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Abstract

We study monopolistic pricing, with a capacity constraint, of a good
that loses its value after three periods. In each period a continuum of
buyers, each of whom might be one of two types, enter. Each of the buy-
ers chooses either to make a purchase as soon as they enter, or to wait
for a lower price. The price path is found to be strictly non-decreasing,
u-shaped or horizontal for different proportions of buyers with a higher
willingness to pay. Any strategy involving ‘final sales’ is non-optimal. The
predictions are empirically tested.

Keywords: Dynamic pricing, capacity constraints, time-sensitive goods, sub-
game perfection.
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1 Introduction

It is a well-known fact that passengers on the same flight, traveling in the same
class, often end up paying different prices for their tickets. This is because the
prices of such tickets vary over time, often within the span of a few hours. While
buyers have the option of purchasing tickets months prior to the date of depar-
ture, casual observation suggests that the prices offered by an airline are high
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if a purchase is attempted too early, drop after a period of time and then prior
to departure they rise again. An empirical study byb Stavins (2001) indicates
that five weeks prior to departure, prices start rising. Instead of monotonically
reducing prices, selling every available seat and waiting for takeoff, the airline
instead, chooses to save a certain number of seats for future buyers, who would
be willing to pay a high price for the same seats. This shows, that in order to
solve for the optimal price path of such goods, we need a model with a finite
time horizon, where one or many sellers while facing a capacity constraint, of-
fer(s) a finite measure of units for sale. In each period, a continuum of buyers,
each of whom might be one of two types, enters the market. The seller chooses,
without precommitment, price and measure of units to offer in each period,
while each of the buyers choose either to make a purchase as soon as they en-
ter, or to wait for a lower price which might be made available in the future.

The operations research literature identifies airline ticket pricing as dynamic
pricing (also known as yield management), where the product ceases to exist at
a certain point in time and capacity can only be added at a very high marginal
cost. The product being discussed here is non-durable, non-storable and can-
not be resold. We could consider an airline ticket to be a futures contract on a
service to be provided by the airline in the future. As the airline attempts to sell
tickets over time, it is in effect “signing” contracts with different customers on
different terms. As the seller is unable to precommit to the terms of the con-
tract in the future and is in effect competing against future versions of himself
(herself), he (she) faces the same intertemporal and time-consistency prob-
lems as a durable-goods monopolist. Other examples of such products include
hotel rooms, generated electricity or other “sell before”goods where transac-
tions occur through a futures contract (McAfee & Velde). Given the similari-
ties in the problems facing an agent signing multiple futures contracts (airline)
and a durable goods monopolist, we can refer to the vast literature on time-
consistency issues in a durable-goods monopoly.

In this paper, we use a model which extends that of a durable-goods monopoly
model by Conlisk, Gerstner and Sobel (CGS, 1984). In their infinite time hori-
zon model, a new cohort of consumers enters the market in each period. The
consumers in each group differ amongst themselves in terms of the valuation
for the good. Some of these buyers choose to make a purchase in the same
period, while others decide to wait for a lower price. Usually the single seller,
who does not face any capacity constraint, prefers to sell the product at a price
just low enough to sell immediately to consumers with a high willingness to
pay, as long as revenue earned from selling to “high” type buyers exceeds rev-
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enue earned from selling to “low” type buyers. However, as sufficient number
of consumers with a lower willingness to pay accumulate in the market, the
seller holds a ‘sale’ by dropping the price low enough, so that buyers with lower
willingness to pay can buy the product. This leads to an equilibrium where pe-
riodic ‘sales’ are held and the corresponding price path is cyclic. We extend this
model, by introducing a capacity constraint for the single seller and by solving
for the equilibrium for a finite time horizon.

The main predictions of the theoretical model are as follows. First, a suffi-
ciently patient seller never offers any ‘sale’ in the last period. This is because the
seller chooses to reserve some units for sale in the last period and offer them at
high prices to high valuation buyers who enter the market in that period. Sec-
ond, the measure of units offered for sale in any period where the seller chooses
to offer the good to both types of buyers is a decreasing function of the propor-
tion of high type buyers in the market. Third, the shape of the price path is
horizontal, u-shaped or strictly non-decreasing for various ranges of param-
eter values. For example, for routes with the highest proportion of high type
buyers, sellers had no incentive to offer a sale and the price path is horizontal.
Routes with lower proportions of high type buyers have price paths which are
strictly non-decreasing or u-shaped.

We collected data on prices over 15 weeks for 30 routes in the US. While
the first prediction was found to be empirically valid, we find little evidence to
support the hypothesis that the price path should be horizontal for routes with
the highest proportion of buyers with a higher willingness to pay. We classified
the routes into low, medium and high proportion of high type buyers and find
that prices increase as the date of departure grows closer for all three types of
routes. The rate of increase was highest for routes with the highest fraction
of high type buyers. We did find some evidence for a u-shaped price path for
routes with low or medium proportion of high type buyers when we looked at
the last 10 weeks of observations.

2 Review of Literature

As mentioned in the previous section, even though airline tickets are not durable,
the intertemporal problems facing a seller of airline tickets are identical to those
facing a durable goods monopolist. We thus begin the review of literature sec-
tion by referring to the literature on durable goods monopoly. The problem
of intertemporal price discrimination as faced by a durable-goods monopo-
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list has been the focus of several papers over the years. In his seminal paper,
Coase (1972) conjectured that a durable-goods monopolist would be unable to
exert any monopoly power. This is because rational buyers would anticipate
correctly that in the absence of precommitment to future prices, the monopo-
list would reduce prices in an attempt to cater to residual demand and would
refuse to buy the product as long as prices remained above the competitive
level.

There are two assumptions, which are crucial to our model. The first is that
the seller faces a capacity constraint, while the second is the constant influx
of new buyers. It has been found that the Coase conjecture fails to hold under
these assumptions. McAfee and Wiseman (2003) show that capacity costs of ar-
bitrarily small degree can eliminate the zero profit conclusion. Capacity costs
borne by the seller serve as a strong commitment device, as the choice of ca-
pacity enables the seller to slow the sales, reduce the fall in prices and thus per-
mits the seller to set initial prices above marginal costs. Papers by Sobel (1984),
Conlisk, Gerstner and Sobel (1984) show that the equilibrium in a model with
a continual influx of new buyers involves price cycles where each seller pro-
duces a homogeneous good and sells it to consumers with different willingness
to pay. A cyclic price path is also obtained in a paper by Narasimhan (1989),
who uses a framework similar to that of CGS but assumes that the entry of new
consumers is governed by a diffusion process. In his model, the number of buy-
ers who enter the market in each period is a function of cumulative sales and
is time variant. Unlike Conlisk et al. the market size in his model is fixed, such
that after some time saturation effects set in.

An alternate outlook is presented in papers by Brumelle and McGill (1993)
and Wollmer (1992), who solve for an optimum airline seat booking policy,
where lower fare class customers book tickets before higher fare class passen-
gers. In these papers, airlines solve for a critical number of seats in each fare
class, which are reserved for potential future passengers who are willing to pay
a higher price. Booking requests for a particular fare class are accepted if and
only if the number of empty seats is strictly greater than its critical level and
rejected otherwise. Wollmer shows that this critical value is a decreasing func-
tion of the fare price and is equal to zero for the highest fare (class). However,
these papers lack the flavor of durable goods, as buyers do not have the option
of staying in the market to wait for a lower price, while sellers do not compete
with future incarnations of themselves.

Stavins (2001) addresses the issue of how airline prices move over time in
a paper in which she examines how price discrimination changes with market
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concentration in the airline market. Price discrimination is found to increase
as the markets become more competitive. The data set included fares offered
35 days prior to departure, followed by 21 days prior to departure, 14 days prior
to departure and finally 2 days prior to departure. The data thus allowed for
examination of how prices change as the departure date drew closer. From
the OLS regression it was discovered that cheaper fares disappear, leaving only
more expensive tickets for sale.

McAfee and Velde (2004) provide an extensive survey of yield management
research in operations research journals and then test the predictions of these
models with airline pricing data collected from 1,260 flights. They test the fol-
lowing five propositions. First, prices fall as the date of departure approaches.
Second, prices rise initially. Third, competition reduces the variance in prices.
Fourth, prices change as the number of empty seats remaining change and fi-
nally fifth, prices of flights leaving from substitute airports or departing at sub-
stitute times are correlated. They find that prices increased $50 in the week
before takeoff on top of a rise of $28.20 the previous week. Thus the first propo-
sition was empirically false and theories which assume that customers arriving
in the market at different points in time are identical are invalid. Overall, there
was scant empirical evidence in favor of the major theoretical predictions. 1

However, the routes considered by them had multiple airlines serving them,
such that their results are inapplicable for models with a single seller.

Etzioni et al (2003) devise an algorithm called Hamlet, which when trained
on a data set comprising of over 12,000 observations over a 41 day period, was
able to generate a predictive model which enabled 607 simulated passengers
an average savings of 27%. Flights were found to have discernible price tiers
and the number of such tiers varied from two to four, depending on the air-
line and the particular flight. They find that pricing policies tend to be similar
for airlines belonging to the same category and that the prices fluctuate more
and are more expensive for bigger airlines. Finally, they observe that prices in-
crease two weeks prior to departure which corroborates the empirical finding
of Stavins.

The main contribution of this paper is to provide insights into the relation-
ship between the proportion of buyers with a higher willingness to pay and the
corresponding shape of the price path, from a model which incorporates some
essential features of an airline pricing problem. The paper proceeds as follows.
In the following section a basic three-period model is developed and strategies

1They do not specify as to whether the second proposition was found to be empirically valid.
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for both players outlined. Section 4 identifies possible candidates for subgame
perfect outcomes and describes conditions under which we get the different
price paths. Section 5 describes the data, 6 the empirical model while section 7
presents the results. Section 8 contains the conclusions.

3 Model

Setting. Time is discrete. We can consider a finite horizon model of T periods.
The good has a lifetime of T periods, after which it is assumed to be lost forever.
In order to consider a simple version, we assume that T = 3.
Supply side. There is a single seller of the product. The monopolist faces con-
stant marginal cost, assumed without loss of generality to be zero. The total
measure of units of the product (seats) available to the monopolist is 3. The
seller chooses to offer a continuum of units of measure qi ∈ [0, 3] for i = 1, 2, 3 in
period i . The seller also chooses price p i for period i , so as to maximize sum of
discounted revenue earned, calculated at discount factorρ, with 0<ρ < 1. The
monopolist cannot rent the product; at any given date, the monopolist cannot
make binding commitments about future prices and measure of units to be of-
fered for sale.
Demand side. A continuum of buyers of measure 2 enter the market in each
period, with each buyer having unit demand. Buyers in each cohort can be one
of two types. A continuum of buyers of measure 2α (with 0 < α < 1) enter the
market in each period and have valuation for the product given by V1, while a
continuum of buyers of measure 2(1−α) enter the market in each period and
value the good at V2, where V1 > V2 > 0. Buyers with valuation V1 are said to be
of ‘high’ type, while buyers with valuation at V2 are said to be of ‘low’ type. We
assume that the majority of buyers entering the market in each period are of
low type and hence α∈ (0, 1/2).

Buyers are rational. Each buyer on entering the market decides either to
purchase the product in the current period or to wait for a lower price, except
for buyers in the last period, who either decide to buy or not to buy the prod-
uct in the last period. In the event that the buyer is indifferent between buy-
ing in the current period and waiting (or not to buy), the buyer is assumed to
make the purchase immediately. Buyers assume that their own decision as to
when to buy the product has no bearing on other buyer’s decision as to whether
and when to buy the same product. This is a consequence of the assumption
that we have a continuum of buyers in the market. The probability that the
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buyer will get the product in period i is given by Φi which is determined en-
dogenously. Once a consumer buys the product, he or she leaves the market
forever. A consumer who has not bought the product stays in the market till
period 3, regardless of when he or she first entered the market. Finally, no re-
sales are allowed. All consumers are price takers, and they have no bargaining
power. This, once again, is a consequence of the assumption that we have a
continuum of buyers in the market.
Timing of events. At the beginning of period 1, the seller announces the price
for the first period, p1 and the measure of units available for purchase, q1. A
continuum of buyers of measure 2 enter the market in the first period, of which
buyers of measure 2α are of ‘high’ type and buyers of measure 2(1−α) are of
‘low’ type. Each buyer decides whether to buy the product in the first period,
or to wait for a lower price which might be made available in the future. Based
on p1 and q1, the seller knows the measure of units that were actually sold in
the first period. At the beginning of the second period, the seller announces
price for period 2, p2 and the measure of units available for sale in the second
period, q2. A new cohort of buyers (of measure 2) enter the market in the second
period. These buyers along with the buyers who decided not to buy the product
in period 1 and hence chose to remain in the market then constitute the total
measure of buyers in the market in the second period. Each of these buyers
in turn decide either to purchase the product at price p2 or to wait for a lower
price in period 3. A similar sequence of events follow in period 3, except for the
fact that buyers of both types in period 3, choose either to purchase or not to
purchase the good in the last period.

We assume that the type of each buyer is publicly observable, such that we
have a complete information model. We further assume that, even though the
seller knows the type of each and every ‘active’ buyer in the market at any
point of time, he or she is unable to price discriminate and must charge (or
announce) a single price in every period.2 We solve for the subgame perfect
outcomes of the game described above for various combinations of parame-
ter values. Conversely, we could have assumed that the buyers’ types are not
observable. In that case, Perfect Bayesian equilibrium would have been the ap-
propriate equilibrium concept, where we would have to explicitly specify how

2By ‘active’ buyers we mean buyers who have chosen not to purchase the product in previ-
ous periods and have instead chosen to remain in the market for lower prices. ‘Active’ buyers
in a particular period also include buyers who entered the market in the same period and are
about to decide either to purchase the product or to wait for a lower price in periods 1 and 2,
and either to purchase or not to purchase the product in period 3.
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agents form beliefs for information sets on and off the equilibrium path.
Notation. The following notation is introduced in order to describe the total
measure of ‘high’ and ‘low’ type buyers in the market at each point of time, as
well as the measure of units left with the seller at the beginning of each period:
b H

i = Total measure of ‘high’ type buyers in the market including ones entering
the market in period i .
b L

i = Total measure of ‘low’ type buyers in the market including ones entering
the market in period i .
s i = Measure of units left with the seller at the beginning of period which is a
function of p i−1,qi−1,b H

i−1,b L
i−1 and s i−1, where p i−1,qi−1 are control variables

and b H
i−1,b L

i−1, s i−1 are state variables for period i −1.
Transition Equations. If d i denotes demand for the product in period i , while
m i represents measure of units actually sold in period i then m i =min{qi , d i }

where d i =

¨

b H
i if V2 < p i ≤ p H

i

b H
i +b L

i if p i ≤V2
. Then, s i+1 = s i −m i and

b H
i+1 =























2α+b H
i if p i > p H

i ,∀qi

2α+(b H
i −m i ) if V2 < p i ≤ p H

i ,qi <b H
i such that m i =qi

2α if V2 < p i ≤ p H
i ,qi ≥b H

i

2α+b H
i

�

1−
qi

b H
i +b L

i

�

if p i ≤V2,qi <b H
i +b L

i

2α if p i ≤V2,qi ≥b H
i +b L

i

b L
i+1 =











2(1−α) if p i ≤V2,qi ≥b H
i +b L

i

2(1−α)+b L
i

�

1−
qi

b H
i +b L

i

�

if p i ≤V2,qi <b H
i +b L

i

2(1−α)+b L
i if p i >V2,∀qi

where p H
i is the price in period i which makes ‘high’ type buyers indifferent

between buying the product in period i and waiting for a lower price in period
i +1.

A strategy for the monopolist specifies for each period, price and measure
of units to be offered to the buyers as a function of the history of the game. A
strategy for the buyer of each type on the other hand, specifies at each time
and after each history (in which he or she has not previously purchased or in
case he or she has just entered the market) whether to accept or to reject the
monopolist’s offered price.
Optimal Decision Rules. The optimal decision rule for the seller and for the buy-
ers in period 3 is described as follows. The ‘high’ type buyer chooses according
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as

In period 3, chosen action=

¨

Buy in period 3 if p3 ≤V1

Not buy otherwise
(1)

The ‘low’ type buyer chooses according as,

In period 3, chosen action=

¨

Buy in period 3 if p3 ≤V2

Not buy otherwise
(2)

The seller chooses p3,q3 in order to

max
p3,q3

p3. min{q3, d 3(p3)} subject to q3 ≤ s3 (3)

where d 3 is defined as follows:

d 3 =

¨

b H
3 if V2 < p3 ≤V1

b H
3 +b L

3 if p3 ≤V2

In period 2, the ‘high’ type buyer chooses according as

In period 2, chosen action=

¨

Buy in period 2 if p2 ≤ p H
2

Wait otherwise
(4)

The ‘low’ type buyer chooses according as,

In period 2, chosen action=

¨

Buy in period 2 if p2 ≤V2

Wait otherwise
(5)

where p H
2 is defined by the following equation

(V1−p H
2 ) = Φ3(V1−p ∗3)w i t h Φ3 =











q ∗3
b H

3

if V2 < p ∗3 ≤V1

q ∗3
b H

3 +b L
3

if p ∗3 ≤V2

(6)

Here, we use a fixed-point argument. In period 2, the ‘high’ type buyers know
b H

2 ,b L
2 . For the time being they fix the p H

2 of all other ‘high’ type buyers and
calculate the corresponding b H

3 and b L
3 . Given b H

3 ,b L
3 these buyers can calculate

the price and measure of units the seller will offer in period 3, p ∗3 and q ∗3 . Using
p ∗3, q ∗3 and equation (6) these buyers are able to recover a p H

2 which should be
equal to the one originally assumed. p H

2 is thus the price the seller can charge
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in order to make the ‘high’ type buyers indifferent between buying in period 2
and waiting for a lower price in period 3. At the beginning of period 2, the seller
announces p2 and q2 in order to

max
p2,q2

p2. min{q2, d 2(p2)}+ρW (b H
3 ,b L

3 , s3) subject to q2 ≤ s2 (7)

where W is the continuation payoff earned by the seller in period 3 and d 2 is
defined as

d 2 =

¨

b H
2 if V2 < p2 ≤ p H

2

b H
2 +b L

2 if p2 ≤V2

Finally, we describe the optimal decision rules for the seller and the buyers for
period 1. The ‘high’ type buyer chooses according as

In period 1, chosen action=

¨

Buy in period 1 if p1 ≤ p H
1

Wait otherwise
(8)

The ‘low’ type buyer chooses according as,

In period 1, chosen action=

¨

Buy in period 1 if p1 ≤V2

Wait otherwise
(9)

where p H
1 is defined by the following equation

(V1−p H
1 ) = Φ2(V1−p ∗2)w i t h Φ2 =











q ∗2
b H

2

if V2 < p ∗2 ≤ p H∗
2

q ∗2
b H

2 +b L
2

if p ∗2 ≤V2

(10)

At the beginning of period 1, the seller announces p1 and q1 in order to

max
p1,q1

p1. min{q1, d 1(p1)}+ρW (b H
2 ,b L

2 , s2) subject to q1 ≤ 3 (11)

where W is the continuation payoff earned by the seller in period 2 and d 1 is
defined as

d 1 =

¨

b H
1 if V2 < p1 ≤ p H

1

b H
1 +b L

1 if p1 ≤V2

A subgame perfect Nash Equilibrium (SPNE) of this game will thus consist of a
strategy profile, σ = (S, B ) where S specifies a strategy on the part of the seller
which satisfies equations (3), (7) and (11) while B specifies strategies on the part
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of each buyer who decides either to buy or to wait for a lower price in periods
1 and 2, and either to buy or not to buy in period 3, which satisfies equations
(1), (4), (8) for ‘high’ type buyers and equations (2), (5) and (9) for ‘low’ type
buyers. The equilibrium is a symmetric equilibrium in the sense that in equilib-
rium all buyers of the same type, choose the same action in each period. With
non-atomic buyers, unilateral deviations made by them affect neither the ac-
tions of other buyers or those of the monopolist. Thus, in order to check for
subgame perfection, only unilateral deviations by the seller are considered. If
the seller deviates, the players keep following the optimal rules described above
from that point of time onwards. This means if a player discovers a history of
the game at any stage, which is not consistent with the one expected in equilib-
rium, the player continues to follow his or her optimal decision rule from that
time onwards.

As the seller announces p i and qi at the beginning of each period i , we de-
fine a pricing policy (p1, p2, p3,q1,q2,q3)which describes the prices charged and
the units offered for sale in each period. It is possible to derive eight such pos-
sible price paths, where in each period, the seller decides either to sell only to
‘high’ type buyers or to sell to both ‘high’ and ‘low’ types.

4 Candidates for Subgame Perfect Outcome

In this section, we examine the different possible pricing policies and the asso-
ciated price paths from which the seller might choose, under different combi-
nations of the parameters V1, V2,α and ρ. Since we are interested in decisions
made by a patient seller, we further assume that ρ→ 1.

4.1 No ‘sale’ in any period and ‘sale’ in every period

The first pricing policy we consider is one where the seller chooses to sell only
to ‘high’ type buyers in every period. The price charged in each period is V1,
while the measure of units offered for sale in each period is 2α.

The second pricing policy (V2, V2, V2, 2, 1, 0) also yields a horizontal price path,
but this time, the seller chooses to sell to both ‘high’ and ‘low’ type buyers in ev-
ery period.
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4.2 ‘Sale’ in the first period only

The seller could choose to hold a ‘sale’ in the first period only, where he or she
offers to charge p1 = V2 and p2 = p3 = V1. Given the price path and the mea-
sure of units offered in the first period, q1, the measure of units to be offered in
periods 2 and 3 should be q2 =b H

2 and q3 = s3 (if s3 <b H
3 ) or b H

3 (if b H
3 < s3).

Lemma 1. With p1 = V2 and p2 = p3 = V1 if α ∈
�

1

4
,

V2

V1

�

, then with ρ → 1 the

seller offers q1 =
3−6α

1−α
, q2 =b H

2 =
α+2α2

1−α
and q3 = s3 =b H

3 = 2α and if α<
1

4
≤

V2

V1
, then he or she offers q1 = 2, q2 = q3 = 2α. If α>

V2

V1
, then with ρ→ 1 the seller

offers q1 = 0, q2 =b H
2 = 4α and q3 = s3 = 2α.

Proof. Available upon request.

From the above lemma we find that with α≤
V2

V1
, the seller chooses to offer

measure q1 units in the first period in a way which ensures that s3 = b H
3 , such

that the seller will have no incentive to hold a ‘sale’ in the last period.

4.3 ‘Sale’ in the first two periods

Another strategy for the seller could be to offer a measure of units at price V2

in the first two periods, and to sell to ‘high’ valuation buyers in the last period.
Given the price path and the measure of units offered in the first and second
periods (q1 and q2 respectively), the seller should offer q3 = s3 (if s3 < b H

3 ) or b H
3

(if b H
3 < s3).

Lemma 2. With p1 = p2 = V2 and p3 = V1 if α ∈
�

1

4
,

V2

V1

�

, then with ρ → 1 the

seller offers q1 =
3−6α

1−α
, q2 = 0 and q3 = s3 = b H

3 =
3α

1−α
and if α <

1

4
≤

V2

V1
then

he or she offers q1 = 2, q2 =
1−4α

1−α
and q3 = s3 = b H

3 =
3α

1−α
. If α>

V2

V1
, then with

ρ→ 1 the seller offers q1 = 0, q2 = 0 and q3 = 6α.

Proof. Available upon request.

Proposition 1. If α <
1

4
≤

V2

V1
,ρ → 1 then (V2, V1, V1, 2, 2α, 2α) cannot be a sub-

game perfect outcome.
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Proof. Available upon request.

Proposition 2. If α ∈
�

1

4
,

V2

V1

�

,ρ→ 1 then (V2, V2, V1,
3−6α

1−α
, 0,

3α

1−α
) cannot be a

subgame perfect outcome.

Proof. Available upon request.

Proposition 3. If α≤
V2

V1
,ρ→ 1 then (V2, V2, V2, 2, 1, 0) cannot be subgame perfect.

Proof. Available upon request.

4.4 ‘Sale’ in the first and last period

In case the seller chooses to hold a ‘sale’ in the first and last period, the corre-
sponding price path is inverted u-shaped. The seller charges p1 = p3 = V2 and
p2 = p H

2 > V2. Given the price path and the measure of units offered for sale in
period 1, q1, the seller offers q2 =b H

2 and q3 = s3.

Lemma 3. With ρ → 1, p1 = p3 = V2 and p2 = p H
2 the seller offers q1 = 0, q2 =

b H
2 = 4α and q3 = s3 = 3−4α ∀ V1 >V2.

Proof. Available upon request.

In order to rule out profitable deviations in period 3, the seller must have no
incentive to charge p3 =V1. The required condition to ensure this is (3−4α)V2 >

2V1α⇒ α<
3V2

2(V1+2V2)
. Similarly, we also have to rule out profitable deviations

in period 2, given the history of the game p1 =V2 and q1 = 0.

Proposition 4. With ρ → 1,

�

V2, V1(1−
3−4α

6−4α
)+

3−4α

6−4α
V2, V2, 0, 4α, 3−4α

�

is

never subgame perfect.

Proof. Available upon request.

4.5 ‘Sale’ in the second period only

For the strategy involving a ‘sale’ in the second period only, the price path gen-
erated is u-shaped. Since the seller holds a sale in the second period only, he
or she charges p1 = p H

1 (to make ‘high’ type buyers indifferent between waiting
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and purchasing in period 1), p2 = V2 and p3 = V1. Given the price path and the
measure of units offered in periods 1 and 2 as q1 and q2 respectively, the seller
offers q3 = s3 (if s3 <b H

3 ) or b H
3 (if b H

3 < s3).

Lemma 4. With p1 = p H
1 , p2 = V2 and p3 = V1 if α ≤

2V2

V1+V2
, then with ρ → 1

the seller offers q1 = 2α, q2 =
6α2−15α+6

2(1−α)
and q3 = s3 = b H

3 =
5α−2α2

2(1−α)
. On the

other hand, if α >
2V2

V1+V2
, then with ρ → 1 the seller offers q1 = 2α, q2 = 0 and

q3 = 4α.

Proof. Available upon request.

As was the case with strategies involving ‘sales’ in the first period only or
the first two periods, the seller offers measure q1 and q2 units in the first and

second period in a way which ensures that if α ≤
2V2

V1+V2
and ρ → 1, s3 = b H

3

such that there is no incentive for the seller to hold a ‘sale’ in the last period.

With α >
2V2

V1+V2
the seller chooses to offer measure zero units for ‘sale’ in the

second period.

Proposition 5. If α∈
�

1

4
,

V2

V1

�

, then with ρ→ 1

�

V1(1−
6α2−15α+6

2(1−α)(4−2α)
)+

6α2−15α+6

2(1−α)(4−2α)
V2, V2, V1, 2α,

6α2−15α+6

2(1−α)
,

5α−2α2

2(1−α)

�

cannot be subgame perfect.

Proof. Available upon request.

4.6 ‘Sale’ in the last two periods

For strategies involving ‘sales’ in the last two periods, the seller charges p1 =
p H

1 , p2 = p3 = V2 and offers q1 = 2α,q2 = 3− 2α,q3 = 0. These are the only qi s
which are time consistent.

Proposition 6. Ifα≤
V2

V1
<

2V2

V1+V2
andρ→ 1 then

�

V1

�

1−
3−2α

4−2α

�

+
3−2α

4−2α
V2,

V2, V2, 2α, 3−2α, 0] cannot be subgame perfect.

Proof. Available upon request.
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4.7 ‘Sale’ in the last period only

For ‘sale’ in the last period only, the seller sets p1 = p H
1 , p2 = p H

2 to ensure that
‘high’ type buyers are indifferent between buying the good and waiting for the
price V2 in the last period. The seller offers q1 = q2 = 2α and q3 = s3 = 3− 4α.
In this case, these are the only qi s which are time consistent. Given that p1 =
p H

1 , p2 = p H
2 and that q1 =q2 = 2α, the seller will choose to offer q3 = s3.

Proposition 7. If α≤
V2

V1
and ρ→ 1 then

�

V1(1−
3−4α

6−4α
)+

3−4α

6−4α
V2, V1(1−

3−4α

6−4α
)+

3−4α

6−4α
V2, V2, 2α, 2α, 3−4α

�

cannot be subgame perfect.

Proof. Available upon request.

Proposition 8. Ifα≤
V2

V1
andρ→ 1 then (V1, V1, V1, 2α, 2α, 2α) cannot be subgame

perfect.

Proof. Available upon request.

So far, for a particular range of parameter values (α ≤
V2

V1
,ρ → 1) we have

shown which pricing policies cannot be subgame perfect. Now we turn our at-
tention to policies which are subgame perfect for the same range of parameter
values.

Proposition 9. If α ∈
�

1

4
,

V2

V1

�

and ρ → 1 then (V2, V1, V1,
3−6α

1−α
,
α+2α2

1−α
, 2α) is

subgame perfect.

Proof. Available upon request.

Proposition 10. Ifα<
1

4
(for V1 ≤ 4V2) andα≤

V2

V1
(for V1 > 4V2) and

6α2−7α+4

α(4α+2)
<

V1

V2
(w i t h ρ → 1) then the pricing policy involving a ‘sale’ in the second period

only is subgame perfect.

Proof. Available upon request.

Proposition 11. Ifα<
1

4
(for V1 ≤ 4V2) andα≤

V2

V1
(for V1 > 4V2) and

6α2−7α+4

α(4α+2)
>

V1

V2
(with ρ→ 1) then (V2, V2, V1, 2,

1−4α

1−α
,

3α

1−α
) is subgame perfect.
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Proof. Available upon request.

Proposition 12. If α ∈
�

V2

V1
,

2V2

V1+V2

�

,ρ→ 1 and α ≥
3V2

2(V1+2V2)
, then (V2, V1, V1,

0, 4α, 2α) is subgame perfect.

Proof. Available upon request.

Since the seller offers q1 = 0, any price in period 1 can be supported as a

subgame perfect outcome. Thus, ifα∈
�

V2

V1
,

2V2

V1+V2

�

,ρ→ 1 andα≥
3V2

2(V1+2V2)
,

then (p1, V1, V1, 0, 4α, 2α) is subgame perfect.

Proposition 13. If α∈
�

V2

V1
,

2V2

V1+V2

�

,ρ→ 1 and α<
3V2

2(V1+2V2)
, then [V1(1−

6α2−15α+6

2(1−α)(4−2α)
)+

6α2−15α+6

2(1−α)(4−2α)
V2, V2, V1, 2α,

6α2−15α+6

2(1−α)
,

5α−2α2

2(1−α)

�

is sub-

game perfect.

Proof. Available upon request.

Proposition 14. If α >
2V2

V1+V2
,ρ→ 1 then (V1, V1, V1, 2α, 2α, 2α) will be subgame

perfect.

Proof. Available upon request.

4.8 Main Results and Intuition

Figure 1 shows the pricing policies which are subgame perfect for the different
combinations of parameter values. For higher values of V1 combined with high
values for α, the seller chooses not to hold a ‘sale’ in any period, such that only

‘high’ valuation buyers get to purchase the good. For α ∈
�

3V2

2(V1+2V2)
,

2V2

V1+V2

�

the seller chooses to offer q1 = 0,q2 = 4α,q3 = 2α and to charge any price p1,
p2 = p3 = V1 which is equivalent to not offering to hold a ‘sale’ in any period.
For the same range of parameter values, the seller cannot choose the pricing
policy (V1, V1, V1, 2α, 2α, 2α) since there exists a profitable deviation for the seller
by holding a ‘sale’ in the second period and to sell to ‘high’ valuation buyers
in the last period. Had the seller been able to credibly precommit, he or she
would have chosen the pricing policy (V1, V1, V1, 2α, 2α, 2α). For lower values of
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α, the seller chooses to hold a ‘sale’ in at least one period, and being patient,
chooses to hold a ‘sale’ in the second period. The corresponding price path
was u-shaped (shaded zone in figure 1). Finally, for the lowest values of V1 and
α, the seller chooses to have a ‘sale’ in two periods and thus charges price V2 for
the first two periods. 3

[Place figure 1 here.]

Thus the main results of the theoretical model are as follows:
(1) Any strategy involving a ‘sale’ in the last period is not subgame perfect. In

case the seller chooses to offer a ‘sale’ in one or both of the first two periods, the
measure of units offered for ‘sale’ is chosen in way to ensure that the measure
of units remaining with the seller at the beginning of the third period is equal
to the measure of high type buyers who remain ‘active’ in the last period. Since
p3 ∈ {V1, V2}, revenue maximization in the last period requires the seller to cater
only to high valuation buyers.

(2) The total measure of units offered in any period(s) in which a ‘sale’ is
announced is a decreasing function of α. This means that as the proportion of
high valuation buyers increases, the seller chooses to offer a smaller measure of
units at price V2. For example, in case the seller wants to offer p1 = p2 = V2 and

p3 = V1, then with α ∈
�

1

4
,

V2

V1

�

and ρ → 1, the seller offers q1 =
3−6α

1−α
,q2 = 0

and with α <
1

4
≤

V2

V1
, he (she) offers q1 = 2 and q3 =

1−4α

1−α
, such that (q1+q2)

was a decreasing function of α. Similarly, for the case where the seller chooses

to offer a ‘sale’ in the second period only, then with α ≤
2V2

V1+V2
and ρ→ 1, the

seller offers q2 =
6α2−15α+6

2(1−α)
which is also decreasing in α.

(3) The price path is horizontal, u-shaped or strictly non-decreasing for var-
ious ranges of parameter values (see figure 1).

We collected data in order to test these predictions empirically. In the event
the empirical results failed to match the theoretical predictions, we attempt to
provide an intuitive explanation behind such a failure(s).

3Had we considered cases where ρ is much smaller than 1, we would have found combina-
tions of V1 and αwhich make (V2, V2, V2, 2, 1, 0) subgame perfect.
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5 Data

While the theoretical model was highly stylized in the sense that it allowed us to
capture certain features of the airline ticket pricing, it diverged from the airline
ticket market in the following ways. First, we often observe last minute deals
being offered by some airlines on online travel sites like Priceline. Such dis-
counts are never made available directly from the airlines themselves. In this
case, airlines wait till the last few days before the flight departs and offer these
seats at a discount through some online travel agents, since selling them at a
lower price is preferred to flying with empty seats. Our theoretical model did
not allow for such strategies. Second, airline tickets usually come with various
sorts of restrictions. Travel restrictions are placed on certain tickets being of-
fered at cheaper rates to make them unattractive to price inelastic buyers (for
example, Saturday-night stay-over). Consumers end up self selecting the type
of ticket and its price which they find most attractive. However, the theoreti-
cal model constructed, did not allow for such purchase restrictions and had no
quality differentiation for the product being sold.

We collected price data for economy class tickets for one-way, non-stop flights
in the US. We thus consider tickets with the least number of restrictions. Fur-
ther, these routes were hand-selected such that only a single carrier offered ser-
vices on each of them. This was done to ensure that the airline was a monopoly
on that particular route, since the theoretical predictions are valid only for a
single seller framework and we were unsure of how the predictions would change
for a multiple seller setup. Even though the theoretical model made predictions
about the shape of the price path and the measure of units made available for
sale in each period for different range of parameter values, we could only em-
pirically test the predictions about the shape of the price path since the number
of seats made available for sale by an airline over any period of time was not ob-
servable.

The data set consists of two main components. The first component con-
tains airline pricing data on selected routes while the second describes the pro-
portion of “high” type buyers on each of these routes.

5.1 Airline Price Data

We collected pricing data for 28 one-way, non-stop flights and for 2 two-way
non-stop flights from Expedia and Orbitz. The data was collected twice a day,
at 8AM and 8PM, for 14-15 weeks (except for one flight for which we have 11
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weeks of observations), which led to a total of 6136 observations. A total of 14
airlines operated on these routes which consisted of 44 distinct cities, of which
some were major players like American and Delta, while others were smaller
carriers like Midwest Airlines and Frontier Airlines.

The routes and flights selected had the following features: (1) Each route
had a single airline operating on it. (2) Routes with a single airline but with
more than two flights operating on a single day were excluded. Routes which
had two flights which departed within a few hours of each other were also omit-
ted. The selected routes had a maximum of two flights operating on them on
any given day and in the event there was more than one flight, the flights de-
parted at least 3 hours apart.4 Thus, the selected flights had little or no compe-
tition.

The selected routes, the carriers serving them and the dates of departure,
are listed in table 7. All flights departed in early June, 2005. The flights to Kahu-
lui and Honolulu were two-way, both having return dates on June 17, 2005.
We purposely chose these dates following an observation by Etzioni at al, that
prices bounce around more for flights leaving around holidays than others.

5.2 Data on Proportion of “High” Type Buyers

We use the American Travel Survey (ATS, 1995) as the source for data on the
proportion of buyers with a higher willingness to pay. The survey contains data
at the state and metropolitan area (MA) levels and describes trip characteris-
tics for both households and individuals. Given a MA, trip characteristics for
an individual person are arranged in the following sequence. First, the survey
reports “person trip characteristics” given the MA as destination and the differ-
ent census divisions (CD) as origin. Second, it displays the same characteristics
for the same metropolitan area as origin and the various CDs as destination.
Next, taking the MA as destination, the survey presents trip characteristics for
the most frequent state origins. These states are the ones with the 10 largest
volumes of travel to that particular MA. Fourth, taking the MA as origin, the cor-
responding numbers are listed for the states which are the top 10 destinations.
Finally, the same order is followed for the cities which are the most frequent
origins and destinations for travel to and from that particular MA.

Trip characteristics amongst others included “main purpose of trip”, which
was further categorized into business, pleasure and others. Ideally, we would

4Of the 30 routes, only 5 had two flights operating on them on any given day.
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want the percentage of travelers who traveled by plane for business purposes
from one MA to another. However, these numbers were not available.

The survey also, did not report data for any of the routes on which both MAs
were represented as origin and destination. Thus, while we had data for both
San Francisco and Kansas City MAs individually, the proportion of business
travelers traveling from San Francisco to Kansas City were unavailable. This
is because on one hand San Francisco was not amongst the top 10 cities having
the most travel volume going to Kansas City and on the other, Kansas City was
not amongst the top 10 cities having the most travel volume coming from San
Francisco.

While we could have avoided this problem by looking at routes like New
York-Boston and San Francisco-Phoenix for which we would have the corre-
sponding percentages of travelers traveling for business purposes, these routes
had a number of airline carriers flying on them, which made these markets
oligopolies instead of monopolies, and unsuitable for consideration. We chose
to fix the destination city and looked at the percentages of travelers traveling for
business purposes (includes all forms of transportation), from the CD to which
the city of origin belonged. For example, for the flight from New Orleans to
Boston, we fixed the destination city (Boston) and looked at the proportion of
business travelers traveling from the West South Central CD to which Louisiana
belongs. This meant that we could use only 19 of the original 30 routes selected
for data collection. The proportions of “business” travelers traveling on the dif-
ferent routes are reported in table 8.

6 Empirical Model

Since the main purpose of this section is to test the theoretical predictions out-
lined in section 4, we set up a number of empirical models which when esti-
mated, delineates the relationship between the proportion of “high” type buy-
ers on a route and the slope of the corresponding price path. We begin by es-
timating a model which assumes that the prices on any route depend on the
number of observations left for departure and the proportion of “high” type
buyers on that route. We will refer to this as model 1.

Pm t =δm +β1(αm Dm t )+γ1Dm t + εm t (12)

where Pm t is the price for route m at time t , δm is a route specific intercept
term (dummy) which remains constant over time, αm denotes the proportion
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of business travelers on route m and Dm t is the number of observations left for
departure on route m at time t . If a route has 15 weeks of observations collected
twice a day, the variable Dm t takes values from 210 to 1. Thus, as Dm t decreases,
we move closer to departure. From equation (14) we get,

∂ Pm t

∂ Dm t
=β1αm +γ1 (13)

which implies that if the coefficient β1 is not significant, αm has no effect on the
slope of the price path.

Next, we construct a model where we categorize the routes into ones with
‘high’, ‘medium’ and ‘low’ proportion of business travelers and assign dum-
mies to them as follows. Assuming that αm represents the proportion of busi-
ness travelers on route m , we define for that route αm = αH = 1 if αm > 0.45
and 0 otherwise, αm = αM = 1 if 0.25 ≤ αm ≤ 0.45 and 0 otherwise and finally
αm =αL = 1 if αm < 0.25 and 0 otherwise. Thus, in addition to the route specific
dummy variables, we construct a model with dummies which equal 1 or 0 de-
pending on whether the route contains ‘high’, ‘medium’ or ‘low’ proportion of
business travelers. We will refer to this as model 2.

Pm t =δm +β1(αH Dm t )+β2(αM Dm t )+γ1Dm t + εm t (14)

The estimates from this model will give us some idea about the slope of the
price path for the three categories of routes. However, in order to obtain the
shape of the price path we need to check how prices change over time. In the
next step, we construct another model where we introduce dummies for num-
ber of weeks before departure. While the theoretical model had three periods,
it is not apparent how we should define periods in the empirical counterpart.
The theoretical model assumes that the measure of “high” type buyers entering
the market in each period remains the same over the three periods. Typically,
travelers with a higher willingness to pay for tickets enter the market in larger
numbers in the weeks just prior to departure than earlier on. Thus, we intro-
duce the dummies for number of weeks prior to departure as follows: D1 = 1 for
one week before departure, 0 otherwise, D2 = 1 for 1 to 3 weeks before depar-
ture and 0 otherwise and D3 = 1 for rest and 0 otherwise. The corresponding
model (model 3) assumes the following form.

Pm t =δm +β1(αLD1)+β2(αLD2)+β3(αLD3)+γ1(αM D1)+
γ2(αM D2)+γ3(αM D3)+θ1(αH D1)+θ2(αH D2)+θ3(αH D3)+ εm t

(15)
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Finally, we perform a Chow Breakpoint test to confirm whether there were
structural changes in the price path before and after pre-determined cutoff
points. To do this, we proceed using the following steps.

Step (1) We split the data set into two parts, such that with Dm t ≤ c (c being
the pre-determined break point), the data is said to belong to group 1 and with
Dm t > c data is said to belong to group 2.

Step (2) We take c = 105. We then create a dummy variable which takes
value 1 for Dm t ≥ 105 and 0 otherwise and create another dummy variable
(t i m e _d u m m y 2)which takes value 1 for Dm t < 105 and 0 otherwise.

Step (3) Get estimates for the coefficients of the following model.

Pm t = K +δm +β1(αm Dm t )+γ1(Dm t )+β2(αm Dm t × t i m e _d u m m y 2)
+γ2(Dm t × t i m e _d u m m y 2)+θ2t i m e _d u m m y 2+ εm t

(16)

Since theory predicts a horizontal price path for routes with the highest α,
we run the above regression only for those routes withαH = 1 and test forβ2 = 0,
γ2 = 0 and θ2 = 0. If the null hypothesis cannot be rejected, then there is no
structural change in the model before and after the breakpoint.

7 Results

Table 1 reports the descriptive statistics for the data sets for the following two
cases. (1) Includes all 30 routes for which different criteria are used for the
proportion of business travelers on the different routes. For example, for the
Austin-Washington DC route, we used the proportion of business travelers who
traveled from Texas (state as origin) to DC and for the Seattle-Tucson route, we
used the proportion of business travelers who flew from Austin. (2) Considers
only 19 of the 30 routes, for which we fix the destination city and use the pro-
portion of travelers traveling for business purposes from the CD to which to city
of origin belongs, to the destination city.

All the equations were estimated using OLS. Route dummies were used to
take into account route-specific characteristics, which remain unchanged over
time. Since the use of miscellaneous criteria for the proportion of business trav-
elers is unintuitive, we ran all the regressions for the 19 routes using the criteria
as described in the second case above. Table 2 contains the estimates of the
coefficients for equation (14).

Since both the coefficients are negative and significant, we can conclude
from equation (15) that the slope of the price path is negative. However, since
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No. of Obs Mean St. Devn Min Max

All 30 Routes
Price 6136 331.98 225.63 86 2441

Proportion of Business 0.336 0.173 0.03 0.74
Travelers

19 Routes
Price 3842 308.18 172.14 86 816

Proportion of Business 0.375 0.187 0.03 0.74
Travelers

Table 1: Descriptive Statistics

Coef. St. Error t-stat p-Value
αm ×Dm t -0.323 0.089 -3.63 0.000

Dm t -0.197 0.026 -7.63 0.000

Table 2: Regression Results for Model 1 for 19 Routes

an increase in Dm t signifies movement away from departure, the negative slope
obtained implies that prices increase as we move closer to departure. This re-
sult corroborates earlier findings of Stavins (2001), McAfee and Velde (2004)
and Etzioni et al (2003).

The coefficients of model 2 could be interpreted as follows. Each route can
only have either high, medium or low proportion of travelers with a high valua-
tion. The coefficient for Dm t represents the base case and denotes the slope of
the price path for routes which haveαm =αL (second and third terms drop out).
The sum of the coefficients of αM ×Dm t and Dm t refers to the slope of the price
path for routes with αm =αM , while the sum of the coefficients of αH×Dm t and
Dm t represents the slope of the price path for routes with αm =αH .

Thus, the slopes of the price path for routes with low, medium and high
proportion of travelers with a high valuation are −0.277,−0.217 and −0.492 re-
spectively. Prices are found to increase most quickly in routes with the highest
proportion of business travelers.
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Coef. St. Error t-stat p-Value

αH ×Dm t -.215 .056 -3.85 0.000

αM ×Dm t .060 .033 1.81 0.071

Dm t -.277 .021 -13.30 0.000

Table 3: Regression Results for Model 2 for 19 Routes

Coef. St. Error t-stat p-Value

αL ×D1 163.56 4.613 35.46 0.000
αL ×D2 118.733 1.702 69.75 0.000
αL ×D3 108.909 1.154 94.39 0.000
αM ×D1 200.877 8.482 23.68 0.000
αM ×D2 145.935 2.944 49.58 0.000
αM ×D3 132.333 1.908 69.35 0.000
αH ×D1 267.456 16.272 16.44 0.000
αH ×D2 156.654 5.159 30.36 0.000
αH ×D3 128.0702 2.319 55.22 0.000

Table 4: Regression Results for Model 3 for 19 Routes

The coefficients of model 3 allows us to demonstrate the relationship be-
tween the shape of the price path and the corresponding αm . The price path
is found to be rising for all three categories of routes (table 4). Routes with
αm = αH shows the sharpest increase in prices. The theoretical prediction that
the price path for routes with highα is horizontal is thus found to be empirically
invalid.

Finally, we report the results for the Chow Breakpoint test. For routes with
α = αH , theory predicts that there will be no change in the slope or the inter-
cept before and after the break point. This implies that all three coefficients
β2,γ2 and θ2 need to be not significant for equation (18). Table 5 reports the
coefficients for the Chow Breakpoint test for different pre-determined cutoff
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c β1 γ1 β2 γ2 θ2 F s t a t p v a l u e
105 0.413 −0.549 0.167 −1.043 55.908 33.99 0.000

70 0.562 −0.544 0.882 −2.774 105.632 35.66 0.000

42 0.109 −0.219 −3.148 −2.547 152.719 31.77 0.000

Table 5: Coefficients for Chow Breakpoint Test for Routes with α=αH

values (c). The F-statistic is based on the null hypothesis which involves the
restrictions, β2 = 0,γ2 = 0 and θ2 = 0. The low p-values led us to conclude that
the null hypothesis can be rejected for all three pre-determined cutoff points
and that there is structural change in the model before and after these cutoff
points.

Next, we collect empirical evidence which establishes that the shape of the
price path for routes with αm = αL is u-shaped, if we discard the oldest five
weeks of observations. We ran the following regression, where we introduced
route-specific dummies and dummies for weeks as follows

Pm t =δm +β1D1+β2D2+ ..+β7D7+ εm t (19)

where, D1 = dummy for the last two weeks before departure, D2 = dummy for
3 to 4 weeks before departure, D3 = dummy for 5 to 6 weeks before departure
and so on. Results for this regression equation are displayed in table 6.

The coefficients for dummies D1 to D5 shows that prices fall and then rise
as the date of departure draws closer. Thus, a u-shaped pattern emerges once
we choose to concentrate only on the last 10 weeks before take-off. We ran sim-
ilar regressions for routes with medium and high proportion of business trav-
elers, and found evidence of a u-shape for routes with medium proportion of
business travelers when we looked at the last 10 weeks before departure, while
no such pattern emerged for routes with high proportion of business travelers
where the price path was found to be rising.
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Coeff. St. Error t-stat p-Value

D1 65.679 6.352 10.34 0.000
D2 29.089 5.810 5.01 0.000
D3 28.918 6.344 4.56 0.000
D4 42.968 6.718 6.40 0.000
D5 45.904 6.522 7.04 0.000
D6 19.993 6.765 2.96 0.003
D7 −6.134 6.670 −0.92 0.358

Table 6: Regression Results for Equation 6 for Routes with α=αL

8 Conclusion

We construct a three-period model in which a single seller facing a capacity
constraint offers a finite measure of units of a non-durable good to a contin-
uum of buyers, each of whom might be one of two possible types. The seller
chooses without precommitment, prices and measure of units to offer for sale
over the three periods in order to maximize discounted sum of revenue earned.
We determine possible shapes of the corresponding price path for different val-
ues of the parameters and find that for certain combinations of the parameter
values, the optimal price path is u-shaped. For other combinations, we find
that the optimal price path is either strictly non-decreasing (which is consistent
with a result in a paper by Stavins) or horizontal.

While the theoretical prediction that prices never fall before departure was
corroborated, the prediction that the price path for routes with the highest pro-
portion of “high” type buyers is horizontal was found to be empirically invalid.
Instead, routes with high proportions of business travelers witnessed the steep-
est increase in prices. The price path for the routes with low and medium pro-
portions of business travelers was also found to be increasing.

In our theoretical model we assumed that the proportion of buyers with a
higher valuation for the good, who enters the market in each period, remains
constant over the three periods. In reality, this is clearly not the case. It is our
conjecture that a theoretical model which allows for variation in the proportion
of high valuation buyers over the three periods, where the proportion increases
from the first to the third period, will perform better in terms of providing an
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explanation for the empirical results. However, even if we do solve for the price
paths for various parameter values for such a model, it will be difficult to ac-
cess data which describe how the proportion of travelers traveling for business
purposes on different routes change as the date of departure draws closer.

The theoretical model also predicted a small range of parameter values for
which the price path would be u-shaped. While we did find some empirical
evidence for a u-shaped price path for routes with low or medium proportion of
high valuation buyers, we did so only after truncating the data and considering
the last 10 weeks of observations.
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Figure 1: Subgame Perfect Outcomes for different values of V1 and α (V2 = 1).
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City of Origin Destination City Airline Carrier Date of Departure

Detroit,MI Orange County, CA Northwest June 6

Spokane, WA Las Vegas, NV America West June 6
Austin, TX Washington DC (IAD)a United June 6

Orlando, FL Rochester, NY Air Trans June 6
Burbank, CA Atlanta, GA Delta June 6
Detroit, MI San Diego, CA Northwest June 6

Portland, OR Santa Barbara, CA Alaska June 7
Wrangell, AK Petersburg, AK Alaska June 7

Reno, NV Orange County, CA Aloha June 7
Kansas City, MO San Antonio, TX Midwest June 7

Akron, OH Tampa, FL Air Trans June 7
Providence, RI Fort Myers, FL Spirit June 7

Denver, CO Little Rock, AK Frontier June 8
San Francisco, CA Austin, TX United June 8
Santa Barbara, CA Dallas, TX American June 8

Akron, OH Orlando, FL Air Trans June 8
Cincinnati, OH Orange County, CA Delta June 8

Birmingham, AL Washington DC (DCA)b Delta June 8
Indianapolis, IN Miami, FL American June 2
New Orleans, LA Boston, MA American June 2

Pittsburgh, PA Los Angeles, CA US Airways June 2
Cleveland, OH San Antonio, TX Continental June 2

Seattle, WA Tucson, AZ Alaska June 2
Miami, FL Phoenix, AZ America West June 10

Memphis, TN Las Vegas, NV Northwest June 10
San Francisco, CA Kansas City, MO Midwest June 10
Dallas/Fort Worth Providence, RI American June 10

Portland, ME Charlotte, NC US Airways June 10
Phoenix, AZ * Kahului, HI ATA June 10/17
Newark, NJ * Honolulu, HI Continental June 10/17

Notes: (a) There were no direct flights to Ronald Reagan Washington National Airport

(DCA) from Austin. (b) There were no direct flights to Dulles International Airport (IAD)

from Birmingham. * Two-way flights, with June 17, 2005 as return date.

Table 7: Routes, Carriers and Dates of Departure
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Criteria Origin/Destn:
City of Origin Destination City (Misc.*) CD/City

Detroit,MI Orange County, CA 0.46 0.46
Spokane, WA Las Vegas, NV 0.17

Austin, TX Washington DC (DCA) 0.7 0.62
Orlando, FL Rochester, NY 0.03 0.03
Burbank, CA Atlanta, GA 0.74 0.74
Detroit, MI San Diego,CA 0.40 0.40

Portland, OR Santa Barbara, CA 0.43
Wrangell, AK Petersburg, AK 0.29

Reno, NV Orange County, CA 0.15 0.11
Kansas City, MO San Antonio, TX 0.52 0.41

Akron, OH Tampa, FL 0.15 0.15
Providence, RI Fort Myers, FL 0.17

Denver, CO Little Rock, AK 0.33
San Francisco, CA Austin, TX 0.41
Santa Barbara, CA Dallas, TX 0.55 0.52

Akron, OH Orlando, FL 0.23 0.23
Cincinnati, OH Orange County, CA 0.42 0.46

Birmingham, AL Washington DC (DCA) 0.43 0.43
Indianapolis, IN Miami, FL 0.06 0.45
New Orleans, LA Boston, MA 0.55 0.55

Pittsburgh, PA Los Angeles, CA 0.27 0.37
Cleveland, OH San Antonio, TX 0.48 0.38

Seattle, WA Tucson, AZ 0.25
Miami, FL Phoenix, AZ 0.10 0.35

Memphis, TN Las Vegas, NV 0.15
San Francisco, CA Kansas City, MO 0.49 0.41
Dallas/Fort Worth Providence, RI 0.29

Portland, ME Charlotte, NC 0.35 0.07
Phoenix, AZ Kahului, HI 0.17
Newark, NJ Honolulu, HI 0.24

Notes: * We use the proportion of travelers who traveled for business purposes (in-

cludes all forms of transportation) from or to the particular MA, with the CD or state or

city as origin or destination.

Table 8: Proportion of “High” Type Buyers On Different Routes
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