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Abstract 

 

The maximum entropy principle is  characterized as assuming the least about the unknown parameters  in a 

statistical model. In its applied manifestations, it uses all the available information and makes the fewest 

possible assumptions regarding the unavailable information. The application of this principle to parametric 

spectrum estimation leads to an autoregressive transfer function. By appeal to a well known theorem in 

stochastic processes, a rational transfer function leads to a factorizable spectrum. This result combined with 

a classical theorem of analysis (due to Szeg�̈�) forms the basis for two important algorithms for estimating 

the autoregressive spectrum viz. the Levinson-Durbin and Burg algorithms. The latter leads to estimators 

which are asymptotically MLEs (maximum likelihood estimators).  
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I. Introduction 

Let us begin by considering the case of a discrete random variable {𝑋} which can take on 

𝑛 distinct values 𝑥𝑗 , 𝑗 = 1…𝑛 such that 𝑃{𝑋 = 𝑥𝑗} = 𝑝𝑗 . Assuming the events to be mutually 

exclusive and exhaustive, we have the side constraints  𝑝𝑗 ≥ 0 , 𝑗 = 1…𝑛 and ∑ 𝑝𝑗 = 1 𝑛
𝑗=1 .  

Definition 1: The information  content 𝐼𝑚 of the event {𝑥𝑚, 𝑚 = 1…𝑛} in the above sample  is 

defined as   

 𝐼𝑚 = log2 (
1

𝑝𝑚
) bits where the log is to the base 2.                                                                         (I.1) 

 If the log is to the base e, we define  

𝐼𝑚 = (𝑙𝑜𝑔𝑒2) log2 (
1

𝑝𝑚
) nats.   

In future we will only consider information as measured in bits.  

Definition 2: The expected value of the random variable 𝐼 = {𝐼𝑚}𝑚=1
𝑛  is defined as the entropy 

of the sample and is given by  

𝐻(𝑋) = 𝐸(𝐼) = −∑ 𝑝𝑗 𝑙𝑜𝑔(𝑝𝑗)
𝑛
𝑗=1                                                                                                    (I.2) 

The rationale for defining information and entropy in terms of logs is threefold (se Shannon 

(1948)). Firstly, it closely corresponds to Boltzmann’s (1866) definition of thermodynamic 

entropy of an ideal gas. Secondly, parameters of importance in statistical mechanics and signal 

processing such as resolution, bandwidth, octaves etc. tend to vary linearly with the logarithm 

of the number of microstates (i.e. events   as understood above). The third rationale is a bit 

more complicated. It states that any definition of  information 𝐼𝑗   (of an event j with probability 

𝑝𝑗) defined above should satisfy the following intuitively reasonable axioms: 

(i) 𝐼𝑗 is non-negative and anti-monotonic i.e. the information 𝐼𝑗 ≥ 0 and 𝐼𝑗 increases 

when 𝑝𝑗 decreases. 

(ii) 𝐼𝑗 is undefined if 𝑝𝑗 = 0 i.e. the information content of an impossible event cannot 

be defined. 

(iii) 𝐼𝑗=0  if  𝑝𝑗 = 1 i.e. the information content of a certain event is zero. 

(iv) If two events 𝑖 and 𝑗 are independent, then their joint information content denoted 

𝐼𝑖∩𝑗 = 𝐼𝑖 + 𝐼𝑗 (or if  𝑝𝑖∩𝑗 denotes the probability of the joint occurrence of 𝑖 and 𝑗 

then 𝑝𝑖∩𝑗 = 𝑝𝑖 + 𝑝𝑗 

The same conditions are phrased in terms of the corresponding concept of entropy by 

Shannon (1948). Shannon (op.cit. p. 419-420) then proves that the only functions satisfying 

the above reasonable conditions on information and entropy respectively are given by (I.1) 

and (I.2).   
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There is an intimate connection between the concepts of entropy, information and 

uncertainty. Consider the discrete probability distribution stated above in which the random 

variable {𝑋}  takes on 𝑛 distinct values 𝑥𝑗 , 𝑗 = 1…𝑛 such that 𝑃{𝑋 = 𝑥𝑗} = 𝑝𝑗. The most 

informative distribution would occur when one of the values 𝑥𝑚 was known to be true (viz. 

𝑃{𝑋 = 𝑥𝑚} = 1 ). In that case, the  entropy would be equal to zero. The least informative 

distribution would occur when there is no reason to favor any one of the propositions over 

the others and each 𝑝𝑗 = (
1

𝑛
). In that case, the entropy would be equal to its maximum 

possible value viz. 𝑛𝑙𝑜𝑔(𝑛).  The entropy can therefore be seen as a numerical measure 

which describes how uninformative a particular probability distribution is, ranging from zero 

(completely informative) to 𝑛𝑙𝑜𝑔(𝑛) (completely uninformative). 

Definition 3: The concepts of joint entropy and conditional entropy are straightforward 

generalizations of Definition 2 above. Thus if 𝑿 = {𝑋1, 𝑋2… .𝑋𝑁} is a collection of 𝑁 discrete 

random variables with joint pdf 𝑃(𝑋1, 𝑋2… .𝑋𝑁) then the joint entropy of this collection is 

defined as  

𝐻(𝑋1, 𝑋2… .𝑋𝑁) = −∑ …∑ 𝑃(𝑋1, 𝑋2… .𝑋𝑁)𝐿𝑜𝑔 [𝑃(𝑋1, 𝑋2… .𝑋𝑁)]𝑋𝑁𝑋1                              (I.3) 

while the conditional entropy of (𝑋1, 𝑋2…𝑋𝑘−1, 𝑋𝑘+1…𝑋𝑁) given 𝑿 = 𝑥𝑘  is given by  

𝐻(𝑋1, 𝑋2…𝑋𝑘−1, 𝑋𝑘+1…𝑋𝑁|𝑿 = 𝑥𝑘) =
−∑ …∑ 𝑃(𝑋1, 𝑋2… .𝑋𝑁)𝐿𝑜𝑔 [𝑃(𝑋1, 𝑋2…𝑋𝑘−1, 𝑋𝑘+1…𝑋𝑁|𝑿 = 𝑥𝑘)]𝑋𝑁𝑋1                          (I.4) 

So far we have been concerned with discrete random variables. The generalization to 

continuous random variables simply proceeds by replacing the discrete summations in (I.1) 

to (I.4) above by integrals. We only present the definition for joint entropy, the other 

concepts can then be easily written. 

Definition 4: If 𝑿 = {𝑋1, 𝑋2… . 𝑋𝑁} is a collection of 𝑁 continuous  random variables with 

joint pdf 𝑓(𝑿) then the joint entropy of this collection is defined as  

𝐻(𝑓(𝑿)) = −∫ ∫ …∫ 𝑓(𝑿)𝐿𝑜𝑔 [𝑓(𝑿)]𝑑𝑿 = −𝐸{𝐿𝑜𝑔 [𝑓(𝑿)]}
∞

−∞

∞

−∞

∞

−∞
                               (I.5)     

       We now turn to the important concept of a stochastic process which is defined as follows. 

Definition 5: A stochastic process 𝑿 is a collection of random variables {𝑋𝑡, 𝑡 ∈ 𝑇} =

{𝑋𝑡(𝑤), 𝑡 ∈ 𝑇,𝑤 ∈ 𝛺} where 𝑇 is an index set and (, 𝑆, 𝑃) is a probability  space with probability 

measure 𝑃.  The index set  𝑇 is usually taken as 𝑇 = (−∞,∞). A Finite Dimensional Distribution 

(FDD) of this  stochastic process 𝑿 simply refers to the joint distribution function of any finite sub-

collection of random variables constituting 𝑿. We say that a stochastic process 𝑿 has a well-

defined distribution function if the FDDs of any finite sub-collection of 𝑿 say (𝑋𝑡1⋯𝑋𝑡𝑛),

𝑡1⋯𝑡𝑛 ∈ 𝑇 exist for all choices of 𝑡1  … 𝑡𝑛  𝑇 and 𝑛  1. The collection of all such FDDs then is 

said to constitute the 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋. 
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For a stochastic process as defined above, the relevant entropy concept is entropy rate as defined 

below (see Cover and Thomas (2006), p.74-75) 

Definition 6 : A stochastic process 𝑿 is said to be Gaussian if all its FDDs are multivariate Gaussian 

(see Priestley  (1981, p.101-104), Cox and Small (1978), Nachane (2006, p. 497 )  etc.) 

Definition 7 : The entropy rate of a stochastic process 𝑿 (as in Definition 5) is defined as  

ℇ = lim
𝑛→∞

(
1

𝑛
)𝐻 (𝑋𝑡1⋯𝑋𝑡𝑛)                                                                                                                            (I.6) 

if this limit exists. Here 𝐻(𝑋𝑡1⋯𝑋𝑡𝑛) is the joint entropy of (𝑋𝑡1⋯𝑋𝑡𝑛) as defined in (I.5). 

II. Spectral Factorization 

As a preliminary to the subsequent discussion, we need to invoke the basic theory of spectral 

factorization.  

Definition 8 : The one-sided z-transform of a discrete process1  

𝑿(𝑡) = {𝑋(0), 𝑋(1), 𝑋(2)… } is defined as  

𝑿(𝑧) = 𝒵[𝑿(𝑡)] = ∑ 𝑋(𝑘)∞
𝑘=0 𝑧−𝑘, 𝑧 𝜖 𝒞                                                                                         (II.1) 

A special class of z-transforms are the rational z-transforms i.e. those which can be expressed as 

the ratio of two finite polynomials viz. 

𝑿(𝑧) =
𝑩(𝑧)

𝑨(𝑧)
=

∑ 𝑏𝑘𝑧
−𝑘𝑀𝑏

𝑘=0

∑ 𝑎𝑝𝑧−𝑝
𝑀𝑎
𝑝=0

 ,   𝑀𝑏 ≤ 𝑀𝑎                                                                                                      (II.2) 

The z-transform possesses several interesting properties (see Johnson (2012), p.101-107). Of 

these, the time-shift property is of special relevance. It states that 

𝒵[𝑿(𝑡 − 𝑘)] = 𝑧−𝑘𝒵[𝑿(𝑡)] = 𝑧−𝑘𝑿(𝑧)                                                                                                (II.3) 

Property (II.3) enables us to write the following ARMA (𝑁𝑎, 𝑁𝑏) model  

∑ 𝑎𝑗𝑋(𝑡 − 𝑗) = ∑ 𝑏𝑗𝜖(𝑡 − 𝑗)  
𝑁𝑎
𝑗=0

𝑁𝑎
𝑗=0 with  𝑎0, 𝑏0 = 1                                                                                             (II.4) 

as 

(∑ 𝑎𝑗𝑧
−𝑗𝑁𝑎

𝑗=0 ) 𝑿(𝑧) = (∑ 𝑏𝑗𝑧
−𝑗𝑁𝑏

𝑗=0 ) 𝑬(𝑧)                                                                                             (II.5) 

where 𝑬(𝑡) = {𝜖(0), 𝜖(1), 𝜖(2)… } is the error process. 

Definition 9 :The transfer function of the ARMA model (II.5)  is defined as the rational  function  

                                                           
1 We can also define a two-sided z-transform (see Candy (1988), p.16). 
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𝑯(𝑧) =
𝑩(𝑧)

𝑨(𝑧)
=

∑ 𝑏𝑘𝑧
−𝑘𝑁𝑏

𝑘=0

∑ 𝑎𝑘𝑧
−𝑘𝑁𝑎

𝑘=0

 ,   𝑁𝑏 ≤ 𝑁𝑎                                                                                                      (II.6) 

It is easily seen that the transfer function of the AR model   (𝑏𝑘 = 0, 𝑘 = 1…𝑁𝑏) and of the MA 

model (𝑎𝑘 = 0, 𝑘 = 1…𝑁𝑏) can be written respectively as 

𝑯(𝑧) =
𝑩(𝑧)

𝑨(𝑧)
=

1

∑ 𝑎𝑘𝑧
−𝑘𝑁𝑎

𝑘=0

                                                                                                                           (II.7) 

𝑯(𝑧) =
𝑩(𝑧)

𝑨(𝑧)
= ∑ 𝑏𝑘𝑧

−𝑘𝑁𝑏
𝑘=0                                                                                                                         (II.8) 

Definition 10 : The power spectral density (PSD) 𝑠𝑋
𝐴𝑅𝑀𝐴(𝑧)   of an ARMA process 𝑿(𝑡) such as 

(II.6) is defined as  

𝑠𝑋
𝐴𝑅𝑀𝐴(𝑧) = 𝑯(𝑧)𝑯∗(𝑧) = |𝑯(𝑧)|2𝑆𝜖(𝑧)                                                                                                                       (II.9) 

where the superscript (*) denotes complex conjugate and 𝑆𝜖(𝑧) is the spectrum of the process 

𝑬(𝑡). If (as is usually the case) 𝑬(𝑡) is a white noise process with variance 𝜎𝜖
2,   then 𝑆𝜖(𝑧) = 𝜎𝜖

2  

and we can write (II.9) as  

𝑠𝑋
𝐴𝑅𝑀𝐴(𝑧) = |𝑯(𝑧)|2𝜎𝜖

2 = |
𝑩(𝑧)

𝑨(𝑧)
|
2

𝜎𝜖
2                                                                                                                                (II.10) 

The spectrum of the ARMA model can be written in terms of the z-transform (as in (II.10)) or 

more commonly in terms of the angular velocity 𝜔 defined by 𝑧 = 𝑒𝑖𝜔 i.e. 

𝑠𝑋
𝐴𝑅𝑀𝐴(𝜔) = |

∑ 𝑏𝑘𝑒
−𝑖𝑘𝜔𝑁𝑏

𝑘=0

∑ 𝑎𝑘𝑒
−𝑖𝑘𝜔𝑁𝑎

𝑘=0

|

2

𝜎𝜖
2                                                                                                                         (II.11) 

The spectrums of the AR and MA models are then respectively  

𝑠𝑋
𝐴𝑅(𝜔) = |

1

∑ 𝑎𝑘𝑒
−𝑖𝑘𝜔𝑁𝑎

𝑘=0

|
2

𝜎𝜖
2                                                                                                                         (II.12) 

𝑠𝑋
𝑀𝐴(𝜔) = |∑ 𝑏𝑘𝑒

−𝑖𝑘𝜔𝑁𝑏
𝑘=0 |

2
𝜎𝜖
2                                                                                                                  (II.13) 

We are now in a position to state the Spectral Factorization theorem (Sayed and Kailath (2001)) 

Theorem 1: Let 𝑆𝑋(𝑧) denote the power spectral density (PSD) of a  stochastic  process 𝑿(𝑡) 

which is stationary and has a rational transfer function 𝐻(𝑧) (see Definitions 8 and 9) . 

Additionally it satisfies the following conditions : (i) 𝑆𝑋(𝑧) > 0 for |𝑧| = 1 or in terms of 

𝜔(angular velocity) 

𝑆𝑋(𝑒
𝑖𝜔) > 0 for 𝜔 𝜖 (−𝜋, 𝜋) and (ii) (

1

2𝜋
)∫ ln[𝑆𝑋(𝑒

𝑖𝜔)]
𝜋

−𝜋
𝑑𝜔 > −∞ (Paley-Wiener condition). 

Then 𝑆𝑋(𝑧) admits the following factorization  

𝑆𝑋(𝑧) = 𝐿(𝑧)𝛽𝑋𝐿
∗(𝑧−1)                                                                                                                                         (II.14) 
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where 𝐿(𝑧) is a finite degree polynomial with minimum phase i.e. it has all its zeros and poles 

strictly inside the unit circle and lim
|𝑧|→∞

𝐿(𝑧) = 1. Further 𝛽𝑋 is a real positive scalar. 

We can also state the result (II.14) in terms of the angular frequency ω as 

𝑆𝑋(𝑒
𝑖𝜔) = 𝐿(𝑒𝑖𝜔)𝛽𝑋𝐿

∗(𝑒−𝑖𝜔)                                                                                                                     (II.15)                                                                                                                      

III. Maximum Entropy Principle 

The maximum entropy principle is usually attributed to Brillouin (1956, p.159-161) and Jaynes 

(1963, 1968). The principle can be characterized in several ways , Jaynes (1968, p.229) defines 

the principle as the  method which “assumes the least” about the unknown parameters. Ulrych 

and Bishop (1975, p.184) reformulate the principle as the method which uses all the available 

information (being the expected value of the  random information variable 𝐼𝑚 −

−see (I. 2)above) and is “maximally noncommittal with regard to the unavailable information” 

(a point which becomes important when we later discuss applications of the principle to 

spectral analysis)  

A. Entropy of the Multivariate Gaussian Stochastic Process  

Burg (1967, 1968) who is primarily credited with the development of the Maximum Entropy 

Spectral Method (MESM) proceeds by first developing the MESM for the multivariate Gaussian 

Stochastic process. Consider a typical FDD of this process defined over the vector  

𝑿 = {𝑋1, 𝑋2… .𝑋𝑁} .  By Definition 6, 𝑿 is an N-dimensional Gaussian variate ℕ(𝝁, 𝚺) whose 

joint pdf is given by  

𝑓(𝑿) = (2𝜋)−𝑁/2|𝚺|−1/2𝑒𝑥𝑝 [−
(𝑿−𝝁)′𝚺−1(𝑿−𝝁)

2
]                                                                           (III.1) 

(where 𝝁 = 𝐸(𝑿) and 𝚺 is the variance-covariance matrix with typical entry 𝚺𝒊𝒋 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)) 

and the entropy is given by (I.5)  as 

𝐻𝑁(𝑿) = − 𝐸{𝐿𝑜𝑔 [𝑓(𝑿)]} 

=
𝑁

2
𝐿𝑜𝑔(2𝜋) +

1

2
𝐿𝑜𝑔|𝚺| +

1

2
𝐸[(𝑿 − 𝝁)′𝚺−1(𝑿 − 𝝁)]                                                                (III.2) 

But  

𝐸[(𝑿 − 𝝁)′𝚺−1(𝑿 − 𝝁)] = 𝐸[𝑡𝑟(𝑿 − 𝝁)′𝚺−1(𝑿 − 𝝁)]                                                                (III.3) 

(the quantity in brackets being a scalar) 

But  

 𝐸[𝑡𝑟(𝑿 − 𝝁)′𝚺−1(𝑿 − 𝝁)] = 𝐸[𝑡𝑟{𝚺−1(𝑿 − 𝝁)′(𝑿 − 𝝁)}]                                                      (III.4)  
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(see e.g.  Hohn (1964, p.16)) 

The r.h.s. of (III.4) can be written as                                 

𝑡𝑟{𝚺−1𝐸[(𝑿 − 𝝁)′(𝑿 − 𝝁)]}= 𝑡𝑟{𝚺−1𝚺} = 𝑡𝑟(𝑰𝑁) = 𝑁                                                             (III.5)                                         

From (III.1) to (III.4) we get  

𝐻𝑁(𝑿) =
𝑁

2
[𝐿𝑜𝑔(2𝜋) + 1] +

1

2
𝐿𝑜𝑔|𝚺|                                                                                          (III.6) 

The entropy rate for a Gaussian stochastic process is then  

ℇ = lim
𝑁→∞

(
1

𝑁
)𝐻𝑁(𝑿) =

1

2
[𝐿𝑜𝑔(2𝜋) + 1] + lim

𝑁→∞
𝐿𝑜𝑔|𝚺|

1

2𝑁                                                         (III.7) 

The first term on the r.h.s. is constant and will not play any role in the maximization process, 

and so we drop it and take the entropy rate as  

ℇ = lim
𝑁→∞

𝐿𝑜𝑔|𝚺|
1

2𝑁                                                                                                                               (III.8) 

As the matrix 𝚺 is both Hermitian and non-negative definite, its N eigenvalues  

𝜆𝑘    (𝑘 = 1…𝑁)   are real and non-negative and further 

|𝚺| = ∏ 𝜆𝑘
𝑁
𝑘=1                                                                                                                                      (III.9) 

( |𝚺| denotes (det (𝚺) ) 

From (III.8) and (III.9), we get 

ℇ = lim
𝑁→∞

(
1

2𝑁
)∑ 𝐿𝑜𝑔 (𝜆𝑘)

𝑁
𝑘=1                                                                                                          (III.10) 

 

B. Szeg�̈�′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 and Maximum Entropy of a Gaussian  Process  

We now invoke a classical theorem due to Szeg�̈� (1915) (see Gohberg and Kupnik (1969), Parter 

(1986) and Widom (1989) for expositions and extensions of the theorem) 

 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐 (𝐒𝐳𝐞𝐠�̈�):  If 𝜆𝑘    (𝑘 = 1…𝑁)   are real eigenvalues of a Toeplitz matrix2 𝑇𝑁(𝑓) 

associated with a bounded real-valued function 𝑓 with entries  on the unit circle then for any 

Riemann integrable function 𝐺, we have 

lim
𝑁→∞

(
1

2𝑁
)∑ 𝐺𝑁

𝑘=1 (𝜆𝑘) = (
1

4𝜋
)∫ 𝐺[𝑓(𝜔)]𝑑𝜔

𝜋

−𝜋
                                                                          (III.11) 

Now let us take 𝐺 = 𝐿𝑜𝑔(. ) and let the  function 𝑓  be defined on the entries of Σ by 

                                                           
2 A (𝑝 × 𝑞) matrix 𝑨 is said to be Toeplitz if all the entries along each diagonal are equal i.e. 𝐴𝑖𝑗  depends only on 

 (𝑖 − 𝑗) (see Stoica and Moses (2015), p.362).  
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 𝑓(𝜔) = ∑ 𝑅(𝑗)𝑒−𝑖𝜔𝑗∞
𝑗=−∞ = 𝑆(𝜔)                                                                                             (III.12) 

where 𝑆(𝜔) is the power spectrum of 𝑿   and 𝜔 is the angular frequency and 

 𝑅(𝑘) = 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑗+𝑘 ),   

 Combining (III.10) to (III.12), we get 

ℇ = (
1

4𝜋
)∫ 𝐿𝑜𝑔

𝜋

−𝜋
[𝑆(𝜔)]𝑑𝜔                                                                                                           (III.13) 

Now, we are already given 𝑅(𝑘), |𝑘| ≤ 𝑁 and by the Maximum Entropy Principle we do not 

make any assumptions about 𝑅(𝑘), |𝑘| > 𝑁. Thus the entropy can be maximized only w.r.t. 

𝑅(𝑘), |𝑘| > 𝑁 

Thus, application of the Maximum Entropy Principle leads to 

𝜕ℇ

𝜕𝑅(𝑘)
= (

1

4𝜋
)∫ (

1

𝑆(𝜔)
) (

𝜕𝑆(𝜔)

𝜕𝑅(𝑘)
)𝑑𝜔 =

𝜋

−𝜋
(
1

4𝜋
)∫ (

1

𝑆(𝜔)
) 𝑒−𝑖𝜔𝑘𝑑𝜔 = 0

𝜋

−𝜋
 ,  |𝑘| > 𝑁                   (III.14) 

Putting 

𝐶(𝑘) = (
1

2𝜋
)∫ (

1

𝑆(𝜔)
) 𝑒−𝑖𝜔𝑘𝑑𝜔 = (

1

2𝜋
)∫ (

1

𝑆(𝜔)
) 𝑒𝑖𝜔𝑘𝑑𝜔,    

𝜋

−𝜋
    

𝜋

−𝜋
                                           (III.15) 

we see that 𝐶(𝑘) are the Fourier Coefficients of the function (1/(𝑆(𝜔))) = 𝑆−1(𝜔). Further, by 

(III.14), these Fourier coefficients, are non-zero only for |𝑘| ≤ 𝑁 . The Fourier series expansion 

of  𝑆−1(𝜔) is thus  ( by the Wiener-Khintchine theorem)) 

𝑆−1(𝜔) = ∑ 𝐶(𝑘)𝑒−𝑖𝜔𝑘𝑁
𝑘=−𝑁                                                                                                          (III.16) 

which shows that 𝑆−1(𝜔) is the power spectrum of a process with covariances 𝐶(𝑘). 

Additionally, as  𝑆(𝜔) is a power spectrum  with a rational transfer function, 𝑆−1(𝜔) will also 

have a rational transfer function and will additionally satisfy the premises of Theorem 1 above. 

Thus  𝑆−1(𝜔) will admit a spectral factorization 

𝑆−1(𝜔) = 𝑀(𝑧)𝛾𝑀∗(𝑧−1) = 𝛾|𝑀(𝑧)|2                                                                                       (III.17)    

Thus 

 𝑆(𝜔) = 𝛾−1
1

|𝑀(𝑧)|2
                                                                                                                           (III.18) 

which from ((II.12)) implies that 𝑆(𝜔) is the spectrum of an AR process with the variance of the 

error term 𝜎𝜖
2 = 𝛾−1 

It is important to remember that the result (III.18) is crucially dependent on the Gaussianity 

assumption made in the previous section. However this not as restrictive as it sounds because 

of the following result due to Papoulis (1991, p. 575).  
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𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑: Suppose  𝑿 is an N-dimensional  zero-mean variate 𝐗 = {X1, X2… . XN} with 

unknown joint  pdf 𝑓(𝑿),  but we are given its Var-Cov matrix 𝚺  with typical entry 

 𝚺𝒊𝒋 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗). Additionally 𝚺 is positive definite. Then the pdf which maximizes the 

entropy (as defined by (I.5)) is given by 𝑓(𝑿) = ℕ(𝟎, 𝚺).   

From our previous theorems we get the important result that 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒 :  The result (III.18) is important for it shows that if 𝑆𝑋(𝑧) is the power spectral 

density (PSD) of a  stochastic  process 𝑿(𝑡) which is stationary and has a rational transfer 

function 𝐻(𝑧) (see Definitions 8 and 9)  then  a model which maximizes the Entropy of 𝑿(𝑡) is 

an AR process.  

IV Estimation of the AR Coefficients : Levinson-Durbin 

Algorithm  

This recursive algorithm was first suggested by Levinson (1947) and later extended by Durbin 

(1960). We assume a given sample {𝑥1, 𝑥2… . 𝑥𝑁} in mean –deviation form. 

Consider an AR(L) process (𝐿 ≪ 𝑁) 

𝑥𝑡 = ∑ 𝛼𝑗𝑥𝑡−𝑗 
𝐿
𝑗=1 + 𝜖𝑡                                                                                                                      (IV.1) 

where {𝜖𝑡} is a white noise process with mean 0 and variance 𝜎𝜖
2. We will use the notation 𝑃𝑀 

to denote the value of 𝜎𝜖
2 (prediction error) for an M-th order autoregression. By taking the 

expectations 𝐸(𝑥𝑡−𝑘𝜖𝑡)  in (IV.1), we find that for  𝑘 > 0, 𝐸(𝑥𝑡−𝑘𝜖𝑡) = 0. Using this fact we get 

the well-known Yule-Walker equations 

The Yule-Walker equations of order M are (𝑀 ≤ 𝐿) 

{
 

 
�̂�1 − �̂�1

𝑀�̂�0………………………… .−�̂�𝑀
𝑀�̂�𝑀−1 = 0

�̂�2 − �̂�1
𝑀�̂�1………………………… .−�̂�𝑀

𝑀�̂�𝑀−2 = 0
…………………………………………………… .

�̂�𝑀 − �̂�1
𝑀�̂�𝑀−1………………………… .−�̂�𝑀

𝑀�̂�0 = 0

                                                                  (IV.2) 

where the �̂�𝑘, 𝑘 = 1,2.. are the autocorrelations at 𝑙𝑎𝑔 𝑘.   

Or in matrix form 

𝐶(𝑀)�̂�𝑴=�̂�𝑴  where 

�̂�𝑴 =

[
 
 
 
�̂�1
𝑀

�̂�2
𝑀

… .
�̂�𝑀
𝑀]
 
 
 
     and �̂�𝑴 = [

�̂�1
�̂�2
… .
�̂�𝑀

] 
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 𝐶(𝑀) =

[
 
 
 
 
�̂�0  �̂�1  ………… �̂�𝑀−1
……………………… .
……………………… . .
……………………… . .
  �̂�𝑀−1……… . . . … �̂�0 ]

 
 
 
 

 

                                                                                              

By Yule- Walker equations of order (𝑀 + 1) 

𝐶(𝑀 + 1)

[
 
 
 
 
 
�̂�1
𝑀+1

�̂�2
𝑀+1

… . .
�̂�𝑀
𝑀+1

�̂�𝑀+1
𝑀+1]

 
 
 
 
 

=

[
 
 
 
 
�̂�1
�̂�2
… .
�̂�𝑀
�̂�𝑀+1]

 
 
 
 

                                                                                                 (IV.3) 

where 

𝐶(𝑀 + 1) =

[
 
 
 
 
�̂�0   �̂�1……… .   �̂�𝑀
……………………… .
……………………… . .
�̂�𝑀−1…… �̂�0      �̂�1
�̂�𝑀   …… . . …       �̂�0 ]

 
 
 
 

 

Suppose in (IV.3) we take only the first M rows. Then the l.h.s. of (IV.3) becomes 

𝐶(𝑀)

[
 
 
 
�̂�1
𝑀+1

�̂�2
𝑀+1

…
�̂�𝑀
𝑀+1]

 
 
 
+ �̂�𝑀+1

𝑀+1 [

  �̂�𝑀
  �̂�𝑀−1
… .
  �̂�1

]                                                                                         (IV.4) 

Hence from (IV.3) and (IV.4) we can write 

𝐶(𝑀)

[
 
 
 
�̂�1
𝑀+1

�̂�2
𝑀+1

…
�̂�𝑀
𝑀+1]

 
 
 

=

[
 
 
 
 
�̂�1
�̂�2
… .
… .
�̂�𝑀]
 
 
 
 

−�̂�𝑀+1
𝑀+1 [

  �̂�𝑀
  �̂�𝑀−1
… .
  �̂�1

]                                                                        (IV.5) 

Or 

[
 
 
 
�̂�1
𝑀+1

�̂�2
𝑀+1

…
�̂�𝑀
𝑀+1]

 
 
 
= 𝐶−1(𝑀)

[
 
 
 
 
�̂�1
�̂�2
… .
… .
�̂�𝑀]
 
 
 
 

−�̂�𝑀+1
𝑀+1𝐶−1(𝑀) [

  �̂�(𝑀)
…
… .
  �̂�1

]                                                                          (IV.6) 

But  
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𝐶−1(𝑀)

[
 
 
 
 
�̂�1
�̂�2
… .
… .
�̂�𝑀]
 
 
 
 

=

[
 
 
 
�̂�1
𝑀

�̂�2
𝑀

…
�̂�𝑀
𝑀]
 
 
 
        and 𝐶−1(𝑀)

[
 
 
 
 
�̂�𝑀
… .
… .
… .
�̂�1 ]
 
 
 
 

= [

�̂�𝑀
𝑀

…
…
�̂�1
𝑀

]                                                                   (IV.7) 

Combining (IV.6) and (IV.7), we get 

[
 
 
 
�̂�1
𝑀+1

�̂�2
𝑀+1

…
�̂�𝑀
𝑀+1]

 
 
 
  =

[
 
 
 
�̂�1
𝑀

�̂�2
𝑀

…
�̂�𝑀
𝑀]
 
 
 
−�̂�𝑀+1

𝑀+1 [

�̂�𝑀
𝑀

…
…
�̂�1
𝑀

]                                                                                                          (IV.8) 

(IV.8) is an important step in the recursion because it expresses the first 𝑀 coefficients at the 

(𝑀 + 1) − 𝑡ℎ iteration in terms of the known coefficients of the 𝑀 − 𝑡ℎ  iteration and the last 

unknown coefficient of the (𝑀 + 1) − 𝑡ℎ iteration. Thus all the coefficients at the 

 (𝑀 + 1) −  𝑡ℎ iteration will be determined once we know �̂�𝑀+1
𝑀+1. To this task we now address 

ourselves.  

We now augment the Yule-Walker equations by the following equation obtained by taking 

𝐸(𝑥𝑡−𝑘𝜖𝑡) 𝑓𝑜𝑟  𝑘 = 0, which yields  

�̂�0 − �̂�1
𝑀�̂�1………………………… .−�̂�𝑀

𝑀�̂�𝑀 = 𝑃𝑀                                                                    (IV.9)               

(recall that 𝑃𝑀 is called the prediction error and denotes the value of 𝜎𝜖
2 for an M-th order 

autoregression) 

Adding (IV.9) to the system (IV.2) we get  

{
 
 

 
 
�̂�0 − �̂�1

𝑀�̂�1………………………… .−�̂�𝑀
𝑀�̂�𝑀 = 𝑃𝑀

�̂�1 − �̂�1
𝑀�̂�0………………………… .−�̂�𝑀

𝑀�̂�𝑀−1 = 0

�̂�2 − �̂�1
𝑀�̂�1………………………… .−�̂�𝑀

𝑀�̂�𝑀−2 = 0
…………………………………………………… .

�̂�𝑀 − �̂�1
𝑀�̂�𝑀−1………………………… .−�̂�𝑀

𝑀�̂�0 = 0

                                                                 (IV.10) 

(IV.10) can be written in matrix form as 

[
 
 
 
 
�̂�0  �̂�1………………………… . �̂�𝑀
 �̂�1 �̂�0……………………… . �̂�𝑀−1
………………………………… . .
………………………………… . .
�̂�𝑀 �̂�𝑀−1……………………… . �̂�0]

 
 
 
 

[
 
 
 
 
1

−�̂�1
𝑀

… .
……
−�̂�𝑀

𝑀]
 
 
 
 

=

[
 
 
 
 
𝑃𝑀
0
… .
……
0 ]
 
 
 
 

                                                                 (IV.11) 

Similarly the Yule-Walker equations of order (M+1) can be written as 
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[
 
 
 
 
�̂�0  �̂�1………………………… . �̂�𝑀+1
 �̂�1 �̂�0        ……………………… . �̂�𝑀
………………………………… . .
………………………………… . .
�̂�𝑀+1 �̂�𝑀……………………… . �̂�0 ]

 
 
 
 

[
 
 
 
 

1
−�̂�1

𝑀+1

… .
……
−�̂�𝑀+1

𝑀+1]
 
 
 
 

=

[
 
 
 
 
𝑃𝑀+1
0
… .
……
0 ]
 
 
 
 

                                                       (IV.12) 

Let us now confine our attention to the first row of the matrix on the l.h.s. of (IV.12) 

 

�̂�0 − �̂�1
𝑀+1�̂�1………………………… .−�̂�𝑀+1

𝑀+1�̂�𝑀+1 = 𝑃𝑀+1                                                      (IV.13) 

Using (IV.8) we write (IV.13) as 

�̂�0 − �̂�𝑀+1
𝑀+1�̂�𝑀+1 − 𝑃𝑀+1 = 

[�̂�1  �̂�2… . . �̂�𝑀]

[
 
 
 
�̂�1
𝑀+1

�̂�2
𝑀+1

…
�̂�𝑀
𝑀+1]

 
 
 
  = [�̂�1  �̂�2… . . �̂�𝑀]

[
 
 
 
�̂�1
𝑀

�̂�2
𝑀

…
�̂�𝑀
𝑀]
 
 
 
−�̂�𝑀+1

𝑀+1[�̂�1  �̂�2… . . �̂�𝑀] [

�̂�𝑀
𝑀

…
…
�̂�1
𝑀

]                      

=(�̂�0 − 𝑃𝑀) − �̂�𝑀+1
𝑀+1(�̂�1�̂�𝑀

𝑀 + �̂�2�̂�𝑀−1
𝑀 … .+�̂�𝑀�̂�1

𝑀)                                                                             (IV.14) 

Simplifying (IV.14) we get 

𝑃𝑀+1 = 𝑃𝑀 − �̂�𝑀+1
𝑀+1[�̂�𝑀+1 − �̂�1�̂�𝑀

𝑀 − �̂�2�̂�𝑀−1
𝑀 … .−�̂�𝑀�̂�1

𝑀]                                                          (IV.15) 

Putting 

 ∆𝑀= [�̂�𝑀+1 − �̂�1�̂�𝑀
𝑀 − �̂�2�̂�𝑀−1

𝑀 … .−�̂�𝑀�̂�1
𝑀]                                                                                   (IV.16)                                                             

And we can write (IV.15) as 

𝑃𝑀+1 = 𝑃𝑀 − �̂�𝑀+1
𝑀+1∆𝑀                                                                                                                      (IV.17) 

𝑃𝑀+1 = 𝑃𝑀 − �̂�𝑀+1
𝑀+1[�̂�𝑀+1 − �̂�1�̂�𝑀

𝑀 − �̂�2�̂�𝑀−1
𝑀 … .−�̂�𝑀�̂�1

𝑀] 

Consider similarly the last row  of (IV.12) 

to get 

�̂�𝑀+1 = �̂�𝑀�̂�1
𝑀+1 + �̂�𝑀−1�̂�2

𝑀+1 −⋯…………………… .+�̂�0�̂�𝑀+1
𝑀+1                                     (IV.18) 

Rearranging l.h.s. of (IV.18)  gives  

�̂�𝑀+1 = �̂�𝑀( �̂�1
𝑀−�̂�𝑀+1

𝑀+1�̂�𝑀
𝑀) − �̂�𝑀−1 (�̂�2

𝑀−�̂�𝑀+1
𝑀+1�̂�𝑀−1

𝑀 )……− �̂�1( �̂�𝑀
𝑀 − �̂�𝑀+1

𝑀+1�̂�1
𝑀)  − �̂�0�̂�𝑀+1

𝑀+1 

or 

0 = [�̂�𝑀+1 − �̂�1�̂�𝑀
𝑀 − �̂�2�̂�𝑀−1

𝑀 … .−�̂�𝑀�̂�1
𝑀] − �̂�𝑀+1

𝑀+1[�̂�0 − �̂�1�̂�1
𝑀…………………− �̂�𝑀�̂�𝑀

𝑀] 

0 = ∆𝑀 − �̂�𝑀+1
𝑀+1𝑃𝑀                                                                                                                    (IV.19) 
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 (on using (IV.9)  and (IV.16)   

From (IV.19) we get   

�̂�𝑀+1
𝑀+1 = (

∆𝑀

𝑃𝑀
)                                                                                                                                  (IV.20) 

Note that the algorithm assumes that the autocorrelations �̂�𝟎, �̂�𝟏..etc. are all known i.e. 

calculated from the data {𝒙𝟏, 𝒙𝟐… . 𝒙𝑵} before hand. Hence ∆𝑴 is fully known as it depends 

on the known autocorrelations and the known autoregression coefficients  of the 𝑴− 𝒕𝒉  

iteration. Further, by (IV.9), 𝑷𝑴 is completely known from the 𝑴 − 𝒕𝒉 iteration. 

(IV.8) and (IV.20) together complete our recursion because as said earlier (IV.8) expresses the 

first 𝑀 coefficients at the (𝑀 + 1) − 𝑡ℎ iteration in terms of the known coefficients of the 𝑀 −

𝑡ℎ  iteration and the last unknown coefficient of the (𝑀 + 1) − 𝑡ℎ iteration. But (IV.20) 

determines this (M+1)-th coefficient �̂�𝑀+1
𝑀+1 in terms of  ∆𝑀 and 𝑃𝑀  which are both known 

coefficients at the 𝑀 − 𝑡ℎ iteration itself. Thus all the coefficients at the (𝑀 + 1) −  𝑡ℎ 

iteration are fully determined and the recursion is complete. To start the recursion we use the 

Yule-Walker equations (IV.2) for M=1 to get 

�̂�1
1 =

�̂�1

�̂�0
                                                                                                                                            (IV.21) 

We can also develop a recursion for the prediction errors 𝑃𝑀.  We start this recursion with  

𝑃0 = 𝑉𝑎𝑟 (𝜎𝜖
2) = (

∑ 𝑥𝑡
2𝑁

𝑡=1

𝑁
)                                                                                                             

Further, we use the first equation of the system (IV.10) to obtain 

𝑃1 = �̂�0 − �̂�1
1�̂�1                                                                                                                              (IV.22) 

From (IV.20) we know that  

∆𝑀= �̂�𝑀+1
𝑀+1𝑃𝑀                                                                                                                               (IV.23) 

Finally combining (IV.23) and (IV.17) we get the following recursion for  

𝑃𝑀+1 = [1 − (�̂�𝑀+1
𝑀+1)2]𝑃𝑀                                                                                                            (IV.24) 

 We have now fully described how all the estimates  that we need for our model  can be 

determined recursively.  

 This completes the details of the Levinson-Durbin algorithm. Further discussions of this 

algorithm may be found in Ulrych and Bishop (1975), Smylie et al (1973), Shen e al (2011) etc.  

V. Estimation of the AR Coefficients : Burg Algorithm  
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The Burg algorithm is also a recursive algorithm and coincides with the Levinson-Durbin 

algorithm right upto Step (IV.8) but then instead of using (IV.20) to determine �̂�𝑀+1
𝑀+1 it uses a 

maximization approach as follows.  

As in the Levinson-Durbin algorithm, we assume a given sample {𝑥1, 𝑥2… . 𝑥𝑁} and consider an 

AR(L) process (𝐿 ≪ 𝑁) 

𝑥𝑡 = ∑ 𝛼𝑗𝑥𝑡−𝑗 
𝐿
𝑗=1 + 𝜖𝑡                                                                                                                     (V.1) 

Considering the stage 𝑀 of the algorithm we introduce two types of prediction errors a 

feedback prediction error 𝑃𝑏,𝑡
(𝑀)

 and a feedforward prediction  error 𝑃𝑓,𝑡
(𝑀)

 at time t are defined as 

follows 

𝑃𝑏,𝑡
(𝑀)

= =  [𝑥𝑡+𝑀 − ∑ 𝛼𝑗
(𝑀)
𝑥𝑡−𝑗  

𝑀
𝑗=1 ]                                                                                           (V.2) 

𝑃𝑓,𝑡
(𝑀)

=   [𝑥𝑡 − ∑ 𝛼𝑗
(𝑀)
𝑥𝑡+𝑗 

𝑀
𝑗=1 ]                                                                                                  (V.3) 

The total feedback and feedforward  prediction errors at stage M  are defined as  

𝑃𝑏
(𝑀)

= ∑ 𝑃𝑏,𝑡
(𝑀)𝑁−𝑀

𝑡=1   

and  

𝑃𝑓
(𝑀)

= ∑ 𝑃𝑓,𝑡
(𝑀)𝑁−𝑀

𝑡=1   

 

The coefficient �̂�𝑀+1
𝑀+1 at the (M+1)-th stage is determined by maximizing the average of the two 

squared errors Π(𝑀+1) defined as 

Π(𝑀+1) = (
1

2(𝑁−𝑀−1)
)∑ {(𝑃𝑏,𝑡

(𝑀+1)
)
2

+ (𝑃𝑓,𝑡
(𝑀+1)

)
2

}𝑁−𝑀−1
𝑡=1                                                            (V.4) 

But 

𝑃𝑏,𝑡
(𝑀+1)

= 𝑥𝑡+𝑀+1 − �̂�1
(𝑀+1)𝑥𝑡+𝑀 − �̂�2

(𝑀+1)𝑥𝑡+𝑀−1 −⋯− �̂�𝑀
(𝑀+1)𝑥𝑡+1 − �̂�𝑀+1

(𝑀+1)𝑥𝑡 

= 𝑥𝑡+𝑀+1 − [�̂�1
(𝑀) − 𝑘�̂�𝑀

(𝑀)]𝑥𝑡+𝑀 − [�̂�2
(𝑀) − 𝑘�̂�𝑀−1

(𝑀) ]𝑥𝑡+𝑀−1 −⋯[�̂�𝑀
(𝑀) − 𝑘�̂�1

(𝑀)]𝑥𝑡+1 − 𝑘𝑥𝑡 

(where to simplify the notation we have put   𝑘 = �̂�𝑀+1
(𝑀+1)) 

Thus  

𝑃𝑏,𝑡
(𝑀+1)

= 𝑥𝑡+𝑀+1 − �̂�1
(𝑀)𝑥𝑡+𝑀 − �̂�2

(𝑀)𝑥𝑡+𝑀−1… . �̂�𝑀
(𝑀)𝑥𝑡+1 − 𝑘[−�̂�𝑀

(𝑀)𝑥𝑡+𝑀 −

�̂�𝑀−1
(𝑀) 𝑥𝑡+𝑀−1… .−�̂�1

(𝑀)𝑥𝑡+1 + 𝑥𝑡]                                                                                            (V.5) 

Put 
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𝐴𝑡
(𝑀+1)

= 𝑥𝑡+𝑀+1 − �̂�1
(𝑀)
𝑥𝑡+𝑀 − �̂�2

(𝑀)
𝑥𝑡+𝑀−1… .−�̂�𝑀

(𝑀)
𝑥𝑡+1                                                (V.6) 

𝐵𝑡
(𝑀+1)

= −�̂�𝑀
(𝑀)𝑥𝑡+𝑀 − �̂�𝑀−1

(𝑀) 𝑥𝑡+𝑀−1… .−�̂�1
(𝑀)𝑥𝑡+1 + 𝑥𝑡                                                      (V.7) 

Then 

𝑃𝑏,𝑡
(𝑀+1)

= 𝐴𝑡
(𝑀+1)

− 𝑘𝐵𝑡
(𝑀+1)

                                                                                                           (V.8)                                                                                       

Similarly,  

  𝑃𝑓,𝑡
(𝑀+1) =   𝑥𝑡 − �̂�1

(𝑀+1)𝑥𝑡+1 − �̂�2
(𝑀+1)𝑥𝑡+2 −⋯ �̂�𝑀

(𝑀+1)𝑥𝑡+𝑀 − 𝑘𝑥𝑡+𝑀+1 

= 𝑥𝑡 − [�̂�1
(𝑀) − 𝑘�̂�𝑀

(𝑀)]𝑥𝑡+1 − [�̂�2
(𝑀) − 𝑘�̂�𝑀−1

(𝑀) ]𝑥𝑡+2 −⋯[�̂�𝑀
(𝑀) − 𝑘�̂�1

(𝑀)]𝑥𝑡+𝑀 − 𝑘𝑥𝑡+𝑀+1 

= 𝑥𝑡 − �̂�1
(𝑀)𝑥𝑡+1 − �̂�2

(𝑀)𝑥𝑡+2 −⋯ �̂�𝑀
(𝑀)𝑥𝑡+𝑀 − 𝑘[𝑥𝑡+𝑀+1 − �̂�1

(𝑀)𝑥𝑡+𝑀 −⋯− �̂�𝑀−1
(𝑀) 𝑥𝑡+2 −

�̂�𝑀
(𝑀)𝑥𝑡+1]                                                                                                                                           (V.9) 

Hence 

  𝑃𝑓,𝑡
(𝑀+1) = 𝐵𝑡

(𝑀+1)
− 𝑘𝐴𝑡

(𝑀+1)
                                                                                                         (V.10)                                                                                                                

Note that the expressions    𝐴𝑡
(𝑀+1)

 and 𝐵𝑡
(𝑀+1)

  are independent of 𝑘             

We now minimize expression (V.10) w.r.t. 𝑘           

∂Π(𝑀+1)

𝜕𝑘
= (

1

2(𝑁 −𝑀 − 1)
)∑ {2(𝑃𝑏,𝑡

(𝑀+1)
)
𝜕𝑃𝑏,𝑡

(𝑀+1)

𝜕𝑘
+ 2(𝑃𝑓,𝑡

(𝑀+1)
)
𝜕𝑃𝑓,𝑡

(𝑀+1)

𝜕𝑘
}

𝑁−𝑀−1

𝑡=1
 

=(
−1

(𝑁−𝑀−1)
)∑ {−(𝑃𝑏,𝑡

(𝑀+1))𝐵𝑡
(𝑀+1) − (𝑃𝑓,𝑡

(𝑀+1)
)𝐴𝑡

(𝑀+1)
}𝑁−𝑀−1

𝑡=1                                                      

 =  (
1

(𝑁−𝑀−1)
)∑ {(𝐴𝑡

(𝑀+1)
− 𝑘𝐵𝑡

(𝑀+1)
)𝐵𝑡

(𝑀+1)
+ (𝐵𝑡

(𝑀+1)
− 𝑘𝐴𝑡

(𝑀+1)
)𝐴𝑡

(𝑀+1)
}𝑁−𝑀−1

𝑡=1                                                                             

=(
1

(𝑁−𝑀−1)
)∑ {[𝐴𝑡

(𝑀+1)
𝐵𝑡
(𝑀+1)

− 𝑘(𝐵𝑡
(𝑀+1))

2

] + [𝐴𝑡
(𝑀+1)

𝐵𝑡
(𝑀+1)

− 𝑘(𝐴𝑡
(𝑀+1))

2

]}𝑁−𝑀−1
𝑡=1     (V.11) 

Putting 
∂Π(𝑀+1)

𝜕𝑘
= 0 yields the value of 𝑘 as 

𝑘 = (
2

(𝑁−𝑀−1)
) [

∑ 𝐴𝑡
(𝑀+1)

𝐵𝑡
(𝑀+1)𝑁−𝑀−1

𝑡=1

∑ {(𝐴𝑡
(𝑀+1)

)
2
+(𝐵𝑡

(𝑀+1)
)
2
}𝑁−𝑀−1

𝑡=1

]                                                                                  (V.12) 

Since we are at the (𝑀 + 1) − 𝑡ℎ recursion all the quantities upto the 𝑀 − 𝑡ℎ iteration are 

known. Hence  𝐴𝑡
(𝑀+1)

 𝑎𝑛𝑑 𝐵𝑡
(𝑀+1)

 are fully known and thus the quantity 𝑘 = �̂�𝑀+1
(𝑀+1) is also 

fully now fully known and ( exactly as in the Levinson-Durbin algorithm  above), by (IV.8)  all 

the coefficients at the  (𝑀 + 1) −  𝑡ℎ iteration will be determined once we know �̂�𝑀+1
𝑀+1.  
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One key advantage of the Burg method over the Levinson-Durbin method is the following. The 

Burg estimation of �̂�𝑀+1
𝑀+1 does not involve �̂�𝑀+1, unlike the Levinson-Durbin method where 

�̂�𝑀+1 figures in the estimation of �̂�𝑀+1
𝑀+1 via (IV.16) and (IV.20). The autocorrelations can be 

estimated recursively (if needed) via (IV.18) once �̂�𝑀+1
𝑀+1 has been estimated. The initial value 

for the recursion can be taken as  

�̂�0 = (
1

𝑁
)∑ 𝑥𝑡

2𝑁
𝑡=1                                                                                                                       (V.12)                

This completes the discussion of the Burg algorithm. Further details may be found in Burg 

(1972, 1975), Andersen (1974), Herring (1977), Candy (1988, p.350-353) etc. 

 

VI.  Statistical Properties of Burg Algorithm 

An interesting result noted by Ulrych and Bishop  (1975, Appendix 2) is that the Burg recursive 

algorithm is equivalent to an appropriate maximum likelihood method. This of course means 

that the Burg estimates are asymptotically unbiased if certain  regularity conditions (see Wald 

(1949), Haldane & Smith (1956) etc.) are satisfied.  

Similarly they are consistent under a set of minor restrictions and are asymptotically normal. 

Their prediction error variance viz. 𝑉𝑎𝑟(𝑃𝑏
(𝑀)
) = (

2

𝜐
) 𝑉  where 𝑉 is the true variance of the 

process and 𝜐 (the degrees of freedom) is related to the number of data points N and the order of 

the autoregression 𝑀 by 𝜐 = (
𝑁

𝑀
). This is comparable to the non-parametric window estimates 

where the degrees of freedom are given by 𝜐 = 2𝑏𝑁 where N  is the number of data points and b 

is the spectral window bandwidth (see Ulrych and Bishop  (1975, p.192)).  

VII.Estimation of the Autoregression Order 

The crucial step in the estimation of the AR spectrum is the determination of the correct order 

of the model. An inaccuracy here would affect the final spectrum considerably. For example the 

variance of the Burg estimates increases very significantly when the order of the autoregression 

is overestimated. Fortunately, this problem has been virtually thrashed bare in the three 

decades 1970-2000, and a number of model order estimates have been suggested. A  brief list 

would minimally include the following –Akaike’s FPE (Final Prediction Error), Akaike’s AIC 

(Information Criterion), Parzen’s CAT1-3 (Criterion Autoregressive Transfer Function), Hannan-

Quinn, Mallows’𝐶𝑝 (Conditional Prediction Criterion), Schwarz’s BIC (Bayesian Information 

Criterion ) etc. Reviews and comparisons of the various properties of these criteria have been 

done in Amemiya (1980), Lutkepohl (1991), Nachane (1991) etc. As this literature is very 

familiar now, we do not include a discussion here. However, it is important to note that all 

these criteria are based on evaluation of the model parameters by any consistent method such 
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as the maximum likelihood (which coincides with least squares on the assumption of 

Gaussianity of disturbances) prior to the order determination.  They can also lead to  

misspecification errors via over-fitting or under-fitting.  

An approach which is quite different from the above approaches and relatively unfamiliar to 

applied economists is that based on entropy considerations and thus fits well with the general 

tenor of this paper. The approach has been proposed by Chan et al (1974) and by Ishii et al 

(1978) and further discussed by Jategaonkar et al (1982).  

We assume a given sample {𝑥1, 𝑥2… . 𝑥𝑁} from a stochastic process {𝑋𝑡, 𝑡𝜖𝐼 } with 𝐸(𝑋𝑡) = 0. If 

we desire to fit an appropriate AR model for this sample using the Burg estimates (which we 

know to be consistent). Just as in the case of the FPE, AIC and other criteria we decide 

𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 ̀ on a maximum order for the model say 𝐿 ≪ 𝑁. We next define 

Θ𝑀 =

[
 
 
 
 
1  �̂�1………………………… . �̂�𝑀−1
 �̂�1 1 ………………………   . �̂�𝑀−2
………………………………… . .
………………………………… . .
�̂�𝑀−1 �̂�𝑀−2……………………… .1]

 
 
 
 

                                                                                (VII.1)                                                                                     

where the �̂�𝑘, 𝑘 = 1,2.. is the autocorrelation at 𝑙𝑎𝑔 𝑘  exactly as above.  

We now choose the order of the model as 𝑀 (𝑀 ≤ 𝐿) for which the following quantity is 

minimized 

𝑉𝑀 = [𝑙𝑜𝑔 (
𝑁−𝑀

𝑁−2𝑀−1
) + 𝑙𝑜𝑔|Θ𝑀+1| − 𝑙𝑜𝑔|Θ𝑀|]                                                                        (VII.2) 

Note : It is shown by Ishii et al (1978) that the Akaike FPE can be written as  

𝑉∗𝑀 = [𝑙𝑜𝑔 (
𝑁+𝑀

𝑁−𝑀
) + 𝑙𝑜𝑔|Θ𝑀+1| − 𝑙𝑜𝑔|Θ𝑀|]                                                                             (VII.3) 

so that the entropy based criteria are not totally distinct from the earlier criteria.  

Note that the entropy based lag selection method requires  computation of the determinant of 

the matrix Θ𝑀 for successive values of M. There are now various methods available for fast 

computation of determinants of square matrices. The three most prominent methods are  

(i) The LU decomposition in which the given matrix 𝐴 is decomposed as he product of 2 

matrices –an upper triangular matrix 𝑈 and a lower triangular matrix 𝐿.  

(ii) The QR decomposition in which the given matrix 𝐴 is decomposed as the product of 

an orthonormal matrix 𝑄 and an upper triangular matrix 𝑅 

(iii) The Cholesky decomposition applies only to Hermitian positive definite matrices. If 

the matrix 𝐻 is Hermitian positive definite then 𝐻  can be written as the product of a 

lower triangular matrix 𝐿 and its conjugate transpose 𝐿∗𝑇. 
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These decompositions simplify the determinant computations considerably and the 

algorithms based on them are discussed in Bareiss (1966), Bunch and Hopcroft (1974),  

Golub and Van Loan (1996), Camarero (2018),  Strang (2019) etc. 

Note : This paper confines itself to the theoretical aspects of the Maximum Entropy Spectral 

Methods. Empirical applications are planned to follow a little later. 
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