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Abstract
Weather shocks associated with global climate change engender substantial damages, in the order of

multi-billion dollars annually, to the Indian economy. Using data from 33 states during 1981--2022, we

explore the effect of weather shock on India's economic growth, in the presence of interplay of

temperature and precipitation levels. To avoid arbitrary assumptions of parametric estimation, we

estimate the economic damages resulting from weather shocks using semi-parametric varying

coefficient generalised additive models (VC-GAM). We select the optimal class of VC-GAM among 29

possible classes based on four relevant criteria. From the optimal class, out of 84 possible

specifications, we determine the optimal damage specification using the out-of-sample and in-sample

performance. We find that the contemporaneous year-on-year weather change and lagged year-on-year

precipitation change have an impact on the per capita economic growth through total factor

productivity channel, whereas only contemporaneous precipitation level have an impact on the per

capita economic growth through labour productivity channel. We observe that the marginal effect of a

contemporaneous weather change varies with the level of lagged precipitation level, whereas high

lagged precipitation level combined with a low to moderate lagged temperature level exacerbates the

detrimental impact of a positive lagged precipitation change on the per capita economic growth for

India. One potential mechanism through which contemporaneous and lagged weather variables could

have an impact on the per capita economic growth, is based on the impact of soil moisture quality. We

have demonstrated our results to be considerably robust.
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1. Introduction

India—the fifth largest economy with diverse climatic conditions—has faced repercussions of the
global climate change with a rise in weather shocks such as extreme temperature event, decline
in monsoon precipitation, increase in average temperature, flood and drought (Krishnan et al.,
2020). Consequently, the Indian economic growth, averaging approximately 6% per annum during
1981–2023 as per the World Bank data1, has suffered from these weather shocks. For example,
in 2021 alone, weather-related hazards caused an estimated US$ 7.6 billion damage to the Indian
economy (WMO, 2022). With the rising mean global temperature, the frequency and intensity of
these weather shocks may increase for India in the coming years with arguably different magnitudes
of economic damages for the growing Indian economy. Policymakers need to understand the mag-
nitude of these weather shock-induced economic damages in order to formulate adaptation policies.

Policymakers commonly utilize Integrated Assessment Models to evaluate the weather shock-induced
economic damages. However, these models’ damage functions, along with the choice of values for
the underlying damage parameters, are quite arbitrary (Dell et al., 2014; Nordhaus, 2018; Pindyck,
2013). Although the existing empirical literature, in the Indian context, has attempted to estimate
the appropriate weather damage specification to capture the impact of damages due to weather
shocks, these studies, however, do not shed any light on the impact of the interplay of temperature
and precipitation variables on economic growth. This interplay captures the joint behaviour of
temperature and precipitation and is used for the impact analysis of drought, flood, and agriculture
production (Rana et al., 2017). Understanding this interplay is also critical for developing suitable
adaptation policies towards the weather shocks.

Our estimation of this interplay highlights the potential mechanism of the effect of temperature
and precipitation on the economic growth through the soil moisture quality which can be an impor-
tant parameter while deciding an adaptation policy for the future weather shocks. Our empirical
approach, furthermore, suggests a fresh perspective to understand how contemporaneous and lagged
weather variables have an impact on the economic growth, prompting policymakers to consider the
dynamic nature of impact of weather shocks in the interest of medium-run planning. This strategy
has resulted into a substantially different specification than those considered in the existing liter-
ature for India allowing for more diverse computation of the social cost of carbon for the Indian
economy. Finally, our estimated weather damages can be used as base data to assess the value of
damage parameters in integrated assessment models or General Equilibrium Models providing more
robust findings for policy-making.

We develop our theoretical foundation in line with Kalkuhl and Wenz (2020) who have consid-
ered a Ramsay-style growth model with constant returns to scale. Their framework assumes that a

1https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=IN
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temperature (precipitation) change2 has a marginal effect on the economic growth through the total
factor productivity growth channel and these marginal effects vary with temperature (precipitation)
level. Their model implies that an additive non-linear form of temperature and precipitation level
have an impact on the economic growth via the labour productivity growth channel too. We relax
the assumption of constant returns to scale, since it is often considered restrictive for an emerging
economy. We introduce the interplay of weather variables by assuming that the marginal effect of
weather change is a function of both temperature and precipitation levels. Moreover, we consider a
broader class of models in which temperature and precipitation levels may even have a non-additive
effect on economic growth.

We utilise the state-level Indian data for the fiscal years 1980–1981 to 2021–2022. We use a semi-
parametric econometric technique of Varying Coefficient Generalised Additive Model (VC-GAM)
departing from Kalkuhl and Wenz (2020)’s parametric approach to empirically implement our gen-
eralized theoretical framework. We select the optimal class of VC-GAM to estimate the impact
of weather variables on the economic growth by evaluating 29 possible classes of VC-GAMs based
on the four criteria of (i) parsimony, (ii) low concurvity, (iii) avoidance of over-fitting, and (iv)
balancing goodness-of-fit with model complexity.

We observe a strong evidence in favour of the interplay of weather variables on the economic
growth. For example, a positive temperature (precipitation) change has an adverse marginal effect
on the per capita economic growth when the preceding year’s precipitation level is low (high). It is
also observed that the negative effects of a positive lagged precipitation change on the per capita
economic growth of India are amplified when there is a high lagged level of precipitation paired with
a low to moderate lagged temperature level.

Next, we estimate the optimal damage specification by fitting the predicted values of the opti-
mal VC-GAM on the 84 relevant specifications of weather variables. Methodologically, we follow
Newell et al. (2021) who have implemented the cross-validation and the model confidence set tech-
nique to compare the models with different parametric specifications based on their forecasting
abilities. We augment their method of cross-validation technique with the ridge regression and
then, obtain 55 specifications in the superior set of models from the considered specifications based
on out-of-sample performance metrics. In the next step, we select the damage specifications from
the superior set of models (55 specifications considered) by employing in-sample performance met-
ric of adjusted generalized variance inflation factor to address the concern of multicollinearity and
hence, end up with six specifications. Finally, we select the optimal damage specification (out of
these six specifications) by implementing Bayes factor and ensuring the goodness of fit.

2We term year-on-year temperature and precipitation level variations as temperature and precipitation change,
respectively.
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We find that the marginal effect of contemporaneous temperature change is an inverted U-shaped
function of lagged precipitation level whereas the marginal effect of a lagged precipitation change
is a linear interaction of lagged temperature and precipitation levels. These findings conclusively
demonstrate the interplay of contemporaneous temperature change, lagged precipitation change
and lagged weather level, unaddressed in the existing literature (Kalkuhl and Wenz, 2020; Kumar
and Maiti, 2024a; Letta and Tol, 2019). We also find that the marginal effect of contemporane-
ous precipitation change is a decreasing linear function of lagged precipitation level. This result
indicates the significance of precipitation change in the Indian context which has been found to be
globally insignificant by Kalkuhl and Wenz (2020). Finally, we find that the marginal effect of con-
temporaneous precipitation level on the economic growth yields a U-shape curve indicating a cubic
relationship instead of quadratic one (Damania et al., 2020; Kotz et al., 2022) between precipitation
level and the economic growth.

This paper proceeds as follows. Section 2 discusses the related literature on the impact of weather
on the economic growth. Section 3 narrates the theoretical framework for our empirical analysis.
Section 4 describes the data, conducts a preliminary analysis, and formulates our hypothesis for
further probing. Section 5 elaborates on the empirical strategy and the model selection approach
employed for the study. Section 6 presents the results. Section 7 discusses the results and concludes
the paper.

2. Related literature

2.1. Weather effects on Indian economy

A growing research looks into how varied weather patterns affect numerous aspects of the Indian
economy. To arrange our review, we divide the literature into two categories based on its focus:
studies investigating the impacts of temperature (Section 2.1.1) and those studying the impact of
precipitation (Section 2.1.2).

2.1.1. Temperature impact

Studies using global-level data find that a rising temperature significantly hinders economic growth,
including for economies like India (Acevedo et al., 2020; Burke et al., 2015; Dell et al., 2012; Kahn
et al., 2021; Kalkuhl and Wenz, 2020; Kotz et al., 2021; Letta and Tol, 2019). These studies link
these negative effects to less investment, lower labour productivity, deteriorating human health,
and decreasing agricultural and industrial output. Regional-level studies find that a temperature
shock has a detrimental impact on Indian agriculture output (Mendelsohn, 2014, study for Asian
countries), total factor productivity (Kumar and Maiti, 2024b, study for emerging economies), and
economic growth (Zhao, 2018, study for China and India).
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The India-specific studies too conclude that a temperature shock has an adverse impact on the
overall economic growth. Using the specification of Burke et al. (2015) and state-level data, Jain
et al. (2020) find that a 1◦C increase in temperature reduces the economic growth by 2.5 percentage
points (pp), disproportionately affecting poorer states and the agriculture sector. Similarly, Sand-
hani et al. (2023), using specification of Dell et al. (2012) and district-level data, estimate that a
1◦C increase in temperature leads to a 4.7 pp drop in the economic growth. According to Kumar
and Maiti (2024a), rising temperatures have a cumulative effect on ecosystem services, labour pro-
ductivity, and capital productivity, leading to a 3.89 pp loss in the economic growth.

Many studies have explored the impact of temperature on specific aspects of the Indian economy
that may influence its economic growth. Taraz (2018) confirms that temperature shocks significantly
affect the agricultural yields in India, although high heat-prone districts face less damage due to
their better adaptability. According to Pattanayak et al. (2021), a 1◦C increase in temperature
affects the agricultural production efficiency by 4.7 pp across regions. A heat wave or an extreme
temperature has a negative effect on the agricultural productivity (Birthal et al., 2021). Carleton
(2017) indicates that a higher temperature decreases the yield of crops and associated suicides of
distressed farmers to a higher temperature (around 70 suicides per 1◦C increase).

Somanathan et al. (2021) study how temperature impacts labour productivity and supply in man-
ufacturing facilities. A temperature shock of 1◦C reduces manufacturing output by 2 pp, primarily
due to reduced worker productivity and higher absenteeism. According to Colmer (2021), tempera-
ture shocks impact labour markets in various sectors in India, including agricultural production and
labour demand. His findings reveal that when there is a temperature shock, labour law-regulated
firms suffer, whereas small businesses profit.

2.1.2. Precipitation impact

The majority of the works described above account for precipitation shocks and conclude that their
overall impact on economic indicators is insignificant. Damania (2020) examines how a precipitation
shock affects agricultural production, conflicts, human capital, and economic progress. According
to Acevedo et al. (2020), a higher precipitation has a negative impact on economic growth, whereas
Mohaddes et al. (2023) demonstrates that a below-normal precipitation reduces economic growth,
labour productivity, and employment, especially for the United States.

Additionally, Damania et al. (2020) and Kotz et al. (2022) show that a precipitation shock signifi-
cantly affects the overall economic growth. They derive a non-linear inverted-U shaped relationship
between precipitation and the economic growth. Notably, the negative effects of weather shocks
on poor countries are manifested through the agriculture sector, whereas developed countries are
affected through the manufacturing and services sectors.
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Gilmont et al. (2018) investigate the relationship between precipitation and economic growth in
several Indian states and note that states with a higher precipitation are less sensitive to precipita-
tion shocks due to irrigation practice adaption. According to Auffhammer et al. (2006), additional
precipitation during the harvest season increases rice yields in India. Moreover, Pattanayak et al.
(2021) conclude that a positive precipitation shock has a favourable effect, but higher precipitation
volatility reduces the total factor productivity of the Indian agriculture sector.

Mitra (2014) reports that a one-standard deviation shock from the mean precipitation level favours
crop production elasticity for a lower precipitation level compared to its higher counterparts. Lastly,
Birthal et al. (2021) find that an unusually high rainfall or a flood has no significant effect on the
agricultural productivity, but an abnormally low rainfall or a drought has a negative effect.

2.2. Choice of the weather variables

The above-mentioned literature, with the few exceptions noted below, mostly considers linear or
non-linear weather levels while estimating the marginal impact of weather on the economic growth.
Notably, some studies consider weather changes instead of weather levels to estimate the constant
marginal impact on the economic growth (Kahn et al., 2021; Kumar and Maiti, 2024a, 2024b;
Mohaddes et al., 2023). Studies have also considered the interaction of weather levels with their
corresponding weather changes for estimation purposes (Kalkuhl and Wenz, 2020; Kotz et al., 2021;
Letta and Tol, 2019). The inclusion of interactions exemplifies the potential differential impact of
weather on economic growth in hot and cold regions.

These existing studies consider the impact of weather variables in isolation, neglecting the in-
terplay of temperature and precipitation while studying the impact of weather on economic growth.
Our paper presents an alternative perspective on the interaction of weather levels and changes. We
consider the interaction of weather changes with the temperature and precipitation levels (rather
than only the associated weather level). Our approach calculates the marginal effect of weather on
the economic growth while adapting for regional weather features, drawing on the research on the
effects of temperature and precipitation on the economic growth.

2.3. Estimation specification

Empirical technique, in this field, has advanced from cross-sectional regression to fixed-effect panel
regression to a ‘hybrid’ regression model (Chang et al., 2023; Dell et al., 2014; Kolstad and Moore,
2020; Tol, 2024). While cross-section regressions and fixed-effect panel regression models are em-
ployed to investigate the short-run link between weather and economic growth, the ‘hybrid’ approach
or long-difference regression model investigates the medium- to long-term impact of temperature
and precipitation on the economic growth. Recently, studies have employed the cross-sectional
augmented autoregressive distributed lag model to estimate the long-run impact in the presence of
feedback effects (Kumar and Maiti, 2024a, 2024b). All these studies assume a linear or non-linear
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parametric specification for estimation.

However, Newell et al. (2021) implement an extensive comparison of different specifications for
estimating the weather effects on economic growth. Their specifications include 800 combinations
of different orders of weather variables and higher lags of dependent variables. They highlight the
significant model uncertainty in forecasting climate change implications due to parametric specifi-
cation.

Given the uncertainty regarding the predetermined parametric specification, our study employs an
innovative semi-parametric technique whereby the non-linear impacts of weather on the economic
growth (if any) are endogenously determined based on the data. We couple this semi-parametric
technique with panel regressions to estimate the damage specification for the effect of weather on
economic growth.

3. A generalized conceptual framework

3.1. Theoretical Framework

We consider a stylized Ramsey-type growth model where changes in weather variables alter the
productivity level of the entire economy and the growth rate of labour-augmented productivity. In
particular, we assume that economic output, Yt = Θ(Tt, Pt, t)·Ft(Kt, AtLt), where Kt, Lt and At are
capital stock, labour quantity and labour-augmented productivity (henceforth, LP), respectively,
for the production function Ft(.) producing economic output (Yt) for an economy. In our theoretical
framework, “labour quantity” corresponds to the entire population.

Ft(.) is a homogeneous function with degree τt, where τt > 0. Understandably, τt = 1 repre-
sents the case of constant returns to scale for that economy. The other two cases are that of τt > 1

(increasing returns to scale) and τt < 1 (decreasing returns to scale). By appealing to the Euler’s
theorem, we observe the following identity:

∂Ft(.)

∂AtLt
=
τtFt(.)− ∂Ft(.)

∂Kt
Kt

AtLt
(1)

Θ(Tt, Pt, t) is the total factor productivity (henceforth, TFP) function dependent on weather3—
temperature (Tt) and precipitation (Pt) levels—and other non-weather factors that varies with year
‘t’. Let gχt =

1
χt

dχt

dt denote growth rate of variable χt. Taking log and differentiating Yt with respect

3Undoubtedly, there are other weather factors which could potentially affect economic growth. To estimate the
economic damage function for India, we follow the existing literature (Tol, 2024), which has generally defined damage
function either in terms of temperature only or in terms of GHG emissions alone. Here, we pursue the former avenue
but extend the arguments for the damage function to include precipitation along with temperature.
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to t, we obtain:

dln(Yt)

dt
=
dlnΘ(.)

dt
+
dlnFt(.)

dt

dln(Yt)

dt
=
∂lnΘ(.)

∂Tt

dTt
dt

+
∂lnΘ(.)

∂Pt

dPt

dt
+
∂lnΘ(.)

∂t
+

1

Ft(.)

[
∂Ft(.)

∂Kt

dKt

dt
+
∂Ft(.)

∂AtLt

dAtLt

dt

]

Imposing Equation (1) on the above equation, we obtain the following result:

dln(Yt)

dt
= gΘT

(Tt, Pt)×
dTt
dt

+ gΘP
(Tt, Pt)×

dPt

dt
+ gΘO

(t)

+ ηKt × gKt + (τt − ηKt)× [gAt + gLt ]

(2)

where ηKt =
Kt
F (.)

∂F (.)
∂Kt

is the elasticity of input K in production function F (.). gΘT
(Tt, Pt) =

∂lnΘ(.)
∂Tt

and gΘP
(Tt, Pt) = ∂lnΘ(.)

∂Pt
are interpreted as marginal effect of changes in temperature (dTt

dt ) and
precipitation (dPt

dt ), respectively. gΘO
(t) = ∂lnΘ(.)

∂t is the TFP growth rate due to other non-weather
factors varying with time.

Our paradigm, like Kalkuhl and Wenz (2020), ignores the effect of adaptation choices4, capital
productivity damages5, and labour supply responses because these effects cannot be identified in
our framework, given the limitations of the data. Somanathan et al. (2021) have found that a
temperature change has a negative impact on labour supply. However, no macro-level statistics on
worker absenteeism are available for India. As a result, we are unable to empirically distinguish the
effect of weather on economic growth through the labour supply channel. Even then, our approach
is useful to distinguish between the effects of weather on economic growth through the TFP channel
and its counterpart through the LP channel, as we focus on estimating the functional form for the
damage function for each channel.

Empirical studies such as Burke et al. (2015), Dell et al. (2012), Jain et al. (2020), Kalkuhl and
Wenz (2020), and Kumar and Maiti (2024b) suggest that weather levels have an impact on the LP
growth rate. Accordingly, the model assumes that the LP growth rate depends upon temperature
and precipitation levels. Furthermore, any assumption towards the effect of weather level on the
LP at level (rather than on the LP growth rate) in our model would be ineffective in identifying
the effect of weather changes on the TFP and the LP growth channels separately (demonstrated in

4While year fixed effects are used to control short-term adaptation decisions at the India level and state fixed
effects to control long-run adaptations, we are unable to clearly assess the influence of adaptation choices on weather-
related economic growth.

5Kumar and Maiti (2024b) have found that a temperature shock negatively affects overall productivity, wherein
the reduction in capital productivity also plays a role. Accordingly, the exclusion of capital productivity effect in the
model produces modest estimates of economic damages since it does not explicitly account for capital stock damages.
Any damages to capital stock are assumed to have been captured by total factor productivity as in Burke et al.
(2015).
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Appendix A). Accordingly, we assume that gAt ≡ gAW
(Tt, Pt) + gAO

(t) where, gAW
(Tt, Pt) is the

growth rate of LP explained by weather levels, and gAO
(t) is the growth rate explained by other

non-weather factors.

We add this assumption mentioned above in Equation (2) and also define variables in per capita
terms: y ≡ Y

L and k ≡ K
L . Lastly, we convert the derivatives with respect to t to their discrete-time

analogues. We formulate the following key equation for empirical estimation:

gyt =

Weather induced TFP growth (WI-TFPG)︷ ︸︸ ︷
gΘT

(Tt, Pt)×∆Tt + gΘP
(Tt, Pt)×∆Pt +

Weather induced LP growth (WI-LPG)︷ ︸︸ ︷
(τt − ηKt)× gAW

(Tt, Pt)

+ ηKt × gkt + (τt − 1)× gLt + ρ(t)︸ ︷︷ ︸
Other economic factors

(3)

where ρ(t) = gΘO
(t) + (τt − ηKt)× gAO

(t).

We note that the variation in weather level and changes impact the per-capita economic growth
through Weather induced TFP growth (WI-TFPG) channel. In contrast, only weather variations
have an effect through Weather induced LP growth (WI-LPG) channel. Changes in economic growth
due to other economic shocks are channelled through capital growth, labour growth, and other eco-
nomic factors. As per our model, following the law of motion of capital, households decide the level
of capital based on lagged economic output and hence, ηKt × gkt captures the transitory effect of
any shock on an economy. Similarly, (τt − 1)× gLt captures immediate effect due to labour growth
and ρ(t) represent other economic variables effect.

3.2. Comparison with previous literature

3.2.1. Generalization over the previous literature

Our assumption of any τt > 0 is a more general formulation compared to the previous literature
such as Burke et al. (2015) and Kalkuhl and Wenz (2020)6 . Our assumption of a homogeneous
function may be considered as more general compared to the case of the Cobb-Douglas function
as used by previous literature (Burke et al., 2015; Dell et al., 2012; Kumar and Maiti, 2024a, 2024b).

Secondly, empirical studies (Bardhan, 1973; Sankar, 1970) suggest that agriculture and industrial
sectors retain heterogeneous returns to scale for their production function across Indian firms. Our
relaxation of the assumption of constant returns-to-scale helps us capture the heterogeneity in the
production functions across different states in India.

Finally, studies about the impact of temperature/precipitation change on the economic growth

6Kalkuhl and Wenz (2020) implement this theoretical framework for their empirical analysis of impact of weather
on the economic growth using global level sub-national data.
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have considered either constant coefficient (Kahn et al., 2021; Kotz et al., 2022) or temperature/-
precipitation levels-varying coefficient (Kalkuhl and Wenz, 2020; Kotz et al., 2021; Letta and Tol,
2019) in their analysis. Our framework allows for the incorporation of the joint effect of temperature
and precipitation levels. Therefore, we allow for the marginal effect of temperature and precipitation
changes to vary with the joint effect of temperature and precipitation levels.

3.2.2. A different decomposition

We differ from the theoretical framework of Kalkuhl and Wenz (2020) in the decomposition. They
have split weather effects on the per capita economic growth into immediate, transitory, and bal-
anced growth path consequences. According to their model, weather has an immediate impact on
economic growth via WI-TFPG channel, whereas transitory and balanced growth path effects are
mediated by WI-LPG + ηKt × gkt + (τt − 1)× gLt + ρ(t).

However, empirical studies, such as Letta and Tol (2019) and Kumar and Maiti (2024b), con-
sistently show that temperature has a negative long-run effect on the TFP growth. Given this piece
of evidence, we do not pursue Kalkuhl and Wenz (2020)’s breakdown of short- and long-run implica-
tions. Instead, we concentrate on decomposing the weather effects, highlighting their transmission
via the WI-TFPG and WI-LPG channels. Our method is more consistent with empirical results on
the negative long-term consequences of temperature, allowing for a more detailed investigation of
the various mechanisms by which weather influences the per capita economic growth.

4. Data and preliminary results

4.1. Data

We utilize back-series data on Gross State Domestic Product (GSDP) in 2011-12 prices from the
Economic and Political Weekly Research Foundation (EPWRF) India time series portal (EPWRF,
2011). Our dataset includes 30 Indian states and three centrally governed regions (called Union
Territories) of India. We use state-level population statistics to calculate GSDP per capita. We cal-
culate year-on-year growth rates of per capita GSDP (henceforth, the per capita economic growth).

Additionally, we obtain monthly temperature and precipitation data from the Climate Change
Knowledge Portal (World Bank Group, 2024) on the Indian states and Union Territories, listed as
Indian sub-national units. Since our GSDP data is accounted for India’s fiscal year (April 1–March
31), we create annual average weather data for Indian states for the corresponding fiscal years based
on the available monthly data.

We have considered the fiscal years 1980-81 to 2021-22 based on the availability of the GSDP
data. For the years prior to 1980-81, only Net State Domestic Product (NSDP) data is available.
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We have no option but to make a call to choose either the NSDP data or restrict ourselves to the
last 42 years of data. The existing literature on India (Jain et al., 2020; Kumar and Maiti, 2024a;
Sandhani et al., 2023) has looked into GSDP without exception. Moreover, the literature using
cross-country data studies Gross Domestic Product instead of its Net counterpart; we have chosen
to go with the available GSDP data. We have done a robustness check with the NSDP data for
an extended period and found qualitatively similar results (Appendix D). Our panel data is an
unbalanced one with a total of 1243 data points. We report summary statistics in Appendix B.

4.2. Preliminary analysis

We use our panel data to estimate Equation (3) empirically. To that end, we add a new subscript
i to all the variables in that equation reflecting each Indian state. For example, gyit , Tit and Pit

stand for the per capita economic growth, temperature, and precipitation levels, for the ith Indian
state for the year t.

The literature assumes no joint effect of temperature and precipitation levels while estimating
the economic damages from weather variables. Moreover, in the case of varying marginal effects of
weather changes, the existing studies only consider linear interaction of weather changes with their
corresponding levels in their specifications. However, Hainmueller et al. (2019), have observed that
the assumption of linear multiplicative interaction terms results in biased and inconsistent estimates
if the assumption does not hold true. Following their suggestion, we perform a bin regression to
detect any non-linearity in the interaction effect. Moreover, this regression helps us to assess the
joint effects of weather levels.

We propose the following bin regression:

gyit =

Kbin∑
k=1

ϕTkQk,it ×∆Tit +

Kbin∑
k=1

ϕPk Qk,it ×∆Pit +

Kbin∑
k=1

ζT1kQk,it × Tit

+
Kbin∑
k=1

ζT2kQk,it × T 2
it +

Kbin∑
k=1

ζP1kQk,it × Pit +
Kbin∑
k=1

ζP2kQk,it × P 2
it

+ ψ1gyit−1 + ψ2gLit + δi + µt + ρi(t) + ϵit

(4)

where, ϕTk and ϕPk are the marginal effects of temperature and precipitation changes, respectively, on
the per capita economic growth in the kth bin. Likewise, ζT1k and ζT2k represent the marginal effects
of linear and squared terms of temperature levels, respectively, on the per capita economic growth
for each bin k. Similarly, ζP1k and ζP2k are the marginal effects of linear and squared precipitation
levels, respectively. We consider the quadratic terms for temperature and precipitation levels as per
Burke et al. (2015) and Kalkuhl and Wenz (2020). The lagged per capita economic growth (gyit−1)
captures the transitory effect through gkit . gLit represents the population growth rate of the state i
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in the year t to capture labour supply growth. State-specific quadratic time trends [ρi(t)] control for
various possible state changes that affect the per capita economic growth. δi are state-fixed effects,
and µt are year-fixed effects that account for the national and global shocks in a given year t. ϵits
are the error terms assumed to be independent and identically distributed.

The bins need to be constructed based on temperature and precipitation levels. Following the
bin construction of Kalkuhl and Wenz (2020), we choose the number of bins and their construc-
tion to ensure an adequate number of observations in each bin, along with the leeway to capture
the joint effects of weather levels. We create the following four bins (Kbin = 4) partitioned by
India’s median temperature and precipitation levels. Data with weather levels below the median
are placed in the Q1 (‘Low-Low’) bin. The Q2 (‘Low-High’) bin includes observations with above-
median precipitation but below-median temperature. Observations with above-median temperature
but below-median precipitation are included in the Q3 (‘High-Low’) bin. Lastly, data with above-
median weather levels are placed in the Q4 (‘High-High’) bin. The variable Qk,it is a dummy variable
that assumes the value of unity if the given itth observation falls in the kth bin.

In Equation (4), we represent the two channels denoted as the WI-TFPG and WI-LPG as given
below:

WI-TFPGit =
4∑

k=1

ϕTkQk,it ×∆Tit +
4∑

k=1

ϕPk Qk,it ×∆Pit

WI-LPGit =

4∑
k=1

ζT1kQk,it × Tit +

4∑
k=1

ζT2kQk,it × T 2
it +

4∑
k=1

ζP1kQk,it × Pit +
4∑

k=1

ζP2kQk,it × P 2
it

Table 1 tabulates the estimated coefficients of weather variables for each bin based on regression
Equation (4). We observe that temperature change has an adverse marginal effect on the per capita
economic growth through the WI-TFPG channel. Moreover, this adverse effect is definitely more
significant in regions with low precipitation levels, irrespective of the temperature levels (Bin 1 and
Bin 3). We also find that precipitation change has a negative marginal impact on the per capita
economic growth in regions only with high temperature and precipitation levels (Bin 4).

Furthermore, a variation in temperature level has a significant non-linear impact on the per capita
economic growth through the WI-LPG channel in Bin 1 and Bin 2 (low-temperature regions) only.
Variations in precipitation levels indicate non-linear impact on the per capita economic growth in
regions with low precipitation and high temperature levels (Bin 3). We estimate the marginal effect
of weather level on the per capita economic growth from Equation (4). That marginal effect entails
an inverted U-shaped association with the per capita economic growth against both the temperature
and precipitation levels, for certain bins.
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Table 1: Bin regression results

(1) (2) (3) (4)
Dependent variable: Per capita economic growth rate

Bin 1 Bin 2 Bin 3 Bin 4
Low-Low

(Q4)
Low-High

(Q3)
High-Low

(Q2)
High-High

(Q1)
Weather induced TFP growth (WI-TFPG)
Temperature change (∆T ) -1.666** -1.0260 -2.695** -1.3310

(1.017) (1.042) (1.141) (1.215)
Precipitation change (∆P ) -0.0413 -0.0028 0.0221 -0.0228**

(0.025) (0.012) (0.020) (0.011)

Weather induced LP growth (WI-LPG)
Linear Temperature level (T ) 5.683*** 5.929** 2.3360 3.8210

(2.201) (2.317) (2.611) (2.654)
Squared Temperature level (T 2) -0.1031*** -0.1026** -0.0044 -0.0258

(0.050) (0.052) (0.062) (0.063)
Linear Precipitation level (P ) 0.0025 0.0232 0.6543*** 0.0508

(0.127) (0.037) (0.127) (0.053)
Squared Precipitation level (P 2) 0.0008 -0.00002 -0.0038*** -0.0001

(0.0009) (0.0001) (0.0009) (0.0001)
Observations 283 322 322 283
Fixed effects State, Year
State-trend Quadratic
Controls lagged economic growth rate, population growth rate
Adjusted R2 0.572

This table displays estimated coefficients from the the bin regression in Equation (4). The bins
are constructed based on India’s median temperature and precipitation levels. Bin 1 (Low-Low)
takes value one if the observation has below median temperature and precipitation levels. Bin 2
(Low-High) takes value one if the observation has a temperature below the median temperature
and precipitation above median precipitation levels. Above-median temperature but below-
median precipitation measurements are included in Bin 3 (‘High-Low’), whereas above-median
weather levels are taken into consideration in Bin 4 (‘High-High’).
The specification considers state, year fixed effects, and state-specific quadratic trends. Other
controls include lagged economic growth rate (gyit−1) and population growth (gLit). Standard
errors are in parentheses. Significance levels: * 10%, ** 5%, and *** 1%.
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4.3. Formulation of the hypotheses

We use the findings from Table 1 to formulate hypotheses for deeper investigation. These findings
confirm the usefulness of the classification of regions based on climatic zones (Gallup et al., 1999) for
studying the impact of weather variables on economic damages. They also second the understanding
given by the literature (Burke et al., 2015; Kalkuhl and Wenz, 2020) that weather variables cause
changes in the per capita economic growth in a non-linear fashion.

We gain additional insights from the above bin regression results. Not only do weather changes
affect the per capita economic growth, but these negative effects also depend conditionally upon
weather levels. More specifically, temperature changes have varying marginal consequences de-
pending on precipitation levels. Furthermore, on considering the joint effect of temperature and
precipitation levels, we observe significant adverse effects of precipitation changes for Bin 4 only,
which indicates a dependency of the marginal consequence of a precipitation change with the tem-
perature and precipitation levels.

These findings justify the choice of our theoretical framework in Equation (3), in which we consider
a joint effect of weather levels on the marginal effect of weather change on the per capita economic
growth via the WI-TFPG channel. We posit the following two hypotheses based on the above
insights gained from the bin regression.

Hypothesis 1: The adverse marginal effects of a temperature change on the per capita economic
growth depends upon the precipitation level in-question.

Hypothesis 2: The marginal effect of a precipitation change on the per capita economic growth
jointly depends upon the temperature and precipitation level in-question.

In line with the earlier research (Kahn et al., 2021; Kalkuhl and Wenz, 2020; Kotz et al., 2021;
Kumar and Maiti, 2024a), Hypothesis 1 draws attention to the detrimental effects of temperature
change on the economic growth. However, these studies typically use constant-coefficient models or
models in which the effect of a temperature change varies with the temperature level. In contrast to
them, Hypothesis 1 highlights the possibility of dependency of the impact of a temperature change
(on the per capita economic growth) with the precipitation level. More specifically speaking, we
posit that low precipitation levels may increase the negative impact of a temperature change on the
per capita economic growth. This position of ours is an addition to the literature.

In a global study, Kalkuhl and Wenz (2020) have concluded that a precipitation change does not
significantly affect the per capita economic growth. However, through a different approach, Kotz
et al. (2022) find a significant impact of a precipitation change on the per capita economic growth.
These two works are based on the assumption that the marginal effect of a precipitation change
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only varies with the precipitation level. Our Hypothesis 2 considers a more general position with
the potential interactive effect between weather levels.

We sum up here that our preliminary findings using the Indian data are in contrast with cer-
tain conceptualizations of the existing literature. This contrast warrants further investigation for a
better understanding.

5. Empirical methodology

Notably, there are two important drawbacks to bin regressions. Firstly, there is inherent arbitrariness
in the bin selection process, and the estimates of coefficients depend on the choice of the particular
bin selection process. Secondly, and perhaps more importantly, bin regression does not consider
non-linearity within a particular bin when weather levels—the foundation for constructing a bin—
are associated with weather changes. This can result in an omitted variable bias, as highlighted
by Simonsohn (2023), who suggests using a generalized additive model approach to overcome the
drawbacks of bin regression.

5.1. The Overall Methodology

We implement the Varying Coefficient Generalized Additive Model (VC-GAM) to test the hypothe-
ses mentioned in Section 4.3. Thereafter, we compute the magnitude of economic damage due to
weather variables for the available data-points. We estimate the corresponding damage function for
India using our computed damages for the data-points. We describe the overall methodology first
before taking up a detailed discussion on each of the constituents in our methodology.

5.1.1. Hypothesis Testing

We employ the semi-parametric technique of VC-GAM to estimate an empirical version of Equation
(3) by introducing a new subscript i to all the variables reflecting each Indian state. The advantage
of VC-GAM is that the functional forms for gΘT

(Tit, Pit), gΘP
(Tit, Pit) and (τit−ηKit)×gAW

(Tit, Pit)

are not subjectively defined but objectively fitted based on the data available. We recast Equation
(3) for the purpose of VC-GAM regression to below:

gyit =

WI-TFPG︷ ︸︸ ︷
gΘT

(Tit, Pit)×∆Tit + gΘP
(Tit, Pit)×∆Pit+

WI-LPG︷ ︸︸ ︷
M(Tit, Pit)

+ f(gyit−1) + h(gLit) + ρi(t) + µt + δi︸ ︷︷ ︸
Other economic factors

+ ϵit︸︷︷︸
error term

(5)

where, gΘT
(.), gΘP

(.), M(.), f(.) and g(.) are smooth terms of their respective arguments. Evidently,
the smooth term M(Tit, Pit) represents the total effect through the WI-LPG channel. Similarly,
gΘT

(Tit, Pit) and gΘP
(Tit, Pit) are smooth terms for marginal effects of a temperature and precip-
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itation change, respectively, for the WI-TFPG channel. Finally, f(.), and h(.) are smooth terms
for the lagged per capita economic growth and population growth, respectively, replacing the cor-
responding linear terms used in Equation (4). Other terms [ρi(t), µt, δi, and ϵit] are defined as in
Equation (4).

The VC-GAM estimations are useful as a visual tool for hypothesis testing. Furthermore, VC-GAM
uses a Bayesian approach to estimate variance, facilitating the generation of confidence intervals for
smooth terms. We use these confidence intervals to test our hypotheses.

5.1.2. Estimation of damage function

We compute the predicted values for each smooth term for each observation as provided by the
VC-GAM. Consequently, we calculate the predicted values of the two channels—WI-TFPG and
WI-LPG—as noted in Equation (5). Mathematically speaking,

̂WI-TFPGit = ĝΘT
(Tit, Pit)×∆Tit + ĝΘP

(Tit, Pit)×∆Pit (6)

ŴI-LPGit = M̂(Tit, Pit) (7)

Equations (6) and (7) represent the predicted changes in weather-induced TFP and LP growth,
respectively. Notably, joint smooth terms defined in Equations (6) and (7) have a common set of
weather levels. Hence, weather level, say temperature (Tit), not only governs WI-TFPGit channel
through terms like ĝθT (.) and ĝΘP

(.) but also have an impact on the WI-LPGit channel through
the term M̂(.). This approach has been considered by Gawande (1997) for linear and non-linear
estimations. Therefore, we estimate for the corresponding damage function, wherein we define
the predicted values of the Weather induced per capita economic growth (ŴI-EGit) as the sum of

̂WI-TFPGit and ŴI-LPGit.

We implement a variety of parametric specifications for the damage function. We select the best
parametric model based on both out-of-sample and in-sample performance metrics. For out-of-
sample performance metrics, we consider ridge regression to reduce multicollinearity, followed by
K-Fold cross-validation and model confidence sets as recommended by Newell et al. (2021). The
in-sample metrics comprise the adjusted generalized variance inflation factor with a threshold of
4.00 for detecting multicollinearity and the Bayes factor to ensure a balance between goodness-of-fit
and model complexity.

In the following sub-sections (Sections 5.2 and 5.3), we expand both constituents of the methodology.
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5.2. Hypothesis testing

5.2.1. Varying Coefficient Models:

The VC-GAM (Hastie and Tibshirani, 1993) assumes the following structure:

Y = ZTα+ βT (U)X + ϵ

where βT (U) is a vector of unknown function coefficient allowed to vary smoothly over the effect
modifiers U . This model considers a parametric estimation of linear predictors Z while permitting
non-linear interaction between U and X and assuming non-normal error distribution ϵ.

There are various smoothing splines (Wood, 2017) to estimate the unknown function β(.) like cubic
regression splines, P-splines, and B-splines. However, one of the disadvantages of these splines is
that they estimate functions with only one effect modifier. We employ thin-plate splines (Duchon,
1977) to estimate β(.), which allows for the use of more than one effect modifier in a smooth func-
tion. We can represent the varying coefficients β(.) as linear combinations of thin plate spline basis
functions:

β(U) =
Kknots∑
k=1

θkϕk(U)

where Kknots represents the number of knots in the basis functions used, θk are the coefficients to
be estimated and ϕk(U) are the thin plate spline basis functions evaluated at the covariates in U .
To estimate α and θk, a double penalized regression technique is implied as follows:

minimize


n∑

i=1

Yi − Ztα+
Kknots∑
k=1

θkϕk(Ui)Xi

2

+ λ1

Kknots∑
k=1

∫ (
∂2θk
∂U2

)2

dU + λ2

Kknots∑
k=1

∫
θ2kdU


where Yi is the i-th response variable, Zi is the i-th row of the matrix Z, Ui is the i-th row of the
matrix U, and Xi is the i-th row of the matrix X. The parameter λ1 penalizes the more complex
or “wiggly” part of the smoother, known as the range space. The double-penalty technique goes a
step further by imposing an additional penalty, λ2, on the smoother’s simpler half, known as the
null space (see Marra and Wood, 2011).

Smoothing parameters (λ1 and λ2) balance fit and smoothness and can be chosen by minimizing
the generalized Akaike’s Information Criterion (AIC)7, or Restricted (Residual) Maximum Likeli-
hood estimation (henceforth, REML) score. However, Reiss and Ogden (2009) and Wood (2011)
demonstrate that AIC is prone to under smoothing and is more likely to create numerous minima.
Hence, the REML score is chosen.

7Non-parametric modelling uses candidate models to approximate complex true functions. AIC is generally
recommended over Bayesian Information Criterion (BIC) as a general method for model selection (Shao, 1997).
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The significance of smooth terms is tested under the null hypothesis that β(U) = 0 for the range
of values of U. The null hypothesis posits that the relationship between X and Y does not change
with U . To assess this, we use F -test statistics. We compare two distributions describing the error
structure to make reliable inferences about model parameters: the Gaussian distribution and the
Scaled t-distribution. The Scaled t-distribution is especially beneficial in situations when residuals
include heavy tails or outliers because it provides a more robust alternative to the assumption of
normality. We compare the model residuals based on diagnostic plots, which include the Quantile-
Quantile plot, histogram of residuals, residuals vs linear predictor plot, and response vs fitted value
plot. Based on our comparisons, we consider the Scaled-t distribution for our analysis (Refer to
Appendix C for details).

5.2.2. Panel Unit root test

Like other regression models, the VC-GAM assumes that the underlying data generation process
is stationary. Since the VC-GAM with non-stationary variables captures spurious relationships,
estimates for the smooth terms could be biased or inconsistent if the assumption of stationarity
does not hold. Consequently, we employ the Cross-Sectionally Augmented IPS (CIPS) unit root
test, suggested by Pesaran (2007), to test panel unit roots. This unit root test takes into account
the cross-sectional dependence and serial correlation of the error terms.

5.2.3. Model selection for VC-GAM

The usual concerns with VC-GAMs are that they are difficult to interpret and prone to overfitting,
particularly when dealing with joint smooth functions. To address these concerns, we evaluate
several model designs using the following four criteria: (i) Parsimonious interpretation, (ii) low
concurvity (collinearity) between smooth terms, (iii) avoidance of over-fitting, and (iv) balancing
goodness-of-fit with model complexity. Criteria (i) and (ii) aid in hypothesis testing as outlined in
Section 4.3. Criteria (iii) and (iv) are crucial factors in determining reliable predicted values for the
damage function.

We use the following classes of models based on their ‘complexity ’:

I. Joint model: It describes Equation (5);

II. LP decomposed model: It decomposes the smooth term in the WI-LPG channel [M(.)],
as below, while retaining the joint smooth term for the WI-TFPG channel

M(Tit, Pit) =M1(Tit) +M2(Pit) +M3(Tit × Pit)

III. TFP decomposed model: It dissects the smooth terms [gΘT
(.) and gΘP

(.)], mentioned
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below, in the WI-TFPG channel while keeping the joint smooth term in WI-LPG intact.

gΘT
(Tit, Pit) = gΘT,1

(Tit) + gΘT,2
(Pit) + gΘT,3

(Tit × Pit)

gΘP
(Tit, Pit) = gΘP,1

(Tit) + gΘP,2
(Pit) + gΘP,3

(Tit × Pit)

IV. Overall decomposed model: It decomposes smooth terms in both channels, which improves
the model’s parsimony

V. Overall decomposed with backward elimination (BE) model: In this model, to avoid
high concurvity, we use backward elimination wherein we remove the insignificant terms in
the "Overall decomposed" model and select the model with observed pairwise concurvity less
than 0.50. Pairwise concurvity occurs when another smooth term can approximate a smooth
term. High concurvity between smooth terms increases the risk of type 1 error (Ramsay et al.,
2003) and results in instable estimates (Buja et al., 1989).

With these five classes of models established, we explore the following combinations of weather
variables (‘weather combinations’) as follows:

a. Contemporaneous weather levels, contemporaneous weather changes

b. Contemporaneous weather levels, contemporaneous and one-year lagged weather changes

c. One-year lagged weather levels, contemporaneous weather changes

d. One-year lagged weather levels, contemporaneous and one-year lagged weather changes

e. Contemporaneous and one-year lagged weather levels, contemporaneous weather changes

f. Contemporaneous and one-year lagged weather levels, contemporaneous and one-year lagged
weather changes

The five classes of models based on complexity, ‘I–V’, each with six of the weather combinations,
‘a–f’, result in a total of 30 specifications. However, the complexity of Overall decompose with BE
model for contemporaneous and lag weather changes (V-b) is identical to the same complexity with
only contemporaneous weather changes (V-a). Therefore, we effectively consider 29 specifications
for our analysis.

Balancing goodness-of-fit and model complexity entails assessing the model’s fit to the estimation
sample while considering the trade-off between bias and variance. In the context of VC-GAM, a
smoother is a function or technique that estimates the smooth term in the model using smoothing
parameters. As discussed in Section 5.2.1, we employ REML for the estimation of the smooth pa-
rameter.
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Finally, we implement a double-penalty shrinkage strategy to reduce overfitting and increase pre-
diction performance (Marra and Wood, 2011). This double-penalty technique aids in determining
the proper level of smoothness, avoiding both overfitting from excessively complex terms and un-
derfitting by the inclusion of redundant simple terms. We further complement this approach with
an out-of-sample K-fold cross-validation technique (discussed in detail in Section 5.3.2) and choose
the model with the least average root mean square error (average RMSE).

5.3. Estimation of damage function

5.3.1. Damage specifications considered:

We interpret ŴI-EGit—sum of ̂WI-TFPGit and ŴI-LPGit—as total effect of weather variables on
the per capita economic growth through the WI-TFPG and WI-LPG channels. Thus, ŴI-EGit

provides us with a fresh set of panel data values, which is why it can be a dependent variable for
determining the parametric form of the economic damages.

To obtain an damage function, we consider the optimal class of VC-GAM based on four crite-
ria mentioned in Section 5.2.3. We find that the Overall decomposed with BE model (V) with
weather combination ‘f’ as the optimal VC-GAM as elaborated in Section 6.1.1. Accordingly, we
describe the following generalized regression specification for the damage function:

ŴI-EGit = b1(Pit−1)×∆Tit + b2(Pit−1)×∆Pit

+ b3(Tit−1 × Pit−1)×∆Pit−1 + b4(Pit) + κi + νit
(8)

where κi presents the state-fixed effects, which control for geo-climatic features of states over the
period. We assume that error terms, νits, are independent and identically distributed. For the
WI-TFPG channel, b1(.), b2(.), and b3(.) represent the varying marginal effect on the per capita
economic growth, of a temperature change (∆Tit), precipitation change (∆Pit), and one-year lagged
precipitation change (∆Pit−1), respectively. For the WI-LPG channel, b4(.) is the total effect of
precipitation level (Pit) on the per capita economic growth.

Our focus is to determine the approximate parametric (linear or non-linear) functional form for
b1(.), b2(.), b3(.), and b4(.). b1(.). In total, we evaluate 81 possible specifications resulting from the
following parametric restrictions in equation (8):

A. Terms in b1(.): Marginal effect of temperature change (3 forms)

1. b1(Pit−1) = b11

2. b1(Pit−1) = b11 + b12Pit−1

3. b1(Pit−1) = b11 + b12Pit−1 + b13P
2
it−1

B. Terms in b2(.): Marginal effect of precipitation change (3 forms)
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1. b2(Pit−1) = b21

2. b2(Pit−1) = b21 + b22Pit−1

3. b2(Pit−1) = b21 + b22Pit−1 + b23P
2
it−1

C. Terms in b3(.): Marginal effect of one-year lagged precipitation change (3 forms)

1. b3(Tit−1 × Pit−1) = b31

2. b3(Tit−1 × Pit−1) = b31 + b32Tit−1 × Pit−1

3. b3(Tit−1 × Pit−1) = b31 + b32Tit−1 × Pit−1 + b33T
2
it−1 × P 2

it−1

D. Terms in b4(.): Total effect of precipitation levels (3 forms)

1. b4(Pit) = b41Pit

2. b4(Pit) = b41Pit + b42P
2
it

3. b4(Pit) = b41Pit + b42P
2
it + b43P

3
it

The above parametric restrictions are determined based on visual estimates provided by the optimal
VC-GAM. Along with the above 81 specifications, we also include the specification suggested by
Dell et al. (2012), Burke et al. (2015), and Kalkuhl and Wenz (2020). Thus, we compare 84 models
to determine the parametric form of the damage function based on their goodness-of-fit, complexity,
and out-of-sample performance, which we will discuss in detail in the next section.

5.3.2. Model selection procedure

In order to resolve overfitting concerns, it is necessary to consider the out-of-sample prediction fea-
tures of models (Auffhammer and Steinhauser, 2012; Chatfield, 1996). Lastly, we obtain the final
set of damage function parameters using the adjusted generalized variance inflation factor and the
Bayesian model selection criteria, which identifies multicollinearity and ensures the balance between
goodness-of-fit and complexity, respectively.

Cross-validation and model confidence set

We follow the methodology proposed by Newell et al. (2021) to compare the out-of-sample per-
formance of different specifications. However, 84 specifications (described in Section 5.3.1) contain
higher-order terms and interactions, which may raise concerns about multicollinearity. Kalkuhl and
Wenz (2020) point out multicollinearity in their paper. In response, we utilize ridge regression,
as introduced by Hoerl and Kennard (1970), which adds the squared magnitude of the coefficients
to the objective function, imposing a L2 regularization penalty8 that reduces multicollinearity and
mitigates overfitting.

8We consider a penalty of 0.1 in our analysis. We also consider a penalty of 0.05 and 0.15 for sensitivity analysis.
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Accordingly, we utilize the K-fold cross-validation technique (CV) to assess the prediction abil-
ity of the proposed specifications with the ridge regression. CV divides the data into KCV = 5
random groups in our investigation. For each group kCV , the specification is estimated from data
of the remaining four groups and tested on the kth group. Next, we compute and compare the
average RMSE of specifications, choosing specifications with significantly lower average RMSE than
the others.

Subsequently, we use the model confidence set (MCS) procedure proposed by Hansen et al. (2011).
The approach generates a set of superior models. This approach tests the null hypothesis of equal
predictive ability (EPA) at a 95% confidence level. If the null is rejected, an elimination rule is
applied to remove that particular specification from the initial set, and the null hypothesis is tested
again. The iterative process continues until the equivalence of model losses can no longer be rejected.
The test statistic Tmax,M assesses the EPA hypothesis, and the loss function in our procedure is the
series prediction errors of models obtained from CV9.

Adjusted generalized variance inflation factor and Bayes factor:

While the ridge regression improves prediction accuracy and addresses multicollinearity, the regular-
ization approach creates biased coefficient estimates for interpretation (Hoerl and Kennard, 1970).
Hence, we transit to a linear regression estimation framework for obtaining parametric forms of the
coefficient estimate for the superior set of models. We check for multicollinearity for each specifica-
tion in the superior set by employing an adjusted Generalized Variance Inflation Factor (aGVIF),
as recommended by Fox and Monette (1992). In the presence of higher order and interaction terms,
aGVIF is a reliable measure of how much the variance of the predicted coefficients is increased due
to multicollinearity. Accordingly, we retain only those specifications in the superior set for which
aGVIF < 4.00.

Once we reasonably address the concern of multicollinearity, we identify the model specification
with the lowest BIC from the superior set of models to ensure simplicity and goodness-of-fit. Al-
though the lowest BIC model is considered, models with a BIC that is marginally higher than the
lowest BIC model cannot be disregarded. Consequently, we calculate the following Bayes factor10

(BF) and contrast the BIC of alternative models [BIC(H1)] with the null model, which in this case
is the specification with the lowest BIC [BIC(H0)]:

BF ≈ e[BIC(H1)−BIC(H0)]/2 (9)

The odds favouring the null model against the alternative model are obtained from the ensuing
estimate of the Bayes factor. BF may then be translated into the following posterior probability

9We use ‘MCS’ package in R (Bernardi and Catania, 2018).
10For details of the Bayes factor, see Masson (2011).
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(pBIC), indicating that the data favour the null model:

pBIC(H0|Data) =
BF

BF + 1
(10)

Based on values suggested by Raftery (1995) for pBIC(H0|Data), we consider only those alternative
specifications which show weak evidence (0.50 ≤ pBIC(H0|Data) ≤ 0.75) of BIC(H0) < BIC(H1).

6. Results

As an initial exercise, we conduct the panel unit root test given by Pesaran (2007) with lag orders
of 1, 2, and 3, respectively. The results (refer to Table 2 below) show that the relevant variables are
stationary even at 1% level, allowing us to use the VC-GAM.

Table 2: Panel unit root test results

Z̃- statistics
Variables 1 Lag 2 Lags 3 Lags
Per capita economic growth -4.2168*** -3.2446*** -3.0145***
Population growth -3.6442*** -3.0154*** -2.715***
Temperature level -3.9696*** -3.3356*** -3.2719***
Temperature change -6.6715*** -4.618*** -4.8114***
Precipitation level -4.3354*** -3.3771*** -3.2348***
Precipitation change -7.1671*** -5.0880*** -4.6245***

The Z̃-statistics are computed using a cross-sectionally augmented IPS test proposed by Pesaran (2007) using a lag
of one, two and three of relevant variables in VC-GAM. Significant negative values reject the existence of unit root
in favour of stationarity. Significance levels: * 10%, ** 5%, and *** 1%.

6.1. Hypothesis testing:

6.1.1. Selection of the optimal VC-GAM

Results for the selection of the classes of VC-GAM based on different criteria (described in Section
5.2.3) are reported in Figure 1. This plot illustrates the estimated REML score for each of the 29
classes of VC-GAMs. The horizontal axis in the plot indicates the corresponding class of model
based on complexity (I to V) and weather combinations (a to f). The green triangles signify an
observed pair-wise concurvity of less than 0.50 between the smooth terms (acceptable threshold) for
the corresponding class of VC-GAM. All the classes of models satisfy the rest of the three criteria
of parsimonious interpretation, avoidance of over-fitting, and balancing goodness-of-fit with model
complexity. Thus, the following class of VC-GAMs—‘I-a’, ‘V-a’, ‘I-b’, ‘I-c’, ‘I-d’, and ‘V-f’—satisfy
all the criteria for the selection of optimal VC-GAM and will be the focus of our further analysis.

Table 3 shows the Effective Degrees of Freedom (EDF) for the abovementioned optimal VC-GAMs,
highlighting the complexity of a smooth term. A higher EDF suggests that the smooth term has
greater flexibility in fitting the data, catching more complicated patterns. Notably, EDF only
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Figure 1: Model selection for VC-GAM: This figure depicts REML score for 29 classes of VC-GAMs. Green
triangles indicate the REML score for those models with observed pair-wise concurvity less than 0.50. Black dots
present the remaining models. For the classes of models in complexity: I - Joint model; II - LP decomposed model; III
- TFP decomposed model; IV - Overall decomposed model; and V - Overall decomposed with backward elimination
(BE) model.
In case of models with weather combinations: a - Contemporaneous weather levels, contemporaneous weather changes;
b - Contemporaneous weather levels, contemporaneous and one-year lagged weather changes; c - One-year lagged
weather levels, contemporaneous weather changes; d - One-year lagged weather levels, contemporaneous and one-year
lagged weather changes; e - Contemporaneous and one-year lagged weather levels, contemporaneous weather changes;
and f - Contemporaneous and one-year lagged weather levels, contemporaneous and one-year lagged weather changes.
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indicates the complexity of association of weather variables with the per capita economic growth;
it offers no insight into the direction or strength of the influence of their effect on the per capita
economic growth. Along with the EDF values, the table displays the significance of each smooth
term. This significance reveals whether the flexible relationship recorded by the VC-GAM has
sufficient predictive power for the model’s performance.

Columns (1), (3), (4), and (5) of Table 3 represent Joint model (I) with weather combinations ‘a’,
‘b’, ‘c’, and ‘d’, respectively. Columns (2) and (6) represent Overall decomposed with BE model (V)
with weather combinations ‘a’ and ‘f’, respectively. The adjusted R2, AIC and REML score—the in-
sample metrics of the model’s complexity and goodness-of-fit —pinpoint to the critical observation
that the Overall decomposed with BE model combined with the weather combination ‘f’ [Column
(6): ‘V-f’] is the optimal VC-GAM11.

6.1.2. Hypothesis testing using the optimal VC-GAM

We now shift our attention towards the EDF and significance of smooth terms in Column (6) of
Table 3. The EDF of the smooth term in gΘT,2

(Lag.P )×∆T is 1.21, indicating that the relationship
between a temperature change and the per capita economic growth is slightly more flexible than
a linear relationship but not highly complex. We observe that the marginal effect of temperature
changes significantly impacts the per capita economic growth. Furthermore, this marginal effect is
conditional on the lagged precipitation level. Panel (a) of Figure 2 visually represents the estimates
of a varying marginal effect of temperature change on the per capita economic growth through the
WI-TFPG channel. We find that the positive temperature change is associated with an adverse
effect on the per capita economic growth only when the lagged precipitation level is below a certain
threshold (approx. 150 mm), beyond which a temperature change does not have any significant
effect. These results confirm our hypothesis 1, posited in Section 4.3.

The EDF (found to be 1.29) and significance of smooth term [gΘP,2
(Lag.P )] for a contemporane-

ous precipitation change (Refer to column (6) of Table 3) indicate that the marginal effect of a
contemporaneous precipitation change is more flexible than linear and has a significant impact on
the per capita economic growth conditional on lagged precipitation level. We find from Panel (b)
of Figure 2 that a positive contemporaneous precipitation change adversely affects the per capita
economic growth when the lagged precipitation level is above a certain threshold (approx. 225 mm).

On the other hand, we observe an EDF of 0.85 [Column (6) of Table 3] indicating a near linear fit
of the interaction of the lagged temperature and precipitation levels [gΘP,3

(Lag.T ×Lag.P )] for the
marginal effect of a positive lagged precipitation change. To investigate this interactive effect of the

11While the average RMSE from K-fold cross-validation indicates that model ‘V-a’ [Column (2)] is having the
lowest, the average RMSE of model ‘V-f’ [Column (6)] is only slightly higher than model ‘V-a’. Consequently, we
consider the model in Column (6), model ‘V-f’, as our preferred specification and use it for the hypothesis testing.
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Table 3: Effective degrees of freedom

(1) (2) (3) (4) (5) (6)
I-a V-a I-b I-c I-d V-f

Joint
Overall

Decomposed
with BE

Joint Joint Joint
Overall

Decomposed
with BE

Weather induced TFP growth (WI-TFPG)
gΘT

(T, P )×∆T 0.9111*** 0.9113***
gΘT

(T, P )× L.∆T 0.0010
gΘT

(Lag.T, Lag.P )×∆T 0.9527*** 0.9526***
gΘT

(Lag.T, Lag.P )× Lag.∆T 0.0011
gΘT,2

(P )×∆T 1.1424**
gΘT,2

(Lag.P )×∆T 1.2075**

gΘP
(T, P )×∆P 1.017* 1.0161*

gΘP
(T, P )× L.∆P 0.0019

gΘP
(Lag.T, Lag.P )×∆P 2.3035*** 2.3035***

gΘP
(Lag.T, Lag.P )× Lag.∆P 0.0021

gΘP,3
(T × P )×∆P 0.8527**

gΘP,2
(Lag.P )×∆P 1.2924***

gΘP,3
(Lag.T × Lag.P )× Lag.∆P 0.8486**

Weather induced LP growth (WI-LPG)
M(T, P ) 6.9299*** 6.9295***
M(Lag.T, Lag.P ) 0.7972** 0.7966**
M2(P ) 3.3505*** 2.7768***

Other variables
f(gLag.y) 4.6093*** 4.5666*** 4.6093*** 4.6069*** 4.6069*** 4.6151***
f(gL) 3.6491*** 3.6586*** 3.6492*** 3.6439*** 3.6440*** 3.6346***

Weather level Current Current Current Lag Lag Current
+ Lag

Weather change Current Current Current
+ Lag Current Current

+ Lag
Current
+ Lag

State-specific trends Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic
Fixed effects State, year State, year State, year State, year State, year State, year
Adj R2 0.354 0.356 0.354 0.352 0.352 0.358
AIC 6973.53 6973.33 6973.54 6974.71 6974.71 6967.49
REML score 3524.70 3524.78 3524.70 3526.37 3526.37 3523.18
average RMSE 5.1633 5.1577 5.1726 5.1860 5.1866 5.1646

This table includes the Effective Degrees of Freedom (EDF) for each smooth term in the VC-GAMs, as well as post-
diagnostic tests. The significance of the EDF values for the smooth terms is determined using an F-test. EDF values
reflect the complexities of the link between predictor and outcome variables. The Akaike information criterion (AIC)
and restricted maximum likelihood (REML) score assess model fit based on in-sample performance and complexity.
The average root mean square error (average RMSE) obtained from K-fold cross-validation evaluates the models’
out-of-sample performance and helps to prevent overfitting.
Columns (1), (3), (4), and (5) represent Joint model (I) with weather variable combinations ‘a’, ‘b’, ‘c’, and ‘d’,
respectively. Columns (2) and (6) represent the Overall decomposed with BE model (V) with weather variable
combinations ‘a’ and ‘f’, respectively.
All models have state-fixed effects, year-fixed effects and quadratic state-specific trend terms as controls. Error term
follows a the Scaled-t distribution. Significance levels: * 10%, ** 5%, and *** 1%.
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Figure 2: Plot of the marginal effect of a positive contemporaneous temperature and precipitation
change: Figure represents plots of smooth terms for Model ‘V-f’ in Column (6) of Table 3. The ticks at the
bottom of both panels represent the observed value as per our data. Panels (a) and (b) plot corresponding smooth
terms representing the marginal effect of a positive contemporaneous temperature [gΘT,2(Lag.P )] and precipitation
[gΘP,2(Lag.P )] changes, respectively on the per capita economic growth through the WI-TFPG channel.
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smooth term, we plot the conditional marginal effect of a positive lagged precipitation change on
the per capita economic growth at different specific values of lagged temperature and precipitation
level. Panel (a) of Figure 3 represents the lagged precipitation-varying marginal effect of a positive
lagged precipitation change at a specific level of lagged temperature. We observe that at a lower
level of a lagged temperature (15◦C and 20◦C), the marginal effect of a positive lagged precipitation
change on the per capita economic growth is a decreasing function of lagged precipitation level. At
higher lagged temperature levels (25◦C and 30◦C), we get a contrasting result where that marginal
effect is an increasing function of lagged precipitation level.

Similarly, in Panel (b), we find a U-shaped curve for the lagged temperature-varying marginal
effect of a positive lagged precipitation change at high lagged precipitation levels (220 mm and
320 mm). In contrast, we find an inverted U-shaped curve at a lower lagged precipitation level
(50 mm). Thus, these plots demonstrate that while a contemporaneous precipitation change has
a lagged precipitation-varying impact on the per capita economic growth, a lagged precipitation
change impact varies with both lagged temperature and precipitation level. These pieces of evi-
dence confirm our hypothesis 2, formulated in Section 4.3.

Moreover, we assess the total effect of contemporaneous precipitation level on the per capita eco-
nomic growth through the WI-LPG channel. The EDF of smooth term M2(P ), in Column (6)
of Table 3, is 2.78, indicating a significant non-linear relationship between the contemporaneous
precipitation level and the per capita economic growth. These results are visually represented in
Figure 4. Notably, a lower level of precipitation (below 100 mm) is translated into negative per
capita economic growth, while positive per capita economic growth is associated with a precipitation
level beyond 100 mm. Consequently, we can observe that the relationship between precipitation
level and the per capita economic growth is quite close to a concave function. Our observation is in
line with Damania et al. (2020) and Kotz et al. (2022).

In conclusion, we find that a positive change in contemporaneous temperature (precipitation) has an
adverse effect on the per capita economic growth at a lower (higher) lagged precipitation level. Fur-
thermore, a positive lagged precipitation change has a negative impact on the per capita economic
growth when the lagged precipitation level is high, and the lagged temperature level is moderate.
In contrast, a rise in contemporaneous precipitation level registers a positive association with the
per capita economic growth through WI-LPG channel.

6.2. Estimation of damage function

This section discusses the results pertaining to the selection procedure and estimates of optimal
specification for the weather-induced economic damages described in Section 5.3.
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Figure 3: Plot of the marginal effect of a positive lagged precipitation change: Figure represents plots of
smooth terms for Model ‘V-f’ in Column (6) of Table 3. The ticks at the bottom of both panels represent the observed
value as per our data. Panels (a) and (b) present the marginal effect of a positive lagged precipitation change on the
per capita economic growth through the WI-TFPG channel. Panel (b) plots gΘP,3(Lag.T, Lag.P ) at specific values
of lagged temperature level. Panel (d) plots gΘP,3(Lag.T, Lag.P ) at specific values of lagged precipitation level.
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Figure 4: Plot of the total effect of a rise in precipitation level: Figure represents plots of a smooth term,
M2(P ), for Model ‘V-f’ in Column (6) of Table 3. The smooth term represents the total effect of a 1 mm rise in
contemporaneous precipitation level on the per capita economic growth through WI-LPG channel.

6.2.1. Selection of the optimal damage specification

The CV with ridge regression reveals that 55 out of 84 alternative specifications have statistically
similar predictive ability by the parameter of RMSE. The remaining 29 specifications have signifi-
cantly higher RMSE than the specification with the least RMSE. Next, we follow the MCS procedure
to decide which of these 55 specifications belong to the superior set based on the prediction error
and find all of them to qualify for the superior set of models. Therefore, out-of-sample metrics of
RMSE and MCS filter out 29 specifications out of consideration. Most notably, model specifications
suggested by Dell et al. (2012) and Burke et al. (2015) also fail these out-of-sample criteria.

Subsequently, we employ a linear regression model for these 55 specifications and use the aGVIF
statistic to check for any evidence of possible multicollinearity. Table 4 tabulates results of 12
specifications which have aGVIF less than 4.00 [Column (3)] for all the variables considered in the
model12. The alternative specification can be read as follows: For example, combination ‘A1-B2-
C1-D2’ refers to the ‘A1’ form of term b1(.), ‘B2’ form of term b2(.), ‘C1’ form of b3(.), and ‘D2’
form of b4(.). Notably, the specification suggested by Kalkuhl and Wenz (2020) is rejected due to
the presence of high multicollinearity.

Finally, the Bayes factor [Column (4)] reveals the value of pBIC(H0|Data) indicating the probability

12The model specification with lowest RMSE as per CV corresponds to the model with the combination of forms
‘A2-B2-C2-D1’. However, aGVIF for these models is greater than 4.00 for precipitation level in the form ‘D1’,
rejecting this model for further assessment.
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Table 4: Selection of optimal damage function

(1) (2) (3) (4)
Alternative

specifications
Rigde-
RMSE

MCS
loss

aGVIF
< 4.00

Bayes
factor

A1-B2-C1-D2 0.3479
(0.042) -1.07e-16 Yes 1.0000

A1-B2-C1-D3 0.3503
(0.033) -1.72e-16 Yes 1.0000

A1-B2-C2-D2 0.3510
(0.060) -9.43e-17 Yes 1.0000

A1-B2-C2-D3 0.3602
(0.024) -2.98e-16 Yes 1.0000

A2-B2-C1-D2 0.3395
(0.025) -3.95e-16 Yes 1.0000

A2-B2-C1-D3 0.3460
(0.038) 8.33e-17 Yes 0.9994

A2-B2-C2-D2 0.3469
(0.040) -1.41e-16 Yes 1.0000

A2-B2-C2-D3 0.3444
(0.024) -6.61e-17 Yes 0.8396

A3-B2-C1-D2 0.3442
(0.037) -1.54e-16 Yes 1.0000

A3-B2-C1-D3 0.3424
(0.040) -9.69e-17 Yes 0.9970

A3-B2-C2-D2 0.3382
(0.059) -1.42e-16 Yes 1.0000

A3-B2-C2-D3 0.3466
(0.027) 8.07e-18 Yes NULL

This table presents results of 12 (out of 84) specifications which have aGVIF less than 4.00. Column (1) provides
parameter value of RMSE obtained from ridge regression with K-fold cross validation. Column (2) presents the loss
value based on MCS procedure. Column (3) indicates whether the aGVIF is less than 4.00 and Column (4) represents
the value of pBIC(H0|Data) (parameter of BF) indicating the probability to favour the null model ‘A3-B2-C2-D3’
(lowest BIC specification) as compared to other specifications, given the Data. The specifications can be read as
follows: For example, combination ‘A1-B2-C1-D2’ refers to the ‘A1’ form of term b1(.), ‘B2’ form of term b2(.), ‘C1’
form of b3(.), and ‘D2’ form of b4(.).
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to favour the null model ‘A3-B2-C2-D3’ (lowest BIC specification) as compared to the specification
under consideration, given the Data. We find that the BIC of all the 11 specifications is significantly
higher than the null model since their pBIC(H0|Data) > 0.75. Therefore, our selection procedure
suggests the ‘A3-B2-C2-D3’ specification as a better fit than that suggested by Kalkuhl and Wenz
(2020), Dell et al. (2012), and Burke et al. (2015). Accordingly, we consider the model specification
combination ‘A3-B2-C2-D3’ as our optimal specification to estimate the parameters for the damage
function, which is presented as follows:

ŴI-EGit =
(
b11 + b12 × Pit−1 + b13 × P 2

it−1

)
×∆Tit

+ (b21 + b22 × Pit−1)×∆Pit

+ (b31 + b32 × Tit−1 × Pit−1)×∆Pit−1

+ b41 × Pit + b42 × P 2
it + b43 × P 3

it

+ κi + νit

(11)

6.2.2. Estimates of damage specification

We consider two specifications to present our damage estimates in Table 5. Column (1) presents
the estimates of Equation (11). Column (2) represents the parsimonious specification model among
the ones listed in Table 4. Understandably, this specification is found to be satisfactory based on
the three parameters of RMSE, MCS, and aGVIF but is considered sub-optimal on account of the
parameter of BF. We observe that despite the parsimonious specification being rejected due to its
remarkably greater BIC than the optimal model, the modified R2 reveals it can explain 96.7% of
the variation in the data. However, this is still lower than the optimal specification of Equation
(11), which accounts for 97.5% of the variation.

Focusing on the estimates of Equation (11)—Column (1) of Table 3—we observe b̂11 < 0, sug-
gesting that the base marginal effect of a positive temperature change on the per capita economic
growth, through WI-TFPG channel, is -1.36 pp per 1◦C temperature change. However, b̂12 > 0 and
b̂13 < 0 indicate that this base marginal adverse effect decreases at a lower level of lagged precip-
itation but increases at a higher level of lagged precipitation. Accordingly, for every one standard
deviation rise (69.77 mm) from the mean lagged precipitation level (122.81 mm), the adverse effect
of 1◦C temperature change on the per capita economic growth diminishes by 0.26 pp.

We find that the base marginal effect of a positive contemporaneous precipitation change (b̂21 > 0)
on the economic growth is 0.66 pp per 100 mm. The additional marginal effect (b̂22 < 0) of a con-
temporaneous precipitation change decreases the benefit of base marginal effect on the per capita
economic growth by 0.0068 pp as lagged precipitation increases by one standard deviation from its
mean.
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Table 5: Estimates of damage function

(1) (2)
A3-B2-C2-D3 A1-B2-C1-D2

Optimal Parsimonious
Weather induced TFP growth (WI-TFPG)
∆T -1.3593*** -0.8517***

(0.0685) (0.0213)
Lag.P ×∆T 0.0059***

(0.0010)
Lag.P 2 ×∆T -0.0000092***

(0.0000029)

∆P 0.0066*** 0.0091***
(0.0009) (0.0009)

Lag.P ×∆P -0.000068*** -0.000081***
(0.0000039) (0.0000035)

∆Lag.P -0.0043*** -0.0019***
(0.0007) (0.0004)

Lag.T × Lag.P ×∆Lag.P 0.00000056***
(0.00000013)

Weather induced LP growth (WI-LPG)
P 0.0534*** 0.0334***

(0.0019) (0.0013)
P 2 -0.0002*** -0.000037***

(0.000009) (0.0000026)
P 3 0.00000018***

(0.000000013)
Observations 1,210 1,210
State FE Yes Yes
Adjusted R2 0.975 0.967
BIC 171.81 491.21

The results in the table represent the estimates of the parsimonious and optimal damage specification. Column
(1) presents the estimates of optimal damage specification presented in Equation (11). The model in Column (2)
represents the parsimonious specification model, which satisfies the parameters of RMSE, MCS, and aGVIF but is
rejected due to the parameter of BF
The optimal specification is selected after comparing with alternative specifications for out-of-sample perfor-
mance metrics—K-fold cross-validation with ridge regression and model confidence set—and in-sample performance
metrics—adjusted generalized variance inflation factor and Bayes factor tests.
The specifications can be read as follows: For example, combination ‘A1-B2-C1-D2’ refers to the ‘A1’ form of term
b1(.), ‘B2’ form of term b2(.), ‘C1’ form of b3(.), and ‘D2’ form of b4(.). Standard errors are in parentheses. Signifi-
cance level: * p < 0.10 ** p < 0.05 *** p < 0.01.
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We also observe that the base marginal effect of a positive lagged precipitation change (b̂31<0)
on the per capita economic growth is -0.43 pp per 100 mm. The additional marginal effect (b̂32>0)
of a lagged precipitation change corrects the detrimental base marginal effect for a given mean
lagged temperature (23.58◦C) and precipitation level (122.81 mm). Hence, a 1◦C rise from the
mean lagged temperature level for a given mean lagged precipitation level reduces the adverse base
effect of a lagged precipitation change by 0.0069 pp per 100 mm. On the other hand, one standard
deviation rise (69.77 mm) in mean lagged precipitation level at a given mean lagged temperature
level decreases the adverse base effect of a lagged precipitation change on the per capita economic
growth by 0.0013 pp per 100 mm.

Finally, we find a cubic association (b̂41 > 0, b̂42 < 0, and b̂43 > 0) between contemporaneous
precipitation level and the per capita economic growth through WI-LPG channel. It indicates that
the marginal effect of contemporaneous precipitation level on the economic growth displays a U-
shape curve. We find that a one standard deviation rise (69.68 mm) in mean contemporaneous
precipitation level (122.99 mm) results in a positive marginal effect of 1.88 pp on the per capita
economic growth.

6.3. Robustness exercises and additional analysis

In this sub-section, we present robustness exercises to boost confidence in the reliability of the VC-
GAM estimates. We also conduct the heterogeneity analysis across states and over the years using
VC-GAM estimates. Finally, we discuss the medium- and long-run impact of weather variables on
the per capita economic growth.

6.3.1. Robustness checks

We perform the robustness tests for the results of the optimal VC-GAM tabulated in Column (6)
of Table 3. Table 6 presents the different estimates of EDF for smooth terms on account of changes
in specifications, data and avoidance of overfitting techniques. Our results demonstrate that either
the EDF estimates are robust and consistent in spite of these changes or these changes are within
the permissible limits of our main results.

Alternative specifications

Column (1) of Table 6 reiterates the main results from Column (6) of Table 3. Column (2) controls
for feedback effect by considering two-year lags (instead of one) of the per capita economic growth
in the optimal VC-GAM. We also consider three-year lags of the dependent variable and test if
the per capita economic growth Granger-causes weather variables (using Granger non-causality test
proposed by Dumitrescu and Hurlin, 2012) as additional checks in Appendix D. We find that the
null hypothesis of ‘Granger causality for at least one state’ is rejected for all the weather variables.
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Column (3) of Table 6 incorporates a year lag of population growth along with contemporaneous
population growth rate. Following Desbordes and Eberhardt (2024) and Kumar and Maiti (2024a),
Column (4) accounts for the unobserved common factors by including three-year lagged values of
cross-section averages of dependent variable and weather levels. This approach also controls for
spatial dependence, if any. We consider the log transformation of temperature and precipitation
levels in Column (5).

Alternative data

Column (6) of Table 6 includes only balanced panel data of 25 states from 1982-83 till 2021-22.
We alternatively consider the per capita NSDP growth rate, instead of the per capita GSDP growth
rate, which is available from 1960-61 to 2021-22 for 33 states. Furthermore, we use an alternative
definition of the per capita GSDP growth as computed by the EPWRF database, which considers
the average population of the year for computation of the per capita GSDP. The results for the per
capita NSDP and alternative per capita GSDP growth rate are available in Appendix D.

Alternative techniques to avoid overfitting

In VC-GAM, the knots determine the complexity of the basis function used for determining the
smooth term. Notably, the higher the knots, the more flexibility is allowed, which can result in over-
fitting. Accordingly, we reduce the number of knots from ten to five as robustness in Column (7) of
Table 6. Alternatively, we consider a thin plate regression spline technique with shrinkage (TPRSS)
for basis function instead of double-penalty optimization. Finally, we consider linear state-specific
trends instead of quadratic state-specific trends. The results of TPRSS and linear state-specific
trends are available in Appendix D.
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Table 6: Robustness checks: Effective degrees of freedom

(1) (2) (3) (4) (5) (6) (7)
Alternative specifications Alternative data Overfitting

Main
results

gy
2-Lags

gL
1-Lags

Spatial
dependence

Log
transform

Balanced
data

Reduced
knots

Weather induced TFP growth (WI-TFPG)
gΘT,2

(Lag.P )×∆T 1.2075** 1.0940** 1.2106*** 1.1650** 1.6192** 1.3775*** 1.2529***

gΘP,2
(Lag.P )×∆P 1.2924*** 1.2740*** 1.4166*** 1.5070*** 0.9987** 1.2654*** 1.3411***

gΘP,3
(Lag.T × Lag.P )× Lag.∆P 0.9364*** 0.9491*** 0.9442*** 0.9491*** 0.8475** 0.8116** 0.8657***

Weather induced LP growth (WI-LPG)
M2(P ) 2.7768*** 4.1530*** 3.1415*** 0.8053** 6.5751*** 3.3188*** 2.0089***

Observations 1210 1144 1177 1111 1210 1000 1210
State-specific Trend Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic
Fixed effects State, year State, year State, year State, year State, year State, year State, year
Adj R2 0.358 0.352 0.344 0.343 0.373 0.382 0.357

This table includes the Effective Degrees of Freedom (EDF) for each smooth term in the VC-GAMs. The significance of the EDF values for the smooth terms is
determined using an F-test. EDF values reflect the complexities of the link between predictor and outcome variables.
Column (1) reiterates the main results from Column (6) of Table 3. Column (2) considers two lags of dependent variable gy. Results including a year lag
of population growth, gL, are presented in Column (3). Column (4) controls for the presence of spatial dependence by considering three-year lagged cross-
section average values of the per capita economic growth, temperature and precipitation level. Column (5) considers the log transformation of temperature and
precipitation level. Column (5) employs our optimal specification for balanced data. Finally, in column (7), we consider 5 knots instead of 10 for computing
estimates of smooth terms.
All models have state-fixed effects, year-fixed effects and quadratic state-specific trend terms as controls. Error term follows the Scaled-t distribution. Significance
levels: * 10%, ** 5%, and *** 1%.
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6.3.2. Heterogeneity across state and years

We use the optimal VC-GAM estimates of Column (6) of Table 3 to analyze how weather variables
affect the per capita economic growth in different states and across time. The VC-GAM framework
allows us to calculate the marginal effect of weather changes on the per capita economic growth for
each observation by leveraging on the predicted values of each smooth term. In case of the marginal
effect of precipitation level on the per capita economic growth, we utilize a simple epsilon difference
approach13 to determine the derivative of smooth term with respect to the precipitation level. To
account for state-wise and year-wise effects, we calculate, within each subgroup (created based on
state or year), the group-average marginal effect (G-AME), which is equal to the average of the
observation-level marginal effects.

State-wise analysis

Figure 5 plots the G-AME across states for a positive contemporaneous temperature change [Panel
(a)], contemporaneous precipitation change [Panel (b)], lagged precipitation change [Panel (c)], and
rise in contemporaneous precipitation level [Panel (d)]. Referring to Panel (a), we observe that
while all states, in general, face the negative consequences of a positive temperature change on the
per capita economic growth, only the higher precipitation states of Andaman and Nicobar Islands,
Assam, Goa, Kerala, Meghalaya, Mizoram, and Tripura (with average lagged precipitation greater
than 190 mm) are not affected by a positive temperature change. However, due to very high pre-
cipitation that may result in a flood-like situation, Panel (b) shows that the per capita economic
growth of some of these states (Andaman and Nicobar Islands, Goa, Kerala, and Meghalaya) is
affected by positive precipitation change. These results highlight the dependence on the lagged
precipitation level while understanding the marginal effect of a contemporaneous weather change
on the per capita economic growth.

Expectedly, Panel (c) indicates that a positive lagged precipitation change decreases the per capita
economic growth for states (Arunachal Pradesh, Nagaland, Manipur, Meghalaya, Mizoram, and As-
sam) with high lagged precipitation and moderate lagged temperature levels. States (Uttarakhand
and Chandigarh) with low lagged precipitation and moderate lagged temperature levels benefit
from a positive lagged precipitation change. Moreover, we observe that states (Chhattisgarh, Ma-
harashtra, Gujarat, Tamil Nadu, Telangana, Andhra Pradesh, and Puducherry) with high lagged
temperature but low lagged precipitation levels suffer due to a positive lagged precipitation change.
On the other hand, states (Andaman and Nicobar Islands, Goa, and Kerala) experiencing high
lagged precipitation along with high lagged temperature level benefit from a positive lagged pre-
cipitation change. This heterogeneity highlights the interactive effect of lagged temperature and
precipitation levels while understanding the marginal effect of a lagged precipitation change on the

13 dy
dx

= f(x+ξ/2)−f(x−ξ/2)
ξ

where, here f(.) is the predicted value of smooth term under consideration, and ξ is the
step size to use when calculating numerical derivatives.
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per capita economic growth.

Finally, we observe, from Panel (d), that all the per capita economic growth of states experi-
ence a positive rise due to marginal increase in precipitation level except in case high precipitation
states, that is, Andaman and Nicobar Islands, Arunachal Pradesh, Assam, Goa, Kerala, Meghalaya,
Mizoram, and Tripura.

Year-wise analysis

Figure 6 presents the year-wise G-AME on the per capita economic growth of India for a posi-
tive contemporaneous temperature change [Panel (a)], contemporaneous precipitation change [Panel
(b)], lagged precipitation change [Panel (c)], and rise in contemporaneous precipitation level [Panel
(d)]. We observe that a positive temperature change [Panel (a)] has a detrimental effect on India’s
per capita economic growth for all the years. Similarly, a rise in the precipitation level [Panel (d)]
benefits India over the years. However, G-AME on the year-wise per capita economic growth of
a positive precipitation change [Panel (b)] is insignificant as it affects only some states mentioned
above.

We find that a positive lagged precipitation change affects India’s per capita economic growth
except in the fiscal year 2006-2007 [Panel (c)]. To better understand this anomaly, we look at
weather events in the fiscal year 2005-2006, as the marginal effect of a lagged precipitation change
depends on the interplay of lagged temperature and precipitation level. According to the India
Meteorological Department (Mausam, 2006a, 2006b), certain parts of India saw extreme heatwave
conditions followed by untimely rains, with some regions experiencing floods as a result of the heavy
precipitation. These conditions may equate to high lagged precipitation and temperature levels in
Figure 3. As a result, we observe a positive marginal effect on the per capita economic growth in
the fiscal year 2006-2007 due to a positive precipitation change in the fiscal year 2005-2006.
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Figure 5: State-wise heterogeneity: This figure plots the average marginal effect across states for a positive contemporaneous temperature change [Panel
(a)], contemporaneous precipitation change [Panel (b)], lagged precipitation change [Panel (c)], and rise in contemporaneous precipitation level [Panel (d)].

39



−1.50

−1.00

−0.50

0.00

1
9

8
2

−
1

9
8

3

1
9

8
3

−
1

9
8

4

1
9

8
4

−
1

9
8

5

1
9

8
5

−
1

9
8

6

1
9

8
6

−
1

9
8

7

1
9

8
7

−
1

9
8

8

1
9

8
8

−
1

9
8

9

1
9

8
9

−
1

9
9

0

1
9

9
0

−
1

9
9

1

1
9

9
1

−
1

9
9

2

1
9

9
2

−
1

9
9

3

1
9

9
3

−
1

9
9

4

1
9

9
4

−
1

9
9

5

1
9

9
5

−
1

9
9

6

1
9

9
6

−
1

9
9

7

1
9

9
7

−
1

9
9

8

1
9

9
8

−
1

9
9

9

1
9

9
9

−
2

0
0

0

2
0

0
0

−
2

0
0

1

2
0

0
1

−
2

0
0

2

2
0

0
2

−
2

0
0

3

2
0

0
3

−
2

0
0

4

2
0

0
4

−
2

0
0

5

2
0

0
5

−
2

0
0

6

2
0

0
6

−
2

0
0

7

2
0

0
7

−
2

0
0

8

2
0

0
8

−
2

0
0

9

2
0

0
9

−
2

0
1

0

2
0

1
0

−
2

0
1

1

2
0

1
1

−
2

0
1

2

2
0

1
2

−
2

0
1

3

2
0

1
3

−
2

0
1

4

2
0

1
4

−
2

0
1

5

2
0

1
5

−
2

0
1

6

2
0

1
6

−
2

0
1

7

2
0

1
7

−
2

0
1

8

2
0

1
8

−
2

0
1

9

2
0

1
9

−
2

0
2

0

2
0

2
0

−
2

0
2

1

2
0

2
1

−
2

0
2

2

E
c
o

n
o

m
ic

 g
ro

w
th

 (
p

p
)

(a) Average marginal effect
of temperature change

−0.010

−0.005

0.000

0.005

0.010

1
9

8
2

−
1

9
8

3

1
9

8
3

−
1

9
8

4

1
9

8
4

−
1

9
8

5

1
9

8
5

−
1

9
8

6

1
9

8
6

−
1

9
8

7

1
9

8
7

−
1

9
8

8

1
9

8
8

−
1

9
8

9

1
9

8
9

−
1

9
9

0

1
9

9
0

−
1

9
9

1

1
9

9
1

−
1

9
9

2

1
9

9
2

−
1

9
9

3

1
9

9
3

−
1

9
9

4

1
9

9
4

−
1

9
9

5

1
9

9
5

−
1

9
9

6

1
9

9
6

−
1

9
9

7

1
9

9
7

−
1

9
9

8

1
9

9
8

−
1

9
9

9

1
9

9
9

−
2

0
0

0

2
0

0
0

−
2

0
0

1

2
0

0
1

−
2

0
0

2

2
0

0
2

−
2

0
0

3

2
0

0
3

−
2

0
0

4

2
0

0
4

−
2

0
0

5

2
0

0
5

−
2

0
0

6

2
0

0
6

−
2

0
0

7

2
0

0
7

−
2

0
0

8

2
0

0
8

−
2

0
0

9

2
0

0
9

−
2

0
1

0

2
0

1
0

−
2

0
1

1

2
0

1
1

−
2

0
1

2

2
0

1
2

−
2

0
1

3

2
0

1
3

−
2

0
1

4

2
0

1
4

−
2

0
1

5

2
0

1
5

−
2

0
1

6

2
0

1
6

−
2

0
1

7

2
0

1
7

−
2

0
1

8

2
0

1
8

−
2

0
1

9

2
0

1
9

−
2

0
2

0

2
0

2
0

−
2

0
2

1

2
0

2
1

−
2

0
2

2

E
c
o

n
o

m
ic

 g
ro

w
th

 (
p

p
)

(b) Average marginal effect
of precipitation change

−0.004

−0.003

−0.002

−0.001

0.000

1
9

8
2

−
1

9
8

3

1
9

8
3

−
1

9
8

4

1
9

8
4

−
1

9
8

5

1
9

8
5

−
1

9
8

6

1
9

8
6

−
1

9
8

7

1
9

8
7

−
1

9
8

8

1
9

8
8

−
1

9
8

9

1
9

8
9

−
1

9
9

0

1
9

9
0

−
1

9
9

1

1
9

9
1

−
1

9
9

2

1
9

9
2

−
1

9
9

3

1
9

9
3

−
1

9
9

4

1
9

9
4

−
1

9
9

5

1
9

9
5

−
1

9
9

6

1
9

9
6

−
1

9
9

7

1
9

9
7

−
1

9
9

8

1
9

9
8

−
1

9
9

9

1
9

9
9

−
2

0
0

0

2
0

0
0

−
2

0
0

1

2
0

0
1

−
2

0
0

2

2
0

0
2

−
2

0
0

3

2
0

0
3

−
2

0
0

4

2
0

0
4

−
2

0
0

5

2
0

0
5

−
2

0
0

6

2
0

0
6

−
2

0
0

7

2
0

0
7

−
2

0
0

8

2
0

0
8

−
2

0
0

9

2
0

0
9

−
2

0
1

0

2
0

1
0

−
2

0
1

1

2
0

1
1

−
2

0
1

2

2
0

1
2

−
2

0
1

3

2
0

1
3

−
2

0
1

4

2
0

1
4

−
2

0
1

5

2
0

1
5

−
2

0
1

6

2
0

1
6

−
2

0
1

7

2
0

1
7

−
2

0
1

8

2
0

1
8

−
2

0
1

9

2
0

1
9

−
2

0
2

0

2
0

2
0

−
2

0
2

1

2
0

2
1

−
2

0
2

2

E
c
o

n
o

m
ic

 g
ro

w
th

 (
p

p
)

(c) Average marginal effect of
lagged precipitation change

0.00

0.01

0.02

0.03

0.04

1
9

8
2

−
1

9
8

3

1
9

8
3

−
1

9
8

4

1
9

8
4

−
1

9
8

5

1
9

8
5

−
1

9
8

6

1
9

8
6

−
1

9
8

7

1
9

8
7

−
1

9
8

8

1
9

8
8

−
1

9
8

9

1
9

8
9

−
1

9
9

0

1
9

9
0

−
1

9
9

1

1
9

9
1

−
1

9
9

2

1
9

9
2

−
1

9
9

3

1
9

9
3

−
1

9
9

4

1
9

9
4

−
1

9
9

5

1
9

9
5

−
1

9
9

6

1
9

9
6

−
1

9
9

7

1
9

9
7

−
1

9
9

8

1
9

9
8

−
1

9
9

9

1
9

9
9

−
2

0
0

0

2
0

0
0

−
2

0
0

1

2
0

0
1

−
2

0
0

2

2
0

0
2

−
2

0
0

3

2
0

0
3

−
2

0
0

4

2
0

0
4

−
2

0
0

5

2
0

0
5

−
2

0
0

6

2
0

0
6

−
2

0
0

7

2
0

0
7

−
2

0
0

8

2
0

0
8

−
2

0
0

9

2
0

0
9

−
2

0
1

0

2
0

1
0

−
2

0
1

1

2
0

1
1

−
2

0
1

2

2
0

1
2

−
2

0
1

3

2
0

1
3

−
2

0
1

4

2
0

1
4

−
2

0
1

5

2
0

1
5

−
2

0
1

6

2
0

1
6

−
2

0
1

7

2
0

1
7

−
2

0
1

8

2
0

1
8

−
2

0
1

9

2
0

1
9

−
2

0
2

0

2
0

2
0

−
2

0
2

1

2
0

2
1

−
2

0
2

2

E
c
o

n
o

m
ic

 g
ro

w
th

 (
p

p
)
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Figure 6: Year-wise heterogeneity: This figure plots the average marginal effect over years for a positive contemporaneous temperature change [Panel (a)],
contemporaneous precipitation change [Panel (b)], lagged precipitation change [Panel (c)], and rise in contemporaneous precipitation level [Panel (d)].
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6.3.3. Medium- and long-run effects

The estimates of optimal damage specification in Column (1) of Table 5 measures the marginal
impact of weather variables on the annual per capita economic growth and is interpreted as a short-
run impact. In the following analysis, we investigate the medium- and long-run effects of weather
variables on per-capita economic growth. We define the period for medium- and long-run impact as
five and ten years, respectively and propose the following cumulative growth regression specification:

t+p∑
r=t

ŴI-EGir = bp,1(Pit−1)×∆Tit + bp,2(Pit−1)×∆Pit

+ bp,3(Tit−1 × Pit−1)×∆Pit−1 + bp,4(Pit) + κp,i + νir

(12)

∑t+p
r=t ŴI-EGir refers to the cumulative WI-EG of ‘p’ years ahead where p = {5, 10}. The coeffi-

cients bp,.(.)s are a function of weather variables of the initial year ‘t’. Accordingly, bp,1(.), bp,2(.),
and bp,3(.) are interpreted as the marginal effects on the cumulative per capita economic growth of
next ‘p’ years for a change in temperature, precipitation and lagged precipitation in the initial year
‘t’. Similarly, bp,4(.) is the total effect of the initial year precipitation level on the cumulative growth
of the next ‘p’ years. κ̃p,i are state fixed effects. ν̃irs are the error terms for the given cumulative
period ‘r’ and are assumed to be independent and identically distributed.

We utilize balanced data of 25 states for 40 years to estimate Equation (12) and divide it into
non-overlapping periods of 5 (10) years for medium (long) term impact assessment. Thus, we have
a balanced dataset of 25 states, eight periods for medium-run impact, and four for long-run impact
analysis. We define 84 specifications for bp,.(.)s corresponding to b(.)s in Section 5.3.1. We also
follow the optimal model selection procedure as described in Section 5.3.2. Accordingly, we find the
optimal specification of ‘A2-B2-C1-D1’ for a 5-year period (medium-run) and ‘A1-B1-C1-D3’ for a
10-year period (long-run). The estimates of these specifications are tabulated in Table 7.

Column (1) of Table 7 reiterates the estimates of the optimal damage specification from Column
(1) of Table 5. Column (2) tabulates the estimates of the medium-run optimal damage specifica-
tion. In the case of impact on the per capita economic growth through the WI-TFPG channel,
we find that the base adverse (favourable) marginal effect of contemporaneous temperature (pre-
cipitation) change vanishes in the medium-run. However, the adverse (favourable) marginal effect
of contemporaneous temperature (precipitation) change still exists and is conditional on the initial
year lagged precipitation level. On the contrary, an adverse marginal effect of lagged precipitation
change persists in the medium run, but the interplay of lagged temperature and precipitation level
disappears. Moreover, we find no significant impact of variations in contemporaneous precipitation
level on the per capita economic growth through the WI-LPG channel.

Column (3) of Table 7 presents the estimates of optimal damage specification for the long-run
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Table 7: Estimates of damage function: Medium- and long-run

(1) (2) (3)
Short-run Medium-run Long-run

A3-B2-C2-D3 A2-B2-C1-D1 A1-B1-C1-D3
Weather induced TFP growth (WI-TFPG)
∆T -1.3593*** 1.1640 -0.1886*

(0.0685) (7.9130) (0.1113)
Lag.P ×∆T 0.0059*** -0.1541***

(0.0010) (0.0582)
Lag.P 2 ×∆T -0.0000092***

(0.0000029)

∆P 0.0066*** -0.1399 0.0005
(0.0009) (0.1385) (0.1260)

Lag.P ×∆P -0.000068*** 0.0013**
(0.0000039) (0.0006)

∆Lag.P -0.0043*** -0.1079** -0.1872*
(0.0007) (0.0053) (0.0988)

Lag.T × Lag.P ×∆Lag.P 0.00000056***
(0.00000013)

Weather induced LP growth (WI-LPG)
P 0.0534*** -0.1104 -0.5954

(0.0019) (0.0024) (0.5348)
P 2 -0.0002*** 0.0030

(0.000009) (0.0033)
P 3 0.00000018*** -0.000006

(0.000000013) (0.000006)
Observations 1,210 200 100
State FE Yes Yes Yeas
Adjusted R2 0.975 0.799 0.821
BIC 171.81 1810.18 951.95

The results in the table represent the estimates of the optimal functional form of damage estimates. Column (1) of
Table 7 reiterates the estimates of the optimal damage specification from Column (1) of Table 5. Column (2) tabulates
the estimates of the medium-run optimal damage specification. Column (3) presents the estimates of optimal damage
specification for the long-run impact.
The optimal form is selected after comparing with alternative specifications for out-of-sample performance metrics—
K-fold cross-validation and model confidence set— and in-sample performance metrics—adjusted generalized variance
inflation factor and Bayes factor tests. Significance level: * p < 0.10 ** p < 0.05 *** p < 0.01.
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impact. We observe that the weather variables do not have any impact on the per capita economic
growth, indicating no long-term effect of shocks in weather variables on the next ten years’ cumula-
tive economic growth. Hence, we find that while the shocks in weather changes continue to impact
the economic growth in the medium-run through the WI-TFPG channel, this effect vanishes in
the long-run. Our results further indicate that the impact of weather levels through the WI-LPG
channel does not persist in the medium- and long-run.

7. Discussion and conclusion

Our paper provides a generalized theoretical framework for empirical analysis of the possible impact
of temperature and precipitation shocks on the per capita economic growth. Using standard bin
regression as our preliminary analysis, we hypothesize the relation of the impact of weather changes
on the per capita economic growth of India. We test these hypotheses by utilizing the data-driven
semi-parametric econometric approach known as VC-GAM and also quantify the economic damages
from variations in weather level and change. We choose the optimal specification that best estimates
the economic damages quantified by comparing the out-of-sample and in-sample properties of 84
variants of prominent parametric specification. Finally, the study employs the optimal specification
model to estimate the non-linear impact of weather level and weather change on the per capita
economic growth through the WI-TFPG and WI-LPG channels.

We find that given a lower precipitation level in the preceding year, there is an adverse marginal
effect of a positive temperature change. On the other hand, an adverse marginal effect of a posi-
tive precipitation change is experienced when we have a higher precipitation level in the preceding
year. Most importantly, we observe that along with contemporaneous precipitation change, lagged
precipitation change also plays a crucial role in determining the impact on the per capita economic
growth. We find that a high lagged precipitation level combined with a low to moderate lagged
temperature level exacerbates the detrimental impact of a positive lagged precipitation change on
the per capita economic growth of India.

We believe that one potential mechanism by which contemporaneous and lagged weather vari-
ables have an impact on the per capita economic growth is through their influence on soil moisture
quality14. A lower precipitation level in the preceding year may deplete the soil moisture quality,
whereas a higher precipitation level may replenish or over-replenish it. As a result, the soil mois-
ture content at the end of the previous year can serve as the starting point for the current year’s
economic activities. For example, with less than optimal soil moisture content in the current year,
even a slight increase in temperature change may reduce the soil moisture quality further. This
reduction in soil moisture quality may affect the per capita economic growth. On the other hand,
an optimally replenished soil moisture quality reduces the marginal benefit of precipitation change.

14Refer to Blignaut and Van Heerden (2009), Gilmont et al. (2018), Greve et al. (2014), Li et al. (2022), Mittelbach
and Seneviratne (2012), Moeck et al. (2020), and Pérez-Blanco and Sapino (2022) for details.
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In some circumstances, a positive precipitation change may even have negative consequences such
as waterlogging or floods, disrupting agricultural production, damaging infrastructure, and lowering
industrial output.

In the case of a positive lagged precipitation change, our findings show that a high lagged pre-
cipitation level, when complemented with a low to moderate lagged temperature level, harms the
per capita economic growth. This combination of lagged weather levels aids in soil moisture reten-
tion based on the concept of Clausius-Clapeyron relation and evapotranspiration15. Under these
conditions, a positive lagged precipitation change may cause floods. This flooding not only disrupts
the economic activity in the immediate year but can also have a lasting negative effect on the per
capita economic growth for the following year.

Our empirical approach of considering the interplay of weather variables provides us with a specifi-
cation [Refer to Equations (11)] that differs from those considered in the existing literature for India
(Jain et al., 2020; Kumar and Maiti, 2024a; Sandhani et al., 2023). We find that our specification
gives a better match for Indian data, in terms of out-of-sample and in-sample performance metrics,
than the specifications taken into account by Burke et al. (2015), Jain et al. (2020), Dell et al.
(2012), Sandhani et al. (2023), and Kalkuhl and Wenz (2020).

Certain important implications emerge from these differences in specification. Ricke et al. (2018)
use specifications proposed by Dell et al. (2012) and Burke et al. (2015) for the damage function to
calculate the social cost of carbon at the country level. Our analysis indicates that India’s damage
function differs from those specifications, emphasizing possible country-level differences in damage
specification. This suggests that each country may need a customized damage function to quan-
tify weather impacts effectively. Therefore, by taking into consideration unique country subtlety in
weather impacts, our technique has the potential to enhance the computation of a realistic social
cost of carbon at the country level.

Moreover, Dietz and Venmans (2019) have demonstrated a direct relationship between cumula-
tive global emissions of greenhouse gases (GHG) and changes in the mean temperature globally,
albeit this relationship might not hold true at the country level. Nonetheless, the damage function
is frequently modelled as a function of GHG emissions in Environmental Dynamic Stochastic Gen-
eral Equilibrium models16 even for country-level analysis. Our empirical approach can be used to
measure the economic damage of weather shocks from the per capita economic growth and compute
the damage parameters which connect country-level economic damages and global GHG emissions.

15The Clausius-Clapeyron equation illustrates how the water-holding capacity of the atmosphere increases. Evap-
otranspiration is the physical process of transferring water from the land (by evaporation and transpiration) to the
atmosphere. Higher temperatures, as stated by Clausius-Clapeyron, can increase evapotranspiration rates, reducing
soil moisture quality (Kleidon and Schymanski, 2008; Wang and Bras, 2011; Zhang et al., 2016)

16Refer to Annicchiarico and Di Dio (2015) and Fischer and Springborn (2011) for examples of damage function
considered.
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With this approach, climate policy for various economies might be examined in greater detail. By
accounting for the effects of country weather patterns, this improved damage function may advance
our understanding of the effectiveness of climate policy and its implications for economic outcomes.

The objective of this paper is to examine the influence of weather variables on the overall economic
growth rate. Although we estimate the impact of weather variables on the per capita economic
growth of India, we have not exclusively considered adaptation to these effects in our model. Fur-
ther, we have restricted ourselves to analysis using state-level data based on the availability of data.
However, future research can consider night-light data as a proxy for economic activity, which may
enable a detailed analysis of the impact of weather at a granular level.

Moreover, future studies can examine the impact of weather on overall economic growth while
accounting for variables like income levels and the level of sectoral development. This would make
it possible to find any differential relationship between weather variables and the economic growth,
which might offer more detailed explanations of how some aspects of the economy are more suscep-
tible to weather fluctuations. Furthermore, additional research could concentrate on specific sectors
like services, industry, or agriculture. With a more focused approach, it would be possible to gain
a better understanding of how various economic sectors react to weather variations, which might
result in a more efficient and customized climate change adaptation policy.
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Appendix

A. Theoretical framework for weather effect on Labour productiv-
ity level

We assume that the temperature and precipitation level impact the labour productivity level in-
stead of labour productivity growth. Accordingly, economic output is now Yt = Θ(Tt, Pt, t) ·
Ft[Kt, At(Tt, Pt)Lt].

Taking log and differentiating Yt with respect to t, we obtain:

dln(Yt)

dt
=
dlnΘ(.)

dt
+
dlnFt(.)

dt

dln(Yt)

dt
=
∂lnΘ(.)

∂Tt

dTt
dt

+
∂lnΘ(.)

∂Pt

dPt

dt
+
∂lnΘ(.)

∂t
+

1

Ft(.)

[
∂Ft(.)

∂Kt

dKt

dt
+

∂Ft(.)

∂At(.)Lt

dAt(.)Lt

dt

]
dln(Yt)

dt
= gΘT

(Tt, Pt)×
dTt
dt

+ gΘP
(Tt, Pt)×

dPt

dt
+ gΘO

(t) + ηKt × gKt

+ (τt − ηKt)×
[
gAT

(Tt, Pt)×
dTt
dt

+ gAP
(Tt, Pt)×

dPt

dt
+ gLt

]
Rearranging the above equation, we obtain:

dln(Yt)

dt
=

Temperature change induced TFP + LP growth︷ ︸︸ ︷
[gΘT

(Tt, Pt) + (τt − ηKt)× gAT
(Tt, Pt)]×

dTt
dt

+ [gΘP
(Tt, Pt) + (τt − ηKt)× gAP

(Tt, Pt)]×
dPt

dt︸ ︷︷ ︸
Precipitation change induced TFP + LP growth

+ gΘO
(t) + ηKt × gKt + (τt − ηKt)× gLt
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B. Summary statistics

Table B1 provides mean and standard deviation values of variables across different states. Data
for the states of Chandigarh, Chattisgarh, Jammu and Kashmir, Jharkhand, Nagaland, Sikkim and
Uttarakhand are available from the fiscal year 1993-94 and that for Mizoram from the fiscal year
1999-2000. Data for other states are available from fiscal year 1980-81 to 2021-22.

Table B1: Summary across states

States
GSDP

per-capita
(in Rs)

Economic
growth
(in %)

Temperature
(in ◦C)

Temperature
change
(in ◦C)

Precipitation
(in mm)

Precipitation
change
(in mm)

Andaman and Nicobar Islands 70,832 (49,824) 4.48 (7.87) 27.14 (0.36) 0.02 (0.36) 255.01 (29.86) 1.10 (40.14)
Andhra Pradesh 56,134 (34,675) 4.68 (4.40) 28.03 (0.28) 0.01 (0.28) 76.45 (11.04) 0.55 (15.35)
Arunachal Pradesh 60,434 (31,228) 4.42 (5.22) 19.16 (0.42) 0.02 (0.41) 150.96 (16.57) -0.48 (24.54)
Assam 39,502 (14,239) 2.67 (3.04) 23.40 (0.38) 0.01 (0.39) 190.46 (24.13) -0.94 (34.86)
Bihar 16,899 (7,949) 3.53 (8.51) 25.54 (0.35) 0.01 (0.34) 97.86 (13.03) -0.03 (16.74)
Chandigarh 1,53,226 (66,372) 5.13 (6.83) 23.68 (0.44) 0.03 (0.45) 95.89 (15.10) 1.02 (22.05)
Chhattisgarh 55,036 (19,810) 3.94 (5.05) 26.22 (0.25) 0.02 (0.35) 112.22 (12.07) -0.37 (14.18)
Delhi 1,44,426 (78,351) 3.91 (5.23) 25.33 (0.52) 0.02 (0.50) 58.00 (12.06) 0.77 (16.82)
Goa 1,57,489 (1,04,944) 5.28 (9.21) 26.61 (0.30) 0.01 (0.32) 214.83 (56.36) 0.69 (68.66)
Gujarat 74,802 (52,956) 5.31 (7.91) 27.25 (0.40) 0.02 (0.42) 62.05 (16.84) -0.45 (23.95)
Haryana 84,438 (52,183) 4.61 (4.75) 25.16 (0.50) 0.02 (0.48) 50.45 (9.15) 0.52 (13.31)
Himachal Pradesh 74,893 (46,164) 4.55 (3.77) 8.61 (0.53) 0.03 (0.43) 83.97 (12.22) 0.43 (19.61)
Jammu and Kashmir 59,370 (16,317) 3.30 (3.67) 3.30 (0.40) 0.04 (0.37) 40.26 (6.76) 0.00 (10.95)
Jharkhand 41,366 (12,438) 3.18 (8.24) 25.30 (0.35) 0.00 (0.34) 101.40 (11.55) 1.08 (15.08)
Karnataka 75,671 (47,215) 4.91 (3.93) 26.00 (0.28) 0.01 (0.29) 97.05 (15.96) 0.59 (17.87)
Kerala 74,068 (45,515) 4.59 (3.82) 26.40 (0.25) 0.02 (0.24) 225.27 (32.63) 0.77 (41.96)
Madhya Pradesh 32,584 (17,806) 4.34 (7.45) 25.86 (0.37) 0.01 (0.46) 87.53 (15.97) 0.01 (23.84)
Maharashtra 78,267 (45,908) 4.54 (4.35) 26.82 (0.32) 0.01 (0.39) 101.93 (18.80) -0.07 (23.61)
Manipur 36,048 (11,244) 2.50 (4.41) 20.48 (0.34) 0.01 (0.37) 148.57 (17.44) -0.50 (24.28)
Meghalaya 44,238 (17,040) 2.94 (3.56) 22.19 (0.36) 0.01 (0.37) 319.15 (50.74) -1.17 (68.78)
Mizoram 80,542 (39,996) 6.83 (6.22) 22.77 (0.30) 0.00 (0.31) 196.74 (20.87) -1.69 (33.15)
Nagaland 51,862 (21,146) 4.21 (6.86) 20.09 (0.30) 0.02 (0.41) 149.08 (16.33) -0.57 (26.79)
Odisha 41,607 (22,953) 3.99 (6.89) 26.16 (0.27) 0.01 (0.26) 117.36 (12.28) 0.55 (16.33)
Puducherry 89,094 (47,231) 3.98 (8.55) 28.81 (0.28) 0.02 (0.25) 109.11 (20.39) 1.12 (30.36)
Punjab 71,479 (31,873) 3.46 (2.33) 24.23 (0.49) 0.02 (0.44) 58.71 (10.84) 0.48 (16.28)
Rajasthan 45,339 (22,781) 4.03 (8.44) 26.17 (0.44) 0.02 (0.46) 38.44 (7.82) 0.12 (10.45)
Sikkim 1,41,501 (94,446) 7.40 (9.84) 6.04 (0.36) 0.00 (0.45) 117.33 (14.48) 0.60 (18.54)
Tamil Nadu 72,492 (47,316) 5.09 (4.05) 27.66 (0.27) 0.02 (0.25) 88.26 (14.32) 0.78 (20.69)
Telangana 67,882 (48,525) 5.24 (5.16) 27.76 (0.30) 0.01 (0.32) 84.36 (13.59) 0.33 (19.30)
Tripura 38,049 (27,329) 5.38 (4.52) 25.08 (0.34) 0.01 (0.37) 199.95 (31.68) -1.13 (43.50)
Uttar Pradesh 28,405 (11,077) 3.05 (3.09) 25.77 (0.44) 0.01 (0.44) 78.53 (12.10) 0.24 (16.02)
Uttarakhand 93,152 (50,919) 5.77 (5.24) 14.14 (0.42) 0.03 (0.45) 90.89 (15.97) 0.98 (20.94)
West Bengal 40,851 (19,947) 3.96 (2.81) 25.88 (0.35) 0.01 (0.34) 145.69 (14.54) 0.11 (22.13)

Standard deviation in parentheses
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C. Post-diagnostics test for error distribution

We compare the Overall decompose with backward elimination model with weather combination
‘f’ [Model ‘V-f’ from Column (6) of Table 3] with the same model assuming Gaussian distribution
instead of the Scaled-t distribution. Figure C1 and C2 provide the Q-Q plot, histogram of residuals,
residuals vs linear predictor plot, and response vs fitted value plots for post-diagnostic analysis. The
Q-Q and histogram of residual plots indicate that the model with scaled-t distribution is a better fit
as it efficiently captures the effect of outliers and ensures the normality of residuals for hypothesis
testing.

Figure C1: Post-diagnostic plots for the Normal distribution: The plots are post-diagnostic
plots for the Overall decomposed with BE model with weather combination ‘f’ (‘V-f’), and errors
are normally distributed.
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Figure C2: Post-diagnostic plots for the Scaled-t distribution: The plots are post-diagnostic
plots for the Overall decomposed with BE model with weather combination ‘f’ (‘V-f’), and errors
are scaled-t distributed.
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D. Robustness checks

This section presents the additional robustness checks as mentioned in the main paper. Column (1)
of Table D1 restates the main results from Column (6) of Table 3. Column (2) presents estimates
after considering the three-year lags of the dependent variable instead of one in the main paper.
Column (3) considers the per capita NSDP growth rate instead of the per capita GSDP growth
rate, as NSDP is available for an extended period. Column (4) utilizes an alternative definition
of per capita GSDP growth as computed by the EPWRF database. Column (5) employs a thin
plate regression spline technique with shrinkage (TPRSS) for basis function instead of double-
penalty optimization. Column (6) restricts the state-specific trend term to be linear instead of
quadratic term in the main paper. We observe that the adjusted R2 decreases in all these alternative
specifications. Nevertheless, our results demonstrate that either the EDF estimates are robust and
consistent in spite of these changes or these changes are within the permissible limits of our main
results.

Table D1: Robustness checks: Effective degrees of freedom

(1) (2) (3) (4) (5) (6)
Alternative
specification Alternative data Overfitting

Main
results

gy
3-Lags

NSDP
data

EPWRF
SDPgr TPRSS Linear

trend
Weather induced TFP growth (WI-TFPG)
gΘT,2

(Lag.P )×∆T 1.2075** 0.8697* 0.1785 1.3038** 1.5314** 1.2590**

gΘP,2
(Lag.P )×∆P 1.2924*** 1.1540*** 0.9458** 1.2238*** 1.5299*** 1.0550**

gΘP,3
(Lag.T × Lag.P )× Lag.∆P 0.9364*** 1.3277** 1.7094*** 0.8652*** 1.1236*** 1.3290**

Weather induced LP growth (WI-LPG)
M2(P ) 2.7768*** 3.9894*** 5.3631*** 2.8253*** 0.8799*** 3.173***

Observations 1210 1111 1663 1177 1210 1210
State-specific Trend Quadratic Quadratic Quadratic Quadratic Quadratic Linear
Fixed effects State, year State, year State, year State, year State, year State, year
Adj R2 0.358 0.345 0.231 0.303 0.302 0.356

This table includes the Effective Degrees of Freedom (EDF) for each smooth term in the VC-GAMs. The significance
of the EDF values for the smooth terms is determined using an F-test. EDF values reflect the complexities of the
link between predictor and outcome variables.
Column (1) reiterates the main results from Column (6) of Table 3. Column (2) considers three lags of dependent
variable gy. Columns (3) and (4) consider alternative datasets of NSDP and per capita GSDP, respectively, as per
the EPWRF database. Columns (5) and (6) represent results with alternative overfitting techniques of thin plate
regression spline with shrinkage (TPRSS) and linear state-specific trend terms, respectively.
All models have state and year fixed effects and control for state-specific quadratic trends except Column (6). Error
term follows a skewed t-distribution. Significance levels: * 10%, ** 5%, and *** 1%.

We also test for possible reverse causality by employing the Granger non-causality test proposed
by Dumitrescu and Hurlin (2012). Table D2 presents the p-values, which test if the per capita
economic growth Granger-causes weather variables in the presence of lags 1, 2, and 3 for per capita
economic growth. The null hypothesis states that Granger causality exists for at least one state.
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We find that the null hypothesis is rejected for all weather variables.

Table D2: Granger non-causality test (p-value)

Dependent variable
Temperature

level
Precipitation

level
Temperature

change
Precipitation

change
Lag order of per capita economic growth
Lag 1 0.9985 0.5556 0.9425 0.4955
Lag 2 0.1139 0.3048 0.7858 0.3897
Lag 3 0.8856 0.6158 0.7233 0.4478

The table presents the p-values of the Granger non-causality test (Dumitrescu and Hurlin, 2012). We employ
specifications of different lag orders of per capita economic growth as independent variables and weather variables as
dependent variables. The null hypothesis states that per capita economic growth Granger-causes weather variables
for at least one state.
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