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1. INTRODUCTION

Identity, often overlooked in decision-making models, has emerged as a crucial aspect in recent

times. Recognizing its economic significance, Kasher and Rubinstein (1997) laid the groundwork

for formal theoretical treatment of aggregating individuals’ opinions about each other’s identities.

Their seminal work delved into the identification problem, treating qualification and disqualifica-

tion for an identity symmetrically, and introduced the Collective Identity Function (CIF), which

relies on the collective societal opinion to determine an individual’s identity.

*I would like to thank Mihir Bhattacharya, Ayushi Choudhary, Sumana Kundu, and Vinay Madhusudanan for
their helpful suggestions and comments. The usual disclaimer holds.
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In less economically impactful identification scenarios, the liberal rule, as proposed by Kasher

and Rubinstein (1997), often suffices, allowing an individual’s self-opinion to dictate their identi-

fication. However, when externalities arise from identity, alternative CIFs become necessary to

aggregate individual opinions effectively. Samet and Schmeidler (2003) explored consent rules,

which span a spectrum of social intervention from minimal (liberal rule) to maximal (unanimous

rule). They characterize these rules based on criteria such as monotonicity, independence of

irrelevant opinions, and symmetry. Extending this, Cho and Ju (2017) introduced CIFs for more

than two identities, defining one-vote rules satisfying non-degeneracy and independence of

irrelevant opinions.

This study focuses on the incentive properties of multinary group identification problems.

Building upon Cho and Saporiti (2020)’s investigation into binary group identification problems,

where they characterized strategy-proof CIFs as voting-by-committee rules, we extend this analy-

sis to multinary scenarios. We observe that one-vote rules, meeting criteria such as independence

of irrelevant opinions and non-degeneracy, are susceptible to manipulation. Additionally, we

identify two crucial properties of strategy-proof CIFs: (i) monotonicity and (ii) column-wise

decomposability.

2. BASIC MODEL

There is a finite set of individuals N = {1, . . . ,n}, and a finite number of identities G = {1, . . . ,m}.

We assume throughout that n ≥ 2 and m ≥ 2. Each individual i ∈ N has an opinion on who he

believes are the members of each of these identities. An (identification) profile is, therefore, a

matrix P where for all i, j ∈ N, Pij ∈ G. Here, Pij = k is interpreted as person i’s view of a person j

as a member of identity k. For S ⊆ N, the sub-matrix of P containing the opinions of individuals

in S is denoted by PS and the sub-matrix of P representing the opinion of all individuals regarding

the identity of individuals in S is denoted by PS. For an individual i ∈ N, the set of agents who

agree that agent i’s identity to be k ∈ G at a profile P is denoted by N(P, i,k) := {j ∈ N : Pji = k}.

For notational convenience, we write singleton sets such as {i} as simply i.

Definition 2.1. A collective identity function (CIF) is defined as f : Gn×n→ Gn which associates

with each profile P, a vector f (P) = ( f1(P), . . . , fn(P)) where for all i ∈ N, fi(P) is the identity to

which an individual i qualifies.

We consider a straightforward generalization of the preference extension in Cho and Saporiti
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(2020). Define the strict preference relation QP
i induced from P ∈ Gn×n as follows:

∀x,y ∈ Gn×n, xQP
i y⇔ ∀j ∈ N, Pij , xj implies Pij , yj.

Intuitively, given an individual i and his opinion Pi about the identity distribution in the

society, we say that individual i strictly prefers a vector x ∈ Gn to another vector y ∈ Gn if x

has more entries that match the corresponding entries Pi when compared to the vector y, i.e.,

{j ∈ N | xj = Pij} ⊇ {j ∈ N | yj = Pij}.

Definition 2.2. A CIF f : Gn×n→ Gn satisfies strategy-proofness if for all P ∈ Gn×n, for all i ∈ N,

and for all P′i ∈ Gn, either f (P) = f (P′i , PN\i) or f (P)Qi f (P′i , PN\i).

Definition 2.3. A CIF f : Gn×n→ Gn satisfies monotonicity if for all i ∈ N and for all P, P′ ∈ Gn×n,

whenever for all j ∈ N, Pji = fi(P) implies P′ji = fi(P), we have fi(P′) = fi(P).

Fact 2.1. A CIF f : Gn×n→ Gn is strategy-proof then it satisfies monotonicity.

However, the converse is not true. For instance, plurality rules, are monotonic but are not

strategy-proof.1

One-vote rules were introduced in Miller (2008) and Cho and Ju (2017) characterize CIFs that

satisfy Independence of Irrelevant Opinions (IIO) as one-vote rules.2

Definition 2.4. A CIF f : Gn×n→ Gn is a one-vote rule if for all i ∈ N, there are j, h ∈ N such that

for all P ∈ Gn×n, fi(P) = Pjh.

A one-vote rule essentially takes into account the opinion of any arbitrary individual j about

another arbitrary individual h while deciding the identity of an individual i in the society.

Independence of Irrelevant Opinions is analogous to Independence of Irrelevant Alternatives

(IIA) in preference aggregation and in the standard social choice literature, IIA axiom is intimately

related to strategy-proofness (Muller and Satterthwaite (1977)). We then ask the natural question

in this framework: are CIFs satisfying IIO strategy-proof? We answer in the negative by showing

that one-vote rules are manipulable. The following example illustrates the notion of a one-vote

rule and shows that it is manipulable.

1For any individual, the plurality rule chooses the identity that most number of individuals in the society
identified this individual to be a part of.

2Informally, a CIF satisfies independence of irrelevant opinions if the social opinion of the identity of an individual
remain unaltered when moving from identification profiles where individual opinions about the identity of this
individual remain the same.
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Example 2.1. Let us consider a society with N = 1,2,3,4,5 and G = {1,2,3} and we have a

one-vote rule CIF f : Gn×n→ Gn where for all P ∈ Gn×n, fi(P) = Pi(n−i+1). Let

P =



1 3 2 1 3

1 3 1 2 2

1 2 3 3 3

2 1 1 1 1

3 1 3 1 1


and the resulting identification will be f (P) = (3,2,3,1,3). Next, we show that the above one-vote

rule f is not strategy-proof. To see this, consider the profile

(P′1, PN\1) =



1 3 2 1 2

1 3 1 2 2

1 2 3 3 3

2 1 1 1 1

3 1 3 1 1


and therefore, f (P′1, PN\1) = (2,2,3,1,3). It is easy to verify that f (P′1, PN\1) , f (PN) and f (P′1, PN\1)

Pi f (PN), which implies that f is manipulable.

A CIF f : Gn×n→ Gn is called constant if for all P, P′ ∈ Gn×n, f (P) = f (P′). A CIF f : Gn×n→

Gn is called dictatorial if for all P ∈ Gn×n and for all i ∈ N, there exists d ∈ N such that fi(P) = Pdi.

Note that constant CIFs violate non-degeneracy.

Definition 2.5. A CIF f : Gn×n → Gn satisfies non-degeneracy if for all i ∈ N, there are P, P′ ∈

Gn×n such that fi(P) , fi(P′).

Definition 2.6. A CIF f : Gn×n → Gn satisfies unanimity if for all P ∈ Gn×n and for all i, j ∈ N

such that Pij = k for some k ∈ G then for all i ∈ N, fi(P) = k.

Definition 2.7. A CIF f : Gn×n→ Gn satisfies strong unanimity if for all P ∈ Gn×n and for some

i ∈ N such that Pji = k for some k ∈ G and for all j ∈ N, we have fi(P) = k.

Clearly, strong unanimity implies unanimity which implies non-degeneracy but the converse

of these statements is not true. However, under strategy-proofness, a CIF f is unanimous if and

4



only if it is strongly unanimous. This is an immediate consequence of Fact 2.1. To see why, let

P ∈ Gn×n such that for some i ∈ N, Pji = k for all j ∈ N and for some k ∈ G, and let P̄ ∈ Gn×n

be such that for all i, j ∈ N, P̄ij = k. By unanimity, fi(P̄) = k and observe that P̄ji = k implies

Pji = k for all j ∈ N. By Fact 2.1, we know that if f is strategy-proof, f is monotonic implying that

fi(P) = k as required. We summarize this observation below.

Fact 2.2. Let f : Gn×n→ Gn be a strategy-proof CIF. Then, f satisfies unanimity if and only if it satisfies

strong unanimity.

3. STRUCTURE OF STRATEGY-PROOF CIFS

In this section, we establish a key property of strategy-proof CIFs in the multinary group identifica-

tion setting. We show that a strategy-proof CIF can be characterized by a form of decomposability,

which we call column-wise decomposability.

Let G = G ∪ {0} be the augmented set of identities. Given P ∈ Gn×n, define the column-j

problem, BP,j ∈ Gn×n
as: (i) BP,j

il = Pil if l = j, and (ii) BP,j
il = 0 if l , j. For each column-j binary

problem BP,j ∈ Gn×n
, the preference extension QBP,j

i is defined in the same way as the preference

extension QP
i is defined for P ∈ Gn×n. Let B j be the collection of all column-j problem BP,j’s, i.e.,

B j = {BP,j ∈ Gn×n | P ∈ Gn×n, j ∈ N} and a column-j CIF is defined as a mapping φj : B j→ Gn
.

Definition 3.1. A CIF f : Gn×n→ Gn is column-wise decomposable if there exists a strategy-proof

column-j CIF φ f : B j→ Gn
such that for all j ∈ N and for all P ∈ Gn×n, f j(P) = φ

f
j (BP,j).

Theorem 3.1. A CIF f is strategy-proof if and only if it is column-wise decomposable.

Cho and Ju (2017) shows that CIFs satisfying independence of irrelevant alternatives and non-

degeneracy are decomposable. However, their notion of decomposability is different from ours.

In their setup, they say that a CIF is decomposable if one can disaggregate the multinary group

identification problem into multiple binary identification problems à la Samet and Schmeidler

(2003), obtain binary decisions of these binary identification problems through an approval

function, and combine them into a single decision.3 An example of a decomposable CIF is a

one-vote rule. We have already shown that one-vote rules are manipulable and due to Theorem

3.1, they are not column-wise decomposable. Next, we provide an example of a unanimous (and

3See page 520 in Cho and Ju (2017) for a formal definition.
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hence, non-degenerate) CIF that is column-wise decomposable (and hence, strategy-proof) but

not decomposable.

Example 3.1. Consider a society with N = 1,2,3,4,5 and G = {1,2,3}. Consider a column-wise de-

composable CIF f where for all P ∈ Gn×n, f1(P) = 3, f2(P) = 1, f3(P) = min{P13, P23, P33, P43, P53},

f4 = P14, and f5(P) = P25 where min is computed with respect to the linear ordering 1 < 2 < 3

over G. Note that this CIF is non-degenerate by definition. Define the associated column-j CIF φ f ,j

as follows: for all P ∈ Gn×n and for all i ∈ N, φ
f ,j
i (P) = fi(P) if i = j and φ

f ,j
i (P) = 0 if i , j. It is

obvious that the associated column-j CIF φ f ,j is strategy-proof for all j ∈ N \ {3}. We show that the

column-3 CIF φ f ,3 is strategy-proof. Consider i ∈ N and P, P′ = (P′i , PN\i) ∈ Gn×n. Assume that

φ
f ,3
3 (BP,3) = f3(P) , Pi3 as otherwise there is nothing to prove. If P′i3 ≥min{P13, P23, P33, P43, P53}

then φ f ,3(BP′,3) = φ f ,3(BP,3), implying that φ f ,3(BP,3)QBP,3
φ f ,3(BP′,3). If, on the other hand,

P′i3 < min{P13, P23, P33, P43, P53} then φ
f ,3
3 (BP′,3) = f3(P′) = P′i3 < φ

f ,3
3 (BP,3) < Pi3, again implying

that φ f ,3(BP,3)QBP,3
φ f ,3(BP′,3). Therefore, we have shown that the column-3 CIF φ f ,3 is strategy-

proof.

Let

P =



3 1 3 1 1

2 3 3 3 2

3 2 3 3 1

2 3 2 3 3

1 3 2 2 3


and the resulting identification will be f (P) = (3,1,2,1,2). Let B̃P,2 be the binary problem

concerning identity 2 as defined in Cho and Ju (2017). That is, Let

B̃P,2 =



0 0 0 0 0

1 0 0 0 1

0 1 0 0 0

1 0 1 0 0

1 0 0 0 0


and the approval vector (again as per Cho and Ju (2017)) of this binary problem is (0,0,1,0,1).
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Next, consider

P′ =



3 1 1 1 1

2 3 1 3 2

3 2 3 3 1

2 3 2 3 3

1 3 2 2 3


and note that the resulting identification will be f (P) = (3,1,1,1,2). Observe that the binary

problems concerning identity 2 is the same in P and P′, i.e., B̃P,2 = B̃P′,2. However, the resulting

approval vector of the binary problem B̃P′,2 is (0,0,0,0,1) which is different from the approval

vector of the binary problem B̃P,2.

Lastly, for binary group identification problems, we observe that the strategy-proof CIFs

characterized in Cho and Saporiti (2020) are column-wise decomposable.

In light of Theorem 3.1, it is helpful to think about the individual jth collective identity, ϕ
f
j ,

induced from CIF f : Gn×n→ Gn as a function mapping profiles P ∈ Gn×n to an identity in G.

Definition 3.2. Let f : Gn×n→ Gn be a CIF and let ϕ
f
j : Gn×n→ G be the function induced from f

such that for all P ∈ Gn×n, ϕ
f
j (P) = f j(P). We define a few properties of the function ϕ

f
j induced

from a CIF f as follows:

(i) ϕ
f
j is called unanimous if for all P ∈ Gn×n such that for all i ∈ N, Pij = k, ϕ

f
j (P) = k.

(ii) ϕ
f
j is called constant if for all P, P′ ∈ Gn×n, ϕ

f
j (P) = ϕ

f
j (P′), and ϕ

f
j is non-degenerate if it

is not constant.

REMARK 3.1. Let f : Gn×n → Gn be a CIF and for all j ∈ N, let ϕ
f
j : Gn×n → G be the function

induced from f . If for all j ∈ N, ϕ
f
j is unanimous then f satisfies strongly unanimity and therefore,

by Fact 2.2, f is unanimous.

4. CONCLUSION

We study the structure of strategy-proof CIFs in multinary group identification problems. First,

we show that CIFs satisfying IIO are not strategy-proof by showing that one-vote rules are

manipulable. Next, we establish monotonicity and column-wise decomposability of CIFs. We
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plan to provide a parametric characterization of strategy-proof CIFs when they satisfy non-

degeneracy, unanimity and efficiency. We also plan to study whether strategy-proof CIFs satisfy

fairness axioms like equal treatment of equals and anonymity.

A. PROOFS

Proof of Fact 2.1. Consider P, P̄ ∈ Gn×n such that fi(P) = k for some i ∈ N, Pji = k implies P̄ji = k

for all j ∈ N. It is sufficient to show that fi(P̄j, PN\j) = k for some j ∈ N such that Pji = k and

P̄ji = k. Assume for contradiction that fi(P̄j, PN\j) , k. Let P̂ = (P̄j, PN\j). Since f is strategy-proof

and fi(P̂) , k = fi(P), we have f (P̂) , f (P) and

f (P̂)QP̂
j f (P)⇔

[
∀l ∈ N, P̂jl , fl(P̂)⇒ P̂jl , fl(P)

]
.

In particular, P̂ji = k , fi(P̂) implying that fi(P) , k, a contradiction. Therefore, it must be the

case that fi(P̄j, PN\j) = k, as required. �

Proof of Theorem 3.1. (Necessity) Let f be a strategy-proof CIF. This means that for all P ∈ Gn×n,

for all i ∈ N, and for all P′i ∈ Gn×n, f (P) , f (P′i , PN\i) implies f (P)QP
i f (P′i , PN\i). For j ∈ N, define

the column-j CIF φ f ,j : B j → Gn
associated to f as follows: for all P ∈ Gn×n and for all i ∈ N,

φ
f ,j
i (BP,j) = fi(P) if i = j and φ

f
i (BP,j) = 0 if i , j. We show that for all j ∈ N, φ f ,j is strategy-proof.

Fix an arbitrary j ∈ N, and consider an arbitrary i ∈ N, B ∈ B j, and (B′i , BN\i) ∈ B j. To show that

φ f ,j is strategy-proof, we show that if φ f ,j(B) , φ f ,j(B′i , BN\i) implies φ f ,j(B)QB
i φ f ,j(B′i , BN\i). Since

B, (B′i , BN\i) ∈ B j, there exists P, P′ ∈ Gn×n and ĵ, ĵ′ ∈ N such that B = BP, ĵ and (B′i , BN\i) = BP′, ĵ′

such that ĵ = ĵ′ = j. Also, since Pij = Bij , B′ij = P′ij, P′i , Pi, and without loss of generality, assume

P′r = Pr for all r , i. This means that we can write P′ as (P′i , PN\i). Since φ f ,j(B) , φ f ,j((B′i , BN\i)),

we have φ
f ,j
j (B) = f j(P) , f j(P′i , PN\i) = φ

f ,j
j ((B′i , BN\i)) which implies that f (P) , f (P′i , PN\i).

Since f is strategy-proof and f (P) , f (P′i , PN\i), we have f (P)QP
i f (P′i , PN\i). This means that

for all r = 1, . . . ,n, Pir , fr(P) implies Pir , fr(P′i , PN\i). In particular, it means that Pij = Bij ,

f j(P) = φ
f ,j
j (B) implies Pij = Bij , f j(P′i , PN\i) = φ

f ,j
j (B′i , BN\i). By definition, this implies that

φ f ,j(B)QB
i φ f ,j(B′i , BN\i) as required.

(Sufficiency) Let f be a column-wise decomposable CIF. This means that for all j ∈ N, there exists

a strategy-proof column-j CIF φ f ,j : Gn×n→ Gn×n
such that for all P ∈ Gn×n, φ

f ,j
j (BP,j) = f j(P).

We show that f is strategy-proof ,i.e., for all P ∈ Gn×n, for all i ∈ N, and for all P′i ∈ Gn×n,
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f (P) , f (P′i , PN\i) implies f (P)QP
i f (P′i , PN\i). Consider an arbitrary P ∈ Gn×n, i ∈ N, and P′i ∈ Gn

such that f (P) , f (P′i , PN\i). Define Ñ f = {j ∈ N | f j(P) , f j(P′i , PN\i)}. Since f (P) , f (P′i , PN\i),

we have Ñ f , ∅. Since f j(P) , f j(P′i , PN\i) for all j ∈ Ñ f , we have φ f ,j(BP,j) , φ f ,j(B(P′i ,PN\i),j) and

since φ f ,j is strategy-proof, this means that φ f ,j(BP,j)QBP,j

i φ f ,j(B(P′i ,PN\i),j), thereby implying that

f j(P) = φ
f ,j
j (BP,j) , BP,j

ij = Pij implies that f j(P′i , PN\i) = φ
f ,j
j (B(P′i ,PN\i),j) , B

(P′i ,PN\i),j
ij = Pij. Also,

for all j < Ñ f , we have f j(P) = f j(P′i , PN\i) which implies that Pij , f j(P) implies Pij , f j(P′i , PN\i).

Therefore, for all j ∈ N, we have Pij , f j(P) implies Pij , f j(P′i , PN\i) and hence, by the definition

of QP
i , f (P)QP

i f (P′i , PN\i) as required. �
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