Phase Transitions in Random Networks

Srikanth K Iyer

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF SCIENCE, BANGALORE

IGIDR July 6 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- Phase Transition: A small change in a local parameter results in an abrupt change in the global behaviour.
- On the Systemic Fragility of FinanceLed Growth, Metroeconomica, Vol. 66, Issue 1, pp. 158-186, 2015 by Amit Bhaduri, Srinivas Raghavendra and Vishwesha Guttal.

$$\frac{dP}{dt} = -P^3 - 5P^2 - 4P + D.$$

• □ ▶ • @ ▶ • E ▶ • E ▶

Example

Figure:
$$f(x) = -x^3 - 5x^2 - 4x + D$$
 with $D = 2$

skiyer (IISc Math)

<ロ> <四> <四> <四> <四> <四> <四</p>

Figure:
$$f(x) = -x^3 - 5x^2 - 4x + D$$
 with $D = -1$

<ロ> <四> <四> <四> <四> <四> <四</p>

Bi-Stability and Hysteresis

Agent-based Models (Lux, 1995)

- Market has two types of traders.
- Fundamentalists who number N and buy (sell) one unit of stock when asset price is below (above) the fundamental price (p_F) .
- Chartists or noise traders who also number N. Chartists are categorised either as optimists (N_O) or pesimists (N_P) . $N_O + N_P = N$.
- **Transitions:** $O \to P$ at rate $\frac{N_P}{N}$ and $P \to O$ at rate $\frac{N_O}{N}$.

$$x:=\frac{N_O-N_P}{N}.$$

Price Dynamics

$$\frac{dP}{dt} = P\left(N_F(P_F - P) + N_C x\right).$$

• Equilibrium: $\frac{dP}{dt} = 0 \Rightarrow P = P_F + x.$

イロト 不得 とくほ とくほ とうほ

Price Realization

- Abrupt changes are purely due to random fluctuations. Not clear why this constitutes "herding".
- What if transition rates have memory? Each transition of a particular type enhances the probability of the next transition being of the same type.

The Galton-Watson Branching Tree

- Start with one individual in generation zero: $Z_0 = 1$.
- Offspring Distribution: $\{p_k\}_{k\geq 0}$.
- X_{nj} = the number of children of the individual labeled *j* in generation *n*. The size of the population in generation n + 1 satisfies

$$Z_{n+1} = \sum_{j=1}^{Z_n} X_{nj};$$
 $P(X_{nj} = k) = p_k.$

• Mean Number of Offspring: $\mu = \sum_{k=1}^{\infty} kp_k$.

$$E[Z_{n+1}|Z_n] = Z_n \mu \qquad \Rightarrow \qquad E[Z_n] = \mu^n.$$

 $\blacksquare \frac{Z_n}{\mu^n}$ is a martingale.

- For $\mu \leq 1$ we have $Z_n \to 0$ almost surely.
- For $\mu > 1$ extinction probability η satisfies $\eta = \sum_{k=0}^{\infty} p_k \eta^k$.

- Consider the infinite d-dimensional lattice \mathbb{Z}^d .
- Label each edge between neighboring sites open with probability *p* and closed with probability 1 − *p* independent of everything else.
- Let *C* be the component containing the origin.
- Percolation Probability: $\theta(p) = P(|C| = \infty)$.
- The random grid is said to percolate if $\theta(p) > 0$.
- $\theta(p)$ is a monotonic function.
- Critical Intensity: $p_c := \inf\{p > 0 : \theta(p) > 0\}.$
- Non-trivial Phase Transition: $0 < p_c < 1$.

■ $p_c > 0$:

 $\begin{array}{rcl} \theta(p) & \leq & P(\text{There is an open path of length n from the origin}) \\ & \leq & p^n (2d) \cdot (2d-1)^{n-1} \to 0, \end{array}$

as $n \to \infty$ for $p < (2d - 1)^{-1}$.

- For any $d \ge 3$, $p_c(d) \le p_c(2) = \frac{1}{2}$.
- For $p < p_c$ components sizes have exponentially decaying tails as do components not part of the infinite component in the case $p > p_c$.

Number of Infinite Components

■ If the random grid percolates then there is w.p. 1 an infinite component.

$$P(\cup\{|C_x| = \infty\}) \le \sum_x P(|C_x| = \infty) \text{ and } \theta(p) = P(|C_x| = \infty).$$

2 *P*(There exists an infinite component) $\geq \theta(p) > 0$. Zero-One Law.

There is at most one infinite component.

- Number of infinite components *N* is translation invariant. Ergodic Theory $\Rightarrow P(N = k) = 1$ for some $k \in \mathbb{N} \cup \{0\} \cup \{\infty\}$.
- 2 Rule out $2 \le k < \infty$.
- 3 Burton-Keane argument.

Consequence of Uniqueness; Open Problem

- SLE: Scaling limits of interface between open and closed islands at criticality.
- Open Problem: What happens at criticality for d = 3?
 Known for a long range percolation model.

- Graph with *n* vertices and an edge between any two pairs of vertices with probability *p*.
- Expected degree of a vertex = (n 1)p.

$$np \begin{cases} \rightarrow 0 & \text{Sparse Regime} \\ \rightarrow c \in (0, \infty) & \text{Thermodynamic Regime} \\ \sim c \log n & \text{Connectivity Regime} \\ \sim cn & \text{Dense Regime.} \end{cases}$$

イロト 不得 とうほう イヨト

The Thermodynamic regime: $p = \frac{c}{n}$

- Local Tree-like structure no short cycles.
- Exploration Process: Start from some node *r*. Number of neighbors \sim Bin((n-1), p). Need to discount for nodes already explored.
- If $c \le 1$ the exploration process is dominated by a GW branching process and hence dies out w.p.1.
- If c > 1 the branching process approximation works well until component size stays below n^{2/3}.
- $\eta < 1 \Rightarrow$ component will grow to reach size $n^{\frac{2}{3}}$ with positive probability.
- Can't have two disjoint component of size larger than n^{2/3}. So only one giant component of size O(n).
- Second largest component of size $O(\log n)$. Expected number of nodes not in the giant component is $\sim \eta n$

イロト 不得 とくほ とくほ とうほ

The Critical Window and Degree Distribution

- The Critical Window: $p = \frac{1}{n} + \beta n^{-\frac{1}{3}}$.
- Component sizes are $O(n^{\frac{2}{3}})$.
- Map components via the exploration process to the excursions of a reflected RW.
- Scaled excursions then converge to the excursions of a reflected BM with drift.

Degree Distribution: If $p = \frac{c}{n}$ then $P(D = k) \approx {\binom{n}{k}}p^k(1-p)^{n-k} \rightarrow \frac{e^{-c}c^k}{k!}$, The Poisson distribution!

- Empirical data of real-world networks shows degree distribution to be heavy-tailed.
- Given a degree distribution *F* can we construct a graph on *n* vertices whose nodes have degree distribution *F*? Suppose the pmf of *F* is {*p_k*}_{*k*≥0}
- Let $d_1, d_2, \ldots, d_n \stackrel{i.i.d.}{\sim} F$.
- Endow vertex i with d_i half edges.
- Randomly pair these half edges. Ignore self loops and multiple edges.

イロト 不得 とくほ とくほ とうほ

Size-biasing and Phase Transition

- Start exploring from some vertex o. This vertex has degree k with probability p_k . Not true for the subsequent vertices in the exploration branching process.
- Size Biasing: A first generation vertex with degree *m* is *m* times as likely to be chosen to be the progeny of *o* as a vertex with degree 1!
- The offspring distribution in the first and subsequent generation then becomes

$$q_{k-1} = \frac{kp_k}{\mu}$$
 where $\mu = \sum kp_k$.

• Effective Mean Number of Progeny: $\nu = \frac{1}{\mu} \sum k(k-1)p_k$.

- Phase Transition at $\nu = 1$.
- Open Problem: What is the size of the largest component when $\nu < 1$? Conjecture: $O(n^{\frac{1}{(\gamma-1)}})$ when $p_k \sim Ck^{-\gamma}$, $\gamma > 3$.

- Dynamic process to obtain a graph with heavy tailed degree distributions.
- Start at t = 0 with two vertices with an edge between them.
- At each time t add a vertex and connect it to one vertex in the existing graph. A vertex of degree k is chosen with probability proportional to f(k).
- If $f(k) = k^{\alpha}$, $\alpha < 1$, then $p_k \approx ck^{-\alpha}e^{-ck^{1-\alpha}}$.
- If f(k) = k^α, α > 1, then there is one vertex with degree O(t) and all other vertices have degree O(1).

■ If
$$f(k) = a + k$$
, and $a > -1$ then $p_k \sim Ck^{-(3+a)}$.

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

The Poisson Random Connection Model

- The RCM is a random graph.
- Vertex set is a Poisson Point Process \mathcal{P}_{λ} of intensity $\lambda > 0$ in \mathbb{R}^d , $d \in \mathbb{N}$.
 - For $A \subset \mathbb{R}^d$, the number of points in *A* follows a Poisson distribution with mean $\lambda |A|$:

P(The number of points in
$$A = k$$
) = $e^{-\lambda |A|} \frac{(\lambda |A|)^k}{k!}$, $k = 0, 1, 2, ...$

2 For $A, B \subset \mathbb{R}^d$ the number of points in *A* and *B* are independent.

- Connection Function: $g : \mathbb{R}^d \to [0, 1]$.
- Edges: There is an edge between $x, y \in \mathcal{P}_{\lambda}$ with probability g(x y) independently of everything else. Dependency!!!

イロト 不得 とくき とくき とうき

- Physics: Bonds in Particle Systems
- **Epidemiology:** Infected herd at location *x* infecting another at location *y*.
- Telecommunication: Communication between two transmitters.
- Biology: Sensing between two cells.

Related Models

- **Random Geometric Graph**: g(x) = 1 if $|x| \le 2r$ and zero otherwise.
- SINR Graph: Edge between *x_i*, *x_j* if the signal-to-noise-plus-interference-ratio

$$SINR = \frac{PE_{ij}\ell(x_i, x_j)}{N + \gamma \sum_{k \neq i,j} PE_{kj}\ell(x_k, x_j)} > T.$$

Inhomogenous RCM:

$$g(x) = 1 - \exp\left(-\eta \frac{W_x W_y}{|x|^{lpha}}\right).$$

Independent Weights. $P(W_x > w) = w^{-\beta}, \quad w \ge 1.$

RCM with preferential attachment: (Jacob and Morters (2015))

<ロ> <四> <四> <四> <四> <四> <四</p>

- Phase Transition: A small change in a local parameter results in an abrupt change in the global behaviour.
- The phase transition of interest is the size of the largest component: multi-hop transmission, conductivity, spread of epidemics
- Infinite System: Transition from finite connected components to an infinite component.
- Finite System: Components logarithmic in size to a giant component which covers a non-trivial fraction of the nodes.

イロト イロト イヨト イヨト

Percolation

- Assume there is a point at the origin *O*. Let *C* be the component containing the origin.
- Percolation Probability: $\theta(\lambda) = P(|C| = \infty)$.
- The RCM is said to percolate if $\theta(\lambda) > 0$.
- If the RCM percolates then there is w.p. 1 a unique infinite component.
- Critical Intensity: $\lambda_c := \inf\{\lambda > 0 : \theta(\lambda) > 0\}.$
- $\theta(\lambda)$ is a monotonic function.
- Non-trivial Phase Transition: $0 < \lambda_c < \infty$.

イロト 不得 とくき とくき とうき

Non-trivial Phase Transition in the RCM

- The points connected to *O* form an inhomogenous Poisson point process of intensity $\lambda g(x)$.
- Expected Degree = $\lambda \int_{\mathbb{R}^d} g(x) dx$.
- No non-trivial phase transition if $\int_{\mathbb{R}^d} g(x) dx$ equals zero or ∞ .

Theorem (Penrose 1991)

Suppose $0 < \int_{\mathbb{R}^d} g(x) dx < \infty$. Then there exists a $\lambda_c \in (0, \infty)$ such that $\theta(\lambda) = 0$ for $\lambda < \lambda_c$ and $\theta(\lambda) > 0$ for $\lambda > \lambda_c$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >