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Phase Transition

Phase Transition: A small change in a local parameter results in an
abrupt change in the global behaviour.

On the Systemic Fragility of FinanceLed Growth, Metroeconomica, Vol.
66, Issue 1, pp. 158-186, 2015 by Amit Bhaduri, Srinivas Raghavendra
and Vishwesha Guttal.

dP
dt

= −P3 − 5P2 − 4P + D.
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Example

Figure: f (x) = −x3 − 5x2 − 4x + D with D = 2
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Example

Figure: f (x) = −x3 − 5x2 − 4x + D with D = −1
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Bi-Stability and Hysteresis
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Agent-based Models (Lux, 1995)

Market has two types of traders.

Fundamentalists who number N and buy (sell) one unit of stock when
asset price is below (above) the fundamental price (pF).

Chartists or noise traders who also number N. Chartists are categorised
either as optimists (NO) or pesimists (NP). NO + NP = N.

Transitions: O→ P at rate NP
N and P→ O at rate NO

N .

x :=
NO − NP

N
.

Price Dynamics

dP
dt

= P (NF(PF − P) + NCx) .

Equilibrium: dP
dt = 0 ⇒ P = PF + x.
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Price Realization

Abrupt changes are purely due to random fluctuations. Not clear why
this constitutes “herding”.
What if transition rates have memory? Each transition of a particular
type enhances the probability of the next transition being of the same
type.
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Herding

Abrupt changes are purely due to random fluctuations. Not clear why
this constitutes “herding”.

What if transition rates have memory? Each transition of a particular
type enhances the probability of the next transition being of the same
type.
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The Galton-Watson Branching Tree

Start with one individual in generation zero: Z0 = 1.

Offspring Distribution: {pk}k≥0.

Xnj = the number of children of the individual labeled j in generation n.
The size of the population in generation n + 1 satisfies

Zn+1 =

Zn∑
j=1

Xnj; P(Xnj = k) = pk.

Mean Number of Offspring: µ =
∑∞

k=1 kpk.

E[Zn+1|Zn] = Znµ ⇒ E[Zn] = µn.

Zn
µn is a martingale.

For µ ≤ 1 we have Zn → 0 almost surely.

For µ > 1 extinction probability η satisfies η =
∑∞

k=0 pkη
k.
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Bond Percolation on the Random Grid

Consider the infinite d−dimensional lattice Zd.

Label each edge between neighboring sites open with probability p and
closed with probability 1− p independent of everything else.

Let C be the component containing the origin.

Percolation Probability: θ(p) = P (|C| =∞).

The random grid is said to percolate if θ(p) > 0.

θ(p) is a monotonic function.

Critical Intensity: pc := inf{p > 0 : θ(p) > 0}.
Non-trivial Phase Transition: 0 < pc < 1.
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Non-trivial Phase Transition

pc > 0:

θ(p) ≤ P(There is an open path of length n from the origin)

≤ pn(2d) · (2d − 1)n−1 → 0,

as n→∞ for p < (2d − 1)−1.

For any d ≥ 3, pc(d) ≤ pc(2) = 1
2 .

For p < pc components sizes have exponentially decaying tails as do
components not part of the infinite component in the case p > pc.
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Number of Infinite Components

If the random grid percolates then there is w.p. 1 an infinite component.

1 P(∪{|Cx| =∞}) ≤
∑

x P(|Cx| =∞) and θ(p) = P(|Cx| =∞).
2 P(There exists an infinite component) ≥ θ(p) > 0. Zero-One Law.

There is at most one infinite component.
1 Number of infinite components N is translation invariant. Ergodic Theory
⇒ P(N = k) = 1 for some k ∈ N ∪ {0} ∪ {∞}.

2 Rule out 2 ≤ k <∞.
3 Burton-Keane argument.
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Consequence of Uniqueness; Open Problem

pc(2) = 1
2 .

1 θ( 1
2 ) = 0. Suppose Not. . .⇒ pc ≥ 1

2 .
2 Suppose pc >

1
2 . Then θ( 1

2 ) = 0⇒ P(Left-right crossing of Bn)→ 0.
P(Left-right crossing of Bn) = P(Top-down dual crossing of Bn) =

1
2 .

SLE: Scaling limits of interface between open and closed islands at
criticality.

Open Problem: What happens at criticality for d = 3?

Known for a long range percolation model.
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The Erdös-Rényi Random Graph G(n, p)

Graph with n vertices and an edge between any two pairs of vertices with
probability p.

Expected degree of a vertex = (n− 1)p.

np


→ 0 Sparse Regime
→ c ∈ (0,∞) Thermodynamic Regime
∼ c log n Connectivity Regime
∼ cn Dense Regime.
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The Thermodynamic regime: p = c
n

Local Tree-like structure - no short cycles.

Exploration Process: Start from some node r. Number of neighbors ∼
Bin((n− 1), p). Need to discount for nodes already explored.

If c ≤ 1 the exploration process is dominated by a GW branching
process and hence dies out w.p.1.

If c > 1 the branching process approximation works well until
component size stays below n

2
3 .

η < 1⇒ component will grow to reach size n
2
3 with positive probability.

Can’t have two disjoint component of size larger than n
2
3 . So only one

giant component of size O(n).

Second largest component of size O(log n). Expected number of nodes
not in the giant component is ∼ ηn
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The Critical Window and Degree Distribution

The Critical Window: p = 1
n + βn−

1
3 .

Component sizes are O(n
2
3 ).

Map components via the exploration process to the excursions of a
reflected RW.

Scaled excursions then converge to the excursions of a reflected BM with
drift.

Degree Distribution: If p = c
n then P(D = k) ≈

(n
k

)
pk(1− p)n−k →

e−cck

k! , The Poisson distribution!
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The Configuration Model

Empirical data of real-world networks shows degree distribution to be
heavy-tailed.

Given a degree distribution F can we construct a graph on n vertices
whose nodes have degree distribution F? Suppose the pmf of F is
{pk}k≥0

Let d1, d2, . . . , dn
i.i.d.∼ F.

Endow vertex i with di half edges.

Randomly pair these half edges. Ignore self loops and multiple edges.
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Size-biasing and Phase Transition

Start exploring from some vertex o. This vertex has degree k with
probability pk. Not true for the subsequent vertices in the exploration
branching process.

Size Biasing: A first generation vertex with degree m is m times as
likely to be chosen to be the progeny of o as a vertex with degree 1!

The offspring distribution in the first and subsequent generation then
becomes

qk−1 =
kpk

µ
where µ =

∑
kpk.

Effective Mean Number of Progeny: ν = 1
µ

∑
k(k − 1)pk.

Phase Transition at ν = 1.

Open Problem: What is the size of the largest component when ν < 1?

Conjecture: O(n
1

(γ−1) ) when pk ∼ Ck−γ , γ > 3.
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Power Laws, Preferential Attachment

Dynamic process to obtain a graph with heavy tailed degree distributions.

Start at t = 0 with two vertices with an edge between them.

At each time t add a vertex and connect it to one vertex in the existing
graph. A vertex of degree k is chosen with probability proportional to
f (k).

If f (k) = kα, α < 1, then pk ≈ ck−αe−ck1−α
.

If f (k) = kα, α > 1, then there is one vertex with degree O(t) and all
other vertices have degree O(1).

If f (k) = a + k, and a > −1 then pk ∼ Ck−(3+a).

skiyer (IISc Math) Phase Transitions 19 / 25



The Poisson Random Connection Model

The RCM is a random graph.

Vertex set is a Poisson Point Process Pλ of intensity λ > 0 in Rd, d ∈ N.

1 For A ⊂ Rd, the number of points in A follows a Poisson distribution with
mean λ|A|:

P(The number of points in A = k) = e−λ|A|
(λ|A|)k

k!
, k = 0, 1, 2, . . . .

2 For A,B ⊂ Rd the number of points in A and B are independent.

Connection Function: g : Rd → [0, 1].

Edges: There is an edge between x, y ∈ Pλ with probability g(x− y)
independently of everything else. Dependency!!!
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Applications

Physics: Bonds in Particle Systems

Epidemiology: Infected herd at location x infecting another at location y.

Telecommunication: Communication between two transmitters.

Biology: Sensing between two cells.
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Related Models

Random Geometric Graph: g(x) = 1 if |x| ≤ 2r and zero otherwise.

SINR Graph: Edge between xi, xj if the
signal-to-noise-plus-interference-ratio

SINR =
PEij`(xi, xj)

N + γ
∑

k 6=i,j PEkj`(xk, xj)
> T.

Inhomogenous RCM:

g(x) = 1− exp
(
−η

WxWy

|x|α

)
.

Independent Weights. P(Wx > w) = w−β, w ≥ 1.

RCM with preferential attachment: (Jacob and Morters (2015))
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Phase Transition

Phase Transition: A small change in a local parameter results in an
abrupt change in the global behaviour.

The phase transition of interest is the size of the largest component:
multi-hop transmission, conductivity, spread of epidemics

Infinite System: Transition from finite connected components to an
infinite component.

Finite System: Components logarithmic in size to a giant component
which covers a non-trivial fraction of the nodes.
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Percolation

Assume there is a point at the origin O. Let C be the component
containing the origin.

Percolation Probability: θ(λ) = P (|C| =∞).

The RCM is said to percolate if θ(λ) > 0.

If the RCM percolates then there is w.p. 1 a unique infinite component.

Critical Intensity: λc := inf{λ > 0 : θ(λ) > 0}.
θ(λ) is a monotonic function.

Non-trivial Phase Transition: 0 < λc <∞.
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Non-trivial Phase Transition in the RCM

The points connected to O form an inhomogenous Poisson point process
of intensity λg(x).

Expected Degree = λ
∫
Rd g(x)dx.

No non-trivial phase transition if
∫
Rd g(x)dx equals zero or∞.

Theorem (Penrose 1991)
Suppose 0 <

∫
Rd g(x)dx <∞. Then there exists a λc ∈ (0,∞) such that

θ(λ) = 0 for λ < λc and θ(λ) > 0 for λ > λc.

skiyer (IISc Math) Phase Transitions 25 / 25


