look as follows.

Definition 4.3. Consider a pair of feasible payoffs ψ and κ in P . κ is said to indirectly

dominate ψ, denoted as κ ≻≻ ψ, if there exists a sequence of coalitions of non-null

size and feasible payoff functions
{
{ψδ}kδ=0, {Sδ}kδ=1}

}
such that ψ0 = ψ, ψk = η and

for c = 1, ..., k and for µ a.e. t ∈ Sc the following conditions hold:

ψc,Sc ∈ P(Sc), ψc−1(t) < ψc(t), ψc−1(t) < ψk(t) (4.2)

Definition 4.4. Consider a set of payoffs HP ⊂ P . HP is termed as payoff sophis-

ticated stable set if it is both internally and externally consistent as per the indirect

dominance defined above.

4.2 Sophisticated stable sets in EF

Let AF denote the set of feasible allocations for the finite club economy EF and PF

denote the set of feasible payoffs. I.e,

PF = {u(f, λ) = (u1(f1, λ1), ..., un(fn, λn)) |(f1, ..., fn, λ1, ..., λn) ∈ AF}

For a set BF ⊂ AF let

u(BF ) ≡ {u(f, λ)|(f, λ) = (f1, ..., fn, λ1, ..., λn) ∈ BF}

Given a coalition P , (f1, ..., fn, λ1, ..., λn) ∈ AF , and ψ ∈ PF , let (xP , λP ) and ψP

denote the restrictions of (f1, ..., fn, λ1, ..., λn) and ψ on P respectively. The set of

P -feasible allocations for a coalition P is given as follows

AF (P ) =

{
(xi, λi)i∈P ∈ Rm|P | × Lists |

∑
t∈P

ft +
∑
t∈P

∑
(η,π,γ)

1

| π |
inp(π, γ)lt(η, π, γ))

=
∑
t∈P

ωt and list assignment λ is feasible for P

}
.

Correspondingly, the set of P -feasible payoffs looks as follows

PF (P ) =
{
ψ ∈ R|P | | ∃(fi, λi)i∈P ∈ AF (P ) such that ψi = ui(fi, λi)

}
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Definition 4.5. Given any two payoffs ψ and κ in PF , κ is said to indirectly dom-

inate ψ (denoted as κ ≻≻ ψ) if there exists a sequence of non-null coalitions and

feasible payoff vectors {{ψδ}kδ=0, {Sδ}kδ=1} such that ψ0 = ψ, ψk = κ and for c = 1, ..., k

and ∀ i ∈ P c the conditions given below are satisfied:

ψc,Sc ∈ V F (Sc), ψc−1
i < ψc

i , ψc−1
i < ψk

i (4.3)

where ψc,P c
signifies that the feasible payoff ψc is restricted to the coalition P c.

Definition 4.6. Let GP ⊂ V F denote the set of payoffs. GP is said to be payoff

sophisticated stable set if

ψ ∈ PF \GP ⇐⇒ there exists κ ∈ GP such that κ ≻≻ ψ.

Similar definitions hold for the allocations space.

Definition 4.7. Let (f1, ..., fn, λ1, ..., λn) and (z1, ..., zn, ν1, ..., νn) be two allocations in

AF . (z1, ..., zn, ν1, ..., νn) is said to indirectly dominate (f1, ..., fn, λ1, ..., λn) (written

as (z, ν) ≻≻ (f, λ)) if there exists a sequence of non-null coalitions and feasible allo-

cations

{
{(xδ, λδ)kδ=0, {Sδ}kδ=1

}
such that (x0, λ0) = (x, λ), (xk, λk) = (g, ν) and for

c = 1, ..., k and for all i ∈ P c the following conditions are satisfied

(f c, λc) ∈ AF (P c), ui(f
c−1
i , λc−1

i ) < ui(f
c
i , λ

c
i), ui(f

c−1
i , λc−1

i ) < ui(x
k
i , λ

k
i ) (4.4)

Definition 4.8. Let GA ⊂ AF denote a set of allocations. GA is termed as an allo-

cation sophisticated stable set if

(f1, ..., fn, λ1, ..., λn) ∈ AF \GA ⇐⇒ ∃ (z1, ..., zn, ν1, ..., νn) ∈ GA s.t. (z, ν) ≻≻ (f, λ).

Proposition 4.9. Let the payoff core or the set of all payoffs in P that remain non-

dominated be denoted by CP . Then

CP = {ψ : S ⇒ R|ψ(t) = ut(x(t), λ(t))∀t ∈ I where (x, λ) ∈ C(E)}

Proof. Via contradiction, we assume the existence of ψ ∈ CP and (x, λ) ∈ A such that

ψ(t) = ut(x(t), λ(t)) and (x, λ) does not lie inside C(E). This implies that there exists

a non-empty coalition H and integrable functions (z, ν) : H −→ RL × ZM such that∫
H

ztdµ(t) +

∫
H

∑
(η,π,γ)

1

| π |
inp(π, γ)νt(η, π, γ)dµ(t) =

∫
H

ωtdµ(t)
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∫
H

ν(t)dµ(t) is consistent and ut(z(t), ν(t)) > ut(x(t), λ(t)) ∀t ∈ H

In that case η(t) = ut(z(t), ν(t)) would dominate ψ(t) on H. Hence we arrive at a

contradiction as ψ ∈ CP .

On the other hand suppose (x, λ) ∈ C(E) and assume that there exists a function

ψ : I −→ R where ψ(t) = ut(x(t), λ(t)) /∈ CP . This implies that ψ is dominated

by κ ∈ P . i.e. we can find a non-empty coalition H and (z, ν) ∈ A(H) such that

κ(t) = ut(z(t), ν(t)) > ut(x(t), λ(t)) for almost all t ∈ H. Hence (x, λ) is dominated by

(z, ν) on H. Therefore we arrive at a contradiction.

Proposition 4.10. Let the payoff core in the finite economy (the set of all payoffs in

PF that remain non-dominated) be denoted by CP
F . Then

CP
F = {u(f, λ)|(f, λ) = (f1, ..., fn, λ1, ..., λn) ∈ C(EF )}

Proof. Via contradiction we assume the existence of ψ ∈ CP
F and (f, λ) = (f1, ..., fn, λ1, ..., λn) ∈

AF such that ψ = u(f, λ) where (f, λ) does not lie inside C(EF ). Thus there exists a

non-null coalition H and (zi, νi)i∈H ∈ AF (H) such that∑
i∈H

zi +
∑
i∈H

∑
(κ,π,γ)

1

| π |
inp(π, γ)νi(κ, π, γ) =

∑
i∈H

ωi

and

ui(zi, νi) > ui(fi, λi)∀i ∈ H

and

list assignment ν is feasible for H

However ui(zi, νi)i∈H dominates ψ on H. Hence we arrive at a contradiction in view of

the fact that ψ ∈ CP
F .

On the other hand suppose (f, λ) = (f1, ..., fn, λ1, ..., λn) ∈ C(EF ) and assume that

u(f, λ) /∈ CP
F . Thus there exists ψ ∈ PF that would dominate u(f, λ). I.e. we can find

a non empty coalition H and (zi, νi)i∈H lying inside AF (H) such that ψi = ui(zi, νi) >

ui(xi, λi) ∀ i ∈ H. Therefore (x, λ) is dominated by (zi, νi)i∈H on H. Hence we arrive

at a contradiction.

Proposition 4.11. Let the set of competitive equilibria be non-null. If (z1, ..., zn, ν1, ..., νn)

lies inside the allocations sophisticated stable set then (z1, ..., zn, ν1, ..., νn) is i.r. If ψ

lies inside payoffs sophisticated stable set GP then ψ is i.r.
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Proof. Let (z, ν) = (z1, ..., zn, ν1, ..., νn) ∈ AF not be i.r. Then there would exist c ∈ I

such that uc(zc, νc) < uc((ωc, 0). Since uc(., 0) is continuous and strictly monotone and

ωc ̸= 0, we can find hc < ωc such that

uc(zc, νc) < uc(hc, 0) < uc(ωc, 0).

Thus (z, ν) is dominated by (h, 0) with hi = 0 when i ̸= c on the coalition {c}. Assume

(x, λ) = (x1, ..., xn, λ1, ..., λn) to be a competitive equilibrium, then (x, λ) is i.r. There-

fore (x, λ) dominates (hk, 0) on N - the coalition comprising all agents. Since (x, λ)

belongs to the core of the economy EF , by external stability we have (x, λ) ∈ GA.

Therefore (x, λ) ≻ (h, 0) ≻ (z, ν) and (x, λ) ∈ GA, implying that (z, ν) /∈ GA. An

analogous argument will prove that if ψ ∈ PF is not i.r., then ψ /∈ GP .

Lemma 4.12. Consider payoffs ψ and κ in PF , and let κ = u(f, λ) be i.r. If κ ≻≻ ψ,

then we can find κ = u(x, λ) such that κ ≻≻ ψ and κi < κi.

Proof. As κ ≻≻ ψ, we can find a sequence of feasible payoff vectors and coalitions

{{ψδ}kδ=0, {Sδ}kδ=1} where ψ0 = ψ, ψk = κ such that for c = 1, ...k and for all i ∈
Sj conditions (4.3) are satisfied. Since ωi ̸= 0, κi = ui(fi, λi) ≥ ui(ωi, 0) for all i

and ui(., λ) is continuous and strictly monotone, there exists α ∈ (0, 1) such that

{{(ψδ)k−1
δ=0 , u(αf, λ)}, {Sδ}kδ=1} fulfills conditions (4.3). Therefore we can prove the

lemma by letting κ = u(αf, λ).

Lemma 4.13. Let (z1, ..., zn, ν1, ..., νn) and (f1, ..., fn, λ1, ..., λn) belong to AF . Let

ψ = u(z, ν) and κ = u(f, λ) be i.r. Then κ ≻≻ ψ if and only if (f, λ) ≻≻ (z, ν).

Proof. Let κ ≻≻ ψ. From lemma 4.12, we can find κ = u(f, λ) such that κ ≻≻ ψ

and κi < κi. I.e. we can find a sequence of feasible payoff vectors and coalitions

{{ψδ}kδ=0, {Sδ}kδ=1} where ψ0 = ψ, ψk = κ such that for c = 1, ..., k and for all i ∈ Sc

conditions (4.3) are fulfilled. Therefore, for every c = 1, ..., k− 1 we can find a feasible

allocation (f c, λc) such that (f c, λc)Sc ∈ A(Sc) and ψc
i = ui(f

c
i , λ

c
i).

Consider the sequence {(f c, λc)}k+1
c=0 of allocations in AF where (f 0, λ0) = (z, ν),

(fk, λk) = (f, λ) and (fk+1, λk+1) = (x, λ). It is evident that {{(f δ, λδ}k+1
δ=0 , {Sδ}kδ=1, I}

fulfills conditions (4.4). Hence (f, λ) ≻≻ (z, ν). Reciprocally, let (f, λ) ≻≻ (z, ν). Then

we can find a sequence of feasible allocations and coalitions {{(f δ, λδ}kδ=0, {Sδ}kδ=1}
where (f 0, λ0) = (g, ν), (fk, λk) = (f, λ) such that for c = 1, ..., k conditions (4.4) hold.

The following sequence {{ψδ}kδ=0, {Sδ}kδ=1} with ψc = u(xc, λc) brings us to conclude

that κ ≻≻ ψ.
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Theorem 4.14. Let GA be an allocation sophisticated stable set. Consequently u(GA)

would be a payoff sophisticated stable set. Reciprocally if GP were a payoff sophisticated

stable set then u−1GP would be an allocation sophisticated stable set.

Proof. Assume GA to be an allocation sophisticated stable set. For the theorem to

hold we are required to show that ψ ∈ P \ u(GA) if and only if there exists κ in u(GA)

such that κ ≻≻ ψ. Let ψ ∈ P \ u(GA) and suppose ψ = u(f, λ) where (f, λ) =

(f1, ..., fn, λ1, ..., λn) ∈ AF . Then (f, λ) /∈ GA and since GA is sophisticated stable

set there exists (z, ν) = (z1, ..., zn, ν1, ..., νn) ∈ GA such that (z, ν) ≻≻ (f, λ). Then

κ = u(z, ν) ∈ u(GA) indirectly dominates ψ. Reciprocally let there exist ψ and κ

in u(GA) such that κ ≻≻ ψ. Then we can find (f, λ) = (f1, ..., fn, λ1, ..., λn) and

(z, ν) = (z1, ..., zn, ..., ν1, ..., νn) in G
A such that ψ = u(f, λ) and κ = u(z, ν). Lemmas’

4.13 and 4.11, help us conclude that (z, ν) ≻≻ (f, λ). This stands in contradiction to

the fact that GA is internally stable. Similar argument will help us prove the theorem

in the utility space.

Lemma 4.15. i) Let u(x, l) indirectly dominate u(z′, l′). Construct the associated pay-

offs in EF , (u1(f1, λ1), ..., un(fn, λn)) and u1(z1, ν1), ..., un(zn, νn)) where fi =
∫
Ii
xdµ,

λi =
∫
Ii
ldµ, z′i =

∫
Ii
zdµ, νi =

∫
Ii
l′dµ. If in the economy EF , assumptions A.3, A.4

and A.5 are satisfied, then u1(f1, λ1), ..., un(fn, λn)) ≻≻ u1(z1, ν1), ..., un(zn, νn)).

ii) Suppose that in the economy EF the payoff (u1(x1, λ1), ..., un(xn, λn)) indirectly dom-

inates (u1(z1, ν1), ..., un(zn, νn)). Construct the corresponding payoffs in E, u(x′, l) and
u(z′, l′) where x′(t) = xi, l(t) = λi, z

′(t) = zi and l
′(t) = νi for all t ∈ Ii and i = 1, ..., n.

Then u(x′, l) indirectly dominates u(z′, l′).

Proof. i) Take the following sequence of feasible payoffs and nonempty coalitions

{{ψδ}mδ=0, {Sδ}mδ=1} where ψδ = u(f δ, lδ) that satisfy conditions (4.2). Consider the

payoff (u1(f
δ
1 , λ

δ
1), ..., un(f

δ
n, λ

δ
n)) where f

δ
i =

∫
Ii
xδdµ, λδi =

∫
Ii
lδdµ, for any δ = 1, ...,m.

Let Sδ = {i|Ii ∩ Sδ ̸= ϕ}, for any δ = 1, ...,m. From proposition 3.8, for every δ we

can find Bδ ⊂ Sδ such that the allocation (f1, ..., fn, λ1, ..., λn) is feasible for Bδ.

From the foregoing results, one can show by taking the sequence of feasible payoffs

and coalitions

{
{u1(f δ

1 , λ
δ
1), ..., un(f

δ
n, λ

δ
n)}mδ=1, {Bδ}mδ=1

}
, that the payoff (u1(f1, λ1), ..., un(fn, λn))

indirectly dominates (u1(z1, ν1), ..., un(zn, νn)).

ii) Take the sequence

{
{u1(xδ1, λδ1), ..., un(xδn, λδn)}mδ=1, {Sδ}mδ=1

}
that satisfy conditions

(4.3). Consider the payoff u(x′δ, lδ) where x′δ(t) = xδi and lδ(t) = λδi for any δ =

1, ...,m and t ∈ Ii. Consider the coalition Sδ = ∪i∈SδIi for any δ = 1, ...,m. In light of
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proposition 3.8, for every δ = 1, ...,m we can find Jδ ⊂ Sδ such that (f δ, lδ) is feasible

over Jδ. Now using the following sequence

{
{u(x′δ, lδ)mδ=0, {Jδ}mδ=1

}
we can easily prove

that the payoff u(x′, l) indirectly dominates u(z, ν).

Proposition 4.16. Assume that the assumptions A.3, A.4 and A.5 are satisfied.

If GP is payoffs sophisticated stable set in the continuum club economy E, then the

corresponding set

GP
F = {(u1(x1, λ1), ..., un(xn, λn)) | xi =

∫
Ii

fdµ, λi =

∫
Ii

ldµ and u(f, l) ∈ GP}

is a payoffs sophisticated stable set in the finite club economy EF . Conversely, if GP
F is

a payoffs sophisticated stable set in the finite club economy EF , then the associated set

GP = {u(f, l) | f(t) = xi, l(t) = λi ∀t ∈ Ii and (u1(x1, λ1), ..., un(xn, λn)) ∈ GP
F}

is a payoffs sophisticated stable set in the continuum club economy E .

Proof. Follows from the lemma 4.15.

Lemma 4.17. i) Let (f, l) indirectly dominate (z′, l′). Take the related allocations

in EF , (x1, ..., xn, λ1, ..., λn) and (z1, ..., zn, ν1, ..., νn) with xi =
∫
Ii
fdµ, λi =

∫
Ii
ldµ,

z′i =
∫
Ii
zdµ, νi =

∫
Ii
l′dµ. If in the economy EF , the assumptions A.3 and A.5 are

satisfied, then(x1, ..., xn, λ1, ..., λn) indirectly dominates (z1, ..., zn, ν1, ..., νn).

ii) Let (x1, ..., xn, λ1, ..., λn) indirectly dominate (z1, ..., zn, ν1, ..., νn) in the finite club

economy EF . Consider the corresponding allocations in the continuum club economy

E, (f, l) and (z′, l′) with f(t) = x1, l(t) = λi, z
′(t) = zi and l

′(t) = νi for all t ∈ Ii and

i = 1, ..., n. Consequently (z′, l′) would be ‘indirectly dominated’ by (f, l).

Proof. i) Let there be a sequence of feasible allocations and nonnull coalitions {{(f δ, lδ)}mδ=0, {Sδ}mδ=1}
where ξδ = u(f δ, lδ) in the economy E satisfying conditions (4.1). In the corresponding

economy EF , define the allocation (xδ, λδ) with xδi =
∫
Ii
f δdµ, λδi =

∫
Ii
lδdµ, for any δ =

1, ...,m. Consider the coalition Sδ = {i|Ii ∩ Sδ ̸= ϕ}, for any δ = 1, ...,m. From propo-

sition 3.9, for every δ = 1, ...,m there exists Jδ ⊂ Sδ such that (xδ1, ..., x
δ
n, λ

δ
1, ..., , λ

δ
n)

is feasible over Jδ. From the foregoing results, we can construct the following sequence

of feasible payoffs and coalitions

{
{u1(xδ1, λδ1), ..., un(xδn, λδn)}mδ=1, {Jδ}mδ=1

}
, such that

(z1, ..., zn, ν1, ..., νn) is indirectly dominated by (x1, ..., xn, λ1, ..., λn).
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ii) Take a sequence {{(f δ, lδ)}mδ=0, {Sδ}mδ=1} such that conditions (4.4) are satisfied.

Consider an allocation (f δ, lδ) where f δ(t) = xδi and l
δ(t) = λδi for any δ = 1, ...,m and

t ∈ Ii. Consider the coalition Sδ = ∪i∈SδIi for any δ = 1, ...,m. In light of proposition

3.8, we can find Jδ where Jδ = ∪i∈SδJδ
i and Jδ

i ⊂ Ii for all i ∈ Sδ such that (f δ, lδ)

is feasible over Jδ. Now using the following sequence

{
{(f δ, lδ)mδ=0, {Jδ}mδ=1

}
we can

easily prove that the allocation (f, l) indirectly dominates (z, ν).

Proposition 4.18. Assume assumptions A.3, A.4 and A.5 hold. Let GA be an allo-

cations sophisticated stable set in the continuum club economy E. Then the equivalence

set in the finite club economy EF

GA
F = {(f1, ..., fn, λ1, ..., λn) | fi =

∫
Ii

xdµ, λi =

∫
Ii

ldµ and u(f, l) ∈ GA}

would be an allocations sophisticated stable set in EF . Conversely, let GA
F be an alloca-

tion sophisticated stable set in the finite club economy EF , then the equivalence set in

the continuum club economy E

GA = {u(x, l) | x(t) = fi, l(t) = λi ∀t ∈ Ii and (f1, ..., fn, λ1, ..., λn) ∈ GA
F}

would be an allocations sophisticated stable set in E .

Proof. Follows from lemma 4.17.

Theorem 4.19. If GA were an allocations sophisticated stable set, then u(GA) would

be a payoffs sophisticated stable. Reciprocally if GP were a payoff sophisticated stable

set, then u−1GP would be an allocations sophisticated stable set.

Proof. Straightforward consequence of propositions’ 4.18 and 4.16

5 Concluding Remarks

In this paper we provide an equivalence between stable sets of a continuum club econ-

omy with those that form in the corresponding finite club economy. While the equiv-

alence between stable sets across continuum and the associated finite economies has

been looked into in the context of a pure Walrasian economy [11] and those with pub-

lic goods [8], however these findings remain unexplored in economies with club goods.

Club economies assume significance as individuals often encounter scenarios where they
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are required to share the benefits of a good and its provision cost with other agents.

Examples include a swimming pool, a library and so on.

Further, most scholars working on club economies consider a finite number of agents.

However a finite economy fails to characterise competition as individuals usually wield

market power in such economies. Therefore we adopt Ellickson et al.’s [6] framework

to model our club economy. Along the lines of Aumann [1], their economy contains a

continuum of agents and uses a decentralised notion of price-taking equilibrium where

buying a club membership is similar to buying a private good.

Our results provide support to the endogenous cartel formation seen by Hart [11] in

pure Walrasian economies. Each agent in the finite economy can be thought of as

representing the continuum of agents of a given type in the atomless economy. Second,

we introduce the concept of ‘sophisticated stable’ sets pioneered by Harsanyi [10] to

our club economy and are able to show an equivalence between sophisticated stable

sets in the utility space with those that form in the allocation space.
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